1
|
Yadav P, Quadri K, Kadian R, Waziri A, Agrawal P, Alam MS. New approaches to the treatment of metabolic dysfunction-associated steatotic liver with natural products. ILIVER 2024; 3:100131. [DOI: 10.1016/j.iliver.2024.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Xue Q, Zhang Q, Zhang A, Li D, Liu Y, Xu H, Yang Q, Liu F, Han T, Tang X, Zhang X. Integrated metabolome and transcriptome analysis provides clues to fruit color formation of yellow, orange, and red bell pepper. Sci Rep 2024; 14:29737. [PMID: 39613866 DOI: 10.1038/s41598-024-81005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
Fruit color is a crucial trait for bell pepper. To investigate the mechanism of color formation, three bell pepper lines with different color (yellow, orange and red) were used as materials to conduct comprehensive targeted metabolomic and transcriptomic analyses. During the process of fruit development, 54 carotenoids metabolites were discovered, exhibiting unique accumulation patterns and notable variety specificity. The types and content of carotenoids in orange fruit (OM) were notably greater compared to the other two varieties. Red pigment (capsanthin and capsorubin) was specifically enriched in red fruit (RM), and yellow pigment (lutein and zeaxanthin) is the highest in yellow fruit (YM) and OM. Five modules positively correlated with carotenoid accumulation and one negative module was determined by weighted gene co-expression network analysis (WGCNA). Additionally, transcription factors (TFs) and hub genes related to carotenoid synthesis were predicted. By elucidating the regulation of 7 key carotenoid metabolites by 14 critical genes and 5 key TFs, we constructed a comprehensive carotenoid biosynthesis metabolic network that comprehensively explains the pigment changes observed in green and mature pepper fruit. Overall, the results not only provide important insights into carotenoid synthesis pathway, but also lay a solid base for revealing the mechanism of bell pepper color transformation.
Collapse
Affiliation(s)
- Qiqin Xue
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Qingxia Zhang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Aiai Zhang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Da Li
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China
| | - Yongguang Liu
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China
| | - Haicheng Xu
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China
| | - Qinghua Yang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Fengyan Liu
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Tongyao Han
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Xiaozhen Tang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Xiurong Zhang
- Jia Sixie College of Agriculture, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, 262700, China.
- Shandong Protected Horticulture Technology Innovation Center, Shouguang, 262700, China.
| |
Collapse
|
3
|
Tian F, Sun S, Ge Z, Ge Y, Ge X, Shi Z, Qian X. Understanding the Anticancer Effects of Phytochemicals: From Molecular Docking to Anticarcinogenic Signaling. J Nutr 2024:S0022-3166(24)01184-2. [PMID: 39581266 DOI: 10.1016/j.tjnut.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
As nontraditional nutrients, the biological activity of phytochemicals have been extensively studied for their antioxidant, anti-inflammatory, and apoptosis-promoting effects in various diseases. The general anticancer benefits of phytochemicals have been demonstrated in both basic researches and clinical trials. However, researchers understanding of how phytochemicals target cancer-related signaling pathways is still in its infancy. Molecular docking simulation analyses have yielded a large amount of cellular target molecules of phytochemicals. Herein, we review the potential signaling pathways that may be involved in the phytochemical-driven cancer benefits. We expect these findings to help in the design of potential cancer treatments designed by manipulating the binding modes and sites of these plant chemicals.
Collapse
Affiliation(s)
- Fuwei Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhong Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqian Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurosurgery of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Jooste J, Legoabe LJ, Ilbeigi K, Caljon G, Beteck RM. Hydrazinated geraniol derivatives as potential broad-spectrum antiprotozoal agents. Arch Pharm (Weinheim) 2024; 357:e2400430. [PMID: 38982314 DOI: 10.1002/ardp.202400430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Geraniol, a primary component of several essential oils, has been associated with broad-spectrum antiprotozoal activities, although moderate to weak. This study primarily concentrated on the synthesis of hydrazinated geraniol derivatives as potential antiprotozoal agents. The synthesised compounds were tested in vitro against different parasitic protozoans of clinical relevance, including Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania infantum. Compounds 6, 8, 13, 14 and 15 demonstrated low micromolar activity against the different parasites. Compounds 8, 13, 14 and 15 had the highest efficacy against Trypanosoma brucei rhodesiense, as indicated by their respective IC50 values of 0.74, 0.56, 1.26 and 1.00 µM. Compounds 6, 14 and 15 displayed the best activity against Trypanosoma brucei brucei, with IC50 values of 1.49, 1.48 and 1.85 µM, respectively. The activity of compounds 6, 14 and 15 also extended to intracellular Trypanosoma cruzi, with IC50 values of 5.14, 6.30 and 4.90 µM, respectively. Compound 6, with an IC50 value of 11.73 µM, and compound 14, with an IC50 value of 8.14 µM, demonstrated some modest antileishmanial activity.
Collapse
Affiliation(s)
- Joelien Jooste
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Leo M, D'Angeli F, Genovese C, Spila A, Miele C, Ramadan D, Ferroni P, Guadagni F. Oral Health and Nutraceutical Agents. Int J Mol Sci 2024; 25:9733. [PMID: 39273680 PMCID: PMC11395598 DOI: 10.3390/ijms25179733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Oral health is essential for both overall health and quality of life. The mouth is a window into the body's health, and nutrition can strongly impact the state of general and oral health. A healthy diet involves the synergistic effect of various nutraceutical agents, potentially capable of conferring protective actions against some inflammatory and chronic-degenerative disorders. Nutraceuticals, mostly present in plant-derived products, present multiple potential clinical, preventive, and therapeutic benefits. Accordingly, preclinical and epidemiological studies suggested a protective role for these compounds, but their real preventive and therapeutic effects in humans still await confirmation. Available evidence suggests that plant extracts are more effective than individual constituents because they contain different phytochemicals with multiple pharmacological targets and additive/synergistic effects, maximizing the benefits for oral health. Moreover, nutritional recommendations for oral health should be personalized and aligned with valid suggestions for overall health. This review is aimed to: introduce the basic concepts of nutraceuticals, including their main food sources; examine the logic that supports their relationship with oral health, and summarize and critically discuss clinical trials testing the utility of nutraceuticals in the prevention and treatment of oral diseases.
Collapse
Affiliation(s)
- Mariantonietta Leo
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Floriana D'Angeli
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Department of Medicine and Surgery, "Kore" University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
| | - Carlo Genovese
- Department of Medicine and Surgery, "Kore" University of Enna, Contrada Santa Panasia, 94100 Enna, Italy
- Nacture S.r.l., Spin-Off University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Antonella Spila
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Chiara Miele
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Dania Ramadan
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- InterInstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele, 00166 Rome, Italy
| |
Collapse
|
6
|
Oubohssaine M, Hnini M, Rabeh K. Exploring lipid signaling in plant physiology: From cellular membranes to environmental adaptation. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154295. [PMID: 38885581 DOI: 10.1016/j.jplph.2024.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Lipids have evolved as versatile signaling molecules that regulate a variety of physiological processes in plants. Convincing evidence highlights their critical role as mediators in a wide range of plant processes required for survival, growth, development, and responses to environmental conditions such as water availability, temperature changes, salt, pests, and diseases. Understanding lipid signaling as a critical process has helped us expand our understanding of plant biology by explaining how plants sense and respond to environmental cues. Lipid signaling pathways constitute a complex network of lipids, enzymes, and receptors that coordinate important cellular responses and stressing plant biology's changing and adaptable traits. Plant lipid signaling involves a wide range of lipid classes, including phospholipids, sphingolipids, oxylipins, and sterols, each of which contributes differently to cellular communication and control. These lipids function not only as structural components, but also as bioactive molecules that transfer signals. The mechanisms entail the production of lipid mediators and their detection by particular receptors, which frequently trigger downstream cascades that affect gene expression, cellular functions, and overall plant growth. This review looks into lipid signaling in plant physiology, giving an in-depth look and emphasizing its critical function as a master regulator of vital activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| | - Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
7
|
Zhuang H, Li Z, Wang M, Liu B, Chu Y, Lin Z. Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174426. [PMID: 38969123 DOI: 10.1016/j.scitotenv.2024.174426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Photosynthesis provides carbon sources and energy for crop growth and development, and the widespread presence of microplastics and plastic plasticisers in agricultural soils affects crop photosynthesis, but the mechanism of the effect is not clear. This study aims to investigate the effects of different microplastics and plasticizers on cucumber photosynthesis. Using polyvinyl chloride (PVC), polyethylene (PE), polystyrene (PS), and di-n-octyl phthalate (DOP) as representative microplastics and plasticizers, we assessed their impact on cucumber photosynthesis. Our results reveal significant alterations in key parameters: intercellular CO2 concentration (Ci) and transpiration rate (Tr) increased across all treatments, whereas stomatal limit value (Ls) and water use efficiency (WUE) decreased. Notably, PS + DOP treatment led to a significant reduction in the maximum efficiency of photosystem II (Fv/Fm) and ATP accumulation. Furthermore, PE and PS + DOP treatments decreased lycopene and ɛ-carotene synthesis rates, as well as abscisic acid (ABA) accumulation. All treatments inhibited the conversion of β-carotene into strigolactone (SL) and decreased chlorophyll synthesis rates, with PS + DOP exhibiting the most severe impact. Regarding chlorophyll degradation pathways, PVC and PE treatments reduced chlorophyll decomposition rates, whereas DOP with PS promoted degradation. PE and PS treatments also impaired light energy capture, electron transport, and the structural stability of photosystems I and II, as well as photosynthetic capacity and NADPH and ATP synthesis rates. Our findings underscore the differential impacts of microplastics and plasticizers on cucumber photosynthesis, with PS + DOP having the most detrimental effect. These results shed light on the complex interactions between microplastics and plant physiology, highlighting the urgent need for mitigation strategies in agricultural practices to safeguard crop productivity and environmental sustainability.
Collapse
Affiliation(s)
- Haoran Zhuang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China.
| | - Menglin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Bo Liu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yiwen Chu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ziyu Lin
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China
| |
Collapse
|
8
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
9
|
Yang Y, Zhao Y, Pan M, Yu Y, Guo Y, Ge Q, Hao W. Physiology and transcriptome analysis of Artemisia argyi adaptation and accumulation to soil cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116397. [PMID: 38714088 DOI: 10.1016/j.ecoenv.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024]
Abstract
The soil pollution caused by cadmium (Cd) poses a significant threat to the environment. Therefore, identifying plants that can effectively remediate Cd-contaminated soils is urgently needed. In this study, physiological, cytological, and transcriptome analyses were performed to comprehensively understand the changes in Artemisia argyi under Cd stress. Physiological and cytological analyses indicated that A. argyi maintained normal growth with intact cell structure under Cd stress levels up to 10 mg/kg. Cytological analysis showed that Cd precipitation in leaf cells occurred in the cytoplasm and intercellular spaces. As the levels of Cd stress increased, proline accumulation in leaves increased, whereas soluble protein and soluble sugar initially increased, followed by a subsequent decline. The translocation factor was above 1 under 0.6 mg/kg Cd stress but decreased when it exceeded this concentration. Transcriptome analyses revealed several crucial Cd-influenced pathways, including amino acid, terpenoid, flavonoid, and sugar metabolisms. This study not only proved that A. argyi could enrich Cd in soil but also revealed the response of A. argyi to Cd and its resistance mechanisms, which provided insight into the cleaner production of A. argyi and the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yingbin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinghui Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiqi Pan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaxin Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Guo
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Ge
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wenfang Hao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Khoso MA, Wang M, Zhou Z, Huang Y, Li S, Zhang Y, Qian G, Ko SN, Pang Q, Liu C, Li L. Bacillus altitudinis AD13-4 Enhances Saline-Alkali Stress Tolerance of Alfalfa and Affects Composition of Rhizosphere Soil Microbial Community. Int J Mol Sci 2024; 25:5785. [PMID: 38891975 PMCID: PMC11171787 DOI: 10.3390/ijms25115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Saline and alkaline stresses limit plant growth and reduce crop yield. Soil salinization and alkalization seriously threaten the sustainable development of agriculture and the virtuous cycle of ecology. Biofertilizers made from plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth and stress tolerance, but also are environmentally friendly and cost-effective. There have been many studies on the mechanisms underlying PGPRs enhancing plant salt resistance. However, there is limited knowledge about the interaction between PGPR and plants under alkaline-sodic stress. To clarify the mechanisms underlying PGPR's improvement of plants' tolerance to alkaline-sodic stress, we screened PGPR from the rhizosphere microorganisms of local plants growing in alkaline-sodic land and selected an efficient strain, Bacillus altitudinis AD13-4, as the research object. Our results indicate that the strain AD13-4 can produce various growth-promoting substances to regulate plant endogenous hormone levels, cell division and differentiation, photosynthesis, antioxidant capacity, etc. Transcriptome analysis revealed that the strain AD13-4 significantly affected metabolism and secondary metabolism, signal transduction, photosynthesis, redox processes, and plant-pathogen interactions. Under alkaline-sodic conditions, inoculation of the strain AD13-4 significantly improved plant biomass and the contents of metabolites (e.g., soluble proteins and sugars) as well as secondary metabolites (e.g., phenols, flavonoids, and terpenoids). The 16S rRNA gene sequencing results indicated that the strain AD13-4 significantly affected the abundance and composition of the rhizospheric microbiota and improved soil activities and physiochemical properties. Our study provides theoretical support for the optimization of saline-alkali-tolerant PGPR and valuable information for elucidating the mechanism of plant alkaline-sodic tolerance.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Zhenzhen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Yongxue Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Song Nam Ko
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Changli Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| |
Collapse
|
11
|
Mishra LS, Cook SD, Kushwah S, Isaksson H, Straub IR, Abele M, Mishra S, Ludwig C, Libby E, Funk C. Overexpression of the plastidial pseudo-protease AtFtsHi3 enhances drought tolerance while sustaining plant growth. PHYSIOLOGIA PLANTARUM 2024; 176:e14370. [PMID: 38818570 DOI: 10.1111/ppl.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
With climate change, droughts are expected to be more frequent and severe, severely impacting plant biomass and quality. Here, we show that overexpressing the Arabidopsis gene AtFtsHi3 (FtsHi3OE) enhances drought-tolerant phenotypes without compromising plant growth. AtFtsHi3 encodes a chloroplast envelope pseudo-protease; knock-down mutants (ftshi3-1) are found to be drought tolerant but exhibit stunted growth. Altered AtFtsHi3 expression therefore leads to drought tolerance, while only diminished expression of this gene leads to growth retardation. To understand the underlying mechanisms of the enhanced drought tolerance, we compared the proteomes of ftshi3-1 and pFtsHi3-FtsHi3OE (pFtsHi3-OE) to wild-type plants under well-watered and drought conditions. Drought-related processes like osmotic stress, water transport, and abscisic acid response were enriched in pFtsHi3-OE and ftshi3-1 mutants following their enhanced drought response compared to wild-type. The knock-down mutant ftshi3-1 showed an increased abundance of HSP90, HSP93, and TIC110 proteins, hinting at a potential downstream role of AtFtsHi3 in chloroplast pre-protein import. Mathematical modeling was performed to understand how variation in the transcript abundance of AtFtsHi3 can, on the one hand, lead to drought tolerance in both overexpression and knock-down lines, yet, on the other hand, affect plant growth so differently. The results led us to hypothesize that AtFtsHi3 may form complexes with at least two other protease subunits, either as homo- or heteromeric structures. Enriched amounts of AtFtsH7/9, AtFtsH11, AtFtsH12, and AtFtsHi4 in ftshi3-1 suggest a possible compensation mechanism for these proteases in the hexamer.
Collapse
Affiliation(s)
| | - Sam D Cook
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
| | - Isabella R Straub
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Sanatkumar Mishra
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
| | | |
Collapse
|
12
|
González-Cabanelas D, Perreca E, Rohwer JM, Schmidt A, Engl T, Raguschke B, Gershenzon J, Wright LP. Deoxyxylulose 5-Phosphate Synthase Does Not Play a Major Role in Regulating the Methylerythritol 4-Phosphate Pathway in Poplar. Int J Mol Sci 2024; 25:4181. [PMID: 38673766 PMCID: PMC11049974 DOI: 10.3390/ijms25084181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.
Collapse
Affiliation(s)
- Diego González-Cabanelas
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; (D.G.-C.); (A.S.); (B.R.); (J.G.); (L.P.W.)
| | - Erica Perreca
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; (D.G.-C.); (A.S.); (B.R.); (J.G.); (L.P.W.)
| | - Johann M. Rohwer
- Laboratory for Molecular Systems Biology, Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Axel Schmidt
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; (D.G.-C.); (A.S.); (B.R.); (J.G.); (L.P.W.)
| | - Tobias Engl
- Department of Insect Symbiosis, Max Plank Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany;
| | - Bettina Raguschke
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; (D.G.-C.); (A.S.); (B.R.); (J.G.); (L.P.W.)
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; (D.G.-C.); (A.S.); (B.R.); (J.G.); (L.P.W.)
| | - Louwrance P. Wright
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; (D.G.-C.); (A.S.); (B.R.); (J.G.); (L.P.W.)
| |
Collapse
|
13
|
Wang Y, Zhang N, Yan J, Li C, Zeng N, Wang D, Li Z, Li B, An Y. The Property of a Key Amino Acid Determines the Function of Farnesyl Pyrophosphate Synthase in Sporobolomyces pararoseus NGR. Curr Issues Mol Biol 2024; 46:3108-3121. [PMID: 38666925 PMCID: PMC11048977 DOI: 10.3390/cimb46040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Farnesyl pyrophosphate synthase (FPPS) catalyzes the synthesis of C15 farnesyl diphosphate (FPP) from C5 dimethylallyl diphosphate (DMAPP) and two or three C5 isopentenyl diphosphates (IPPs). FPP is an important precursor for the synthesis of isoprenoids and is involved in multiple metabolic pathways. Here, farnesyl pyrophosphate synthase from Sporobolomyces pararoseus NGR (SpFPPS) was isolated and expressed by the prokaryotic expression system. The SpFPPS full-length genomic DNA and cDNA are 1566 bp and 1053 bp, respectively. This gene encodes a 350-amino acid protein with a predicted molecular mass of 40.33 kDa and a molecular weight of 58.03 kDa (40.33 kDa + 17.7 kDa), as detected by SDS-PAGE. The function of SpFPPS was identified by induction, purification, protein concentration and in vitro enzymatic activity experiments. Structural analysis showed that Y90 was essential for chain termination and changing the substrate scope. Site-directed mutation of Y90 to the smaller side-chain amino acids alanine (A) and lysine (K) showed in vitro that wt-SpFPPS catalyzed the condensation of the substrate DMAPP or geranyl diphosphate (GPP) with IPP at apparent saturation to synthesize FPP as the sole product and that the mutant protein SpFPPS-Y90A synthesized FPP and C20 geranylgeranyl diphosphate (GGPP), while SpFPPS-Y90K hydrolyzed the substrate GGPP. Our results showed that FPPS in S. pararoseus encodes the SpFPPS protein and that the amino acid substitution at Y90 changed the distribution of SpFPPS-catalyzed products. This provides a baseline for potentially regulating SpFPPS downstream products and improving the carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Yunjiao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Jianyu Yan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Chunwang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China;
| | - Dandan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| | - Zijing Li
- Food Science College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China;
| | - Yingfeng An
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (Y.W.); (N.Z.); (J.Y.); (C.L.); (D.W.)
| |
Collapse
|
14
|
Cui Sun M, Otálora-Alcaraz A, Prenderville JA, Downer EJ. Toll-like receptor signalling as a cannabinoid target. Biochem Pharmacol 2024; 222:116082. [PMID: 38438052 DOI: 10.1016/j.bcp.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Toll-like receptors (TLRs) have become a focus in biomedicine and biomedical research given the roles of this unique family of innate immune proteins in immune activation, infection, and autoimmunity. It is evident that TLR dysregulation, and subsequent alterations in TLR-mediated inflammatory signalling, can contribute to disease pathogenesis, and TLR targeted therapies are in development. This review highlights evidence that cannabinoids are key regulators of TLR signalling. Cannabinoids include component of the plant Cannabis sativa L. (C. sativa), synthetic and endogenous ligands, and overall represent a class of compounds whose therapeutic potential and mechanism of action continues to be elucidated. Cannabinoid-based medicines are in the clinic, and are furthermore under intense investigation for broad clinical development to manage symptoms of a range of disorders. In this review, we present an overview of research evidence that signalling linked to a range of TLRs is targeted by cannabinoids, and such cannabinoid mediated effects represent therapeutic avenues for further investigation. First, we provide an overview of TLRs, adaptors and key signalling events, alongside a summary of evidence that TLRs are linked to disease pathologies. Next, we discuss the cannabinoids system and the development of cannabinoid-based therapeutics. Finally, for the bulk of this review, we systematically outline the evidence that cannabinoids (plant-derived cannabinoids, synthetic cannabinoids, and endogenous cannabinoid ligands) can cross-talk with innate immune signalling governed by TLRs, focusing specifically on each member of the TLR family. Cannabinoids should be considered as key regulators of signalling controlled by TLRs, and such regulation should be a major focus in terms of the anti-inflammatory propensity of the cannabinoid system.
Collapse
Affiliation(s)
- Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jack A Prenderville
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Transpharmation Ireland Limited, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
15
|
Feng K, Yan YJ, Sun N, Yang ZY, Zhao SP, Wu P, Li LJ. Exogenous methyl jasmonate treatment induced the transcriptional responses and accumulation of volatile terpenoids in Oenanthe javanica (Blume) DC. Int J Biol Macromol 2024; 265:131017. [PMID: 38513909 DOI: 10.1016/j.ijbiomac.2024.131017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Water dropwort is favored by consumers for its unique flavor and medicinal value. Terpenoids were identified as the main volatile compounds related to its flavor. In this study, water dropwort was treated with different concentrations of exogenous methyl jasmonate (MeJA). The contents of volatile terpenoids were determined under various MeJA treatments. The results indicated that 0.1 mM of MeJA most effectively promoted the biosynthesis of flavor-related terpenoids in water dropwort. Terpinolene accounted the highest proportion among terpene compounds in water dropwort. The contents of jasmonates in water dropwort were also increased after exogenous MeJA treatments. Transcriptome analysis indicated that DEGs involved in the terpenoid biosynthesis pathway were upregulated. The TPS family was identified from water dropwort, and the expression levels of Oj0473630, Oj0287510 and Oj0240400 genes in TPS-b subfamily were consistent with the changes of terpene contents under MeJA treatments. Oj0473630 was cloned from the water dropwort and designated as OjTPS3, which is predicted to be related to the biosynthesis of terpinolene in water dropwort. Subcellular localization indicated that OjTPS3 protein was localized in chloroplast. Protein purification and enzyme activity of OjTPS3 protein were conducted. The results showed that the purified OjTPS3 protein catalyzed the biosynthesis of terpinolene by using geranyl diphosphate (GPP) as substrate in vitro. This study will facilitate to further understand the molecular mechanism of terpenoid biosynthesis and provide a strategy to improve the flavor of water dropwort.
Collapse
Affiliation(s)
- Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Ya-Jie Yan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Nan Sun
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Zhi-Yuan Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Shu-Ping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Liang-Jun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
16
|
Chen W, Tang L, Li Q, Cai Y, Ahmad S, Wang Y, Tang S, Guo N, Wei X, Tang S, Shao G, Jiao G, Xie L, Hu S, Sheng Z, Hu P. YGL3 Encoding an IPP and DMAPP Synthase Interacts with OsPIL11 to Regulate Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:8. [PMID: 38228921 DOI: 10.1186/s12284-024-00687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
As the source of isoprenoid precursors, the plastidial methylerythritol phosphate (MEP) pathway plays an essential role in plant development. Here, we report a novel rice (Oryza sativa L.) mutant ygl3 (yellow-green leaf3) that exhibits yellow-green leaves and lower photosynthetic efficiency compared to the wild type due to abnormal chloroplast ultrastructure and reduced chlorophyll content. Map-based cloning showed that YGL3, one of the major genes involved in the MEP pathway, encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, which is localized in the thylakoid membrane. A single base substitution in ygl3 plants resulted in lower 4-hydroxy-3-methylbut-2-enyl diphosphate reductase activity and lower contents of isopentenyl diphosphate (IPP) compared to the wild type. The transcript levels of genes involved in the syntheses of chlorophyll and thylakoid membrane proteins were significantly reduced in the ygl3 mutant compared to the wild type. The phytochrome interacting factor-like gene OsPIL11 regulated chlorophyll synthesis during the de-etiolation process by directly binding to the promoter of YGL3 to activate its expression. The findings provides a theoretical basis for understanding the molecular mechanisms by which the MEP pathway regulate chloroplast development in rice.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, P. R. China
| | - Liqun Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Qianlong Li
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yicong Cai
- Key Labora tory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Ministry of Education/Collaboration Center for Double-season Rice Modernization Production, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yakun Wang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shengjia Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Naihui Guo
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China.
| |
Collapse
|
17
|
Pan J, Li W, Chen B, Liu L, Zhang J, Li J. Arabidopsis 3β-Hydroxysteroid Dehydrogenases/C4-Decarboxylases Are Essential for the Pollen and Embryonic Development. Int J Mol Sci 2023; 24:15565. [PMID: 37958553 PMCID: PMC10649741 DOI: 10.3390/ijms242115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The biosynthesis of C27-29 sterols from their C30 precursor squalene involves C24-alkylation and the removal of three methyl groups, including two at the C4 position. The two C4 demethylation reactions require a bifunctional enzyme known as 3β-hydroxysteroid dehydrogenase/C4-decarboxylase (3βHSD/D), which removes an oxidized methyl (carboxylic) group at C4 while simultaneously catalyzing the 3β-hydroxyl→3-keto oxidation. Its loss-of-function mutations cause ergosterol-dependent growth in yeast and congenital hemidysplasia with ichthyosiform erythroderma and limb defect (CHILD) syndrome in humans. Although plant 3βHSD/D enzymes were well studied enzymatically, their developmental functions remain unknown. Here we employed a CRISPR/Cas9-based genome-editing approach to generate knockout mutants for two Arabidopsis 3βHSD/D genes, HSD1 and HSD2, and discovered the male gametophytic lethality for the hsd1 hsd2 double mutation. Pollen-specific expression of HSD2 in the heterozygous hsd1 hsd2/+ mutant not only rescued the pollen lethality but also revealed the critical roles of the two HSD genes in embryogenesis. Our study thus demonstrated the essential functions of the two Arabidopsis 3βHSD/D genes in male gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jiawen Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (J.P.); (W.L.); (B.C.); (L.L.)
| | - Weifeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (J.P.); (W.L.); (B.C.); (L.L.)
| | - Binzhao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (J.P.); (W.L.); (B.C.); (L.L.)
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (J.P.); (W.L.); (B.C.); (L.L.)
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (J.P.); (W.L.); (B.C.); (L.L.)
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (J.P.); (W.L.); (B.C.); (L.L.)
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| |
Collapse
|
18
|
Ezquerro M, Li C, Pérez-Pérez J, Burbano-Erazo E, Barja MV, Wang Y, Dong L, Lisón P, López-Gresa MP, Bouwmeester HJ, Rodríguez-Concepción M. Tomato geranylgeranyl diphosphate synthase isoform 1 is involved in the stress-triggered production of diterpenes in leaves and strigolactones in roots. THE NEW PHYTOLOGIST 2023; 239:2292-2306. [PMID: 37381102 DOI: 10.1111/nph.19109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Carotenoids are photoprotectant pigments and precursors of hormones such as strigolactones (SL). Carotenoids are produced in plastids from geranylgeranyl diphosphate (GGPP), which is diverted to the carotenoid pathway by phytoene synthase (PSY). In tomato (Solanum lycopersicum), three genes encode plastid-targeted GGPP synthases (SlG1 to SlG3) and three genes encode PSY isoforms (PSY1 to PSY3). Here, we investigated the function of SlG1 by generating loss-of-function lines and combining their metabolic and physiological phenotyping with gene co-expression and co-immunoprecipitation analyses. Leaves and fruits of slg1 lines showed a wild-type phenotype in terms of carotenoid accumulation, photosynthesis, and development under normal growth conditions. In response to bacterial infection, however, slg1 leaves produced lower levels of defensive GGPP-derived diterpenoids. In roots, SlG1 was co-expressed with PSY3 and other genes involved in SL production, and slg1 lines grown under phosphate starvation exuded less SLs. However, slg1 plants did not display the branched shoot phenotype observed in other SL-defective mutants. At the protein level, SlG1 physically interacted with the root-specific PSY3 isoform but not with PSY1 and PSY2. Our results confirm specific roles for SlG1 in producing GGPP for defensive diterpenoids in leaves and carotenoid-derived SLs (in combination with PSY3) in roots.
Collapse
Affiliation(s)
- Miguel Ezquerro
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Changsheng Li
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Julia Pérez-Pérez
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Esteban Burbano-Erazo
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - M Victoria Barja
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, 08193, Spain
| | - Yanting Wang
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Purificación Lisón
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - M Pilar López-Gresa
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, the Netherlands
| | - Manuel Rodríguez-Concepción
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
19
|
Xin J, Li Y, Zhao C, Ge W, Tian R. An integrated transcriptome, metabolomic, and physiological investigation uncovered the underlying tolerance mechanisms of Monochoria korsakowii in response to acute/chronic cadmium exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107888. [PMID: 37442048 DOI: 10.1016/j.plaphy.2023.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Identifying the physiological response and tolerance mechanism of wetland plants to heavy metal exposure can provide theoretical guidance for an early warning for acute metal pollution and metal-contaminated water phytoremediation. A hydroponic experiment was employed to investigate variations in the antioxidant enzyme activity, chlorophyll content, and photosynthesis in leaves of Monochoria korsakowii under 0.12 mM cadmium ion (Cd2+) acute (4 d) and chronic (21 d) exposure. Transcriptome and metabolome were analyzed to elucidate the underlying defensive strategies. The acute/chronic Cd2+ exposure decreased chlorophyll a and b contents, and disturbed photosynthesis in the leaves. The acute Cd2+ exposure increased catalase activity by 36.42%, while the chronic Cd2+ exposure markedly increased ascorbate peroxidase, superoxide dismutase, and glutathione peroxidase activities in the leaves. A total of 2 685 differentially expressed genes (DEGs) in the leaves were identified with the plants exposed to the acute/chronic Cd2+ contamination. In the acute Cd2+ exposure treatment, DEGs were preferentially enriched in the plant hormone transduction pathway, followed by phenylrpopanoid biosynthesis. However, the chronic Cd2+ exposure induced DEGs enriched in the biosynthesis of secondary metabolites pathway as priority. With acute/chronic Cd2+ exposure, a total of 157 and 227 differentially expressed metabolites were identified in the leaves. Conjoint transcriptome and metabolome analysis indicated the plant hormone signal transduction pathway and biosynthesis of secondary metabolites was preferentially activated by the acute and chronic Cd2+ exposure, respectively. The phenylpropanoid pathway functioned as a chemical defense, and the positive role of deoxyxylulose phosphate pathway in leaves against acute/chronic Cd2+ exposure was impaired.
Collapse
Affiliation(s)
- Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yan Li
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wenjia Ge
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
20
|
Rosas-Saavedra C, Quiroz LF, Parra S, Gonzalez-Calquin C, Arias D, Ocarez N, Lopez F, Stange C. Putative Daucus carota Capsanthin-Capsorubin Synthase (DcCCS) Possesses Lycopene β-Cyclase Activity, Boosts Carotenoid Levels, and Increases Salt Tolerance in Heterologous Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2788. [PMID: 37570943 PMCID: PMC10421225 DOI: 10.3390/plants12152788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 (annotated as CCS-Like) is mostly expressed in mature storage roots, an organ that accumulates high α-carotene and β-carotene content. In this work, we determined that DcLCYB2 of the orange Nantes variety presents plastid localization and encodes for a functional LCYB enzyme determined by means of heterologous complementation in Escherichia coli. Also, ectopic expression of DcLCYB2 in tobacco (Nicotiana tabacum) and kiwi (Actinidia deliciosa) plants increases total carotenoid content showing its functional role in plants. In addition, transgenic tobacco T2 homozygous plants showed better performance under chronic salt treatment, while kiwi transgenic calli also presented a higher survival rate under salt treatments than control calli. Our results allow us to propose DcLCYB2 as a prime candidate to engineer carotenoid biofortified crops as well as crops resilient to saline environments.
Collapse
Affiliation(s)
- Carolina Rosas-Saavedra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Luis Felipe Quiroz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Samuel Parra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Christian Gonzalez-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Nallat Ocarez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Instituto de Investigaciones Agropecuarias (INIA), La Platina, Research Centre, Av. Santa Rosa 11610, Santiago 8820000, Chile
| | - Franco Lopez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| |
Collapse
|
21
|
Kruk J, Szymańska R. Synthesis of natural polyprenols for the production of biological prenylquinones and tocochromanols. RSC Adv 2023; 13:23122-23129. [PMID: 37529360 PMCID: PMC10388336 DOI: 10.1039/d3ra02872k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
We elaborate the chemical synthesis of polyprenols by chain lengthening, which is considerably less time-consuming than the other previously described methods. Our method eliminates critical steps requiring low temperature and toxic chemicals, which are difficult to perform in ordinary laboratories. The critical step of acetylene addition in liquid ammonia was replaced by a new approach, namely, the use of sodium acetylide in dimethoxyethane at room temperature, where the reaction is completed within one hour. This method is of general significance as it can also be applied to the synthesis of any other acetylides. Our method provides reasonable yields and can be scaled depending on the requirements. All the reactions were followed by high-performance liquid chromatography, allowing the formation of undesired isomers and other side-products to be controlled. The resulting polyprenols were further used in the synthesis of plastoquinones, although a variety of biological prenylquinones can be synthesized this way. Moreover, we found a new method for the direct formation of tocochromanols (plastochromanols, tocochromanols) from polyprenols and aromatic head groups.
Collapse
Affiliation(s)
- Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Kraków Poland +48 126646361
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology Reymonta 19 30-059 Kraków Poland
| |
Collapse
|
22
|
Kuluev B, Uteulin K, Bari G, Baimukhametova E, Musin K, Chemeris A. Molecular Genetic Research and Genetic Engineering of Taraxacum kok-saghyz L.E. Rodin. PLANTS (BASEL, SWITZERLAND) 2023; 12:1621. [PMID: 37111845 PMCID: PMC10144037 DOI: 10.3390/plants12081621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Natural rubber (NR) remains an indispensable raw material with unique properties that is used in the manufacture of a large number of products and the global demand for it is growing every year. The only industrially important source of NR is the tropical tree Hevea brasiliensis (Willd. ex A.Juss.) Müll.Arg., thus alternative sources of rubber are required. For the temperate zone, the most suitable source of high quality rubber is the Russian (Kazakh) dandelion Taraxacum kok-saghyz L.E. Rodin (TKS). An obstacle to the widespread industrial cultivation of TKS is its high heterozygosity, poor growth energy, and low competitiveness in the field, as well as inbreeding depression. Rapid cultivation of TKS requires the use of modern technologies of marker-assisted and genomic selection, as well as approaches of genetic engineering and genome editing. This review is devoted to describing the progress in the field of molecular genetics, genomics, and genetic engineering of TKS. Sequencing and annotation of the entire TKS genome made it possible to identify a large number of SNPs, which were subsequently used in genotyping. To date, a total of 90 functional genes have been identified that control the rubber synthesis pathway in TKS. The most important of these proteins are part of the rubber transferase complex and are encoded by eight genes for cis-prenyltransferases (TkCPT), two genes for cis-prenyltransferase-like proteins (TkCPTL), one gene for rubber elongation factor (TkREF), and nine genes for small rubber particle proteins (TkSRPP). In TKS, genes for enzymes of inulin metabolism have also been identified and genome-wide studies of other gene families are also underway. Comparative transcriptomic and proteomic studies of TKS lines with different accumulations of NR are also being carried out, which help to identify genes and proteins involved in the synthesis, regulation, and accumulation of this natural polymer. A number of authors already use the knowledge gained in the genetic engineering of TKS and the main goal of these works is the rapid transformation of the TKS into an economically viable rubber crop. There are no great successes in this area so far, therefore work on genetic transformation and genome editing of TKS should be continued, considering the recent results of genome-wide studies.
Collapse
Affiliation(s)
- Bulat Kuluev
- Institute of Biochemistry and Genetics of UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Kairat Uteulin
- Institute of Plant Biology and Biotechnology, St. Timiryazev 45, 050040 Almaty, Kazakhstan
| | - Gabit Bari
- Laboratory of Microclonal Propagation of Plants, Kazakh National Agrarian Research University, St. Valikhanov 137, 050000 Almaty, Kazakhstan
| | - Elvina Baimukhametova
- Institute of Biochemistry and Genetics of UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Khalit Musin
- Institute of Biochemistry and Genetics of UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| | - Alexey Chemeris
- Institute of Biochemistry and Genetics of UFRC RAS, 71 Pr. Oktyabrya, 450054 Ufa, Russia
| |
Collapse
|
23
|
Feng W, Mehari TG, Fang H, Ji M, Qu Z, Jia M, Wang D, Ditta A, Khan MKR, Cao Y, Wu J, Wang B. Genome-wide identification of the geranylgeranyl pyrophosphate synthase (GGPS) gene family involved in chlorophyll synthesis in cotton. BMC Genomics 2023; 24:176. [PMID: 37020266 PMCID: PMC10077690 DOI: 10.1186/s12864-023-09249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Geranylgeranyl pyrophosphate synthase (GGPS) is a structural enzyme of the terpene biosynthesis pathway that is involved in regulating plant photosynthesis, growth and development, but this gene family has not been systematically studied in cotton. RESULTS In the current research, genome-wide identification was performed, and a total of 75 GGPS family members were found in four cotton species, Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii. The GGPS genes were divided into three subgroups by evolutionary analysis. Subcellular localization prediction showed that they were mainly located in chloroplasts and plastids. The closely related GGPS contains a similar gene structure and conserved motif, but some genes are quite different, resulting in functional differentiation. Chromosome location analysis, collinearity and selection pressure analysis showed that many fragment duplication events occurred in GGPS genes. Three-dimensional structure analysis and conservative sequence analysis showed that the members of the GGPS family contained a large number of α-helices and random crimps, and all contained two aspartic acid-rich domains, DDxxxxD and DDxxD (x is an arbitrary amino acid), suggesting its key role in function. Cis-regulatory element analysis showed that cotton GGPS may be involved in light response, abiotic stress and other processes. A GGPS gene was silenced successfully by virus-induced gene silencing (VIGS), and it was found that the chlorophyll content in cotton leaves decreased significantly, suggesting that the gene plays an important role in plant photosynthesis. CONCLUSIONS In total, 75 genes were identified in four Gossypium species by a series of bioinformatics analysis. Gene silencing from GGPS members of G. hirsutum revealed that GGPS plays an important regulatory role in photosynthesis. This study provides a theoretical basis for the biological function of GGPS in cotton growth and development.
Collapse
Affiliation(s)
- Wenxiang Feng
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | | | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Meijun Ji
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zijian Qu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Mengxue Jia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Dongmei Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Muhammad K R Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
24
|
Sun Q, He L, Sun L, Xu HY, Fu YQ, Sun ZY, Zhu BQ, Duan CQ, Pan QH. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1142139. [PMID: 36938056 PMCID: PMC10014734 DOI: 10.3389/fpls.2023.1142139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Obtaining new grapevine varieties with unique aromas has been a long-standing goal of breeders. Norisoprenoids are of particular interest to wine producers and researchers, as these compounds are responsible for the important varietal aromas in wine, characterized by a complex floral and fruity smell, and are likely present in all grape varieties. However, the single-nucleotide polymorphism (SNP) loci and candidate genes genetically controlling the norisoprenoid content in grape berry remain unknown. To this end, in this study, we investigated 13 norisoprenoid traits across two years in an F1 population consisting of 149 individuals from a hybrid of Vitis vinifera L. cv. Muscat Alexandria and V. vinifera L. cv. Christmas Rose. Based on 568,953 SNP markers, genome-wide association analysis revealed that 27 candidate SNP loci belonging to 18 genes were significantly associated with the concentrations of norisoprenoid components in grape berry. Among them, 13 SNPs were confirmed in a grapevine germplasm population comprising 97 varieties, including two non-synonymous mutations SNPs within the VvDXS1 and VvGGPPS genes, respectively in the isoprenoid metabolic pathway. Genotype analysis showed that the grapevine individuals with the heterozygous genotype C/T at chr5:2987350 of VvGGPPS accumulated higher average levels of 6-methyl-5-hepten-2-one and β-cyclocitral than those with the homozygous genotype C/C. Furthermore, VvGGPPS was highly expressed in individuals with high norisoprenoids concentrations. Transient overexpression of VvGGPPS in the leaves of Vitis quinquangularis and tobacco resulted in an increase in norisoprenoid concentrations. These findings indicate the importance of VvGGPPS in the genetic control of norisoprenoids in grape berries, serving as a potential molecular breeding target for aroma.
Collapse
Affiliation(s)
- Qi Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei He
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Hai-Ying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ya-Qun Fu
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zheng-Yang Sun
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bao-Qing Zhu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chang-Qing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiu-Hong Pan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
25
|
Stra A, Almarwaey LO, Alagoz Y, Moreno JC, Al-Babili S. Carotenoid metabolism: New insights and synthetic approaches. FRONTIERS IN PLANT SCIENCE 2023; 13:1072061. [PMID: 36743580 PMCID: PMC9891708 DOI: 10.3389/fpls.2022.1072061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Carotenoids are well-known isoprenoid pigments naturally produced by plants, algae, photosynthetic bacteria as well as by several heterotrophic microorganisms. In plants, they are synthesized in plastids where they play essential roles in light-harvesting and in protecting the photosynthetic apparatus from reactive oxygen species (ROS). Carotenoids are also precursors of bioactive metabolites called apocarotenoids, including vitamin A and the phytohormones abscisic acid (ABA) and strigolactones (SLs). Genetic engineering of carotenogenesis made possible the enhancement of the nutritional value of many crops. New metabolic engineering approaches have recently been developed to modulate carotenoid content, including the employment of CRISPR technologies for single-base editing and the integration of exogenous genes into specific "safe harbors" in the genome. In addition, recent studies revealed the option of synthetic conversion of leaf chloroplasts into chromoplasts, thus increasing carotenoid storage capacity and boosting the nutritional value of green plant tissues. Moreover, transient gene expression through viral vectors allowed the accumulation of carotenoids outside the plastid. Furthermore, the utilization of engineered microorganisms allowed efficient mass production of carotenoids, making it convenient for industrial practices. Interestingly, manipulation of carotenoid biosynthesis can also influence plant architecture, and positively impact growth and yield, making it an important target for crop improvements beyond biofortification. Here, we briefly describe carotenoid biosynthesis and highlight the latest advances and discoveries related to synthetic carotenoid metabolism in plants and microorganisms.
Collapse
Affiliation(s)
- Alice Stra
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lamyaa O. Almarwaey
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yagiz Alagoz
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan C. Moreno
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Ye K, Teng T, Yang T, Zhao D, Zhao Y. Transcriptome analysis reveals the effect of grafting on gossypol biosynthesis and gland formation in cotton. BMC PLANT BIOLOGY 2023; 23:37. [PMID: 36642721 PMCID: PMC9841644 DOI: 10.1186/s12870-022-04010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gossypol is a unique secondary metabolite and sesquiterpene in cotton, which is mainly synthesized in the root system of cotton and exhibits many biological activities. Previous research found that grafting affected the density of pigment glands and the gossypol content in cotton. RESULTS This study performed a transcriptome analysis on cotton rootstocks and scions of four grafting methods. The gene expression of mutual grafting and self-grafting was compared to explore the potential genes involved in gossypol biosynthesis. A total of six differentially expressed enzymes were found in the main pathway of gossypol synthesis-sesquiterpene and triterpene biosynthesis (map00909): lupeol synthase (LUP1, EC:5.4.99.41), beta-amyrin synthase (LUP2, EC:5.4.99.39), squalene monooxygenase (SQLE, EC:1.14.14.17), squalene synthase (FDFT1, EC:2.5.1.21), (-)-germacrene D synthase (GERD, EC:4.2.3.75), ( +)-delta-cadinene synthase (CADS, EC:4.2.3.13). By comparing the results of the gossypol content and the density of the pigment gland, we speculated that these six enzymes might affect the biosynthesis of gossypol. It was verified by qRT-PCR analysis that grafting could influence gene expression of scion and stock. After suppressing the expression of the LUP1, FDFT1, and CAD genes by VIGS technology, the gossypol content in plants was significantly down-regulated. CONCLUSIONS These results indicate the potential molecular mechanism of gossypol synthesis during the grafting process and provide a theoretical foundation for further research on gossypol biosynthesis.
Collapse
Affiliation(s)
- Kun Ye
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Teng Teng
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Teng Yang
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Degang Zhao
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yichen Zhao
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
27
|
Dong C, Zhang M, Song S, Wei F, Qin L, Fan P, Shi Y, Wang X, Wang R. A Small Subunit of Geranylgeranyl Diphosphate Synthase Functions as an Active Regulator of Carotenoid Synthesis in Nicotiana tabacum. Int J Mol Sci 2023; 24:ijms24020992. [PMID: 36674507 PMCID: PMC9863795 DOI: 10.3390/ijms24020992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
As one of the most imperative antioxidants in higher plants, carotenoids serve as accessory pigments to harvest light for photosynthesis and photoprotectors for plants to adapt to high light stress. Here, we report a small subunit (SSU) of geranylgeranyl diphosphate synthase (GGPPS) in Nicotiana tabacum, NtSSU II, which takes part in the regulation carotenoid biosynthesis by forming multiple enzymatic components with NtGGPPS1 and downstream phytoene synthase (NtPSY1). NtSSU II transcript is widely distributed in various tissues and stimulated by low light and high light treatments. The confocal image revealed that NtSSU II was localized in the chloroplast. Bimolecular fluorescence complementation (BiFC) indicated that NtSSU II and NtGGPPS1 formed heterodimers, which were able to interact with phytoene synthase (NtPSY1) to channel GGPP into the carotenoid production. CRISPR/Cas9-induced ntssu II mutant exhibited decreased leaf area and biomass, along with a decline in carotenoid and chlorophyll accumulation. Moreover, the genes involved in carotenoid biosynthesis were also downregulated in transgenic plants of ntssu II mutant. Taken together, the newly identified NtSSU II could form multiple enzymatic components with NtGGPPS1 and NtPSY1 to regulate carotenoid biosynthesis in N. tabacum, in addition to the co-expression of genes in carotenoids biosynthetic pathways.
Collapse
Affiliation(s)
- Chen Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mei Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shanshan Song
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Fang Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Qin
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Puqing Fan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongchun Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
28
|
Nirmala NS, Krishnan NB, Vivekanandan V, Thirugnanasambantham K. Anti-inflammatory Potential of Lead Compounds and Their Derivatives from Medicinal Plants. BIOPROSPECTING OF TROPICAL MEDICINAL PLANTS 2023:1199-1232. [DOI: 10.1007/978-3-031-28780-0_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Sierra J, McQuinn RP, Leon P. The role of carotenoids as a source of retrograde signals: impact on plant development and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7139-7154. [PMID: 35776102 DOI: 10.1093/jxb/erac292] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Communication from plastids to the nucleus via retrograde signal cascades is essential to modulate nuclear gene expression, impacting plant development and environmental responses. Recently, a new class of plastid retrograde signals has emerged, consisting of acyclic and cyclic carotenoids and/or their degradation products, apocarotenoids. Although the biochemical identity of many of the apocarotenoid signals is still under current investigation, the examples described herein demonstrate the central roles that these carotenoid-derived signals play in ensuring plant development and survival. We present recent advances in the discovery of apocarotenoid signals and their role in various plant developmental transitions and environmental stress responses. Moreover, we highlight the emerging data exposing the highly complex signal transduction pathways underlying plastid to nucleus apocarotenoid retrograde signaling cascades. Altogether, this review summarizes the central role of the carotenoid pathway as a major source of retrograde signals in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, Ciudada de México, México
| | - Ryan P McQuinn
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, Ciudada de México, México
| |
Collapse
|
30
|
Reichel P, Munz S, Hartung J, Kotiranta S, Graeff-Hönninger S. Impacts of Different Light Spectra on CBD, CBDA and Terpene Concentrations in Relation to the Flower Positions of Different Cannabis Sativa L. Strains. PLANTS (BASEL, SWITZERLAND) 2022; 11:2695. [PMID: 36297719 PMCID: PMC9612076 DOI: 10.3390/plants11202695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cannabis is one of the oldest cultivated plants, but plant breeding and cultivation are restricted by country-specific regulations. The plant has gained interest due to its medically important secondary metabolites, cannabinoids and terpenes. Besides biotic and abiotic stress factors, secondary metabolism can be manipulated by changing light quality and intensity. In this study, three morphologically different cannabis strains were grown in a greenhouse experiment under three different light spectra with three real light repetitions. The chosen light sources were as follows: a CHD Agro 400 ceramic metal-halide lamp with a sun-like broad spectrum and an R:FR ratio of 2.8, and two LED lamps, a Solray (SOL) and an AP67, with R:FR ratios of 13.49 and 4, respectively. The results of the study indicated that the considered light spectra significantly influenced CBDA and terpene concentrations in the plants. In addition to the different light spectra, the distributions of secondary metabolites were influenced by flower positions. The distributions varied between strains and indicated interactions between morphology and the chosen light spectra. Thus, the results demonstrate that secondary metabolism can be artificially manipulated by the choice of light spectrum, illuminant and intensity. Furthermore, the data imply that, besides the cannabis strain selected, flower position can have an impact on the medicinal potencies and concentrations of secondary metabolites.
Collapse
Affiliation(s)
- Philipp Reichel
- Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sebastian Munz
- Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jens Hartung
- Biostatistics, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Stiina Kotiranta
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | | |
Collapse
|
31
|
Tang HV, Berryman DL, Mendoza J, Yactayo-Chang JP, Li QB, Christensen SA, Hunter CT, Best N, Soubeyrand E, Akhtar TA, Basset GJ, Block AK. Dedicated farnesyl diphosphate synthases circumvent isoprenoid-derived growth-defense tradeoffs in Zea mays. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:207-220. [PMID: 35960639 DOI: 10.1111/tpj.15941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Zea mays (maize) makes phytoalexins such as sesquiterpenoid zealexins, to combat invading pathogens. Zealexins are produced from farnesyl diphosphate in microgram per gram fresh weight quantities. As farnesyl diphosphate is also a precursor for many compounds essential for plant growth, the question arises as to how Z. mays produces high levels of zealexins without negatively affecting vital plant systems. To examine if specific pools of farnesyl diphosphate are made for zealexin synthesis we made CRISPR/Cas9 knockouts of each of the three farnesyl diphosphate synthases (FPS) in Z. mays and examined the resultant impacts on different farnesyl diphosphate-derived metabolites. We found that FPS3 (GRMZM2G098569) produced most of the farnesyl diphosphate for zealexins, while FPS1 (GRMZM2G168681) made most of the farnesyl diphosphate for the vital respiratory co-factor ubiquinone. Indeed, fps1 mutants had strong developmental phenotypes such as reduced stature and development of chlorosis. The replication and evolution of the fps gene family in Z. mays enabled it to produce dedicated FPSs for developmentally related ubiquinone production (FPS1) or defense-related zealexin production (FPS3). This partitioning of farnesyl diphosphate production between growth and defense could contribute to the ability of Z. mays to produce high levels of phytoalexins without negatively impacting its growth.
Collapse
Affiliation(s)
- Hoang V Tang
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - David L Berryman
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Jorrel Mendoza
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Jessica P Yactayo-Chang
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Qin-Bao Li
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Shawn A Christensen
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Charles T Hunter
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| | - Norman Best
- Plant Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Columbia, MO, USA
| | - Eric Soubeyrand
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - Tariq A Akhtar
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, USA
| | - Anna K Block
- Chemistry Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, USA
| |
Collapse
|
32
|
Huang Q, Xin X, Sun Q, An Z, Gou X, Feng Q. Plant-derived bioactive compounds regulate the NLRP3 inflammasome to treat NAFLD. Front Pharmacol 2022; 13:896899. [PMID: 36016562 PMCID: PMC9396216 DOI: 10.3389/fphar.2022.896899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by abnormal accumulation of hepatic fat and inflammatory response with complex pathogenesis. Over activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the secretion of interleukin (IL)-1β and IL-18, induces pyroptosis, and promotes the release of a large number of pro-inflammatory proteins. All of which contribute to the development of NAFLD. There is a great deal of evidence indicating that plant-derived active ingredients are effective and safe for NAFLD management. This review aims to summarize the research progress of 31 active plant-derived components (terpenoids, flavonoids, alkaloids, and phenols) that alleviate lipid deposition, inflammation, and pyroptosis by acting on the NLRP3 inflammasome studied in both in vitro and in vivo NAFLD models. These studies confirmed that the NLRP3 inflammasome and its related genes play a key role in NAFLD amelioration, providing a starting point for further study on the correlation of plant-derived compounds treatment with the NLRP3 inflammasome and NAFLD.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- *Correspondence: Qin Feng,
| |
Collapse
|
33
|
Qin L, Du F, Yang N, Zhang C, Wang Z, Zheng X, Tang J, Yang L, Dong C. Transcriptome Analyses Revealed the Key Metabolic Genes and Transcription Factors Involved in Terpenoid Biosynthesis in Sacred Lotus. Molecules 2022; 27:4599. [PMID: 35889471 PMCID: PMC9320166 DOI: 10.3390/molecules27144599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
As the largest group of structurally diverse metabolites, terpenoids are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. However, few terpenoid compounds have been identified in plant parts of sacred lotus (Nelumbo nucifera Gaertn.). To elucidate the molecular genetic basis of the terpene biosynthetic pathway, terpenes from different parts of the plant, including seeds (S), young leaves (YL), mature leaves (ML), white flowers (WF), yellow flowers (YF), and red flowers (RF), were identified by LC-MS/MS and the relative contents of the same terpenes in different parts were compared. The results indicate that all plant parts primarily consist of triterpenes, with only minor quantities of sesquiterpenes and diterpenes, and there were differences in the terpene content detected in different plant parts. To illustrate the biosynthesis of various terpenoids, RNA sequencing was performed to profile the transcriptomes of various plant parts, which generated a total of 126.95 GB clean data and assembled into 29,630 unigenes. Among these unigenes, 105 candidate unigenes are involved in the mevalonate (MVA) pathway, methyl-erythritol phosphate (MEP) pathway, terpenoid backbone biosynthesis pathway, and terpenoid synthases pathway. Moreover, the co-expression network between terpene synthase (TPS) and WRKY transcription factors provides new information for the terpene biosynthesis pathway.
Collapse
Affiliation(s)
- Lili Qin
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Fei Du
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Ningning Yang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Chen Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Zhiwen Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Xingwen Zheng
- White Lotus Industrial Development Center of Guangchang County, Fuzhou 344900, China; (X.Z.); (L.Y.)
| | - Jiawei Tang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| | - Liangbo Yang
- White Lotus Industrial Development Center of Guangchang County, Fuzhou 344900, China; (X.Z.); (L.Y.)
| | - Chen Dong
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (L.Q.); (F.D.); (N.Y.); (C.Z.); (Z.W.); (J.T.)
| |
Collapse
|
34
|
Ge J, Liu Z, Zhong Z, Wang L, Zhuo X, Li J, Jiang X, Ye XY, Xie T, Bai R. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorg Chem 2022; 124:105817. [DOI: 10.1016/j.bioorg.2022.105817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
|
35
|
Egan PA, Stevenson PC, Stout JC. Pollinator selection against toxic nectar as a key facilitator of a plant invasion. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210168. [PMID: 35491597 DOI: 10.1098/rstb.2021.0168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant compounds associated with herbivore defence occur widely in floral nectar and can impact pollinator health. We showed previously that Rhododendron ponticum nectar contains grayanotoxin I (GTX I) at concentrations that are lethal or sublethal to honeybees and a solitary bee in the plant's non-native range in Ireland. Here we further examined this conflict and tested the hypotheses that nectar GTX I is subject to negative pollinator-mediated selection in the non-native range, but that phenotypic linkage between GTX I levels in nectar and leaves acts as a constraint on independent evolution. We found that nectar GTX I experienced negative directional selection in the non-native range, in contrast to the native Iberian range, and that the magnitude and frequency of pollinator limitation indicated that selection was pollinator-mediated. Surprisingly, nectar GTX I levels were decoupled from those of leaves in the non-native range, which may have assisted post-invasion evolution of nectar without compromising the anti-herbivore function of GTX I (here demonstrated in bioassays with an ecologically relevant herbivore). Our study emphasizes the centrality of pollinator health as a concept linked to the invasion process, and how post-invasion evolution can be targeted toward minimizing lethal or sub-lethal effects on pollinators. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Paul A Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, Alnarp 23053, Sweden
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK.,Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Jane C Stout
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
36
|
Wu D, Li X, Tanaka R, Wood JC, Tibbs-Cortes LE, Magallanes-Lundback M, Bornowski N, Hamilton JP, Vaillancourt B, Diepenbrock CH, Li X, Deason NT, Schoenbaum GR, Yu J, Buell CR, DellaPenna D, Gore MA. Combining GWAS and TWAS to identify candidate causal genes for tocochromanol levels in maize grain. Genetics 2022; 221:6603118. [PMID: 35666198 PMCID: PMC9339294 DOI: 10.1093/genetics/iyac091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
Tocochromanols (tocopherols and tocotrienols, collectively vitamin E) are lipid-soluble antioxidants important for both plant fitness and human health. The main dietary sources of vitamin E are seed oils that often accumulate high levels of tocopherol isoforms with lower vitamin E activity. The tocochromanol biosynthetic pathway is conserved across plant species but an integrated view of the genes and mechanisms underlying natural variation of tocochromanol levels in seed of most cereal crops remains limited. To address this issue, we utilized the high mapping resolution of the maize Ames panel of ∼1,500 inbred lines scored with 12.2 million single-nucleotide polymorphisms to generate metabolomic (mature grain tocochromanols) and transcriptomic (developing grain) data sets for genetic mapping. By combining results from genome- and transcriptome-wide association studies, we identified a total of 13 candidate causal gene loci, including 5 that had not been previously associated with maize grain tocochromanols: 4 biosynthetic genes (arodeH2 paralog, dxs1, vte5, and vte7) and a plastid S-adenosyl methionine transporter (samt1). Expression quantitative trait locus (eQTL) mapping of these 13 gene loci revealed that they are predominantly regulated by cis-eQTL. Through a joint statistical analysis, we implicated cis-acting variants as responsible for colocalized eQTL and GWAS association signals. Our multiomics approach provided increased statistical power and mapping resolution to enable a detailed characterization of the genetic and regulatory architecture underlying tocochromanol accumulation in maize grain and provided insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in maize and other cereals.
Collapse
Affiliation(s)
| | | | | | - Joshua C Wood
- Department of Crop & Soil Sciences, Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA 30602, USA
| | | | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nolan Bornowski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - John P Hamilton
- Department of Crop & Soil Sciences, Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA 30602, USA
| | - Brieanne Vaillancourt
- Department of Crop & Soil Sciences, Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA 30602, USA
| | | | - Xianran Li
- United States Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164, USA
| | - Nicholas T Deason
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - C Robin Buell
- Department of Crop & Soil Sciences, Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, GA 30602, USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael A Gore
- Corresponding author: Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
37
|
Srivastava Y, Tripathi S, Mishra B, Sangwan NS. Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthesis. PLANTA 2022; 256:4. [PMID: 35648276 DOI: 10.1007/s00425-022-03912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Overexpression of a novel geranylgeranyl pyrophosphate synthase gene (WsGGPPS) in planta resulted in increased levels of gibberellic acid and decrease in withanolide content. Withania somnifera (L.) Dunal, the herb from family Solanaceae is one of the most treasured medicinal plant used in traditional medicinal systems owing to its unique stockpile of pharmaceutically active secondary metabolites. Phytochemical and pharmacological studies in this plant were well established, but the genes affecting the regulation of biosynthesis of major metabolites were not well elucidated. In this study cloning and functional characterization of a key enzyme in terpenoid biosynthetic pathway viz. geranylgeranyl pyrophosphate synthase (EC 2.5.1.29) gene from Withania somnifera was performed. The full length WsGGPPS gene contained 1,104 base pairs that encode a polypeptide of 365 amino acids. The quantitative expression analysis suggested that WsGGPPS transcripts were expressed maximally in flower tissues followed by berry tissues. The expression levels of WsGGPPS were found to be regulated by methyl jasmonate (MeJA) and salicylic acid (SA). Amino acid sequence alignment and phylogenetic studies suggested that WsGGPPS had close similarities with GGPPS of Solanum tuberosum and Solanum pennellii. The structural analysis provided basic information about three dimensional features and physicochemical parameters of WsGGPPS protein. Overexpression of WsGGPPS in planta for its functional characterization suggested that the WsGGPPS was involved in gibberellic acid biosynthesis.
Collapse
Affiliation(s)
- Yashdeep Srivastava
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandhya Tripathi
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | | | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- School of Interdisciplinary and Applied Sciences, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, 123031, India.
| |
Collapse
|
38
|
Malík M, Velechovský J, Praus L, Janatová A, Kahánková Z, Klouček P, Tlustoš P. Amino Acid Supplementation as a Biostimulant in Medical Cannabis ( Cannabis sativa L.) Plant Nutrition. FRONTIERS IN PLANT SCIENCE 2022; 13:868350. [PMID: 35432432 PMCID: PMC9008891 DOI: 10.3389/fpls.2022.868350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
There is growing evidence to support the involvement of nutrients and biostimulants in plant secondary metabolism. Therefore, this study evaluated the potential of amino acid-based supplements that can influence different hydroponic nutrient cycles (systems) to enhance the cannabinoid and terpene profiles of medical cannabis plants. The results demonstrate that amino acid biostimulation significantly affected ion levels in different plant tissues (the "ionome"), increasing nitrogen and sulfur content but reducing calcium and iron content in both nutrient cycles. A significantly higher accumulation of nitrogen and sulfur was observed during the recirculation cycle, but the calcium level was lower in the whole plant. Medical cannabis plants in the drain-to-waste cycle matured 4 weeks earlier, but at the expense of a 196% lower maximum tetrahydrocannabinolic acid yield from flowers and a significantly lower concentration of monoterpene compounds than in the recirculation cycle. The amino acid treatments reduced the cannabinolic acid content in flowers by 44% compared to control in both nutritional cycles and increased the monoterpene content (limonene) up to 81% in the recirculation cycle and up to 123% in the drain-to-waste cycle; β-myrcene content was increased up to 139% in the recirculation cycle and up to 167% in the drain-to-waste cycle. Our results suggest that amino acid biostimulant supplements may help standardize the content of secondary metabolites in medical cannabis. Further experiments are needed to identify the optimal nutrient dosage and method of administration for various cannabis chemotypes grown in different media.
Collapse
Affiliation(s)
- Matěj Malík
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jiří Velechovský
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Lukáš Praus
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Anežka Janatová
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Zdeňka Kahánková
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Klouček
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
39
|
Okada M, Rajaram K, Swift RP, Mixon A, Maschek JA, Prigge ST, Sigala PA. Critical role for isoprenoids in apicoplast biogenesis by malaria parasites. eLife 2022; 11:73208. [PMID: 35257658 PMCID: PMC8959605 DOI: 10.7554/elife.73208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Isopentenyl pyrophosphate (IPP) is an essential metabolic output of the apicoplast organelle in Plasmodium falciparum malaria parasites and is required for prenylation-dependent vesicular trafficking and other cellular processes. We have elucidated a critical and previously uncharacterized role for IPP in apicoplast biogenesis. Inhibiting IPP synthesis blocks apicoplast elongation and inheritance by daughter merozoites, and apicoplast biogenesis is rescued by exogenous IPP and polyprenols. Knockout of the only known isoprenoid-dependent apicoplast pathway, tRNA prenylation by MiaA, has no effect on blood-stage parasites and thus cannot explain apicoplast reliance on IPP. However, we have localized an annotated polyprenyl synthase (PPS) to the apicoplast. PPS knockdown is lethal to parasites, rescued by IPP and long- (C50) but not short-chain (≤C20) prenyl alcohols, and blocks apicoplast biogenesis, thus explaining apicoplast dependence on isoprenoid synthesis. We hypothesize that PPS synthesizes long-chain polyprenols critical for apicoplast membrane fluidity and biogenesis. This work critically expands the paradigm for isoprenoid utilization in malaria parasites and identifies a novel essential branch of apicoplast metabolism suitable for therapeutic targeting.
Collapse
Affiliation(s)
- Megan Okada
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Amanda Mixon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - John Alan Maschek
- Metabolomics Core, University of Utah, Salt Lake City, United States
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
40
|
Liu Y, Wang Z, Cui Z, Qi Q, Hou J. Progress and perspectives for microbial production of farnesene. BIORESOURCE TECHNOLOGY 2022; 347:126682. [PMID: 35007732 DOI: 10.1016/j.biortech.2022.126682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Farnesene is increasingly used in industry, agriculture, and other fields due to its unique and excellent properties, necessitating its efficient synthesis. Microbial synthesis is an ideal farnesene production method. Recently, researchers have used several strategies to optimize the production performance of microorganisms. This review summarized these strategies, including regulation of farnesene synthesis pathways, and proposed some emerging tools and methods in stain engineering. Meanwhile, new farnesene biosynthetic pathways and effective farnesene production from cheap or waste substrates were emphatically introduced. Finally, future farnesene biosynthesis challenges were discussed.
Collapse
Affiliation(s)
- Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhaoxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
41
|
Pérez L, Alves R, Perez-Fons L, Albacete A, Farré G, Soto E, Vilaprinyó E, Martínez-Andújar C, Basallo O, Fraser PD, Medina V, Zhu C, Capell T, Christou P. Multilevel interactions between native and ectopic isoprenoid pathways affect global metabolism in rice. Transgenic Res 2022; 31:249-268. [PMID: 35201538 PMCID: PMC8993735 DOI: 10.1007/s11248-022-00299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
Isoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering. We hypothesized that the strict regulation of the native MVA pathway could be circumvented by expressing an ectopic plastidial MVA pathway that increases the accumulation of IPP and DMAPP in plastids. We therefore introduced genes encoding the plastid-targeted enzymes HMGS, tHMGR, MK, PMK and MVD and the nuclear-targeted transcription factor WR1 into rice and evaluated the impact of their endosperm-specific expression on (1) endogenous metabolism at the transcriptomic and metabolomic levels, (2) the synthesis of phytohormones, carbohydrates and fatty acids, and (3) the macroscopic phenotype including seed morphology. We found that the ectopic plastidial MVA pathway enhanced the expression of endogenous cytosolic MVA pathway genes while suppressing the native plastidial MEP pathway, increasing the production of certain sterols and tocopherols. Plants carrying the ectopic MVA pathway only survived if WR1 was also expressed to replenish the plastid acetyl-CoA pool. The transgenic plants produced higher levels of fatty acids, abscisic acid, gibberellins and lutein, reflecting crosstalk between phytohormones and secondary metabolism.
Collapse
Affiliation(s)
- Lucía Pérez
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Rui Alves
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, UK
| | - Alfonso Albacete
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, 30100, Murcia, Espinardo, Spain
- Department of Plant Production and Agrotechnology, Institute for Agri-Food Research and Development of Murcia, Murcia, La Alberca, Spain
| | - Gemma Farré
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Erika Soto
- Department of Chemistry, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Ester Vilaprinyó
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- IRBLleida, Lleida, Catalunya, Spain
| | - Cristina Martínez-Andújar
- Departament of Plant Nutrition, Center of Edaphology and Applied Biology of the Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, 30100, Murcia, Espinardo, Spain
| | - Oriol Basallo
- Departament de Cienciès Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, UK
| | - Vicente Medina
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
42
|
Du Y, Fu X, Chu Y, Wu P, Liu Y, Ma L, Tian H, Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int J Mol Sci 2022; 23:ijms23042332. [PMID: 35216448 PMCID: PMC8875669 DOI: 10.3390/ijms23042332] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Plant sterols are important components of the cell membrane and lipid rafts, which play a crucial role in various physiological and biochemical processes during development and stress resistance in plants. In recent years, many studies in higher plants have been reported in the biosynthesis pathway of plant sterols, whereas the knowledge about the regulation and accumulation of sterols is not well understood. In this review, we summarize and discuss the recent findings in the field of plant sterols, including their biosynthesis, regulation, functions, as well as the mechanism involved in abiotic stress responses. These studies provide better knowledge on the synthesis and regulation of sterols, and the review also aimed to provide new insights for the global role of sterols, which is liable to benefit future research on the development and abiotic stress tolerance in plant.
Collapse
Affiliation(s)
- Yinglin Du
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Xizhe Fu
- The College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310012, China;
| | - Yiyang Chu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Peiwen Wu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Ye Liu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Lili Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Huiqin Tian
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
- Correspondence:
| |
Collapse
|
43
|
Liu B, Liu Q, Zhou Z, Yin H, Xie Y. Overexpression of geranyl diphosphate synthase (PmGPPS1) boosts monoterpene and diterpene production involved in the response to pine wood nematode invasion. TREE PHYSIOLOGY 2022; 42:411-424. [PMID: 34378055 DOI: 10.1093/treephys/tpab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Outbreaks of pine wood nematode (PWN; Bursaphelenchus xylophilus) represent a severe biotic epidemic for the Pinus massoniana in China. When invaded by the PWN, the resistant P. massoniana might secret abundant oleoresin terpenoid to form certain defensive fronts for survival. However, the regulatory mechanisms of this process remain unclear. Here, the geranyl diphosphate synthase (PmGPPS1) gene was identified from resistant P. massoniana. Tissue-specific expression patterns of PmGPPS1 at transcript and protein level in resistant P. massoniana were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. Functional characteristics analysis of PmGPPS1 was performed on transgenic Nicotiana benthamiana by overexpression, as genetic transformation of P. massoniana is, so far, not possible. In summary, we identified and functionally characterized PmGPPS1 from the resistant P. massoniana following PWN inoculation. Tissue-specific expression patterns and localization of PmGPPS1 indicated that it may play a positive role involved in the metabolic and defensive processes of oleoresin terpenes production in response to PWN attack. Furthermore, overexpression of PmGPPS1 may enhance the production of monoterpene, among which limonene reduced the survival of PWN in vitro. In addition, PmGPPS1 upregulated the expression level of key genes involved in mevalonic acid (MVA) pathway, the methylerythritol phosphate (MEP) pathway and gibberellins (GAs) biosynthesis to boost the growth and development of tobacco through a feedback regulation mechanism. Our results offered new insights into the pivotal role of the PmGPPS1 involved in terpene-based defense mechanisms responding to the PWN invasion in resistant P. massoniana and provided a new metabolic engineering scenario to improve monoterpene production in tobacco.
Collapse
Affiliation(s)
- Bin Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Qinghua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| | - Hengfu Yin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Yini Xie
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
44
|
Movahedi A, Wei H, Pucker B, Ghaderi-Zefrehei M, Rasouli F, Kiani-Pouya A, Jiang T, Zhuge Q, Yang L, Zhou X. Isoprenoid biosynthesis regulation in poplars by methylerythritol phosphate and mevalonic acid pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:968780. [PMID: 36247639 PMCID: PMC9562105 DOI: 10.3389/fpls.2022.968780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
It is critical to develop plant isoprenoid production when dealing with human-demanded industries such as flavoring, aroma, pigment, pharmaceuticals, and biomass used for biofuels. The methylerythritol phosphate (MEP) and mevalonic acid (MVA) plant pathways contribute to the dynamic production of isoprenoid compounds. Still, the cross-talk between MVA and MEP in isoprenoid biosynthesis is not quite recognized. Regarding the rate-limiting steps in the MEP pathway through catalyzing 1-deoxy-D-xylulose5-phosphate synthase and 1-deoxy-D-xylulose5-phosphate reductoisomerase (DXR) and also the rate-limiting step in the MVA pathway through catalyzing 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the characterization and function of HMGR from Populus trichocarpa (PtHMGR) were analyzed. The results indicated that PtHMGR overexpressors (OEs) displayed various MEP and MVA-related gene expressions compared to NT poplars. The overexpression of PtDXR upregulated MEP-related genes and downregulated MVA-related genes. The overexpression of PtDXR and PtHMGR affected the isoprenoid production involved in both MVA and MEP pathways. Here, results illustrated that the PtHMGR and PtDXR play significant roles in regulating MEP and MVA-related genes and derived isoprenoids. This study clarifies cross-talk between MVA and MEP pathways. It demonstrates the key functions of HMGR and DXR in this cross-talk, which significantly contribute to regulate isoprenoid biosynthesis in poplars.
Collapse
Affiliation(s)
- Ali Movahedi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Boas Pucker
- Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany
| | | | - Fatemeh Rasouli
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Ali Kiani-Pouya
- State Key Laboratory of Molecular Plant Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qiang Zhuge
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Qiang Zhuge,
| | - Liming Yang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Liming Yang,
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Xiaohong Zhou,
| |
Collapse
|
45
|
Ranjbar Z, Ranjbar B, Foroughirad S. Biopolymers in Automotive Industry. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Elevating fruit carotenoid content in apple (Malus x domestica Borkh). Methods Enzymol 2022; 671:63-98. [DOI: 10.1016/bs.mie.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Narang PK, Dey J, Mahapatra SR, Roy R, Kushwaha GS, Misra N, Suar M, Raina V. Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World J Microbiol Biotechnol 2021; 38:8. [PMID: 34837551 DOI: 10.1007/s11274-021-03188-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Microalgae are potential feedstocks for the commercial production of carotenoids, however, the metabolic pathways for carotenoid biosynthesis across algal lineage are largely unexplored. This work is the first to provide a comprehensive survey of genes and enzymes associated with the less studied methylerythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate pathway as well as the carotenoid biosynthetic pathway in microalgae through bioinformatics and comparative genomics approach. Candidate genes/enzymes were subsequently analyzed across 22 microalgae species of lineages Chlorophyta, Rhodophyta, Heterokonta, Haptophyta, Cryptophyta, and known Arabidopsis homologs in order to study the evolutional divergence in terms of sequence-structure properties. A total of 403 enzymes playing a vital role in carotene, lutein, zeaxanthin, violaxanthin, canthaxanthin, and astaxanthin were unraveled. Of these, 85 were hypothetical proteins whose biological roles are not yet experimentally characterized. Putative functions to these hypothetical proteins were successfully assigned through a comprehensive investigation of the protein family, motifs, intrinsic physicochemical features, subcellular localization, pathway analysis, etc. Furthermore, these enzymes were categorized into major classes as per the conserved domain and gene ontology. Functional signature sequences were also identified which were observed conserved across microalgal genomes. Additionally, the structural modeling and active site architecture of three vital enzymes, DXR, PSY, and ZDS catalyzing the vital rate-limiting steps in Dunaliella salina were achieved. The enzymes were confirmed to be stereochemically reliable and stable as revealed during molecular dynamics simulation of 100 ns. The detailed functional information about individual vital enzymes will certainly help to design genetically modified algal strains with enhanced carotenoid contents.
Collapse
Affiliation(s)
- Parminder Kaur Narang
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.,SGTB Khalsa College, Delhi University, New Delhi, 110007, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Riya Roy
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.,Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India. .,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
48
|
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci 2021; 78:6365-6394. [PMID: 34390381 PMCID: PMC8558194 DOI: 10.1007/s00018-021-03913-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | - Rafe Lyall
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University - Plovdiv, 12, Mendeleev Str, Plovdiv, 4000, Bulgaria
| | | |
Collapse
|
49
|
Zhang C, Liu H, Zong Y, Tu Z, Li H. Isolation, expression, and functional analysis of the geranylgeranyl pyrophosphate synthase (GGPPS) gene from Liriodendron tulipifera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:700-711. [PMID: 34214780 DOI: 10.1016/j.plaphy.2021.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Terpenoids are important secondary metabolites in plants and are involved in stress responses and pollinator attraction. Geranylgeranyl pyrophosphate synthase (GGPPS) is a key synthase in the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway of terpenoid synthesis, catalyzing the synthesis of diterpenoids. Liriodendron tulipifera is a nectar plant in North America. Little is known about the key genes involved in the biosynthetic pathways of terpenoids, the precursors of most compounds related to nectar, fragrance and coloring in flowers in L. tulipifera. In this study, the LtuGGPPS2 gene and its promoter (LtuGGPPS2-pro) were cloned from L. tulipifera. The results of sequence alignment showed that the LtuGGPPS2 gene is highly homologous to GGPPS genes of other plants. Subcellular localization analysis showed that the LtuGGPPS2 protein localizes to chloroplasts, suggesting that the LtuGGPPS2 gene is probably related to carotenoid and chlorophyll synthesis. Based on tissue expression profiles revealed by RT-qPCR, the expression level of the LtuGGPPS2 gene was highest in petals. These results were consistent with the changes in volatile and nonvolatile terpenoids in the flowers of L. tulipifera. GUS staining to examine the LtuGGPPS2 promoter indicated that it is responsive to hormones. Overexpression of the LtuGGPPS2 gene increased the carotenoid content and GGPPS enzyme activity in Arabidopsis thaliana, indicating that LtuGGPPS2 is the key terpenoid synthase in the flowers of L. tulipifera. Our findings lay a foundation for further functional analysis of the LtuGGPPS2 gene and deeper investigation of the terpenoid biosynthetic pathway in L. tulipifera.
Collapse
Affiliation(s)
- ChengGe Zhang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - HuanHuan Liu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - YaXian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - ZhongHua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - HuoGen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
50
|
de Luna-Valdez L, Chenge-Espinosa M, Hernández-Muñoz A, Cordoba E, López-Leal G, Castillo-Ramírez S, León P. Reassessing the evolution of the 1-deoxy-D-xylulose 5-phosphate synthase family suggests a possible novel function for the DXS class 3 proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110960. [PMID: 34315585 DOI: 10.1016/j.plantsci.2021.110960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The methylerythritol 4-phosphate (MEP) pathway is of paramount importance for generating plastidial isoprenoids. The first enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate synthase (DXS), catalyzes a flux-controlling step. In plants the DXS gene family is composed of three distinct classes with non-redundant functions. Although the DXS1 and DXS2 subfamilies have been well characterized, the DXS3 subfamily has been considerably understudied. Here, we carried out in silico and functional analyses to better understand the DXS3 class. Our phylogenetic analysis showed high variation in copy number among the different DXS classes, with the apparent absence of DXS1 class in some species. We found that DXS3 subfamily emerged later than DXS1 and DXS2 and it is under less intense purifying selection. Furthermore, in the DXS3 subfamily critical amino acids positions in the thiamine pyrophosphate binding pocket are not conserved. We demonstrated that the DXS3 proteins from Arabidopsis, Maize, and Rice lack functional DXS activity. Moreover, the Arabidopsis DXS3 protein displayed distinctive sub-organellar chloroplast localization not observed in any DXS1 or DXS2 proteins. Co-expression analysis of the DXS3 from Arabidopsis showed that, unlike DXS1 and DXS2 proteins, it co-expresses with genes related to post-embryonic development and reproduction and not with primary metabolism and isoprenoid synthesis.
Collapse
Affiliation(s)
- Luis de Luna-Valdez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Marel Chenge-Espinosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Arihel Hernández-Muñoz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Elizabeth Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Gamaliel López-Leal
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|