1
|
Du Z, Wu G, Cheng H, Han T, Li D, Xie Z. L-Theanine Ameliorates Obesity-Related Complications Induced by High-Fat Diet in Mice: Insights from Transcriptomics and Metabolomics. Foods 2024; 13:2977. [PMID: 39335905 PMCID: PMC11431230 DOI: 10.3390/foods13182977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a major public health concern globally. Plant-based ingredients have been proposed as alternative treatments for obesity. L-Theanine (THE), a unique nutraceutical component of tea, is known for its neuroprotective and cognitive benefits. However, there are few reports on THE's effects and mechanisms in improving obesity and its complications. In this study, the alleviating effects and potential mechanisms of THE on obesity-related complications (ORCs) induced by a high-fat diet(HFD) in mice were explored by performing biochemical, hepatic transcriptomics, and plasma metabolomics analyses. The results indicated THE (900 mg/kg of body weight) was effective in mitigating ORCs by decreasing body weight gain and fat deposition, improving glycolipid metabolism disorders, inflammation dysregulation, and alleviating fatty liver formation due to long-term HFD. The hepatic transcriptomics data suggested that THE intervention suppresses the lipid metabolism and inflammation pathways in HFD-fed mice, thereby inhibiting hepatic steatosis and inflammation. Moreover, plasma metabolomics analysis revealed that THE exhibited positive effects on the homeostasis of plasma metabolite balance, such as phosphatidylcholine (PC(14:0/18:1)), phosphatidylethanolamine (Lyso-PE(14:0)), phosphatidic acid (PA(16:0e/18:0)), stigmasterol, and deoxycholic acid glycine conjugate. These metabolites were strongly correlated with ORC-related indicators. Our results indicated that THE, as a functional food additive, possesses potential for ORC alleviation. However, the exact molecular mechanism of how THE alleviates ORCs needs to be investigated in the future.
Collapse
Affiliation(s)
- Zhaofeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Huijun Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- College of Biological Sciences and Technology, Yili Normal University, Yining 835000, China
| | - Tingting Han
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Gao R, Wu Y, Wang Y, Yang Z, Mao Y, Yang Y, Yang C, Chen Z. Ubiquitination and De-Ubiquitination in the Synthesis of Cow Milk Fat: Reality and Prospects. Molecules 2024; 29:4093. [PMID: 39274941 PMCID: PMC11397273 DOI: 10.3390/molecules29174093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Ubiquitination modifications permit the degradation of labelled target proteins with the assistance of proteasomes and lysosomes, which is the main protein degradation pathway in eukaryotic cells. Polyubiquitination modifications of proteins can also affect their functions. De-ubiquitinating enzymes reverse the process of ubiquitination via cleavage of the ubiquitin molecule, which is known as a de-ubiquitination. It was demonstrated that ubiquitination and de-ubiquitination play key regulatory roles in fatty acid transport, de novo synthesis, and desaturation in dairy mammary epithelial cells. In addition, natural plant extracts, such as stigmasterol, promote milk fat synthesis in epithelial cells via the ubiquitination pathway. This paper reviews the current research on ubiquitination and de-ubiquitination in dairy milk fat production, with a view to providing a reference for subsequent research on milk fat and exploring new directions for the improvement of milk quality.
Collapse
Affiliation(s)
- Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chunhua Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Teng YC, Gielen MC, de Gruijter NM, Ciurtin C, Rosser EC, Karu K. Phytosterols in human serum as measured using a liquid chromatography tandem mass spectrometry. J Steroid Biochem Mol Biol 2024; 241:106519. [PMID: 38614432 DOI: 10.1016/j.jsbmb.2024.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Phytosterols are lipophilic compounds found in plants with structural similarity to mammalian cholesterol. They cannot be endogenously produced by mammals and therefore always originate from diet. There has been increased interest in dietary phytosterols over the last few decades due to their association with a variety of beneficial health effects including low-density lipoprotein cholesterol lowering, anti-inflammatory and anti-cancerous effects. They are proposed as potential moderators for diseases associated with the central nervous system where cholesterol homeostasis is found to be imperative (multiple sclerosis, dementia, etc.) due to their ability to reach the brain. Here we utilised an enzyme-assisted derivatisation for sterol analysis (EADSA) in combination with a liquid chromatography tandem mass spectrometry (LC-MSn) to characterise phytosterol content in human serum. As little as 100 fg of plant sterol was injected on a reversed phase LC column. The method allows semi-quantitative measurements of phytosterols and their derivatives simultaneously with measurement of cholesterol metabolites. The identification of phytosterols in human serum was based on comparison of their LC retention times and MS2, MS3 spectra with a library of authentic standards. Free campesterol serum concentration was in the range from 0.30-4.10 µg/mL, β-sitosterol 0.16-3.37 µg/mL and fucosterol was at lowest concentration range from 0.05-0.38 µg/mL in ten individuals. This analytical methodology could be applied to the analysis of other biological fluids and tissues.
Collapse
Affiliation(s)
- Yu Chun Teng
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Marie Claire Gielen
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Nina M de Gruijter
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom; Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom.
| |
Collapse
|
4
|
Guo X, Yu J, Wang R, Peng N, Li R. Deciphering the effect of phytosterols on Alzheimer's disease and Parkinson's disease: the mediating role of lipid profiles. Alzheimers Res Ther 2024; 16:53. [PMID: 38461353 PMCID: PMC10924343 DOI: 10.1186/s13195-024-01424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Studies have suggested that blood circulating phytosterols, plant-derived sterols analogous to cholesterol, were associated with blood lipid levels and the risk of Alzheimer's disease (AD) and Parkinson's disease (PD). This Mendelian randomization (MR) study is performed to determine the causal effect of circulating phytosterols on AD and PD and evaluate the mediation effect of blood lipids. METHODS Leveraging genome-wide association studies summary-level data for phytosterols, blood lipids, AD, and PD, univariable and multivariable MR (MVMR) analyses were conducted. Four types of phytosterols (brassicasterol, campesterol, sitosterol, and stigmasterol), three blood lipids parameters (high-density lipoprotein cholesterol [HDL-C], non-HDL-C, and triglyceride), two datasets for AD and PD were used. Inverse-variance weighted method was applied as the primary analysis, and false discovery rate method was used for adjustment of multiple comparisons. RESULTS Using the largest AD dataset, genetically proxied higher levels of stigmasterol (OR = 0.593, 95%CI = 0.431-0.817, P = 0.004) and sitosterol (OR = 0.864, 95%CI = 0.791-0.943, P = 0.004) significantly correlated with a lower risk of AD. No significant associations were observed between all four types of phytosterols levels and PD. MVMR estimates showed that the above causal associations were missing after integrating the blood lipids as exposures. Sensitivity analyses confirmed the robustness of these associations, with no evidence of pleiotropy and heterogeneity. CONCLUSION The study supports a potential beneficial role of blood stigmasterol and sitosterol in reducing the risk of AD, but not PD, which is dependent on modulating blood lipids. These insights highlight circulating stigmasterol and sitosterol as possible biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, Shaanxi, 710068, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jing Yu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Rui Wang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Ning Peng
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, Shaanxi, 710068, China.
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
5
|
Spinedi M, Clark C, Zullo L, Kerksiek A, Pistis G, Castelao E, von Gunten A, Preisig M, Lütjohann D, Popp J. Cholesterol-metabolism, plant sterols, and long-term cognitive decline in older people - Effects of sex and APOEe4. iScience 2024; 27:109013. [PMID: 38327787 PMCID: PMC10847741 DOI: 10.1016/j.isci.2024.109013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Neurodegenerative, vascular, and dementia diseases are linked to dysregulations in cholesterol metabolism. Dietary plant sterols, or phytosterols, may interfere to neurodegeneration and cognitive decline, and have cholesterol-lowering, anti-inflammatory, and antioxidant qualities. Here, we investigated the potential associations between circulating cholesterol precursors and metabolites, triglycerides, and phytosterols with cognitive decline in older people by performing multivariate analysis on 246 participants engaged in a population-based prospective study. In our analysis we considered the potential effect of sex and APOEe4. We reveal particular dysregulations of diet-derived phytosterols and endogenous cholesterol synthesis and metabolism, and their variations over time linked to cognitive decline in the general population. These results are significant to the development of interventions to avoid cognitive decline in older adults and suggest that levels of circulating sterols should be taken into account when evaluating risk.
Collapse
Affiliation(s)
- Matteo Spinedi
- University Hospital of Psychiatry and University of Zürich, Zürich, Switzerland
| | - Christopher Clark
- University Hospital of Psychiatry and University of Zürich, Zürich, Switzerland
| | - Leonardo Zullo
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Giorgio Pistis
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Enrique Castelao
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- Psychiatric Epidemiology and Psychopathology Research Center, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Julius Popp
- University Hospital of Psychiatry and University of Zürich, Zürich, Switzerland
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Yalcinkaya A, Öztaş YE, Sabuncuoğlu S. Sterols in Inflammatory Diseases: Implications and Clinical Utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:261-275. [PMID: 38036884 DOI: 10.1007/978-3-031-43883-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The characteristic steroid skeleton, with its 4-ringed 17-carbon structure, is one of the most recognizable organic compounds in biochemistry. In the presence of a hydroxyl ion bound to the third carbon, this structure is defined as a "sterol" (chemical formula: C17H28O). The hydroxyl group provides a hydrophilic site for the otherwise hydrophobic molecule, yielding an amphipathic lipid, which is a vital property for cellular function. It is crucial to remark that the term "steroid" describes a larger group of compounds that often retain the hydroxyl group but are primarily characterized by methyl groups, double bonds in the rings, and an aliphatic side-chain extending from the 17th carbon. In addition to serving various structural roles in the cellular membrane, sterols and steroids contribute to cellular and systemic functions as messengers, hormones, and regulators of several critical metabolic pathways.Sterol nomenclature is often confusing, partly due to structural complexity and partly due to the sheer number of different compounds that fall under the definition. Fortunately, the foremost sterols of interest in biochemistry are much fewer, and therefore, these lipids have been defined and studied vigorously. With the renaissance of lipid research during the 1990s and 2000s, many different metabolites of sterols, and more specifically phytosterols, were found to be associated with various diseases and conditions, including cardiovascular disease, hypercholesterolemia, cancer, obesity, inflammation, diabetes, and inborn errors of metabolism; thus, it is evident that the ever-evolving research in this field has been, and will continue to be, exceedingly productive.With respect to inflammation and inflammatory diseases, plant-based sterols (i.e., phytosterols) have gained considerable fame due to their anti-inflammatory and cholesterol-lowering effects demonstrated by experimental and clinical research. Besides, the exceptional pharmacological benefits of these sterols, which operate as antioxidant, antidiabetic, and anti-atherosclerotic agents, have been the subject of various investigations. While the underlying mechanisms necessitate further research, the possible function of phytosterols in improving health outcomes is an important topic to explore.In this regard, the current review aims to offer comprehensive information on the therapeutic potential of plant-based sterols in the context of human health, with a focus on preclinical effects, bioavailability, and clinical use.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Yeşim Er Öztaş
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Vigne S, Pot C. Implication of Oxysterols and Phytosterols in Aging and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:231-260. [PMID: 38036883 DOI: 10.1007/978-3-031-43883-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is easily oxidized and can be transformed into numerous oxidation products, among which oxysterols. Phytosterols are plant sterols related to cholesterol. Both oxysterols and phytosterols can have an impact on human health and diseases.Cholesterol is a member of the sterol family that plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized into several molecules including bile acids, hormones, and oxysterols. On the other hand, phytosterols are plant-derived compounds structurally related to cholesterol, which can also have an impact on human health. Here, we review the current knowledge about the role of oxysterols and phytosterols on human health and focus on the impact of their pathways on diseases of the central nervous system (CNS), autoimmune diseases, including inflammatory bowel diseases (IBD), vascular diseases, and cancer in both experimental models and human studies. We will first discuss the implications of oxysterols and then of phytosterols in different human diseases.
Collapse
Affiliation(s)
- Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland.
| |
Collapse
|
8
|
Zheng Y, Zhao J, Chang S, Zhuang Z, Waimei S, Li X, Chen Z, Jing B, Zhang D, Zhao G. β-Sitosterol Alleviates Neuropathic Pain by Affect Microglia Polarization through Inhibiting TLR4/NF-κB Signaling Pathway. J Neuroimmune Pharmacol 2023; 18:690-703. [PMID: 38041701 DOI: 10.1007/s11481-023-10091-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/17/2023] [Indexed: 12/03/2023]
Abstract
The etiology of neuropathic pain is mostly caused by mechanical deformation and neuroinflammation, of which neuroinflammation is the main cause of chronic neuropathic pain. Activation of the TLR4/NF-κB signaling pathway mediates elevated levels of inflammatory cytokines, and we clearly demonstrated by in vivo and in vitro Western blot experiments that β-sitosterol significantly inhibited the elevated Toll-like receptor 4 (TLR4) expression levels and nuclear factor-kappa B (NF-κB) activation associated with inflammatory responses. In cellular experiments, we clearly saw that both β-sitosterol and TLR4/NF-κB signaling pathway inhibitors could inhibit M1 proinflammatory phenotype expression and promote M2 anti-inflammatory phenotype expression in GMI-R1 microglia by flow cytometry and immunofluorescence assays. Therefore, we suggest that β-sitosterol can affect microglial polarization by inhibiting the TLR4/NF-κB signaling pathway thereby reducing neuroinflammation and thus alleviating neuropathic pain.
Collapse
Affiliation(s)
- Yachun Zheng
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
- Department of Acupuncture and Rehabilitation, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Jiaji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiquan Chang
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Zifeng Zhuang
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Si Waimei
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Xin Li
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Zenni Chen
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China.
| | - Guoping Zhao
- College of Traditional Chinese Medicine, Jinan University, Tianhe District, West of Huangpu Road No. 601, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Evtyugin DD, Evtuguin DV, Casal S, Domingues MR. Advances and Challenges in Plant Sterol Research: Fundamentals, Analysis, Applications and Production. Molecules 2023; 28:6526. [PMID: 37764302 PMCID: PMC10535520 DOI: 10.3390/molecules28186526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Plant sterols (PS) are cholesterol-like terpenoids widely spread in the kingdom Plantae. Being the target of extensive research for more than a century, PS have topped with evidence of having beneficial effects in healthy subjects and applications in food, cosmetic and pharmaceutical industries. However, many gaps in several fields of PS's research still hinder their widespread practical applications. In fact, many of the mechanisms associated with PS supplementation and their health benefits are still not fully elucidated. Furthermore, compared to cholesterol data, many complex PS chemical structures still need to be fully characterized, especially in oxidized PS. On the other hand, PS molecules have also been the focus of structural modifications for applications in diverse areas, including not only the above-mentioned but also in e.g., drug delivery systems or alternative matrixes for functional foods and fats. All the identified drawbacks are also superimposed by the need of new PS sources and technologies for their isolation and purification, taking into account increased environmental and sustainability concerns. Accordingly, current and future trends in PS research warrant discussion.
Collapse
Affiliation(s)
- Dmitry D. Evtyugin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dmitry V. Evtuguin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
| | - Susana Casal
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Martens N, Zhan N, Voortman G, Leijten FPJ, van Rheenen C, van Leerdam S, Geng X, Huybrechts M, Liu H, Jonker JW, Kuipers F, Lütjohann D, Vanmierlo T, Mulder MT. Activation of Liver X Receptors and Peroxisome Proliferator-Activated Receptors by Lipid Extracts of Brown Seaweeds: A Potential Application in Alzheimer's Disease? Nutrients 2023; 15:3004. [PMID: 37447330 DOI: 10.3390/nu15133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The nuclear liver X receptors (LXRα/β) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/β- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Frank P J Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Connor van Rheenen
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Suzanne van Leerdam
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Xicheng Geng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Michiel Huybrechts
- Department of Environmental Biology, Center for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
11
|
Clark C, Gholam M, Zullo L, Kerksiek A, Castelao E, von Gunten A, Preisig M, Lütjohann D, Popp J. Plant sterols and cholesterol metabolism are associated with five-year cognitive decline in the elderly population. iScience 2023; 26:106740. [PMID: 37250771 PMCID: PMC10209479 DOI: 10.1016/j.isci.2023.106740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/13/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Dysregulations in cholesterol metabolism are associated with neurodegenerative and vascular pathologies, and dementia. Diet-derived plant sterols (phytosterols) have cholesterol-lowering, anti-inflammatory, and antioxidant properties and may interfere with neurodegeneration and cognitive decline. Here we performed multivariate analysis in 720 individuals enrolled in a population-based prospective study to determine whether circulating cholesterol precursors and metabolites, triglycerides, and phytosterols, are associated with cognitive impairment and decline in the older population. We report specific dysregulations of endogenous cholesterol synthesis and metabolism, and diet-derived phytosterols, and their changes over time associated with cognitive impairment, and decline in the general population. These findings suggest circulating sterols levels could be considered in risk evaluation and are relevant for the development of strategies to prevent cognitive decline in older people.
Collapse
Affiliation(s)
- Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, PO Box 363, 8032 Zürich, Switzerland
- Department of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mehdi Gholam
- Department of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Leonardo Zullo
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Route de Cery 60, 1008 Prilly, Switzerland
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Enrique Castelao
- Department of Psychiatry, Center for Research in Psychiatric Epidemiology and Psychopathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Armin von Gunten
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Route de Cery 60, 1008 Prilly, Switzerland
| | - Martin Preisig
- Department of Psychiatry, Center for Research in Psychiatric Epidemiology and Psychopathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Julius Popp
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, PO Box 363, 8032 Zürich, Switzerland
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Route de Cery 60, 1008 Prilly, Switzerland
| |
Collapse
|
12
|
Begcevic Brkovic I, Reinicke M, Chey S, Bechmann I, Ceglarek U. Characterization of Non-Cholesterol Sterols in Microglia Cell Membranes Using Targeted Mass Spectrometry. Cells 2023; 12:cells12070974. [PMID: 37048046 PMCID: PMC10093698 DOI: 10.3390/cells12070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Non-cholesterol sterols, as well as plant sterols, cross the blood-brain barrier and, thus, can be incorporated into cell membranes, affecting the cell's inflammatory response. The aim of our work was to develop an analytical protocol for a quantitative assessment of the sterol composition within the membrane microdomains of microglia. METHODS A protocol for cell membrane isolation using OptiPrepTM gradient ultracentrifugation, in combination with a targeted mass spectrometry (LC-MS/MS)-based assay, was developed and validated for the quantitative analysis of free sterols in microglia cell membranes. RESULTS Utilizing an established LC-MS/MS assay, cholesterol and seven non-cholesterol sterols were analyzed with a limit of detection from 0.001 to 0.05 mg/L. Applying the detergent-free isolation of SIM-A9 microglia cell membranes, cholesterol (CH), desmosterol (DE), lanosterol (LA) stigmasterol (ST), beta-sitosterol (SI) and campesterol (CA) were quantified with coefficients of variations between 6 and 29% (fractions 4-6, n = 5). The highest concentrations of non-CH sterols within the microglia plasma membranes were found in the microdomain region (DE>LA>SI>ST>CA), with ratios to CH ranging from 2.3 to 435 lower abundancies. CONCLUSION By applying our newly developed and validated analytical protocol, we show that the non-CH sterol concentration is about 38% of the total sterol content in microglia membrane microdomains. Further investigations must clarify how changes in the non-sterol composition influence membrane fluidity and cell signaling.
Collapse
Affiliation(s)
- Ilijana Begcevic Brkovic
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Soroth Chey
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Sánchez-Martínez JD, Garcia AR, Alvarez-Rivera G, Valdés A, Brito MA, Cifuentes A. In Vitro Study of the Blood-Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae. Int J Mol Sci 2022; 24:ijms24010533. [PMID: 36613976 PMCID: PMC9820279 DOI: 10.3390/ijms24010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Agrifood by-products and microalgae represent a low-cost and valuable source of bioactive compounds with neuroprotective properties. However, the neuroprotective effectiveness of therapeutic molecules can be limited by their capacity to cross the blood-brain barrier (BBB) and reach the brain. In this research, various green extracts from Robinia pseudoacacia (ASFE), Cyphomandra betacea (T33), Coffea arabica (PPC1), Olea europaea L., (OL-SS), Citrus sinensis (PLE100) by-products and from the microalgae Dunaliella salina (DS) that have demonstrated in vitro neuroprotective potential were submitted to an in vitro BBB permeability and transport assay based on an immortalized human brain microvascular endothelial cells (HBMEC) model. Toxicity and BBB integrity tests were performed, and the transport of target bioactive molecules across the BBB were evaluated after 2 and 4 h of incubation using gas and liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC/LC-Q-TOF-MS). The HBMEC-BBB transport assay revealed a high permeability of representative neuroprotective compounds, such as mono- and sesquiterpenoids, phytosterols and some phenolic compounds. The obtained results from the proposed in vitro BBB cellular model provide further evidence of the neuroprotective potential of the target natural extracts, which represent a promising source of functional ingredients to be transferred into food supplements, food additives, or nutraceuticals with scientifically supported neuroprotective claims.
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Ana Rita Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| |
Collapse
|
14
|
Mechanistic Insights into the Neuroprotective Potential of Sacred Ficus Trees. Nutrients 2022; 14:nu14224731. [PMID: 36432418 PMCID: PMC9695857 DOI: 10.3390/nu14224731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of Ficus mostly discussed traditional usages, photochemistry, and pharmacological activities, though comprehensive reviews of the neuroprotective potential of these Ficus species extracts and/or their important phytocompounds are lacking. The interesting phytocompounds from these trees include many bengalenosides, carotenoids, flavonoids (leucopelargonidin-3-O-β-d-glucopyranoside, leucopelargonidin-3-O-α-l-rhamnopyranoside, lupeol, cetyl behenate, and α-amyrin acetate), flavonols (kaempferol, quercetin, myricetin), leucocyanidin, phytosterols (bergapten, bergaptol, lanosterol, β-sitosterol, stigmasterol), terpenes (α-thujene, α-pinene, β-pinene, α-terpinene, limonene, β-ocimene, β-bourbonene, β-caryophyllene, α-trans-bergamotene, α-copaene, aromadendrene, α-humulene, alloaromadendrene, germacrene, γ-cadinene, and δ-cadinene), and diverse polyphenols (tannin, wax, saponin, leucoanthocyanin), contributing significantly to their pharmacological effects, ranging from antimicrobial action to neuroprotection. This review presents extensive mechanistic insights into the neuroprotective potential, especially important phytochemicals from F. religiosa and F. benghalensis. Owing to the complex pathophysiology of neurodegenerative disorders (NDDs), the currently existing drugs merely alleviate the symptoms. Hence, bioactive compounds with potent neuroprotective effects through a multitarget approach would be of great interest in developing pharmacophores for the treatment of NDDs.
Collapse
|
15
|
Simultaneous Analysis of Free/Combined Phytosterols in Rapeseed and Their Dynamic Changes during Microwave Pretreatment and Oil Processing. Foods 2022; 11:3219. [PMCID: PMC9601674 DOI: 10.3390/foods11203219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, a simple, efficient, and rapid solid phase extraction-gas chromatography (SPE–GC) method was developed for the simultaneous analysis of free/combined phytosterols in rapeseed and their dynamic changes during microwave pretreatment and oil processing. First, by comparing different methods for extracting free/combined phytosterols from rapeseed and rapeseed cake, the Folch method was considered to be the optimal method and was selected in subsequent experiments. Subsequently, the extraction method was validated by determining the recoveries of standards (brassinosterol, campesterol, β-sitosterol and cholesteryl oleate) spiked in rapeseed and rapeseed oil samples, and the recoveries were in the range from 82.7% to 104.5% and 83.8% to 116.3%, respectively. The established method was applied to study the dynamic changes of the form and content of phytosterols in rapeseed and its products (rapeseed oil and cake) during rapeseed microwave pretreatment and the oil production process. Additionally, the results showed that more than 55% of the free/combined phytosterols in rapeseed were transferred to rapeseed oil during the oil processing, and this proportion will increase after microwave pretreatment of rapeseed. This work will provide analytical methods and data support for a comprehensive understanding of phytosterols in rapeseed and its products during oil processing.
Collapse
|
16
|
Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, El Omari N, Sheikh RA, Goh KW, Ming LC, Bouyahya A. Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants (Basel) 2022; 11:1912. [PMID: 36290632 PMCID: PMC9598710 DOI: 10.3390/antiox11101912] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 07/30/2023] Open
Abstract
Stigmasterol is an unsaturated phytosterol belonging to the class of tetracyclic triterpenes. It is one of the most common plant sterols, found in a variety of natural sources, including vegetable fats or oils from many plants. Currently, stigmasterol has been examined via in vitro and in vivo assays and molecular docking for its various biological activities on different metabolic disorders. The findings indicate potent pharmacological effects such as anticancer, anti-osteoarthritis, anti-inflammatory, anti-diabetic, immunomodulatory, antiparasitic, antifungal, antibacterial, antioxidant, and neuroprotective properties. Indeed, stigmasterol from plants and algae is a promising molecule in the development of drugs for cancer therapy by triggering intracellular signaling pathways in numerous cancers. It acts on the Akt/mTOR and JAK/STAT pathways in ovarian and gastric cancers. In addition, stigmasterol markedly disrupted angiogenesis in human cholangiocarcinoma by tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor receptor-2 (VEGFR-2) signaling down-regulation. The association of stigmasterol and sorafenib promoted caspase-3 activity and down-regulated levels of the anti-apoptotic protein Bcl-2 in breast cancer. Antioxidant activities ensuring lipid peroxidation and DNA damage lowering conferred to stigmasterol chemoprotective activities in skin cancer. Reactive oxygen species (ROS) regulation also contributes to the neuroprotective effects of stigmasterol, as well as dopamine depletion and acetylcholinesterase inhibition. The anti-inflammatory properties of phytosterols involve the production of anti-inflammatory cytokines, the decrease in inflammatory mediator release, and the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Stigmasterol exerts anti-diabetic effects by reducing fasting glucose, serum insulin levels, and oral glucose tolerance. Other findings showed the antiparasitic activities of this molecule against certain strains of parasites such as Trypanosoma congolense (in vivo) and on promastigotes and amastigotes of the Leishmania major (in vitro). Some stigmasterol-rich plants were able to inhibit Candida albicans, virusei, and tropicalis at low doses. Accordingly, this review outlines key insights into the pharmacological abilities of stigmasterol and the specific mechanisms of action underlying some of these effects. Additionally, further investigation regarding pharmacodynamics, pharmacokinetics, and toxicology is recommended.
Collapse
Affiliation(s)
- Saad Bakrim
- Molecular Engineering, Biotechnologies and Innovation Team, Geo-Bio-Environment Engineering and Innovation Laboratory, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nesrine Benkhaira
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Department of Biology, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, Fez 1975, Morocco
| | - Ilhame Bourais
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Ryan A. Sheikh
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
17
|
Jie F, Yang X, Yang B, Liu Y, Wu L, Lu B. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation. Biomed Pharmacother 2022; 153:113317. [DOI: 10.1016/j.biopha.2022.113317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022] Open
|
18
|
Abstract
PURPOSE OF REVIEW With the rising number of people living with dementia, the interest in modifiable risk factors including dietary intake for dementia is increasing. Although there is a growing body of evidence investigating soy's health effects, the direction and strength of the association between soy consumption and risk of dementia and cognitive decline are still uncertain. Thus, we aimed to review the evidence linking soy consumption to dementia and cognitive function. RECENT FINDINGS Some studies showed that higher intake of total soy products was associated with a lower risk or prevalence of cognitive impairment. Some studies pointed to an inverse association between higher tofu consumption and cognitive function, whereas a higher intake of soybean was associated with better cognitive function. SUMMARY Previous studies are scarce and have provided contradictory results. Soy is a high-protein alternative to red meat and processed meat. Further studies are needed to clarify the safety and potential preventive effects particularly in healthy populations before clinical disease manifestation and irreversible injury have occurred.
Collapse
Affiliation(s)
- Edyta Szczerba
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf
| | - Manja Koch
- Institute of Epidemiology and Biobank PopGen, University Hospital Schleswig Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf
| |
Collapse
|
19
|
|
20
|
Reinicke M, Leyh J, Zimmermann S, Chey S, Brkovic IB, Wassermann C, Landmann J, Lütjohann D, Isermann B, Bechmann I, Ceglarek U. Plant Sterol-Poor Diet Is Associated with Pro-Inflammatory Lipid Mediators in the Murine Brain. Int J Mol Sci 2021; 22:ijms222413207. [PMID: 34948003 PMCID: PMC8707069 DOI: 10.3390/ijms222413207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Plant sterols (PSs) cannot be synthesized in mammals and are exclusively diet-derived. PSs cross the blood-brain barrier and may have anti-neuroinflammatory effects. Obesity is linked to lower intestinal uptake and blood levels of PSs, but its effects in terms of neuroinflammation—if any—remain unknown. We investigated the effect of high-fat diet-induced obesity on PSs in the brain and the effects of the PSs campesterol and β-sitosterol on in vitro microglia activation. Sterols (cholesterol, precursors, PSs) and polyunsaturated fatty acid-derived lipid mediators were measured in the food, blood, liver and brain of C57BL/6J mice. Under a PSs-poor high-fat diet, PSs levels decreased in the blood, liver and brain (>50%). This effect was reversible after 2 weeks upon changing back to a chow diet. Inflammatory thromboxane B2 and prostaglandin D2 were inversely correlated to campesterol and β-sitosterol levels in all brain regions. PSs content was determined post mortem in human cortex samples as well. In vitro, PSs accumulate in lipid rafts isolated from SIM-A9 microglia cell membranes. In summary, PSs levels in the blood, liver and brain were associated directly with PSs food content and inversely with BMI. PSs dampen pro-inflammatory lipid mediators in the brain. The identification of PSs in the human cortex in comparable concentration ranges implies the relevance of our findings for humans.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Judith Leyh
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Soroth Chey
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Ilijana Begcevic Brkovic
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Christin Wassermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Julia Landmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
- Correspondence: ; Tel.: +0049-341-97-2-2200
| |
Collapse
|
21
|
Sharma N, Tan MA, An SSA. Phytosterols: Potential Metabolic Modulators in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms222212255. [PMID: 34830148 PMCID: PMC8618769 DOI: 10.3390/ijms222212255] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Phytosterols constitute a class of natural products that are an important component of diet and have vast applications in foods, cosmetics, and herbal medicines. With many and diverse isolated structures in nature, they exhibit a broad range of biological and pharmacological activities. Among over 200 types of phytosterols, stigmasterol and β-sitosterol were ubiquitous in many plant species, exhibiting important aspects of activities related to neurodegenerative diseases. Hence, this mini-review presented an overview of the reported studies on selected phytosterols related to neurodegenerative diseases. It covered the major phytosterols based on biosynthetic considerations, including other phytosterols with significant in vitro and in vivo biological activities.
Collapse
Affiliation(s)
- Niti Sharma
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
| | - Mario A. Tan
- Research Center for the Natural and Applied Sciences, College of Science, University of Santo Tomas, Manila 1015, Philippines;
| | - Seong Soo A. An
- Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Korea;
- Correspondence: ; Tel.: +82-31-750-8755
| |
Collapse
|
22
|
Li T, Yin Y, Zhou Z, Qiu J, Liu W, Zhang X, He K, Cai Y, Zhu ZJ. Ion mobility-based sterolomics reveals spatially and temporally distinctive sterol lipids in the mouse brain. Nat Commun 2021; 12:4343. [PMID: 34267224 PMCID: PMC8282640 DOI: 10.1038/s41467-021-24672-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrant sterol lipid metabolism is associated with physiological dysfunctions in the aging brain and aging-dependent disorders such as neurodegenerative diseases. There is an unmet demand to comprehensively profile sterol lipids spatially and temporally in different brain regions during aging. Here, we develop an ion mobility-mass spectrometry based four-dimensional sterolomics technology leveraged by a machine learning-empowered high-coverage library (>2000 sterol lipids) for accurate identification. We apply this four-dimensional technology to profile the spatially resolved landscapes of sterol lipids in ten functional regions of the mouse brain, and quantitatively uncover ~200 sterol lipids uniquely distributed in specific regions with concentrations spanning up to 8 orders of magnitude. Further spatial analysis pinpoints age-associated differences in region-specific sterol lipid metabolism, revealing changes in the numbers of altered sterol lipids, concentration variations, and age-dependent coregulation networks. These findings will contribute to our understanding of abnormal sterol lipid metabolism and its role in brain diseases.
Collapse
Affiliation(s)
- Tongzhou Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yandong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenbin Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xueting Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
23
|
Panayotis N, Freund PA, Marvaldi L, Shalit T, Brandis A, Mehlman T, Tsoory MM, Fainzilber M. β-sitosterol reduces anxiety and synergizes with established anxiolytic drugs in mice. Cell Rep Med 2021; 2:100281. [PMID: 34095883 PMCID: PMC8149471 DOI: 10.1016/j.xcrm.2021.100281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Anxiety and stress-related conditions represent a significant health burden in modern society. Unfortunately, most anxiolytic drugs are prone to side effects, limiting their long-term usage. Here, we employ a bioinformatics screen to identify drugs for repurposing as anxiolytics. Comparison of drug-induced gene-expression profiles with the hippocampal transcriptome of an importin α5 mutant mouse model with reduced anxiety identifies the hypocholesterolemic agent β-sitosterol as a promising candidate. β-sitosterol activity is validated by both intraperitoneal and oral application in mice, revealing it as the only clear anxiolytic from five closely related phytosterols. β-sitosterol injection reduces the effects of restraint stress, contextual fear memory, and c-Fos activation in the prefrontal cortex and dentate gyrus. Moreover, synergistic anxiolysis is observed when combining sub-efficacious doses of β-sitosterol with the SSRI fluoxetine. These preclinical findings support further development of β-sitosterol, either as a standalone anxiolytic or in combination with low-dose SSRIs.
Collapse
Affiliation(s)
- Nicolas Panayotis
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Philip A. Freund
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Letizia Marvaldi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Shalit
- Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Michael M. Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
25
|
Jie F, Yang X, Wu L, Wang M, Lu B. Linking phytosterols and oxyphytosterols from food to brain health: origins, effects, and underlying mechanisms. Crit Rev Food Sci Nutr 2021; 62:3613-3630. [PMID: 33397124 DOI: 10.1080/10408398.2020.1867819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phytosterols and their oxidation products, namely oxyphytosterols, are natural compounds present in plant foods. With increased intake of phytosterol-enriched functional food products, the exposure of both phytosterols and oxyphytosterols is rising. Over the past ten years, researches have been focused on their absorption and metabolism in human body, as well as their biological effects. More importantly, recent studies showed that phytosterols and oxyphytosterols can traverse the blood-brain barrier and accumulate in the brain. As brain health problems resulting from ageing being more serious, attenuating central nervous system (CNS) disorders with active compounds in food are becoming a hot topic. Phytosterols and oxyphytosterols have been shown to implicated in cognition altering and the pathologies of several CNS disorders, including Alzheimer's disease and multiple sclerosis. We will overview these findings with a focus on the contents of phytosterols and oxyphytosterols in food and their dietary intake, as well as their origins in the brain, and illustrate molecular pathways through which they affect brain health, in terms of inflammation, cholesterol homeostasis, oxidative stress, and mitochondria function. The existing scientific gaps of phytosterols and oxyphytosterols to brain health in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mengmeng Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
26
|
Corrigendum: Edible seaweed-derived constituents: an undisclosed source of neuroprotective compounds. Neural Regen Res 2021; 16:2564-2568. [PMID: 33907050 PMCID: PMC8374581 DOI: 10.4103/1673-5374.313070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
27
|
Jahn T, Clark C, Kerksiek A, Lewczuk P, Lütjohann D, Popp J. Cholesterol metabolites and plant sterols in cerebrospinal fluid are associated with Alzheimer's cerebral pathology and clinical disease progression. J Steroid Biochem Mol Biol 2021; 205:105785. [PMID: 33171206 DOI: 10.1016/j.jsbmb.2020.105785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND PURPOSE Altered cholesterol metabolism is associated with increased risk of neurodegeneration and in particular with the development of Alzheimer's disease (AD). Here, we investigate whether non-cholesterol sterols and oxysterols in the central nervous system are associated with (i) the presence of cerebral AD pathology, (ii) distinct aspects of AD pathology, i.e. amyloid pathology, neuronal injury, and tau pathology, and (iii) cognitive decline over time. EXPERIMENTAL APPROACH One hundred forty-two elder subjects with normal cognition, mild cognitive impairment, or mild dementia participating in a cohort study on cognitive decline and AD were included. Clinical and neuropsychological assessments were performed at inclusion and repeated at follow-up visits at 18 and 36 months. Concentrations of cholesterol, non-cholesterol sterols, and cholesterol metabolites were measured in cerebrospinal fluid (CSF), along with CSF beta-amyloid (Aβ)1-42; Aβ1-42/Aβ1-40 ratio, total-tau (tau), and tau phosphorylated at threonine 181 (p-tau) as markers of amyloid pathology, neuronal injury and tau pathology, respectively. Cognitive decline was assessed by changes in Mini-Mental State Examination and Clinical Dementia Rating sum of boxes at follow-up visits. KEY RESULTS CSF 24S-hydroxycholesterol (24S-OHC) and the 24S-OHC/27-OHC ratio were higher in subjects with AD pathology. CSF desmosterol correlated with Aβ1-42 levels. The 24S-OHC levels, the 24S-OHC/27-OHC ratio and the plant sterols campesterol and sitosterol were associated with the tau and p-tau levels. Both plant sterol concentrations along with the 24S-OHC/27-OHC ratio at baseline predicted cognitive decline at follow-up visits. CONCLUSIONS AND IMPLICATIONS We show the importance of CSF levels of several non-cholesterol sterols and oxysterols to AD and core AD biomarkers. The plant sterols campesterol and sitosterol appear to be involved in tau pathology and neurodegeneration. CSF desmosterol level indicates CNS cholesterol synthesis and might be of relevance for clinical disease severity. Therefore these non-cholesterol sterols may represent intervention targets to slow down disease progression.
Collapse
Affiliation(s)
- Tabea Jahn
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Christopher Clark
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Clinic Erlangen, and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Department of Neurodegeneration Diagnostics and Department of Biochemical Diagnostics, University Hospital of Bialystok, Bialystok, Poland
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| | - Julius Popp
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland; Department of Psychiatry, University Hospital of Lausanne, Switzerland; Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zürich, Switzerland.
| |
Collapse
|
28
|
Sánchez-Martínez JD, Bueno M, Alvarez-Rivera G, Tudela J, Ibañez E, Cifuentes A. In vitro neuroprotective potential of terpenes from industrial orange juice by-products. Food Funct 2020; 12:302-314. [PMID: 33300906 DOI: 10.1039/d0fo02809f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Citrus sinensis (orange) by-products represent one of the most abundant citric residues from orange juice industrial production, and are a promising source of health-promoting compounds like terpenes. In this work, different extraction solvents have been employed to increase terpene extraction yield and selectivity from this orange juice by-product. A set of bioactivity assays including enzymatic (acetylcholinesterase (AChE), butylcholinesterase (BChE) and lipoxygenase (LOX)) as well as antioxidant (ABTS, reactive oxygen species (ROS) and reactive nitrogen species (RNS)) activity tests have been applied to investigate the neuroprotective potential of these compounds. New fluorescence-based methodologies were developed for AChE and BChE assays to overcome the drawbacks of these tests when used in vitro to determine the anticholinergic activity of colored extracts. Comprehensive phytochemical profiling based on gas chromatography coupled to quadrupole time of flight mass spectrometry (GC-qTOF-MS) analysis showed ahigh content of mono- and sesquiterpenes in the extracts obtained with ethyl acetate, whereas n-heptane extracts exhibited a large amount of triterpenes and carotenoids. From a neuroprotective activity point of view, ethyl acetate extract is the most promising due to its anticholinergic activity and antioxidant capacity. Finally, a multivariate data analysis revealed a good correlation between some monoterpenes (e.g. nerol or limonene) and the antioxidant capacity of the natural extract, while a group of sesquiterpenes (e.g.δ-Cadinene or nootkatone) showed correlation with the observed AChE, BChE and LOX inhibition capacity. Hydrocarbons mono- and sesquiterpenoids reveal high capacity in vitro to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Mónica Bueno
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - José Tudela
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Espinardo, Murcia, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
29
|
Takayasu BS, Martins IR, Garnique AM, Miyamoto S, Machado-Santelli GM, Uemi M, Onuki J. Biological effects of an oxyphytosterol generated by β-Sitosterol ozonization. Arch Biochem Biophys 2020; 696:108654. [DOI: 10.1016/j.abb.2020.108654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
|
30
|
Characterization and determination of free phytosterols and phytosterol conjugates: The potential phytochemicals to classify different rice bran oil and rice bran. Food Chem 2020; 344:128624. [PMID: 33248841 DOI: 10.1016/j.foodchem.2020.128624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/12/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
Phytosterols are important beneficial compounds found in rice bran (RB) and rice bran oil (RBO). Although relationships have been confirmed between the forms of phytosterols and their bioactivities, the analysis of different forms of phytosterols in RB and RBO has been lacking. In this study, high temperature gas chromatography-mass spectrometry (HTGC-MS) was combined with the single standard to determine multi-components (SSDMC) method to determine free sterols (FSs) and steryl glycosides (SGs) in RB and RBO. High-performance liquid chromatography (HPLC) was used to determine steryl ferulates (SFs). There was clear variation in the composition of FS, SF and SG, indicating that different forms of phytosterols can discriminate between different RB and RBO. The developed method may be also useful for the detection of other compounds of interest in oils, oil seeds or cereals.
Collapse
|
31
|
An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed Pharmacother 2020; 131:110702. [DOI: 10.1016/j.biopha.2020.110702] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/26/2020] [Accepted: 08/26/2020] [Indexed: 01/12/2023] Open
|
32
|
Kim JM, Lee U, Kang JY, Park SK, Shin EJ, Kim HJ, Kim CW, Kim MJ, Heo HJ. Anti-Amnesic Effect of Walnut via the Regulation of BBB Function and Neuro-Inflammation in Aβ 1-42-Induced Mice. Antioxidants (Basel) 2020; 9:antiox9100976. [PMID: 33053754 PMCID: PMC7600148 DOI: 10.3390/antiox9100976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
This study was conducted to assess the protective effect of walnut (Juglans regia L.) extract on amyloid beta (Aβ)1-42-induced institute of cancer research (ICR) mice. By conducting a Y-maze, passive avoidance, and Morris water maze tests with amyloidogenic mice, it was found that walnut extract ameliorated behavioral dysfunction and memory deficit. The walnut extract showed a protective effect on the antioxidant system and cholinergic system by regulating malondialdehyde (MDA) levels, superoxide dismutase (SOD) contents, reduced glutathione (GSH) contents, acetylcholine (ACh) levels, acetylcholinesterase (AChE) activity, and protein expression of AChE and choline acetyltransferase (ChAT). Furthermore, the walnut extract suppressed Aβ-induced abnormality of mitochondrial function by ameliorating reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP contents. Finally, the walnut extract regulated the expression of zonula occludens-1 (ZO-1) and occludin concerned with blood–brain barrier (BBB) function, expression of tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1), phosphorylated c-Jun N-terminal kinase (p-JNK), phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκB), cyclooxygenase-2 (COX-2), and interleukin 1 beta (IL-1β), related to neuroinflammation and the expression of phosphorylated protein kinase B (p-Akt), caspase-3, hyperphosphorylation of tau (p-tau), and heme oxygenase-1 (HO-1), associated with the Aβ-related Akt pathway.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Uk Lee
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Jin Yong Kang
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Eun Jin Shin
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
| | - Chul-Woo Kim
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Mahn-Jo Kim
- Division of Special Purpose Tree, National Institute of Forest Science, Suwon 16631, Korea; (U.L.); (C.-W.K.); (M.-J.K.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (J.M.K.); (J.Y.K.); (S.K.P.); (E.J.S.); (H.-J.K.)
- Correspondence: ; Tel.: +82-55-772-1907
| |
Collapse
|
33
|
Zhang T, Liu R, Chang M, Jin Q, Zhang H, Wang X. Health benefits of 4,4-dimethyl phytosterols: an exploration beyond 4-desmethyl phytosterols. Food Funct 2020; 11:93-110. [PMID: 31804642 DOI: 10.1039/c9fo01205b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
4,4-Dimethyl phytosterols possess two methyl groups at the carbon-4 atom of the aliphatic A-ring. The methyl groups are crucial for the molecular recognition of endogenous and exogenous bioactive compounds. Phytosterols have received worldwide attention owing to their recognized health benefits. However, 4,4-dimethyl phytosterols are less appreciated. Recent research studies revealed that 4,4-dimethyl phytosterols exert numerous beneficial effects on disease prevention, and are particularly involved in the endogenous cannabinoid system (ECS). The purpose of this review is to summarize and highlight the currently available information regarding the structures and sources of 4,4-dimethyl phytosterols, and to provide detailed preclinical studies performed to evaluate their potential for treating various diseases. Future research on 4,4-dimethyl phytosterols is warranted to confirm their relationship with the ECS, and to elucidate the mechanism directly toward clinical trials.
Collapse
Affiliation(s)
- Tao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
| | | | | | | | | | | |
Collapse
|
34
|
Kytidou K, Artola M, Overkleeft HS, Aerts JMFG. Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics. FRONTIERS IN PLANT SCIENCE 2020; 11:357. [PMID: 32318081 PMCID: PMC7154165 DOI: 10.3389/fpls.2020.00357] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/11/2020] [Indexed: 05/10/2023]
Abstract
Plants contain numerous glycoconjugates that are metabolized by specific glucosyltransferases and hydrolyzed by specific glycosidases, some also catalyzing synthetic transglycosylation reactions. The documented value of plant-derived glycoconjugates to beneficially modulate metabolism is first addressed. Next, focus is given to glycosidases, the central theme of the review. The therapeutic value of plant glycosidases is discussed as well as the present production in plant platforms of therapeutic human glycosidases used in enzyme replacement therapies. The increasing knowledge on glycosidases, including structure and catalytic mechanism, is described. The novel insights have allowed the design of functionalized highly specific suicide inhibitors of glycosidases. These so-called activity-based probes allow unprecedented visualization of glycosidases cross-species. Here, special attention is paid on the use of such probes in plant science that promote the discovery of novel enzymes and the identification of potential therapeutic inhibitors and chaperones.
Collapse
Affiliation(s)
- Kassiani Kytidou
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Marta Artola
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
35
|
Dierckx T, Bogie JFJ, Hendriks JJA. The Impact of Phytosterols on the Healthy and Diseased Brain. Curr Med Chem 2020; 26:6750-6765. [PMID: 29984647 DOI: 10.2174/0929867325666180706113844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
The central nervous system (CNS) is the most cholesterol-rich organ in mammals. Cholesterol homeostasis is essential for proper brain functioning and dysregulation of cholesterol metabolism can lead to neurological problems. Multiple sclerosis (MS) and Alzheimer's disease (AD) are examples of neurological diseases that are characterized by a disturbed cholesterol metabolism. Phytosterols (PS) are plant-derived components that structurally and functionally resemble cholesterol. PS are known for their cholesterol-lowering properties. Due to their ability to reach the brain, researchers have started to investigate the physiological role of PS in the CNS. In this review, the metabolism and function of PS in the diseased and healthy CNS are discussed.
Collapse
Affiliation(s)
- Tess Dierckx
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University, Diepenbeek, Hassett, Belgium
| |
Collapse
|
36
|
Kong KW, Mat Junit S, Aminudin N, Abdul Aziz A. Phytochemicals in Barringtonia species: Linking their traditional uses as food and medicine with current research. J Herb Med 2020. [DOI: 10.1016/j.hermed.2019.100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Granato D, Barba FJ, Bursać Kovačević D, Lorenzo JM, Cruz AG, Putnik P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu Rev Food Sci Technol 2020; 11:93-118. [PMID: 31905019 DOI: 10.1146/annurev-food-032519-051708] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional foods is a very popular term in the social and scientific media; consequently, food producers have invested resources in the development of processed foods that may provide added functional benefits to consumers' well-being. Because of intrinsic regulation and end-of-use purposes in different countries, worldwide meanings and definitions of this term are still unclear. Hence, here we standardize this definition and propose a guideline to attest that some ingredients or foods truly deserve this special designation. Furthermore, focus is directed at the most recent studies and practical guidelines that can be used to develop and test the efficacy of potentially functional foods and ingredients. The most widespread functional ingredients, such as polyunsaturated fatty acids (PUFAs), probiotics/prebiotics/synbiotics, and antioxidants, and their technological means of delivery in food products are described. The review discusses the steps that food companies should take to ensure that their developed food product is truly functional.
Collapse
Affiliation(s)
- Daniel Granato
- Innovative Food System, Production Systems Unit, Natural Resources Institute Finland (Luke), FI-0250 Espoo, Finland;
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science, Education and Technology of Rio de Janeiro (IFRJ), 20260-100 Rio de Janeiro, Brazil
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
38
|
Schepers M, Martens N, Tiane A, Vanbrabant K, Liu HB, Lütjohann D, Mulder M, Vanmierlo T. Edible seaweed-derived constituents: an undisclosed source of neuroprotective compounds. Neural Regen Res 2020; 15:790-795. [PMID: 31719238 PMCID: PMC6990778 DOI: 10.4103/1673-5374.268894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Edible marine algae, or seaweeds, are a rich source of several bioactive compounds including phytosterols, carotenoids, and polysaccharides. Over the last decades, seaweed-derived constituents turned out to not only reside in the systemic circulation, but are able to cross the blood-brain barrier to exert neuro-active functions both in homeostatic and pathological conditions. Therefore, seaweed-derived constituents have gained increasing interest for their neuro-immunomodulatory and neuroprotective properties, rendering them interesting candidates for the management of several neurodegenerative disorders. In particular seaweed-derived phytosterols gained interest for the treatment of neurodegenerative disorders as they potentiate neuroplasticity, enhance phagocytic clearance of neurotoxic peptides and have anti-inflammatory properties. Though, the anti-inflammatory and anti-oxidative properties of other constituents including carotenoids, phenols and polysaccharides have recently gained more interest. In this review, we provide an overview of a selection of the described neuro-active properties of seaweed-derived constituents with a focus on phytosterols.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Nikita Martens
- Department of Internal Medicine, Laboratory of Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Kenneth Vanbrabant
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Institue for Clinical Chemistry and Clinical Pharmacology, Bonn, Germany
| | - Hong-Bing Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong Province, China
| | - Dieter Lütjohann
- Institue for Clinical Chemistry and Clinical Pharmacology, Bonn, Germany
| | - Monique Mulder
- Department of Internal Medicine, Laboratory of Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| |
Collapse
|
39
|
Wouters E, de Wit NM, Vanmol J, van der Pol SMA, van het Hof B, Sommer D, Loix M, Geerts D, Gustafsson JA, Steffensen KR, Vanmierlo T, Bogie JFJ, Hendriks JJA, de Vries HE. Liver X Receptor Alpha Is Important in Maintaining Blood-Brain Barrier Function. Front Immunol 2019; 10:1811. [PMID: 31417573 PMCID: PMC6685401 DOI: 10.3389/fimmu.2019.01811] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) contributes significantly to the pathogenesis of several neuroinflammatory diseases, including multiple sclerosis (MS). Potential players that regulate BBB function are the liver X receptors (LXRs), which are ligand activated transcription factors comprising two isoforms, LXRα, and LXRβ. However, the role of LXRα and LXRβ in regulating BBB (dys)function during neuroinflammation remains unclear, as well as their individual involvement. Therefore, the goal of the present study is to unravel whether LXR isoforms have different roles in regulating BBB function under neuroinflammatory conditions. We demonstrate that LXRα, and not LXRβ, is essential to maintain barrier integrity in vitro. Specific knockout of LXRα in brain endothelial cells resulted in a more permeable barrier with reduced expression of tight junctions. Additionally, the observed dysfunction was accompanied by increased endothelial inflammation, as detected by enhanced expression of vascular cell adhesion molecule (VCAM-1) and increased transendothelial migration of monocytes toward inflammatory stimuli. To unravel the importance of LXRα in BBB function in vivo, we made use of the experimental autoimmune encephalomyelitis (EAE) MS mouse model. Induction of EAE in a constitutive LXRα knockout mouse and in an endothelial specific LXRα knockout mouse resulted in a more severe disease score in these animals. This was accompanied by higher numbers of infiltrating leukocytes, increased endothelial VCAM-1 expression, and decreased expression of the tight junction molecule claudin-5. Together, this study reveals that LXRα is indispensable for maintaining BBB integrity and its immune quiescence. Targeting the LXRα isoform may help in the development of novel therapeutic strategies to prevent BBB dysfunction, and thereby neuroinflammatory disorders.
Collapse
Affiliation(s)
- Elien Wouters
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nienke M. de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jasmine Vanmol
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Susanne M. A. van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bert van het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Daniela Sommer
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Melanie Loix
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Knut R. Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tim Vanmierlo
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Division Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jeroen F. J. Bogie
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jerome J. A. Hendriks
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
40
|
Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer's disease mouse model. Sci Rep 2019; 9:4908. [PMID: 30894635 PMCID: PMC6426980 DOI: 10.1038/s41598-019-41399-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
Activation of liver X receptors (LXRs) by synthetic agonists was found to improve cognition in Alzheimer's disease (AD) mice. However, these LXR agonists induce hypertriglyceridemia and hepatic steatosis, hampering their use in the clinic. We hypothesized that phytosterols as LXR agonists enhance cognition in AD without affecting plasma and hepatic triglycerides. Phytosterols previously reported to activate LXRs were tested in a luciferase-based LXR reporter assay. Using this assay, we found that phytosterols commonly present in a Western type diet in physiological concentrations do not activate LXRs. However, a lipid extract of the 24(S)-Saringosterol-containing seaweed Sargassum fusiforme did potently activate LXRβ. Dietary supplementation of crude Sargassum fusiforme or a Sargassum fusiforme-derived lipid extract to AD mice significantly improved short-term memory and reduced hippocampal Aβ plaque load by 81%. Notably, none of the side effects typically induced by full synthetic LXR agonists were observed. In contrast, administration of the synthetic LXRα activator, AZ876, did not improve cognition and resulted in the accumulation of lipid droplets in the liver. Administration of Sargassum fusiforme-derived 24(S)-Saringosterol to cultured neurons reduced the secretion of Aβ42. Moreover, conditioned medium from 24(S)-Saringosterol-treated astrocytes added to microglia increased phagocytosis of Aβ. Our data show that Sargassum fusiforme improves cognition and alleviates AD pathology. This may be explained at least partly by 24(S)-Saringosterol-mediated LXRβ activation.
Collapse
|
41
|
Szurpnicka A, Zjawiony JK, Szterk A. Therapeutic potential of mistletoe in CNS-related neurological disorders and the chemical composition of Viscum species. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:241-252. [PMID: 30458281 DOI: 10.1016/j.jep.2018.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viscum album L., commonly known as mistletoe, has been used for centuries in traditional medicine to treat various neurological diseases, including epilepsy, hysteria, nervousness, hysterical psychosis, dizziness and headaches. AIM OF THE STUDY The aim of this review is to summarize existing evidence confirming the influence of mistletoe on the central nervous system and to investigate the compounds that may be responsible for this activity. MATERIALS AND METHODS Available information from studies of various species of the Viscum L. genus was collected from scientific journals, books, and reports via a library and an electronic data search (Elsevier, Google Scholar, PubMed, Springer, Science Direct, ResearchGate, and ACS). RESULTS The main chemical constituents of Viscum L. species are viscotoxins, lectins, flavonoids, phenolic acids, terpenoids, sterols, phenylpropanoids, and alkaloids. Various extracts of Viscum album L. showed central nervous system activity, including antiepileptic, sedative, antipsychotic, anxiolytic, antidepressant and antinociceptive effects in mice and rats. Additionally, the extracts increased the level of brain-derived neurotrophic factor, prevented apoptotic neuronal death induced by amyloid β and weakly inhibited cholinesterase activity. CONCLUSIONS Numerous historical references describe the use of mistletoe for the treatment of central nervous system disorders. In recent years, studies have started to confirm the antiepileptic, antipsychotic, sedative and antinociceptive effects of mistletoe. Additionally, mistletoe can be used as a complementary treatment for Alzheimer's disease. The therapeutic effect of mistletoe might be a result of the synergistic interactions of various secondary metabolites, including mistletoe-specific lectins. Further studies of the chemical composition and CNS activity of mistletoe are required. The mechanisms of action, target sites, pharmacokinetics, metabolic mechanisms, adverse effects and interactions of mistletoe with other drugs must also be investigated, as well.
Collapse
Affiliation(s)
- Anna Szurpnicka
- Department of Natural Medicinal Products and Dietary Supplements, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland.
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences, Division of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States.
| | - Arkadiusz Szterk
- Department of Spectrometric Methods, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland.
| |
Collapse
|
42
|
Plat J, Baumgartner S, Vanmierlo T, Lütjohann D, Calkins KL, Burrin DG, Guthrie G, Thijs C, Te Velde AA, Vreugdenhil ACE, Sverdlov R, Garssen J, Wouters K, Trautwein EA, Wolfs TG, van Gorp C, Mulder MT, Riksen NP, Groen AK, Mensink RP. Plant-based sterols and stanols in health & disease: "Consequences of human development in a plant-based environment?". Prog Lipid Res 2019; 74:87-102. [PMID: 30822462 DOI: 10.1016/j.plipres.2019.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 01/27/2023]
Abstract
Dietary plant sterols and stanols as present in our diet and in functional foods are well-known for their inhibitory effects on intestinal cholesterol absorption, which translates into lower low-density lipoprotein cholesterol concentrations. However, emerging evidence suggests that plant sterols and stanols have numerous additional health effects, which are largely unnoticed in the current scientific literature. Therefore, in this review we pose the intriguing question "What would have occurred if plant sterols and stanols had been discovered and embraced by disciplines such as immunology, hepatology, pulmonology or gastroenterology before being positioned as cholesterol-lowering molecules?" What would then have been the main benefits and fields of application of plant sterols and stanols today? We here discuss potential effects ranging from its presence and function intrauterine and in breast milk towards a potential role in the development of non-alcoholic steatohepatitis (NASH), cardiovascular disease (CVD), inflammatory bowel diseases (IBD) and allergic asthma. Interestingly, effects clearly depend on the route of entrance as observed in intestinal-failure associated liver disease (IFALD) during parenteral nutrition regimens. It is only until recently that effects beyond lowering of cholesterol concentrations are being explored systematically. Thus, there is a clear need to understand the full health effects of plant sterols and stanols.
Collapse
Affiliation(s)
- J Plat
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands.
| | - S Baumgartner
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - T Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute (Biomed) Hasselt University, Hasselt, Belgium; Division of Translational Neuroscience, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, the Netherlands
| | - D Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - K L Calkins
- David Geffen School of Medicine, University of California Los Angeles, Mattel Children's Hospital at UCLA, Los Angeles, CA; Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, USA
| | - D G Burrin
- Department of Pediatrics, USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, USA
| | - G Guthrie
- Department of Pediatrics, USDA Children's Nutrition Research Center, Baylor College of Medicine, Houston, USA
| | - C Thijs
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - A A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Medical Center, the Netherlands
| | - A C E Vreugdenhil
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - R Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - J Garssen
- Utrecht University, Division Pharmacology, Utrecht Institute for Pharmaceutical Sciences, the Netherlands
| | - K Wouters
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - T G Wolfs
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - C van Gorp
- Department of Pediatrics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - M T Mulder
- Department of Internal Medicine, Rotterdam University, Rotterdam, the Netherlands
| | - N P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A K Groen
- Amsterdam Diabetes Center and Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - R P Mensink
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
43
|
Modifying Serum Plant Sterol Concentrations: Effects on Markers for Whole Body Cholesterol Metabolism in Children Receiving Parenteral Nutrition and Intravenous Lipids. Nutrients 2019; 11:nu11010120. [PMID: 30626159 PMCID: PMC6357093 DOI: 10.3390/nu11010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 12/01/2022] Open
Abstract
Background: Non-cholesterol sterols are validated markers for fractional intestinal cholesterol absorption (cholestanol) and endogenous cholesterol synthesis (lathosterol). This study’s objective was to evaluate markers for cholesterol synthesis and absorption in children exposed to two different intravenous lipid emulsions that rapidly change serum plant sterol concentrations as part of their parenteral nutrition (PN). Methods: Serum samples from two different studies were used: (1) nine PN-dependent children with intestinal failure associated liver disease (IFALD) whose soy-based, plant sterol-rich lipid (SO) was replaced with a fish-based, plant sterol-poor (FO) lipid; and (2) five neonates prescribed SO after birth. In the first study, samples were collected at baseline (prior to FO initiation) and after 3 and 6 months of FO. In study 2, samples were collected at 1 and 3 weeks of age. Results: In study 1, a 7-fold reduction in campesterol, a 12-fold reduction in sitosterol, and a 15-fold reduction in stigmasterol was observed 6 months after switching to FO. Serum cholesterol concentrations did not change, but cholesterol-standardized lathosterol increased (3-fold) and cholesterol-standardized cholestanol decreased (2-fold). In study 2, after 3 weeks of SO, sitosterol and campesterol concentrations increased 4-5 fold. At the same time, cholesterol-standardized lathosterol increased 69% and cholesterol-standardized cholestanol decreased by 29%. Conclusion: Based on these finding we conclude that changes in serum plant sterol concentrations might have direct effects on endogenous cholesterol synthesis, although this needs to be confirmed in future studies. Moreover, we speculate that this changed synthesis subsequently affects intestinal cholesterol absorption.
Collapse
|
44
|
Jones PJH, Shamloo M, MacKay DS, Rideout TC, Myrie SB, Plat J, Roullet JB, Baer DJ, Calkins KL, Davis HR, Barton Duell P, Ginsberg H, Gylling H, Jenkins D, Lütjohann D, Moghadasian M, Moreau RA, Mymin D, Ostlund RE, Ras RT, Ochoa Reparaz J, Trautwein EA, Turley S, Vanmierlo T, Weingärtner O. Progress and perspectives in plant sterol and plant stanol research. Nutr Rev 2018; 76:725-746. [PMID: 30101294 PMCID: PMC6130982 DOI: 10.1093/nutrit/nuy032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current evidence indicates that foods with added plant sterols or stanols can lower serum levels of low-density lipoprotein cholesterol. This review summarizes the recent findings and deliberations of 31 experts in the field who participated in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols and stanols. Participants discussed issues including, but not limited to, the health benefits of plant sterols and stanols beyond cholesterol lowering, the role of plant sterols and stanols as adjuncts to diet and drugs, and the challenges involved in measuring plant sterols and stanols in biological samples. Variations in interindividual responses to plant sterols and stanols, as well as the personalization of lipid-lowering therapies, were addressed. Finally, the clinical aspects and treatment of sitosterolemia were reviewed. Although plant sterols and stanols continue to offer an efficacious and convenient dietary approach to cholesterol management, long-term clinical trials investigating the endpoints of cardiovascular disease are still lacking.
Collapse
Affiliation(s)
- Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Shamloo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan S MacKay
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, University of Buffalo, Buffalo, New York, USA
| | - Semone B Myrie
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Jean-Baptiste Roullet
- Division of Metabolism, Child Development and Rehabilitation Center—Portland, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Baer
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Kara L Calkins
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and the UCLA Mattel’s Children’s Hospital, Los Angeles, California, USA
| | | | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Henry Ginsberg
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - Helena Gylling
- University of Helsinki and the Helsinki University Central Hospital, Helsinki, Finland
| | - David Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; and the Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Mohammad Moghadasian
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert A Moreau
- Eastern Regional Research Center, US Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| | - David Mymin
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard E Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, USA
| | - Rouyanne T Ras
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Elke A Trautwein
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany; Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| |
Collapse
|
45
|
Haque MN, Moon IS. Stigmasterol upregulates immediate early genes and promotes neuronal cytoarchitecture in primary hippocampal neurons as revealed by transcriptome analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:164-175. [PMID: 30097115 DOI: 10.1016/j.phymed.2018.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/21/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The hippocampus is a vulnerable brain region that is implicated in learning and memory impairment by two pathophysiological features, that is, neurite regression and synaptic dysfunction, and stigmasterol (ST), a cholesterol-equivalent phytosterol, is known to facilitate neuromodulatory effects. PURPOSE To investigate the neuromodulatory effects of ST on the development of central nervous system neurons and the molecular bases of these effects in primary hippocampal neurons. METHODS Rat embryonic (E18-19) brain neurons were cultured in the absence or presence of ST (75 µM). Neuritogenic activities of ST were evident by increases in various morphometric parameters. To identify underlying affected genes, total RNA was isolated on day in vitro 12 (DIV 12) and mRNA high throughput sequencing (mRNA-Seq) was performed. Affected key genes for neuronal development were identified using bioinformatics tools and their upregulations were confirmed by immunocytochemistry. RESULTS Among the differentially expressed 17,337 RefSeq genes, 445 genes (up/down 293/157) passed the p-value < 0.05 criterion, 52 genes (up/down; 37/13) had a p-value < 0.05 and a false discovery rate (FDR) q-value of < 0.2, and 24 genes (up/down; 20/4) passed the more stringent criterion of both p < 0.05 and q < 0.05. After applying a stringent FDR q-value cutoff of < 0.2, it was found ST induced many immediate early genes (IEGs), and that a major proportion of upregulated genes were related to central nervous system (CNS) development (neurite outgrowth or synaptic transmission). In a Venn diagram for CNS development Gene Ontologies (GOs) (i.e., axon development, dendrite development, modulation of synaptic transmission), Reln emerged as a central player in these processes, and highly interconnected 'hub' genes, including Dcx, Egr1, Ntrk2, and Slc24a2, were revealed by gene co-expression networks. Finally, transcriptomic data was confirmed by immunocytochemistry of primary hippocampal neurons. CONCLUSION The study indicates that ST upregulates genes for neuritogenesis and synaptogenesis, and suggests ST be viewed as a potential resource for improving brain functions.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
46
|
Limited daily feeding and intermittent feeding have different effects on regional brain energy homeostasis during aging. Biogerontology 2018; 19:121-132. [PMID: 29340834 DOI: 10.1007/s10522-018-9743-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
Albeit aging is an inevitable process, the rate of aging is susceptible to modifications. Dietary restriction (DR) is a vigorous nongenetic and nonpharmacological intervention that is known to delay aging and increase healthspan in diverse species. This study aimed to compare the impact of different restricting feeding regimes such as limited daily feeding (LDF, 60% AL) and intermittent feeding (IF) on brain energy homeostasis during aging. The analysis was focused on the key molecules in glucose and cholesterol metabolism in the cortex and hippocampus of middle-aged (12-month-old) and aged (24-month-old) male Wistar rats. We measured the impact of different DRs on the expression levels of AMPK, glucose transporters (GLUT1, GLUT3, GLUT4), and the rate-limiting enzyme in the cholesterol synthesis pathway (HMGCR). Additionally, we assessed the changes in the amounts of cholesterol, its metabolite, and precursors following LDF and IF. IF decreased the levels of AMPK and pAMPK in the cortex while the increased levels were detected in the hippocampus. Glucose metabolism was more affected in the cortex, while cholesterol metabolism was more influenced in the hippocampus. Overall, the hippocampus was more resilient to the DRs, with fewer changes compared to the cortex. We showed that LDF and IF differently affected the brain energy homeostasis during aging and that specific brain regions exhibited distinct vulnerabilities towards DRs. Consequently, special attention should be paid to the DR application among elderly as different phases of aging do not respond equally to altered nutritional regimes.
Collapse
|
47
|
Gorji N, Moeini R, Memariani Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer's disease: A neuropharmacological review of their bioactive constituents. Pharmacol Res 2017; 129:115-127. [PMID: 29208493 DOI: 10.1016/j.phrs.2017.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/13/2023]
Abstract
An increase in the prevalence of Alzheimer's disease (AD) as a multifactorial neurodegenerative disorder is an almost obvious issue in the world. Researches on natural products for finding effective drugs to prevent the disease are in progress. There is special attention to the three types of nuts including almond, hazelnut and walnut in manuscripts of traditional Persian medicine (PM) as the preventive agents against brainatrophy and memory loss. The purpose of this study is a pharmacological review of their bioactive constituents and introducing the value of these nuts as the effective supplements and natural medicinal foods in AD patients. Databases including PubMed and ScienceDirect were searched in title, abstract and keywords from year 2000 to present for AD-related researches on these tree nuts, their major phytochemicals and their mechanisms of action. As result, almond, hazelnut and walnut provide macronutrients, micronutrients, and phytochemicals which affect several pathways in AD pathogenesis such as amyloidogenesis, tau phosphorylation, oxidative stress, cholinergic pathways, and some non-target mechanisms including cholesterol lowering and anti-inflammatory properties, as well as effect on neurogenesis. These nuts are recommended in PM for their brain-protective activity and particularly reversing brain atrophy in case of hazelnut. The therapeutical statements of PM scholars mentioned in their books are based on their clinical observations with support of a long history of experiences. Beyond the molecular activities attributed to the phytochemicals, the use of these tree nuts could be more considered in scientific researches as the effective nutrients for prevention or even management of AD.
Collapse
Affiliation(s)
- Narjes Gorji
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Reihaneh Moeini
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Zahra Memariani
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.
| |
Collapse
|
48
|
Mailleux J, Vanmierlo T, Bogie JF, Wouters E, Lütjohann D, Hendriks JJ, van Horssen J. Active liver X receptor signaling in phagocytes in multiple sclerosis lesions. Mult Scler 2017; 24:279-289. [PMID: 28273782 DOI: 10.1177/1352458517696595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We sought to determine the liver X receptor (LXR) ligands present in human macrophages after myelin phagocytosis and whether LXRs are activated in multiple sclerosis (MS) lesions. METHODS We used real-time quantitative polymerase chain reaction (PCR) and immunohistochemistry to determine expression of LXRs and their response genes in human phagocytes after myelin phagocytosis and in active MS lesions. We used gas chromatographic/mass spectrometric analysis to determine LXR-activating oxysterols and cholesterol precursors present and formed in myelin and myelin-incubated cells, respectively. RESULTS Myelin induced LXR response genes ABCA1 and ABCG1 in human monocyte-derived macrophages. In active MS lesions, we found that both gene expression and protein levels of ABCA1 and apolipoprotein E ( APOE) are upregulated in foamy phagocytes. Moreover, we found that the LXR ligand 27-hydroxycholesterol (27OHC) is significantly increased in human monocyte-derived macrophages after myelin uptake. CONCLUSION LXR response genes are upregulated in phagocytes present in active MS lesions, indicating that LXRs are activated in actively demyelinating phagocytes. In addition, we have shown that myelin contains LXR ligands and that 27OHC is generated in human monocyte-derived macrophages after myelin processing. This suggests that LXRs in phagocytes in active MS lesions are activated at least partially by (oxy)sterols present in myelin and the generation thereof during myelin processing.
Collapse
Affiliation(s)
- Jo Mailleux
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jeroen Fj Bogie
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Elien Wouters
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Dieter Lütjohann
- Laboratory of Special Lipid Diagnostics, University of Bonn, Bonn, Germany
| | - Jerome Ja Hendriks
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jack van Horssen
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium; Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Shuang R, Rui X, Wenfang L. Phytosterols and Dementia. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:347-354. [PMID: 27663717 DOI: 10.1007/s11130-016-0574-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As the aging of the world's population is becoming increasingly serious, dementia-related diseases have become a hot topic in public health research. In recent years, human epidemiological studies have focused on lipid metabolism disorders and dementia. The efficacy of phytosterol intake as a cholesterol-lowering agent has been demonstrated. Phytosterols directly serve as ligands of the nuclear receptors, peroxisome proliferator-activated receptors (PPARs), activating Sirtuin 1 (SIRT-1), which are involved in the regulation of lipid metabolism and the pathogenesis of dementia. Moreover, phytosterols mediate cell and membrane cholesterol efflux or beta amyloid (Aβ) metabolism, which have preventative and therapeutic effects on dementia. Additionally, incorporation of plant sterols in lipid rafts can effectively reduce dietary fat and alter the dietary composition of fiber, fat and cholesterol to regulate appetite and calories. Overall, the objectives of this review are to explore whether phytosterols are a potentially effective target for the prevention of dementia and to discuss a possible molecular mechanism by which phytosterols play a role in the pathogenesis of dementia via the PPARs-SIRT-1 pathway.
Collapse
Affiliation(s)
- Rong Shuang
- Department of Public Health School, Wuhan University of Science & Technology, Wuhan, 430065, China.
| | - Xu Rui
- Department of Public Health School, Wuhan University of Science & Technology, Wuhan, 430065, China
| | - Li Wenfang
- Department of Public Health School, Wuhan University of Science & Technology, Wuhan, 430065, China.
| |
Collapse
|
50
|
Bin Sayeed MS, Karim SMR, Sharmin T, Morshed MM. Critical Analysis on Characterization, Systemic Effect, and Therapeutic Potential of Beta-Sitosterol: A Plant-Derived Orphan Phytosterol. MEDICINES (BASEL, SWITZERLAND) 2016; 3:E29. [PMID: 28930139 PMCID: PMC5456237 DOI: 10.3390/medicines3040029] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 12/03/2022]
Abstract
Beta-sitosterol (BS) is a phytosterol, widely distributed throughout the plant kingdom and known to be involved in the stabilization of cell membranes. To compile the sources, physical and chemical properties, spectral and chromatographic analytical methods, synthesis, systemic effects, pharmacokinetics, therapeutic potentials, toxicity, drug delivery and finally, to suggest future research with BS, classical as well as on-line literature were studied. Classical literature includes classical books on ethnomedicine and phytochemistry, and the electronic search included Pubmed, SciFinder, Scopus, the Web of Science, Google Scholar, and others. BS could be obtained from different plants, but the total biosynthetic pathway, as well as its exact physiological and structural function in plants, have not been fully understood. Different pharmacological effects have been studied, but most of the mechanisms of action have not been studied in detail. Clinical trials with BS have shown beneficial effects in different diseases, but long-term study results are not available. These have contributed to its current status as an "orphan phytosterol". Therefore, extensive research regarding its effect at cellular and molecular level in humans as well as addressing the claims made by commercial manufacturers such as the cholesterol lowering ability, immunological activity etc. are highly recommended.
Collapse
Affiliation(s)
| | - Selim Muhammad Rezaul Karim
- Department of Pharmacy, Daffodil International University, Dhaka-1207, Bangladesh.
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka-1000, Bangladesh.
| | - Tasnuva Sharmin
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka-1000, Bangladesh.
| | - Mohammed Monzur Morshed
- Department of Biochemistry and Molecular, Biology, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|