1
|
Little M, Ortlund EA. Structure, function, and lipid sensing activity in the thioesterase superfamily. Biochem Soc Trans 2024; 52:1565-1577. [PMID: 39140379 DOI: 10.1042/bst20230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Lipid synthesis and transport are essential for energy, production of cell membrane, and cell signaling. Acyl-CoA thioesterases (ACOTs) function to regulate intracellular levels of fatty acyl-CoAs through hydrolysis. Two members of this family, ACOT11 and ACOT12, contain steroidogenic acute regulatory related lipid transfer domains, which typically function as lipid transport or regulatory domains. This work reviews ACOT11 and ACOT12 structures and functions, and the potential role of the START domains in lipid transfer activity and the allosteric regulation of catalytic activity.
Collapse
Affiliation(s)
- Molly Little
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, U.S.A
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, U.S.A
| |
Collapse
|
2
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
3
|
Gutay-Tóth Z, Gellen G, Doan M, Eliason JF, Vincze J, Szente L, Fenyvesi F, Goda K, Vecsernyés M, Szabó G, Bacso Z. Cholesterol-Depletion-Induced Membrane Repair Carries a Raft Conformer of P-Glycoprotein to the Cell Surface, Indicating Enhanced Cholesterol Trafficking in MDR Cells, Which Makes Them Resistant to Cholesterol Modifications. Int J Mol Sci 2023; 24:12335. [PMID: 37569709 PMCID: PMC10419235 DOI: 10.3390/ijms241512335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
Collapse
Affiliation(s)
- Zsuzsanna Gutay-Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gellen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Minh Doan
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - James F. Eliason
- Great Lakes Stem Cell Innovation Center, Detroit, MI 48202, USA;
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., 1097 Budapest, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| |
Collapse
|
4
|
Xie H, Weinstein H. Allosterically coupled conformational dynamics in solution prepare the sterol transfer protein StarD4 to release its cargo upon interaction with target membranes. Front Mol Biosci 2023; 10:1197154. [PMID: 37275961 PMCID: PMC10232897 DOI: 10.3389/fmolb.2023.1197154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Complex mechanisms regulate the cellular distribution of cholesterol, a critical component of eukaryote membranes involved in regulation of membrane protein functions directly and through the physiochemical properties of membranes. StarD4, a member of the steroidogenic acute regulator-related lipid-transfer (StART) domain (StARD)-containing protein family, is a highly efficient sterol-specific transfer protein involved in cholesterol homeostasis. Its mechanism of cargo loading and release remains unknown despite recent insights into the key role of phosphatidylinositol phosphates in modulating its interactions with target membranes. We have used large-scale atomistic Molecular dynamics (MD) simulations to study how the dynamics of cholesterol bound to the StarD4 protein can affect interaction with target membranes, and cargo delivery. We identify the two major cholesterol (CHL) binding modes in the hydrophobic pocket of StarD4, one near S136&S147 (the Ser-mode), and another closer to the putative release gate located near W171, R92&Y117 (the Trp-mode). We show that conformational changes of StarD4 associated directly with the transition between these binding modes facilitate the opening of the gate. To understand the dynamics of this connection we apply a machine-learning algorithm for the detection of rare events in MD trajectories (RED), which reveals the structural motifs involved in the opening of a front gate and a back corridor in the StarD4 structure occurring together with the spontaneous transition of CHL from the Ser-mode of binding to the Trp-mode. Further analysis of MD trajectory data with the information-theory based NbIT method reveals the allosteric network connecting the CHL binding site to the functionally important structural components of the gate and corridor. Mutations of residues in the allosteric network are shown to affect the performance of the allosteric connection. These findings outline an allosteric mechanism which prepares the CHL-bound StarD4 to release and deliver the cargo when it is bound to the target membrane.
Collapse
Affiliation(s)
- Hengyi Xie
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
6
|
Hordyjewska A, Prendecka-Wróbel M, Kurach Ł, Horecka A, Olszewska A, Pigoń-Zając D, Małecka-Massalska T, Kurzepa J. Antiproliferative Properties of Triterpenoids by ECIS Method—A New Promising Approach in Anticancer Studies? Molecules 2022; 27:molecules27103150. [PMID: 35630627 PMCID: PMC9146930 DOI: 10.3390/molecules27103150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Electric cell–substrate impedance sensing is an advanced in vitro impedance measuring system which uses alternating current to determine behavior of cells in physiological conditions. In this study, we used the abovementioned method for checking the anticancer activities of betulin and betulinic acid, which are some of the most commonly found triterpenes in nature. In our experiment, the threshold concentrations of betulin required to elicit antiproliferative effects, verified by MTT and LDH release methods, were 7.8 µM for breast cancer (T47D), 9.5 µM for lung carcinoma (A549), and 21.3 µM for normal epithelial cells (Vero). The ECIS results revealed the great potential of betulin and betulinic acid’s antitumor properties and their maintenance of cytotoxic substances to the breast cancer T47D line. Moreover, both substances showed a negligible toxic effect on healthy epithelial cells (Vero). Our investigation showed that the ECIS method is a proper alternative to the currently used assay for testing in vitro anticancer activity of compounds, and that it should thus be introduced in cellular routine research. It is also a valuable tool for live-monitoring changes in the morphology and physiology of cells, which translates into the accurate development of anticancer therapies.
Collapse
Affiliation(s)
- Anna Hordyjewska
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland; (A.H.); (A.H.); (J.K.)
| | - Monika Prendecka-Wróbel
- Chair and Department of Human Physiology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-093 Lublin, Poland; (M.P.-W.); (A.O.); (D.P.-Z.); (T.M.-M.)
| | - Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-814486196
| | - Anna Horecka
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland; (A.H.); (A.H.); (J.K.)
| | - Anna Olszewska
- Chair and Department of Human Physiology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-093 Lublin, Poland; (M.P.-W.); (A.O.); (D.P.-Z.); (T.M.-M.)
| | - Dominika Pigoń-Zając
- Chair and Department of Human Physiology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-093 Lublin, Poland; (M.P.-W.); (A.O.); (D.P.-Z.); (T.M.-M.)
| | - Teresa Małecka-Massalska
- Chair and Department of Human Physiology, Medical University of Lublin, 11 Radziwiłłowska Str., 20-093 Lublin, Poland; (M.P.-W.); (A.O.); (D.P.-Z.); (T.M.-M.)
| | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University of Lublin, 4A Chodzki Str., 20-093 Lublin, Poland; (A.H.); (A.H.); (J.K.)
| |
Collapse
|
7
|
Sterolight as imaging tool to study sterol uptake, trafficking and efflux in living cells. Sci Rep 2022; 12:6264. [PMID: 35428843 PMCID: PMC9012876 DOI: 10.1038/s41598-022-10134-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Information about cholesterol subcellular localization and transport pathways inside cells is essential for understanding and treatment of cholesterol-related diseases. However, there is a lack of reliable tools to monitor it. This work follows the fate of Sterolight, a BODIPY-labelled sterol, within the cell and demonstrates it as a suitable probe for visualization of sterol/lipid trafficking. Sterolight enters cells through an energy-independent process and knockdown experiments suggest caveolin-1 as its potential cellular carrier. Intracellular transport of Sterolight is a rapid process, and transfer from ER and mitochondria to lysosomes and later to lipid droplets requires the participation of active microtubules, as it can be inhibited by the microtubule disruptor nocodazole. Excess of the probe is actively exported from cells, in addition to being stored in lipid droplets, to re-establish the sterol balance. Efflux occurs through a mechanism requiring energy and may be selectively poisoned with verapamil or blocked in cells with mutated cholesterol transporter NPC1. Sterolight is efficiently transferred within and between different cell populations, making it suitable for monitoring numerous aspects of sterol biology, including the live tracking and visualization of intracellular and intercellular transport.
Collapse
|
8
|
Jurášek M, Valečka J, Novotný I, Kejík Z, Fähnrich J, Marešová A, Tauchen J, Bartůněk P, Dolenský B, Jakubek M, Drašar PB, Králová J. Synthesis and biological evaluation of cationic TopFluor cholesterol analogues. Bioorg Chem 2021; 117:105410. [PMID: 34700109 DOI: 10.1016/j.bioorg.2021.105410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/25/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Cholesterol is not only a major component of the cell membrane, but also plays an important role in a wide range of biological processes and pathologies. It is therefore crucial to develop appropriate tools for visualizing intracellular cholesterol transport. Here, we describe new cationic analogues of BODIPY-Cholesterol (TopFluor-Cholesterol, TF-Chol), which combine a positive charge on the sterol side chain and a BODIPY group connected via a C-4 linker. In contrast to TF-Chol, the new analogues TF-1 and TF-3 possessing acetyl groups on the A ring (C-3 position on steroid) internalized much faster and displayed slightly different levels of intracellular localization. Their applicability for cholesterol monitoring was indicated by the fact that they strongly label compartments with accumulated cholesterol in cells carrying a mutation of the Niemann-Pick disease-associated cholesterol transporter, NPC1.
Collapse
Affiliation(s)
- Michal Jurášek
- University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Valečka
- Light microscopy core facility, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Ivan Novotný
- Light microscopy core facility, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Zdeněk Kejík
- University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Fähnrich
- University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Anna Marešová
- University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Tauchen
- Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Petr Bartůněk
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Bohumil Dolenský
- University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Milan Jakubek
- University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel B Drašar
- University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jarmila Králová
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
9
|
Asif K, Memeo L, Palazzolo S, Frión-Herrera Y, Parisi S, Caligiuri I, Canzonieri V, Granchi C, Tuccinardi T, Rizzolio F. STARD3: A Prospective Target for Cancer Therapy. Cancers (Basel) 2021; 13:4693. [PMID: 34572920 PMCID: PMC8472075 DOI: 10.3390/cancers13184693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the major causes of death in developed countries and current therapies are based on surgery, chemotherapeutic agents, and radiation. To overcome side effects induced by chemo- and radiotherapy, in recent decades, targeted therapies have been proposed in second and even first lines. Targeted drugs act on the essential pathways involved in tumor induction, progression, and metastasis, basically all the hallmark of cancers. Among emerging pathways, the cholesterol metabolic pathway is a strong candidate for this purpose. Cancer cells have an accelerated metabolic rate and require a continuous supply of cholesterol for cell division and membrane renewal. Steroidogenic acute regulatory related lipid transfer (START) proteins are a family of proteins involved in the transfer of lipids and some of them are important in non-vesicular cholesterol transportation within the cell. The alteration of their expression levels is implicated in several diseases, including cancers. In this review, we report the latest discoveries on StAR-related lipid transfer protein domain 3 (STARD3), a member of the START family, which has a potential role in cancer, focusing on the structural and biochemical characteristics and mechanisms that regulate its activity. The role of the STARD3 protein as a molecular target for the development of cancer therapies is also discussed. As STARD3 is a key protein in the cholesterol movement in cancer cells, it is of interest to identify inhibitors able to block its activity.
Collapse
Affiliation(s)
- Kanwal Asif
- Department of Molecular Sciences and Nanosystems, PhD School in Science and Technology of Bio and Nanomaterials, Ca’ Foscari University of Venice, 30172 Venice, Italy;
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy;
| | - Stefano Palazzolo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Yahima Frión-Herrera
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy; or
| | - Salvatore Parisi
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.G.); (T.T.)
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.G.); (T.T.)
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; (S.P.); (S.P.); (V.C.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30172 Venice, Italy; or
| |
Collapse
|
10
|
Leydig cell aging: Molecular mechanisms and treatments. VITAMINS AND HORMONES 2021; 115:585-609. [PMID: 33706963 DOI: 10.1016/bs.vh.2020.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Late-onset hypogonadism, resulting from deficiency in serum testosterone (T), affects the health and quality of life of millions of aging men. T is synthesized by Leydig cells (LCs) in response to luteinizing hormone (LH). LH binds LC plasma membrane receptors, inducing the formation of a supramolecular complex of cytosolic and mitochondrial proteins, the Steroidogenic InteracTomE (SITE). SITE proteins are involved in targeting cholesterol to CYP11A1 in the mitochondria, the first enzyme of the steroidogenic cascade. Cholesterol translocation is the rate-determining step in T formation. With aging, LC defects occur that include changes in SITE, an increasingly oxidative intracellular environment, and reduced androgen formation and serum T levels. T replacement therapy (TRT) will restore T levels, but reported side effects make it desirable to develop additional strategies for increasing T. One approach is to target LC protein-protein interactions and thus increase T production by the hypofunctional Leydig cells themselves.
Collapse
|
11
|
Clark BJ. The START-domain proteins in intracellular lipid transport and beyond. Mol Cell Endocrinol 2020; 504:110704. [PMID: 31927098 DOI: 10.1016/j.mce.2020.110704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
The Steroidogenic Acute Regulatory Protein-related Lipid Transfer (START) domain is a ~210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for lipid binding. The helix-grip fold structure defines a large superfamily of proteins, and this review focuses on the mammalian START domain family members that include single START domain proteins with identified ligands, and larger multi-domain proteins that may have novel roles in metabolism. Much of our understanding of the mammalian START domain proteins in lipid transport and changes in metabolism has advanced through studies using knockout mouse models, although for some of these proteins the identity and/or physiological role of ligand binding remains unknown. The findings that helped define START domain lipid-binding specificity, lipid transport, and changes in metabolism are presented to highlight that fundamental questions remain regarding the biological function(s) for START domain-containing proteins.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
12
|
Welch LG, Munro S. A tale of short tails, through thick and thin: investigating the sorting mechanisms of Golgi enzymes. FEBS Lett 2019; 593:2452-2465. [DOI: 10.1002/1873-3468.13553] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Lawrence G. Welch
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| |
Collapse
|
13
|
Schmidt L, Wielsch N, Wang D, Boland W, Burse A. Tissue-specific profiling of membrane proteins in the salicin sequestering juveniles of the herbivorous leaf beetle, Chrysomela populi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:81-91. [PMID: 30922827 DOI: 10.1016/j.ibmb.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Sequestration of plant secondary metabolites is a detoxification strategy widespread in herbivorous insects including not only storage, but also usage of these metabolites for the insects' own benefit. Larvae of the poplar leaf beetle Chrysomela populi sequester plant-derived salicin to produce the deterrent salicylaldehyde in specialized exocrine glands. To identify putative transporters involved in the sequestration process we investigated integral membrane proteins of several tissues from juvenile C. populi by using a proteomics approach. Computational analyses led to the identification of 122 transport proteins in the gut, 105 in the Malpighian tubules, 94 in the fat body and 27 in the defensive glands. Among these, primary active transporters as well as electrochemical potential-driven transporters were most abundant in all tissues, including ABC transporters (especially subfamilies B, C and G) and sugar porters as most interesting families facilitating the sequestration of plant glycosides. Whereas ABC transporters are predominantly expressed simultaneously in several tissues, sugar porters are often expressed in only one tissue, suggesting that sugar porters govern more distinct functions than members of the ABC family. The inventory of transporters presented in this study provides the base for further functional characterizations on transport processes of sequestered glycosides in insects.
Collapse
Affiliation(s)
- Lydia Schmidt
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Natalie Wielsch
- Max Planck Institute for Chemical Ecology, Research Group Mass Spectrometry/ Proteomics, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Ding Wang
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany
| | - Antje Burse
- Max Planck Institute for Chemical Ecology, Department of Bioorganic Chemistry, Hans-Knöll-Str. 8, D-07745, Jena, Germany.
| |
Collapse
|
14
|
Luo J, Jiang LY, Yang H, Song BL. Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends Biochem Sci 2019; 44:273-292. [DOI: 10.1016/j.tibs.2018.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
|
15
|
Králová J, Král V. Fluorescent Probes for Monitoring Cholesterol Trafficking in Cells. Folia Biol (Praha) 2019; 65:1-10. [PMID: 31171077 DOI: 10.14712/fb2019065010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cellular cholesterol plays fundamental and diverse roles in many biological processes and affects the pathology of various diseases. Comprehensive and detailed understanding of the cellular functions and characteristics of cholesterol requires visualization of its subcellular distribution, which can be achieved by fluorescence microscopy. Many attempts have been made to develop fluorescent cholesterol reporters, but so far, none of them seems to be ideal for studying all aspects of cholesterol management. To meet the requirements for the right probe remains a great challenge, and progress in this field continues. The main objective of this review is to not only present the current state of the art, but also critically evaluate the applicability of individual probes and for what purpose they can be used to obtain relevant data. Hence, the data obtained with different probes might provide complementary information to build an integrated picture about the cellular cholesterol.
Collapse
Affiliation(s)
- J Králová
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - V Král
- University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
16
|
Guo C, Chi Z, Jiang D, Xu T, Yu W, Wang Z, Chen S, Zhang L, Liu Q, Guo X, Zhang X, Li W, Lu L, Wu Y, Song BL, Wang D. Cholesterol Homeostatic Regulator SCAP-SREBP2 Integrates NLRP3 Inflammasome Activation and Cholesterol Biosynthetic Signaling in Macrophages. Immunity 2018; 49:842-856.e7. [PMID: 30366764 DOI: 10.1016/j.immuni.2018.08.021] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/25/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
Abstract
Cholesterol metabolism has been linked to immune functions, but the mechanisms by which cholesterol biosynthetic signaling orchestrates inflammasome activation remain unclear. Here, we have shown that NLRP3 inflammasome activation is integrated with the maturation of cholesterol master transcription factor SREBP2. Importantly, SCAP-SREBP2 complex endoplasmic reticulum-to-Golgi translocation was required for optimal activation of the NLRP3 inflammasome both in vitro and in vivo. Enforced cholesterol biosynthetic signaling by sterol depletion or statins promoted NLPR3 inflammasome activation. However, this regulation did not predominantly depend on changes in cholesterol homeostasis controlled by the transcriptional activity of SREBP2, but relied on the escort activity of SCAP. Mechanistically, NLRP3 associated with SCAP-SREBP2 to form a ternary complex which translocated to the Golgi apparatus adjacent to a mitochondrial cluster for optimal inflammasome assembly. Our study reveals that, in addition to controlling cholesterol biosynthesis, SCAP-SREBP2 also serves as a signaling hub integrating cholesterol metabolism with inflammation in macrophages.
Collapse
Affiliation(s)
- Chuansheng Guo
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Zhexu Chi
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Danlu Jiang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Ting Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Weiwei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Zhen Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Sheng Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Li Zhang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Qianyun Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Xingchen Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Xue Zhang
- Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China.
| |
Collapse
|
17
|
Civra A, Francese R, Gamba P, Testa G, Cagno V, Poli G, Lembo D. 25-Hydroxycholesterol and 27-hydroxycholesterol inhibit human rotavirus infection by sequestering viral particles into late endosomes. Redox Biol 2018; 19:318-330. [PMID: 30212801 PMCID: PMC6138790 DOI: 10.1016/j.redox.2018.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 11/21/2022] Open
Abstract
A novel innate immune strategy, involving specific cholesterol oxidation products as effectors, has begun to reveal connections between cholesterol metabolism and immune response against viral infections. Indeed, 25-hydroxycholesterol (25HC) and 27-hydroxycholesterol (27HC), physiologically produced by enzymatic oxidation of cholesterol, act as inhibitors of a wide spectrum of enveloped and non-enveloped human viruses. However, the mechanisms underlying their protective effects against non-enveloped viruses are almost completely unexplored. To get insight into this field, we investigated the antiviral activity of 25HC and 27HC against a non-enveloped virus causing acute gastroenteritis in children, the human rotavirus (HRV). We found that 25HC and 27HC block the infectivity of several HRV strains at 50% inhibitory concentrations in the low micromolar range in the absence of cell toxicity. Both molecules affect the final step of virus penetration into cells by preventing the association of two cellular proteins: the oxysterol binding protein (OSBP) and the vesicle-associated membrane protein-associated protein-A (VAP-A). By altering the activity of these cellular mediators, 25HC and 27HC disturb the recycling of cholesterol between the endoplasmic reticulum and the late endosomes which are exploited by HRV to penetrate into the cell. The substantial accumulation of cholesterol in the late endosomal compartment results in sequestering viral particles inside these vesicles thereby preventing cytoplasmic virus replication. These findings suggest that cholesterol oxidation products of enzymatic origin might be primary effectors of host restriction strategies to counteract HRV infection and point to redox active lipids involvement in viral infections as a research area of focus to better focus in order to identify novel antiviral agents targets.
Collapse
Affiliation(s)
- Andrea Civra
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Valeria Cagno
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy.
| |
Collapse
|
18
|
Stefan CJ, Trimble WS, Grinstein S, Drin G, Reinisch K, De Camilli P, Cohen S, Valm AM, Lippincott-Schwartz J, Levine TP, Iaea DB, Maxfield FR, Futter CE, Eden ER, Judith D, van Vliet AR, Agostinis P, Tooze SA, Sugiura A, McBride HM. Membrane dynamics and organelle biogenesis-lipid pipelines and vesicular carriers. BMC Biol 2017; 15:102. [PMID: 29089042 PMCID: PMC5663033 DOI: 10.1186/s12915-017-0432-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.
Collapse
Affiliation(s)
- Christopher J. Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| | - William S. Trimble
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Guillaume Drin
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Karin Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Pietro De Camilli
- Department of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience and Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510 USA
| | | | | | | | - Tim P. Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - David B. Iaea
- Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065 USA
| | - Clare E. Futter
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emily R. Eden
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Delphine Judith
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Alexander R. van Vliet
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Ayumu Sugiura
- Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Heidi M. McBride
- Montreal Neurological Institute, McGill University, 3801 University Avenue, Montreal, Quebec H3A 2B4 Canada
| |
Collapse
|
19
|
Abstract
Signaling pathways direct organogenesis, often through concentration-dependent effects on cells. The hedgehog pathway enables cells to sense and respond to hedgehog ligands, of which the best studied is sonic hedgehog. Hedgehog signaling is essential for development, proliferation, and stem cell maintenance, and it is a driver of certain cancers. Lipid metabolism has a profound influence on both hedgehog signal transduction and the properties of the ligands themselves, leading to changes in the strength of hedgehog signaling and cellular functions. Here we review the evolving understanding of the relationship between lipids and hedgehog signaling.
Collapse
Affiliation(s)
- Robert Blassberg
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences (NDCN), Level 6, West Wing, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK. .,Department of Neurology, West Wing, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK. .,Milton Keynes University Hospital, Standing Way, Eaglestone, Milton Keynes, MK6 5LD, UK.
| |
Collapse
|
20
|
A novel family of mammalian transmembrane proteins involved in cholesterol transport. Sci Rep 2017; 7:7450. [PMID: 28785058 PMCID: PMC5547113 DOI: 10.1038/s41598-017-07077-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/22/2017] [Indexed: 11/20/2022] Open
Abstract
Cholesterol is an essential compound in mammalian cells because it is involved in a wide range of functions, including as a key component of membranes, precursor of important molecules such as hormones, bile acids and vitamin D. The cholesterol transport across the circulatory system is a well-known process in contrast to the intracellular cholesterol transport, which is poorly understood. Recently in our laboratory, we identified a novel protein in C. elegans involved in dietary cholesterol uptake, which we have named ChUP-1. Insillicoanalysis identified two putative orthologue candidate proteins in mammals. The proteins SIDT1 and SIDT2 share identity and conserved cholesterol binding (CRAC) domains with C. elegans ChUP-1. Both mammalian proteins are annotated as RNA transporters in databases. In the present study, we show evidence indicating that SIDT1 and SIDT2 not only do not transport RNA, but they are involved in cholesterol transport. Furthermore, we show that single point mutations directed to disrupt the CRAC domains of both proteins prevent FRET between SIDT1 and SIDT2 and the cholesterol analogue dehydroergosterol (DHE) and alter cholesterol transport.
Collapse
|
21
|
Poulcharidis D, Belfor K, Kros A, van Kasteren SI. A flow cytometry assay to quantify intercellular exchange of membrane components. Chem Sci 2017; 8:5585-5590. [PMID: 28970937 PMCID: PMC5618768 DOI: 10.1039/c7sc00260b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/20/2017] [Indexed: 12/12/2022] Open
Abstract
Membrane-compound exchange is vital for cell-to-cell communication, yet quantification of this process is difficult. Here we present a method using flow cytometry in combination with bioorthogonal and fluorescent labelling techniques to quantify the amount of exchange of cholesterol and sialylated compounds between cells. We demonstrate that direct cell-cell contact is the likely mechanism of sterol-exchange and show that by manipulating the contact time between cells using complementary coiled-coil peptides results in an enhanced exchange rate of membrane components between cells.
Collapse
Affiliation(s)
- Dimitrios Poulcharidis
- Division of Bio-organic Synthesis , Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands .
- Division of Supramolecular and Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands .
| | - Kimberley Belfor
- Division of Bio-organic Synthesis , Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands .
| | - Alexander Kros
- Division of Supramolecular and Biomaterials Chemistry , Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands .
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis , Leiden Institute of Chemistry , Gorlaeus Laboratories , Leiden University , Leiden , The Netherlands .
| |
Collapse
|
22
|
Iaea DB, Mao S, Lund FW, Maxfield FR. Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane. Mol Biol Cell 2017; 28:1111-1122. [PMID: 28209730 PMCID: PMC5391187 DOI: 10.1091/mbc.e16-07-0499] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 11/23/2022] Open
Abstract
The kinetics of sterol transport between the plasma membrane and the endocytic recycling compartment is measured using fluorescence microscopy. STARD4, a small, soluble sterol transport protein, is responsible for 25% of the total transport and 33% of nonvesicular transport. Elevated cholesterol dramatically increases sterol transport rate constants. Cholesterol is an essential constituent of membranes in mammalian cells. The plasma membrane and the endocytic recycling compartment (ERC) are both highly enriched in cholesterol. The abundance and distribution of cholesterol among organelles are tightly controlled by a combination of mechanisms involving vesicular and nonvesicular sterol transport processes. Using the fluorescent cholesterol analogue dehydroergosterol, we examined sterol transport between the plasma membrane and the ERC using fluorescence recovery after photobleaching and a novel sterol efflux assay. We found that sterol transport between these organelles in a U2OS cell line has a t1/2 =12–15 min. Approximately 70% of sterol transport is ATP independent and therefore is nonvesicular. Increasing cellular cholesterol levels dramatically increases bidirectional transport rate constants, but decreases in cholesterol levels have only a modest effect. A soluble sterol transport protein, STARD4, accounts for ∼25% of total sterol transport and ∼33% of nonvesicular sterol transport between the plasma membrane and ERC. This study shows that nonvesicular sterol transport mechanisms and STARD4 in particular account for a large fraction of sterol transport between the plasma membrane and the ERC.
Collapse
Affiliation(s)
- David B Iaea
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065.,Weill Cornell Medical College, Rockefeller University, and Memorial Sloan-Kettering Cancer Center Tri-Institutional Chemical Biology Program, New York, NY 10065
| | - Shu Mao
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Frederik W Lund
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 .,Weill Cornell Medical College, Rockefeller University, and Memorial Sloan-Kettering Cancer Center Tri-Institutional Chemical Biology Program, New York, NY 10065
| |
Collapse
|
23
|
Gaibelet G, Tercé F, Allart S, Lebrun C, Collet X, Jamin N, Orlowski S. Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.1.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
24
|
Venugopal S, Martinez-Arguelles DB, Chebbi S, Hullin-Matsuda F, Kobayashi T, Papadopoulos V. Plasma Membrane Origin of the Steroidogenic Pool of Cholesterol Used in Hormone-induced Acute Steroid Formation in Leydig Cells. J Biol Chem 2016; 291:26109-26125. [PMID: 27815506 DOI: 10.1074/jbc.m116.740928] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/03/2016] [Indexed: 02/05/2023] Open
Abstract
Hormone-sensitive acute steroid biosynthesis requires trafficking of cholesterol from intracellular sources to the inner mitochondrial membrane. The precise location of the intracellular cholesterol and its transport mechanism are uncertain. Perfringolysin O, produced by Clostridium perfringens, binds cholesterol. Its fourth domain (D4) retains cholesterol-binding properties but not cytotoxicity. We transfected steroidogenic MA-10 cells of mouse Leydig cell tumors with the mCherry-D4 plasmid. Tagged D4 with fluorescent proteins enabled us to track cholesterol. The staining was primarily localized to the inner leaflet of the plasma membrane and was partially released upon treatment with dibutyryl-cAMP (Bt2cAMP), a cAMP analog. Inhibitors of cholesterol import into mitochondria blocked steroidogenesis and prevented release of D4 (and presumably cholesterol) from the plasma membrane. We conclude that the bulk of the steroidogenic pool of cholesterol, mobilized by Bt2cAMP for acute steroidogenesis, originates from the plasma membrane. Treatment of the cells with steroid metabolites, 22(R)-hydroxycholesterol and pregnenolone, also reduced D4 release from the plasma membrane, perhaps evidence for a feedback effect of elevated steroid formation on cholesterol release. Interestingly, D4 staining was localized to endosomes during Bt2cAMP stimulation suggesting that these organelles are on the route of cholesterol trafficking from the plasma membrane to mitochondria. Finally, D4 was expressed in primary rat Leydig cells with a lentivirus and was released from the plasma membrane following Bt2cAMP treatment. We conclude that the plasma membrane is the source of cholesterol for steroidogenesis in these cells as well as in MA-10 cells.
Collapse
Affiliation(s)
- Sathvika Venugopal
- From the Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal H4A 3J1, Canada
| | - Daniel Benjamin Martinez-Arguelles
- From the Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal H4A 3J1, Canada
| | - Seimia Chebbi
- From the Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal H4A 3J1, Canada
| | - Françoise Hullin-Matsuda
- the Lipid Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.,INSERM U1060, Université Lyon 1, INSA Lyon, 69621 Villeurbanne, France
| | - Toshihide Kobayashi
- the Lipid Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.,INSERM U1060, Université Lyon 1, INSA Lyon, 69621 Villeurbanne, France.,UMR 7213 CNRS, University of Strasbourg, 67401 Illkirch, France, and
| | - Vassilios Papadopoulos
- From the Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal H4A 3J1, Canada, .,the Departments of Pharmacology and Therapeutics and.,Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| |
Collapse
|
25
|
Intracellular cholesterol transport proteins: roles in health and disease. Clin Sci (Lond) 2016; 130:1843-59. [DOI: 10.1042/cs20160339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
Effective cholesterol homoeostasis is essential in maintaining cellular function, and this is achieved by a network of lipid-responsive nuclear transcription factors, and enzymes, receptors and transporters subject to post-transcriptional and post-translational regulation, whereas loss of these elegant, tightly regulated homoeostatic responses is integral to disease pathologies. Recent data suggest that sterol-binding sensors, exchangers and transporters contribute to regulation of cellular cholesterol homoeostasis and that genetic overexpression or deletion, or mutations, in a number of these proteins are linked with diseases, including atherosclerosis, dyslipidaemia, diabetes, congenital lipoid adrenal hyperplasia, cancer, autosomal dominant hearing loss and male infertility. This review focuses on current evidence exploring the function of members of the ‘START’ (steroidogenic acute regulatory protein-related lipid transfer) and ‘ORP’ (oxysterol-binding protein-related proteins) families of sterol-binding proteins in sterol homoeostasis in eukaryotic cells, and the evidence that they represent valid therapeutic targets to alleviate human disease.
Collapse
|
26
|
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids 2016; 199:74-93. [PMID: 26874289 DOI: 10.1016/j.chemphyslip.2016.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/05/2023]
Abstract
Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, 1653 W. Congress Parkway, Chicago, IL 60612, USA.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
Maxfield FR, Iaea DB, Pipalia NH. Role of STARD4 and NPC1 in intracellular sterol transport. Biochem Cell Biol 2016; 94:499-506. [PMID: 27421092 DOI: 10.1139/bcb-2015-0154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholesterol plays an important role in determining the biophysical properties of membranes in mammalian cells, and the concentration of cholesterol in membranes is tightly regulated. Cholesterol moves among membrane organelles by a combination of vesicular and nonvesicular transport pathways, but the details of these transport pathways are not well understood. In this review, we discuss the mechanisms for nonvesicular sterol transport with an emphasis on the role of STARD4, a small, soluble, cytoplasmic sterol transport protein. STARD4 can rapidly equilibrate sterol between membranes, especially membranes with anionic lipid headgroups. We also discuss the sterol transport in late endosomes and lysosomes, which is mediated by a soluble protein, NPC2, and a membrane protein, NPC1. Homozygous mutations in these proteins lead to a lysosomal lipid storage disorder, Niemann-Pick disease type C. Many of the disease-causing mutations in NPC1 are associated with degradation of the mutant NPC1 proteins in the endoplasmic reticulum. Several histone deacetylase inhibitors have been found to rescue the premature degradation of the mutant NPC1 proteins, and one of these is now in a small clinical trial.
Collapse
Affiliation(s)
- Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - David B Iaea
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Nina H Pipalia
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.,Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
28
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
29
|
Abstract
Sterols are a critical component of cell membranes of eukaryotes. In mammalian cells there is approximately a six-fold range in the cholesterol content in various organelles. The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the physiochemical properties of membranes. Cholesterol trafficking among organelles is highly dynamic and is mediated by both vesicular and non-vesicular processes. Several proteins have been proposed to mediate inter-organelle trafficking of cholesterol. However, several aspects of the mechanisms involved in regulating trafficking and distribution of cholesterol remain to be elucidated. In the present chapter, we discuss the cellular mechanisms involved in cholesterol distribution and the trafficking processes involved in maintaining sterol homoeostasis.
Collapse
|
30
|
Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals. Antimicrob Agents Chemother 2015; 59:2410-20. [PMID: 25666149 DOI: 10.1128/aac.04239-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The azole antifungals block ergosterol biosynthesis by inhibiting lanosterol demethylase (Erg11p). The resulting depletion of cellular ergosterol and the accumulation of "toxic" sterol intermediates are both thought to compromise plasma membrane function. However, the effects of ergosterol depletion upon the function of intracellular membranes and organelles are not well described. The purpose of this study was to characterize the effects of azole treatment upon the integrity of the Candida albicans vacuole and to determine whether, in turn, vacuolar trafficking influences azole susceptibility. Profound fragmentation of the C. albicans vacuole can be observed as an early consequence of azole treatment, and it precedes significant growth inhibition. In addition, a C. albicans vps21Δ/Δ mutant, blocked in membrane trafficking through the late endosomal prevacuolar compartment (PVC), is able to grow significantly more than the wild type in the presence of several azole antifungals under standard susceptibility testing conditions. Furthermore, the vps21Δ/Δ mutant is able to grow despite the depletion of cellular ergosterol. This phenotype resembles an exaggerated form of "trailing growth" that has been described for some clinical isolates. In contrast, the vps21Δ/Δ mutant is hypersensitive to drugs that block alternate steps in ergosterol biosynthesis. On the basis of these results, we propose that endosomal trafficking defects may lead to the cellular "redistribution" of the sterol intermediates that accumulate following inhibition of ergosterol biosynthesis. Furthermore, the destination of these intermediates, or the precise cellular compartments in which they accumulate, may be an important determinant of their toxicity and thus ultimately antifungal efficacy.
Collapse
|
31
|
Arita M. Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure. Microbiol Immunol 2014; 58:239-56. [PMID: 24527995 DOI: 10.1111/1348-0421.12144] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/13/2014] [Accepted: 02/13/2014] [Indexed: 11/29/2022]
Abstract
Studies on anti-picornavirus compounds have revealed an essential role of a novel cellular pathway via host phosphatidylinositol-4 kinase III beta (PI4KB) and oxysterol-binding protein (OSBP) family I in poliovirus (PV) replication. However, the molecular role for this pathway in PV replication has yet to be determined. Here, viral and host proteins modulating production of phosphatidylinositol 4-phosphate (PI4P) and accumulation of unesterified cholesterol (UC) in cells were analyzed and the role of the PI4KB/OSBP pathway in PV replication characterized. Virus protein 2BC was identified as a novel interactant of PI4KB. PI4KB and VCP/p97 bind to a partially overlapped region of 2BC with different sensitivity to a 2C inhibitor. Production of PI4P and accumulation of UC were enhanced by virus protein 2BC, but suppressed by virus proteins 3A and 3AB. In PV-infected cells, a PI4KB inhibitor suppressed production of PI4P, and both a PI4KB inhibitor and an OSBP ligand suppressed accumulation of UC on virus-induced membrane structure. Inhibition of PI4KB activity caused dissociation of OSBP from virus-induced membrane structure in PV-infected cells. Synthesis of viral nascent RNA in PV-infected cells was not affected in the presence of PI4KB inhibitor and OSBP ligand; however, transient pre-treatment of PV-infected cells with these inhibitors suppressed viral RNA synthesis. These results suggest that virus proteins modulate PI4KB activity and provide PI4P for recruitment of OSBP to accumulate UC on virus-induced membrane structure for formation of a virus replication complex.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-Shi, Tokyo, 208-0011, Japan
| |
Collapse
|
32
|
Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments. PLoS One 2014; 9:e98482. [PMID: 25014655 PMCID: PMC4094430 DOI: 10.1371/journal.pone.0098482] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
Abstract
It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients.
Collapse
|
33
|
Jiang PL, Pasaribu B, Chen CS. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PLoS One 2014; 9:e87416. [PMID: 24475285 PMCID: PMC3903884 DOI: 10.1371/journal.pone.0087416] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022] Open
Abstract
Stable cnidarian-dinoflagellate (genus Symbiodinium) endosymbioses depend on the regulation of nutrient transport between Symbiodinium populations and their hosts. It has been previously shown that the host cytosol is a nitrogen-deficient environment for the intracellular Symbiodinium and may act to limit growth rates of symbionts during the symbiotic association. This study aimed to investigate the cell proliferation, as well as ultrastructural and lipid compositional changes, in free-living Symbiodinium spp. (clade B) upon nitrogen (N)-deprivation. The cell proliferation of the N-deprived cells decreased significantly. Furthermore, staining with a fluorescent probe, boron dipyrromethane 493/503 (BODIPY 493/503), indicated that lipid contents progressively accumulated in the N-deprived cells. Lipid analyses further showed that both triacylglycerol (TAG) and cholesterol ester (CE) were drastically enriched, with polyunsaturated fatty acids (PUFA; i.e., docosahexaenoic acid, heneicosapentaenoic acid, and oleic acid) became more abundant. Ultrastructural examinations showed that the increase in concentration of these lipid species was due to the accumulation of lipid droplets (LDs), a cellular feature that have previously shown to be pivotal in the maintenance of intact endosymbioses. Integrity of these stable LDs was maintained via electronegative repulsion and steric hindrance possibly provided by their surface proteins. Proteomic analyses of these LDs identified proteins putatively involved in lipid metabolism, signaling, stress response and energy metabolism. These results suggest that LDs production may be an adaptive response that enables Symbiodinium to maintain sufficient cellular energy stores for survival under the N-deprived conditions in the host cytoplasm.
Collapse
Affiliation(s)
- Pei-Luen Jiang
- Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung, Taiwan
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Buntora Pasaribu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Chii-Shiarng Chen
- Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung, Taiwan
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Park IW, Ndjomou J, Wen Y, Liu Z, Ridgway ND, Kao CC, He JJ. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4) through interaction with HCV NS5B and alteration of lipid droplet formation. PLoS One 2013; 8:e75648. [PMID: 24069433 PMCID: PMC3775767 DOI: 10.1371/journal.pone.0075648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/20/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) RNA replication involves complex interactions among the 3’x RNA element within the HCV 3’ untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3’ X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4), a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jean Ndjomou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yahong Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Ziqing Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Neale D. Ridgway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C. Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Johnny J. He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Nomura S, Umeda T, Tomiyama T, Mori H. The E693Δ (Osaka) mutation in amyloid precursor protein potentiates cholesterol-mediated intracellular amyloid β toxicity via its impaired cholesterol efflux. J Neurosci Res 2013; 91:1541-50. [DOI: 10.1002/jnr.23278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Sachiko Nomura
- Department of Neuroscience; Osaka City University Graduate School of Medicine; Osaka Japan
- Core Research for Evolutional Science and Technology; Japan Science and Technology Agency; Tokyo Japan
| | - Tomohiro Umeda
- Department of Neuroscience; Osaka City University Graduate School of Medicine; Osaka Japan
- Core Research for Evolutional Science and Technology; Japan Science and Technology Agency; Tokyo Japan
| | - Takami Tomiyama
- Department of Neuroscience; Osaka City University Graduate School of Medicine; Osaka Japan
- Core Research for Evolutional Science and Technology; Japan Science and Technology Agency; Tokyo Japan
| | - Hiroshi Mori
- Department of Neuroscience; Osaka City University Graduate School of Medicine; Osaka Japan
- Core Research for Evolutional Science and Technology; Japan Science and Technology Agency; Tokyo Japan
| |
Collapse
|
36
|
Ríos-Marco P, Segovia JL, Jiménez-López JM, Marco C, Carrasco MP. Lipid Efflux Mediated by Alkylphospholipids in HepG2 Cells. Cell Biochem Biophys 2013; 66:737-46. [DOI: 10.1007/s12013-013-9518-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Ehrenman K, Wanyiri JW, Bhat N, Ward HD, Coppens I. Cryptosporidium parvum scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes. Cell Microbiol 2013; 15:1182-97. [PMID: 23311949 DOI: 10.1111/cmi.12107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/13/2012] [Accepted: 12/27/2012] [Indexed: 11/26/2022]
Abstract
Cryptosporidium spp. are responsible for devastating diarrhoea in immunodeficient individuals. In the intestinal tract, the developmental stages of the parasite are confined to the apical surfaces of epithelial cells. Upon invasion, Cryptosporidium incorporates the microvillous membrane of the enterocyte to form the parasitophorous vacuole (PV) and sequesters itself from the host cytoplasm by rearranging the host cytoskeleton. Cryptosporidium parvum has minimal anabolic capabilities and relies on transporters and salvage pathways to meet its basic metabolic requirements. The cholesterol salvage pathway is crucial for the development of protozoan parasites. In this study, we have examined the sources of cholesterol from C. parvum infecting enterocytes. We illustrated that the intracellular stages of Cryptosporidium as well as the oocysts shed by the host, contain cholesterol. Incubation of infected enterocytes in lipoprotein-free medium impairs parasite development and results in substantial decrease in cholesterol content associated with the PV. Among lipoproteins, LDL constitutes an important source of cholesterol for Cryptosporidium. Dietary cholesterol incorporated into micelles is internalized into enterocytes by the NPC1L1 transporter. We showed that C. parvum also obtains cholesterol from micelles in enterocytes.Pharmacological blockade of NPC1L1 function by ezetimibe or moderate downregulation of NPC1L1 expression decreases parasite infectivity. These observations indicate that, despite its dual sequestration from the intestinal lumen and the host cytoplasm, C. parvum can, in fact, obtain cholesterol both from the gut's lumen and the host cell. This study highlights the evolutionary advantages for epicellular pathogens to access to nutrients from the outside and inside of the host cell.
Collapse
Affiliation(s)
- Karen Ehrenman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
38
|
Garbarino J, Pan M, Chin HF, Lund FW, Maxfield FR, Breslow JL. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC. J Lipid Res 2012; 53:2716-25. [PMID: 23033213 DOI: 10.1194/jlr.m032227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
STARD4, a member of the evolutionarily conserved START gene family, has been implicated in the nonvesicular intracellular transport of cholesterol. However, the direction of transport and the membranes with which this protein interacts are not clear. We present studies of STARD4 function using small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein receptor (LDLR) levels were increased and decreased, respectively. We also observed a decrease in NPC1 protein expression, suggesting the induction of compensatory pathways to maintain cholesterol balance. These data indicate a role for STARD4 in nonvesicular transport of cholesterol from the plasma membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well.
Collapse
Affiliation(s)
- Jeanne Garbarino
- The Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kennedy BE, Charman M, Karten B. Niemann-Pick Type C2 protein contributes to the transport of endosomal cholesterol to mitochondria without interacting with NPC1. J Lipid Res 2012; 53:2632-42. [PMID: 22962690 DOI: 10.1194/jlr.m029942] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial cholesterol is maintained within a narrow range to regulate steroid and oxysterol synthesis and to ensure mitochondrial function. Mitochondria acquire cholesterol through several pathways from different cellular pools. Here we have characterized mitochondrial import of endosomal cholesterol using Chinese hamster ovary cells expressing a CYP11A1 fusion protein that converts cholesterol to pregnenolone at the mitochondrial inner membrane. RNA interference-mediated depletion of the voltage-dependent anion channel 1 in the mitochondrial outer membrane or of Niemann-Pick Type C2 (NPC2) in the endosome lumen decreased arrival of cholesterol at the mitochondrial inner membrane. Expression of NPC2 mutants unable to transfer cholesterol to NPC1 still restored mitochondrial cholesterol import in NPC2-depleted cells. Transport assays in semi-permeabilized cells showed nonvesicular cholesterol trafficking directly from endosomes to mitochondria that did not require cytosolic transport proteins but that was reduced in the absence of NPC2. Our findings indicate that NPC2 delivers cholesterol to the perimeter membrane of late endosomes, where it becomes available for transport to mitochondria without requiring NPC1.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | | | |
Collapse
|
40
|
Goto A, Liu X, Robinson CA, Ridgway ND. Multisite phosphorylation of oxysterol-binding protein regulates sterol binding and activation of sphingomyelin synthesis. Mol Biol Cell 2012; 23:3624-35. [PMID: 22875984 PMCID: PMC3442410 DOI: 10.1091/mbc.e12-04-0283] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endoplasmic reticulum (ER)-Golgi sterol transfer activity of oxysterol-binding protein (OSBP) regulates sphingomyelin (SM) synthesis, as well as post-Golgi cholesterol efflux pathways. The phosphorylation and ER-Golgi localization of OSBP are correlated, suggesting this modification regulates the directionality and/or specificity of transfer activity. In this paper, we report that phosphorylation on two serine-rich motifs, S381-S391 (site 1) and S192, S195, S200 (site 2), specifically controls OSBP activity at the ER. A phosphomimetic of the SM/cholesterol-sensitive phosphorylation site 1 (OSBP-S5E) had increased in vitro cholesterol and 25-hydroxycholesterol-binding capacity, and cholesterol extraction from liposomes, but reduced transfer activity. Phosphatidylinositol 4-phosphate (PI(4)P) and cholesterol competed for a common binding site on OSBP; however, direct binding of PI(4)P was not affected by site 1 phosphorylation. Individual site 1 and site 2 phosphomutants supported oxysterol activation of SM synthesis in OSBP-deficient CHO cells. However, a double site1/2 mutant (OSBP-S381A/S3D) was deficient in this activity and was constitutively colocalized with vesicle-associated membrane protein-associated protein A (VAP-A) in a collapsed ER network. This study identifies phosphorylation regulation of sterol and VAP-A binding by OSBP in the ER, and PI(4)P as an alternate ligand that could be exchanged for sterol in the Golgi apparatus.
Collapse
Affiliation(s)
- Asako Goto
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada
| | | | | | | |
Collapse
|
41
|
Lee S, Wang PY, Jeong Y, Mangelsdorf DJ, Anderson RGW, Michaely P. Sterol-dependent nuclear import of ORP1S promotes LXR regulated trans-activation of apoE. Exp Cell Res 2012; 318:2128-42. [PMID: 22728266 DOI: 10.1016/j.yexcr.2012.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 01/30/2023]
Abstract
Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements.
Collapse
Affiliation(s)
- Sungsoo Lee
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, United States.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Lipid transfer proteins of the steroidogenic acute regulatory protein-related lipid transfer (START) domain family are defined by the presence of a conserved ∼210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for ligand binding. The mammalian START proteins bind diverse ligands, such as cholesterol, oxysterols, phospholipids, sphingolipids, and possibly fatty acids, and have putative roles in non-vesicular lipid transport, thioesterase enzymatic activity, and tumor suppression. However, the biological functions of many members of the START domain protein family are not well established. Recent research has focused on characterizing the cell-type distribution and regulation of the START proteins, examining the specificity and directionality of lipid transport, and identifying disease states associated with dysregulation of START protein expression. This review summarizes the current concepts of the proposed physiological and pathological roles for the mammalian START domain proteins in cholesterol and lipid trafficking.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
43
|
Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis. Cell Mol Life Sci 2012; 69:915-30. [PMID: 22009455 PMCID: PMC11114919 DOI: 10.1007/s00018-011-0857-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/24/2023]
Abstract
Cholesterol homeostasis is among the most intensely regulated processes in biology. Since its isolation from gallstones at the time of the French Revolution, cholesterol has been extensively studied. Insufficient or excessive cellular cholesterol results in pathological processes including atherosclerosis and metabolic syndrome. Mammalian cells obtain cholesterol from the circulation in the form of plasma lipoproteins or intracellularly, through the synthesis of cholesterol from acetyl coenzyme A (acetyl-CoA). This process is tightly regulated at multiple levels. In this review, we provide an overview of the multiple mechanisms by which cellular cholesterol metabolism is regulated. We also discuss the recent advances in the post-transcriptional regulation of cholesterol homeostasis, including the role of small non-coding RNAs (microRNAs). These novel findings may open new avenues for the treatment of dyslipidemias and cardiovascular diseases.
Collapse
Affiliation(s)
- Leigh Goedeke
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 703, New York, NY 10016 USA
| | - Carlos Fernández-Hernando
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 703, New York, NY 10016 USA
| |
Collapse
|
44
|
de Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B, Bourguet W, Antonny B, Drin G. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. ACTA ACUST UNITED AC 2012; 195:965-78. [PMID: 22162133 PMCID: PMC3241724 DOI: 10.1083/jcb.201104062] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The yeast Kes1p/Osh4p protein functions as a sterol/PI(4)P exchanger between lipid membranes, which suggests the possibility of creating a sterol gradient via phosphoinositide metabolism. Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Osh4p–PI(4)P complex and reveal how Osh4p selectively substitutes PI(4)P for sterol. Last, we show that Osh4p quickly exchanges DHE for PI(4)P and, thereby, can transport these two lipids between membranes along opposite routes. These results suggest a model in which Osh4p transports sterol from the ER to late compartments pinpointed by PI(4)P and, in turn, transports PI(4)P backward. Coupled to PI(4)P metabolism, this transport cycle would create sterol gradients. Because the residues that recognize PI(4)P are conserved in Osh4p homologues, other Osh/Orp are potential sterol/phosphoinositol phosphate exchangers.
Collapse
Affiliation(s)
- Maud de Saint-Jean
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia-Antipolis and Centre National de la Recherche Scientifique, 06560 Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lange Y, Ye J, Steck TL. Activation mobilizes the cholesterol in the late endosomes-lysosomes of Niemann Pick type C cells. PLoS One 2012; 7:e30051. [PMID: 22276143 PMCID: PMC3262792 DOI: 10.1371/journal.pone.0030051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3–4 hours, ∼4–5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, United States of America.
| | | | | |
Collapse
|
46
|
Elbaz Y, Schuldiner M. Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci 2011; 36:616-23. [PMID: 21958688 DOI: 10.1016/j.tibs.2011.08.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/09/2011] [Accepted: 08/15/2011] [Indexed: 01/10/2023]
Abstract
Membrane contact sites (MCS) are close appositions between two organelles that facilitate both signaling and the passage of ions and lipids from one cellular compartment to another. Despite the fact that MCS have been observed for over 50 years now, we still know very little about the molecular machinery required to create them or their structure, function and regulation. In this review, we focus on the three best-characterized contact sites to date: the nucleus-vacuole junction and mitochondria-ER and plasma membrane-ER contact sites. In addition, we discuss principles arising from recent research and highlight several unanswered questions in the field.
Collapse
Affiliation(s)
- Yael Elbaz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
47
|
Mesmin B, Pipalia NH, Lund FW, Ramlall TF, Sokolov A, Eliezer D, Maxfield FR. STARD4 abundance regulates sterol transport and sensing. Mol Biol Cell 2011; 22:4004-15. [PMID: 21900492 PMCID: PMC3204063 DOI: 10.1091/mbc.e11-04-0372] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The expression of a small sterol transport protein, STARD4, is regulated by cholesterol levels. We show that the abundance of STARD4 regulates the sensitivity of the SREBP-2 system to changes in cholesterol, providing an additional layer of regulation in the cholesterol homeostatic mechanism. Nonvesicular transport of cholesterol plays an essential role in the distribution and regulation of cholesterol within cells, but it has been difficult to identify the key intracellular cholesterol transporters. The steroidogenic acute regulatory-related lipid-transfer (START) family of proteins is involved in several pathways of nonvesicular trafficking of sterols. Among them, STARD4 has been shown to increase intracellular cholesteryl ester formation and is controlled at the transcriptional level by sterol levels in cells. We found that STARD4 is very efficient in transporting sterol between membranes in vitro. Cholesterol levels are increased in STARD4-silenced cells, while sterol transport to the endocytic recycling compartment (ERC) and to the endoplasmic reticulum (ER) are enhanced upon STARD4 overexpression. STARD4 silencing attenuates cholesterol-mediated regulation of SREBP-2 activation, while its overexpression amplifies sterol sensing by SCAP/SREBP-2. To analyze STARD4's mode of action, we compared sterol transport mediated by STARD4 with that of a simple sterol carrier, methyl-β-cyclodextrin (MCD), when STARD4 and MCD were overexpressed or injected into cells. Interestingly, STARD4 and cytosolic MCD act similarly by increasing the rate of transfer of sterol to the ERC and to the ER. Our results suggest that cholesterol transport mediated by STARD4 is an important component of the cholesterol homeostasis regulatory machinery.
Collapse
Affiliation(s)
- Bruno Mesmin
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Fu Q, Lynn-Miller A, Lan Q. Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2011; 20:541-52. [PMID: 21699592 PMCID: PMC3139008 DOI: 10.1111/j.1365-2583.2011.01087.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expression was induced by a bloodmeal. Furthermore, over-expression of AeORPs facilitated [(3)H]-cholesterol uptake in Ae. aegypti cultured Aag -2 cells.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ace Lynn-Miller
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
49
|
West M, Zurek N, Hoenger A, Voeltz GK. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. ACTA ACUST UNITED AC 2011; 193:333-46. [PMID: 21502358 PMCID: PMC3080256 DOI: 10.1083/jcb.201011039] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron tomography of continuous ER domains during budding shows that reticulons and Yop1 stabilize rather than generate membrane curvature in this organelle. We analyzed the structure of yeast endoplasmic reticulum (ER) during six sequential stages of budding by electron tomography to reveal a three-dimensional portrait of ER organization during inheritance at a nanometer resolution. We have determined the distribution, dimensions, and ribosome densities of structurally distinct but continuous ER domains during multiple stages of budding with and without the tubule-shaping proteins, reticulons (Rtns) and Yop1. In wild-type cells, the peripheral ER contains cytoplasmic cisternae, many tubules, and a large plasma membrane (PM)–associated ER domain that consists of both tubules and fenestrated cisternae. In the absence of Rtn/Yop1, all three domains lose membrane curvature, ER ribosome density changes, and the amount of PM-associated ER increases dramatically. Deletion of Rtns/Yop1 does not, however, prevent bloated ER tubules from being pulled from the mother cisterna into the bud and strongly suggests that Rtns/Yop1 stabilize/maintain rather than generate membrane curvature at all peripheral ER domains in yeast.
Collapse
Affiliation(s)
- Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
50
|
Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011; 50:357-71. [PMID: 21741992 DOI: 10.1016/j.plipres.2011.06.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood-brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg Cedex, France.
| | | |
Collapse
|