1
|
Zhang LJ, Salekeen R, Soto-Palma C, Elsallabi O, Ye H, Hughes B, Zhang B, Nunes A, Lee K, Xu W, Mohamed A, Piepgras E, McGowan SJ, Angelini L, O’Kelly R, Han X, Niedernhofer LJ, Robbins PD. Identification of lipid senolytics targeting senescent cells through ferroptosis induction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618023. [PMID: 39463954 PMCID: PMC11507694 DOI: 10.1101/2024.10.14.618023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cellular senescence is a key driver of the aging process and contributes to tissue dysfunction and age-related pathologies. Senolytics have emerged as a promising therapeutic intervention to extend healthspan and treat age-related diseases. Through a senescent cell-based phenotypic drug screen, we identified a class of conjugated polyunsaturated fatty acids, specifically α-eleostearic acid and its methyl ester derivative, as novel senolytics that effectively killed a broad range of senescent cells, reduced tissue senescence, and extended healthspan in mice. Importantly, these novel lipids induced senolysis through ferroptosis, rather than apoptosis or necrosis, by exploiting elevated iron, cytosolic PUFAs and ROS levels in senescent cells. Mechanistic studies and computational analyses further revealed their key targets in the ferroptosis pathway, ACSL4, LPCAT3, and ALOX15, important for lipid-induced senolysis. This new class of ferroptosis-inducing lipid senolytics provides a novel approach to slow aging and treat age-related disease, targeting senescent cells that are primed for ferroptosis.
Collapse
Affiliation(s)
- Lei Justan Zhang
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Rahagir Salekeen
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Carolina Soto-Palma
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Osama Elsallabi
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Hongping Ye
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Brian Hughes
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Borui Zhang
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Allancer Nunes
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Kyooa Lee
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Wandi Xu
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Abdalla Mohamed
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ellie Piepgras
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sara J. McGowan
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Luise Angelini
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ryan O’Kelly
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Lead contact
| |
Collapse
|
2
|
Takahashi H, Perez-Canamas A, Lee CW, Ye H, Han X, Strittmatter SM. Lysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism. Commun Biol 2024; 7:1088. [PMID: 39237682 PMCID: PMC11377756 DOI: 10.1038/s42003-024-06810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
TMEM106B is an endolysosomal transmembrane protein not only associated with multiple neurological disorders including frontotemporal dementia, Alzheimer's disease, and hypomyelinating leukodystrophy but also potentially involved in COVID-19. Additionally, recent studies have identified amyloid fibrils of C-terminal TMEM106B in both aged healthy and neurodegenerative brains. However, so far little is known about physiological functions of TMEM106B in the endolysosome and how TMEM106B is involved in a wide range of human conditions at molecular levels. Here, we performed lipidomic analysis of the brain of TMEM106B-deficient mice. We found that TMEM106B deficiency significantly decreases levels of two major classes of myelin lipids, galactosylceramide and its sulfated derivative sulfatide. Subsequent co-immunoprecipitation assay showed that TMEM106B physically interacts with galactosylceramidase. We also found that galactosylceramidase activity was significantly increased in TMEM106B-deficient brains. Thus, our results suggest that TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism and have implications for TMEM106B-associated diseases.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Azucena Perez-Canamas
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Chris W Lee
- Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ, 07927, USA
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ, 07960, USA
- Atlantic Health System, Morristown, NJ, 07960, USA
| | - Hongping Ye
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA.
| |
Collapse
|
3
|
Herrmann M, Rodriguez-Blanco G, Balasso M, Sobolewska K, Semeraro MD, Alonso N, Herrmann W. The role of bile acid metabolism in bone and muscle: from analytics to mechanisms. Crit Rev Clin Lab Sci 2024; 61:510-528. [PMID: 38488591 DOI: 10.1080/10408363.2024.2323132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 08/25/2024]
Abstract
Osteoporosis and sarcopenia are both common age-related disorders that are associated with increased morbidity and mortality. Bone and muscle are metabolically very active tissues that require large amounts of energy. Bile acids (BAs), a group of liver-derived steroid compounds, are primarily known as emulsifiers that facilitate the resorption of dietary fat and lipids. In addition, they have pleiotropic metabolic functions in lipoprotein and glucose metabolism, inflammation, and intestinal bacterial growth. Through these effects, they are related to metabolic diseases, such as diabetes, hypertriglyceridemia, atherosclerosis, and nonalcoholic steatohepatitis. BAs mediate their metabolic effects through receptor dependent and receptor-independent mechanisms. Emerging evidence suggests that BAs are also involved in bone and muscle metabolism. Under normal circumstances, BAs support bone health by shifting the delicate equilibrium of bone turnover toward bone formation. In contrast, low or excessive amounts of BAs promote bone resorption. In cholestatic liver disease, BAs accumulate in the liver, reach toxic concentrations in the circulation, and thus may contribute to bone loss and muscle wasting. In addition, the measurement of BAs is in rapid evolution with modern mass spectrometry techniques that allow for the detection of a continuously growing number of BAs. This review provides a comprehensive overview of the biochemistry, physiology and measurement of bile acids. Furthermore, it summarizes the existing literature regarding their role in bone and muscle.
Collapse
Affiliation(s)
- Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Marco Balasso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Katarzyna Sobolewska
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Maria Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Nerea Alonso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Wolfgang Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
4
|
Suvarna K, Jayabal P, Ma X, Wang H, Chen Y, Weintraub ST, Han X, Houghton PJ, Shiio Y. Ceramide-induced cleavage of GPR64 intracellular domain drives Ewing sarcoma. Cell Rep 2024; 43:114497. [PMID: 39024100 PMCID: PMC11416865 DOI: 10.1016/j.celrep.2024.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Ewing sarcoma is a cancer of bone and soft tissue in children and young adults primarily driven by the EWS-FLI1 fusion oncoprotein, which has been undruggable. Here, we report that Ewing sarcoma depends on secreted sphingomyelin phosphodiesterase 1 (SMPD1), a ceramide-generating enzyme, and ceramide. We find that G-protein-coupled receptor 64 (GPR64)/adhesion G-protein-coupled receptor G2 (ADGRG2) responds to ceramide and mediates critical growth signaling in Ewing sarcoma. We show that ceramide induces the cleavage of the C-terminal intracellular domain of GPR64, which translocates to the nucleus and restrains the protein levels of RIF1 in a manner dependent on SPOP, a substrate adaptor of the Cullin3-RING E3 ubiquitin ligase. We demonstrate that both SMPD1 and GPR64 are transcriptional targets of EWS-FLI1, indicating that SMPD1 and GPR64 are EWS-FLI1-induced cytokine-receptor dependencies. These results reveal the SMPD1-ceramide-GPR64 pathway, which drives Ewing sarcoma growth and is amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Kruthi Suvarna
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Panneerselvam Jayabal
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Population Health Sciences, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yuzuru Shiio
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
5
|
de Lima CB, Milazzotto MP, Vireque AA, Joaquim DC, Sobreira TJP, Ferreira CR. Impact of Extraction Methods and Transportation Conditions on Lipid Profiles of Bovine Oocytes. Reprod Sci 2024; 31:1948-1957. [PMID: 38561471 DOI: 10.1007/s43032-024-01524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Lipids play numerous pivotal physiological roles in mammalian reproduction, being indispensable for oocyte competence acquisition and post-fertilization embryonic development. Profiling lipids in minute samples, such as oocytes, presents challenges but has been accomplished through mass spectrometry technologies like Multiple Reaction Monitoring (MRM) profiling. With the dual objectives of simplifying workflow and examining the influence of preanalytical conditions, we assessed whether transportation at room temperature affects the lipid profile of bovine oocytes. To this end, samples were prepared using either monophasic (methanol only) or biphasic liquid extraction protocols (Bligh & Dyer method) and transported either on dry ice or at room temperature inside sealed-vacuum packages to prevent lipid oxidation. Subsequently, employing a comprehensive method, we screened a list of 316 MRMs from 10 different lipid subclasses in oocyte lipid extracts. Principal Component Analysis (PCA) revealed similar lipid profiles concerning temperature during transportation, whereas clear differentiation among samples was observed based on the lipid extraction method. Univariate analysis indicated that the one-phase methanol extraction resulted in higher relative abundances of phospholipids, except for phosphatidylserines. Conversely, the Bligh & Dyer extraction favored the detection of neutral intracellular lipids (triacylglycerols, free fatty acids, cholesteryl esters, and acyl-carnitines). Consequently, lipid recovery was directly correlated with the polarity of lipid class and the extraction method. Regarding transportation temperature, phosphatidylethanolamine, triacylglycerol, and free fatty acids exhibited lower abundances when samples were transported at room temperature. Based on multivariate and univariate analyses, we conclude that if samples undergo the same lipid extraction protocol and are transported in the same batch at room temperature inside vacuum-sealed bags, it is feasible to analyze lipid extracts of bovine oocytes and still obtain informative lipid profiling results.
Collapse
Affiliation(s)
- Camila Bruna de Lima
- Department of Animal Sciences, Université Laval, Québec, QC, Canada
- Center of Natural and Human Sciences, Universidade Federal Do ABC, Santo André, São Paulo, Brazil
- , Ville de Québec, Canada
| | | | - Alessandra Aparecida Vireque
- Invitra, Assisted Reproductive Technologies Ltd., Supera Innovation and Technology Park, Ribeirão Preto, SP, 14056-680, Brazil
| | - Daniel Carlino Joaquim
- Invitra, Assisted Reproductive Technologies Ltd., Supera Innovation and Technology Park, Ribeirão Preto, SP, 14056-680, Brazil
| | - Tiago Jose Paschoal Sobreira
- Center for Analytical Instrumentation Development, Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Christina Ramires Ferreira
- Center for Analytical Instrumentation Development, Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
6
|
Fan Y, Zhang R, Wang C, Pan M, Geng F, Zhong Y, Su H, Kou Y, Mo X, Lefai E, Han X, Chakravarti A, Guo D. STAT3 activation of SCAP-SREBP-1 signaling upregulates fatty acid synthesis to promote tumor growth. J Biol Chem 2024; 300:107351. [PMID: 38718868 PMCID: PMC11176798 DOI: 10.1016/j.jbc.2024.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.
Collapse
Affiliation(s)
- Yunzhou Fan
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Rui Zhang
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Chao Wang
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Yaogang Zhong
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Huali Su
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Yongjun Kou
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Biostatistic Center and Department of Bioinformatics, College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Etienne Lefai
- Human Nutrition Unit, French National Research Institute for Agriculture, Food and Environment, University Clermont Auvergne, Clermont-Ferrand, France
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
7
|
Nassar AF, Nie X, Zhang T, Yeung J, Norris P, He J, Ogura H, Babar MU, Muldoon A, Libreros S, Chen L. Is Lipid Metabolism of Value in Cancer Research and Treatment? Part I- Lipid Metabolism in Cancer. Metabolites 2024; 14:312. [PMID: 38921447 PMCID: PMC11205345 DOI: 10.3390/metabo14060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
For either healthy or diseased organisms, lipids are key components for cellular membranes; they play important roles in numerous cellular processes including cell growth, proliferation, differentiation, energy storage and signaling. Exercise and disease development are examples of cellular environment alterations which produce changes in these networks. There are indications that alterations in lipid metabolism contribute to the development and progression of a variety of cancers. Measuring such alterations and understanding the pathways involved is critical to fully understand cellular metabolism. The demands for this information have led to the emergence of lipidomics, which enables the large-scale study of lipids using mass spectrometry (MS) techniques. Mass spectrometry has been widely used in lipidomics and allows us to analyze detailed lipid profiles of cancers. In this article, we discuss emerging strategies for lipidomics by mass spectrometry; targeted, as opposed to global, lipid analysis provides an exciting new alternative method. Additionally, we provide an introduction to lipidomics, lipid categories and their major biological functions, along with lipidomics studies by mass spectrometry in cancer samples. Further, we summarize the importance of lipid metabolism in oncology and tumor microenvironment, some of the challenges for lipodomics, and the potential for targeted approaches for screening pharmaceutical candidates to improve the therapeutic efficacy of treatment in cancer patients.
Collapse
Affiliation(s)
- Ala F. Nassar
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Xinxin Nie
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Paul Norris
- Sciex, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Jianwei He
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Hideki Ogura
- Department of Microbiology, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Muhammad Usman Babar
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anne Muldoon
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| | - Stephania Libreros
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
8
|
Lee S, Kim M, Cho H, Lee GH. Determination of Triacylglycerol Composition in Mealworm Oil ( Tenebrio molitor) via Electrospray Ionization Tandem Mass Spectrometry with Multiple Neutral Loss Scans. INSECTS 2024; 15:365. [PMID: 38786921 PMCID: PMC11121848 DOI: 10.3390/insects15050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Mealworms (Tenebrio molitor) have been used as an alternative source of proteins and lipids. Triacylglycerols (TAGs) are major sources of energy and have been used to provide essential fatty acids. They are also the main components of mealworm oil, and their composition and content are extensively linked to its physical and chemical properties. However, because of the complexity of TAG molecules, their identification and quantitation are challenging. This study employed electrospray ionization tandem mass spectrometry (ESI-MS/MS) with multiple neutral loss scans (NLS) to analyze the TAG composition and content in mealworm oil. Identifying and quantifying TAGs using ESI-MS/MS in combination with multiple NLS was an efficient way to improve accuracy and timeliness. For the accurate quantification of TAGs, isotopic deconvolution and correlation factors were applied. A total of 57 TAGs were identified and quantified: C52:2 (16:0/18:1/18:1) (1549.4 nmol/g, 18.20%), C52:3 (16:0/18:1/18:2) (1488.1 nmol/g, 17.48%), C54:4 (18:1/18:1/18:2) (870.1 nmol/g, 10.23%), C54:6 (18:1/18:2/18:2) (659.8 nmol/g, 7.76%) and C52:4 (16:0/18:2/18:2) (600.5 nmol/g, 7.06%), which were the most abundant TAGs present in the mealworm oil. The fundamental properties of mealworm oil, including its degree of oxidation, nutritional effect and physical properties, were elucidated.
Collapse
Affiliation(s)
- Seongeung Lee
- Lotte R&D Center, 201, Magokjungang-ro, Gangseo-gu, Seoul 07594, Republic of Korea; (M.K.); (H.C.); (G.-H.L.)
| | | | | | | |
Collapse
|
9
|
Xu G, Quan S, Schell J, Gao Y, Varmazyad M, Sreenivas P, Cruz D, Jiang H, Pan M, Han X, Palavicini JP, Zhao P, Sun X, Marchant ED, Rasmussen BB, Li G, Katsumura S, Morita M, Munkácsy E, Horikoshi N, Chocron ES, Gius D. Mitochondrial ACSS1-K635 acetylation knock-in mice exhibit altered metabolism, cell senescence, and nonalcoholic fatty liver disease. SCIENCE ADVANCES 2024; 10:eadj5942. [PMID: 38758779 PMCID: PMC11100568 DOI: 10.1126/sciadv.adj5942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.
Collapse
Affiliation(s)
- Guogang Xu
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Songhua Quan
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Yucheng Gao
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mahboubeh Varmazyad
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Prethish Sreenivas
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Diego Cruz
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Haiyan Jiang
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Juan Pablo Palavicini
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Division of Diabetes, UT Health San Antonio, San Antonio, TX, USA
| | - Peng Zhao
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Xiaoli Sun
- Department of Pharmacology, Mays Cancer Center, Transplant Center, UT Health San Antonio, San Antonio, TX, USA
| | - Erik D. Marchant
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Blake B. Rasmussen
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Guannan Li
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Sakie Katsumura
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka 565-0871, Japan
| | - Erin Munkácsy
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - E. Sandra Chocron
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
10
|
Carrard J, Hofer M, Prechtl L, Fleischlin E, Huber M, Gallart-Ayala H, Teav T, Infanger D, Höchsmann C, Koehler K, Hinrichs T, Hanssen H, Ivanisevic J, Schmidt-Trucksäss A. Effect of an eight-week high-intensity interval training programme on circulating sphingolipid levels in middle-aged adults at elevated cardiometabolic risk (SphingoFIT)-Protocol for a randomised controlled exercise trial. PLoS One 2024; 19:e0302477. [PMID: 38717997 PMCID: PMC11078397 DOI: 10.1371/journal.pone.0302477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Evidence indicates that sphingolipid accumulation drives complex molecular alterations promoting cardiometabolic diseases. Clinically, it was shown that sphingolipids predict cardiometabolic risk independently of and beyond traditional biomarkers such as low-density lipoprotein cholesterol. To date, little is known about therapeutic modalities to lower sphingolipid levels. Exercise, a powerful means to prevent and treat cardiometabolic diseases, is a promising modality to mitigate sphingolipid levels in a cost-effective, safe, and patient-empowering manner. METHODS This randomised controlled trial will explore whether and to what extent an 8-week fitness-enhancing training programme can lower serum sphingolipid levels of middle-aged adults at elevated cardiometabolic risk (n = 98, 50% females). The exercise intervention will consist of supervised high-intensity interval training (three sessions weekly), while the control group will receive physical activity counselling based on current guidelines. Blood will be sampled early in the morning in a fasted state before and after the 8-week programme. Participants will be provided with individualised, pre-packaged meals for the two days preceding blood sampling to minimise potential confounding. An 'omic-scale sphingolipid profiling, using high-coverage reversed-phase liquid chromatography coupled to tandem mass spectrometry, will be applied to capture the circulating sphingolipidome. Maximal cardiopulmonary exercise tests will be performed before and after the 8-week programme to assess patient fitness changes. Cholesterol, triglycerides, glycated haemoglobin, the homeostatic model assessment for insulin resistance, static retinal vessel analysis, flow-mediated dilatation, and strain analysis of the heart cavities will also be assessed pre- and post-intervention. This study shall inform whether and to what extent exercise can be used as an evidence-based treatment to lower circulating sphingolipid levels. TRIAL REGISTRATION The trial was registered on www.clinicaltrials.gov (NCT06024291) on August 28, 2023.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- SportAdo Centre, Children and Adolescent Surgery, Woman-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuel Hofer
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Luisa Prechtl
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Eva Fleischlin
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Manuel Huber
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Denis Infanger
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Christoph Höchsmann
- Department of Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Karsten Koehler
- Department of Health and Sport Sciences, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Timo Hinrichs
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Kawatani K, Holm ML, Starling SC, Martens YA, Zhao J, Lu W, Ren Y, Li Z, Jiang P, Jiang Y, Baker SK, Wang N, Roy B, Parsons TM, Perkerson RB, Bao H, Han X, Bu G, Kanekiyo T. ABCA7 deficiency causes neuronal dysregulation by altering mitochondrial lipid metabolism. Mol Psychiatry 2024; 29:809-819. [PMID: 38135757 PMCID: PMC11153016 DOI: 10.1038/s41380-023-02372-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
ABCA7 loss-of-function variants are associated with increased risk of Alzheimer's disease (AD). Using ABCA7 knockout human iPSC models generated with CRISPR/Cas9, we investigated the impacts of ABCA7 deficiency on neuronal metabolism and function. Lipidomics revealed that mitochondria-related phospholipids, such as phosphatidylglycerol and cardiolipin were reduced in the ABCA7-deficient iPSC-derived cortical organoids. Consistently, ABCA7 deficiency-induced alterations of mitochondrial morphology accompanied by reduced ATP synthase activity and exacerbated oxidative damage in the organoids. Furthermore, ABCA7-deficient iPSC-derived neurons showed compromised mitochondrial respiration and excess ROS generation, as well as enlarged mitochondrial morphology compared to the isogenic controls. ABCA7 deficiency also decreased spontaneous synaptic firing and network formation in iPSC-derived neurons, in which the effects were rescued by supplementation with phosphatidylglycerol or NAD+ precursor, nicotinamide mononucleotide. Importantly, effects of ABCA7 deficiency on mitochondria morphology and synapses were recapitulated in synaptosomes isolated from the brain of neuron-specific Abca7 knockout mice. Together, our results provide evidence that ABCA7 loss-of-function contributes to AD risk by modulating mitochondria lipid metabolism.
Collapse
Affiliation(s)
- Keiji Kawatani
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Marie-Louise Holm
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Skylar C Starling
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- SciNeuro Pharmaceuticals, Rockville, MD, 20850, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yangying Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Samantha K Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Bhaskar Roy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ralph B Perkerson
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
12
|
Toh DWK, Zhou H, Cazenave-Gassiot A, Choi H, Burla B, Bendt AK, Wenk MR, Ling LH, Kim JE. Effects of wolfberry ( Lycium barbarum) consumption on the human plasma lipidome and its association with cardiovascular disease risk factors: a randomized controlled trial of middle-aged and older adults. Front Nutr 2024; 11:1258570. [PMID: 38439925 PMCID: PMC10909962 DOI: 10.3389/fnut.2024.1258570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Long-term wolfberry intake as part of a healthy dietary pattern was recognized to have beneficial vascular outcomes. Characterization of the plasma lipidome may further provide comprehensive insights into pathways underlying these cardiovascular protective effects. Objective We analyzed the plasma lipidome of subjects who adhered to a healthy dietary pattern either with or without wolfberry and investigated the associations between the plasma lipidomic profile and cardiovascular health-related indicators. Methods In this 16-week, parallel design, randomized controlled trial, middle-aged and older adults (n = 41) were provided dietary counseling and assigned to either consume or not consume 15 g of wolfberry daily. At baseline and post-intervention, plasma lipidomics was assayed, and its relationships with classical CVD risk factors, vascular health, oxidant burden, carotenoids status, body composition, and anthropometry were examined. Results From the plasma lipidome, 427 lipid species from 26 sub-classes were quantified. In the wolfberry and control groups, significant changes were prominent for 27 and 42 lipid species, respectively (P < 0.05 with > 0.2-fold change). Fold changes for seven lipid species were also markedly different between the two groups. Examining the relationships between the plasma lipidome and CVD-related risk factors, total cholesterol revealed a marked positive correlation with 13 ceramide species, while HDL-cholesterol which was notably increased with wolfberry consumption showed a positive correlation with 10 phosphatidylcholine species. Oxidant burden, as represented by plasma 8-isoprostanes, was also inversely associated with lipidomic triglycerides and ether-triglycerides (41 species) and directly associated with hexosylceramides (eight species) and sphingomyelins (six species). There were no differential associations with CVD risk detected between groups. Conclusion Characteristic alterations to the plasma lipidome were observed with healthy dietary pattern adherence and wolfberry consumption. An examination of these fluctuations suggests potential biochemical mechanisms that may mediate the antioxidant and cardiovascular protective effects of healthy dietary pattern adherence and wolfberry intake. This study was registered at clinicaltrials.gov as NCT0353584.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Hanzhang Zhou
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne Katherin Bendt
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Lieng Hsi Ling
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Takahashi H, Bhagwagar S, Nies SH, Ye H, Han X, Chiasseu MT, Wang G, Mackenzie IR, Strittmatter SM. Reduced progranulin increases tau and α-synuclein inclusions and alters mouse tauopathy phenotypes via glucocerebrosidase. Nat Commun 2024; 15:1434. [PMID: 38365772 PMCID: PMC10873339 DOI: 10.1038/s41467-024-45692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
Comorbid proteinopathies are observed in many neurodegenerative disorders including Alzheimer's disease (AD), increase with age, and influence clinical outcomes, yet the mechanisms remain ill-defined. Here, we show that reduction of progranulin (PGRN), a lysosomal protein associated with TDP-43 proteinopathy, also increases tau inclusions, causes concomitant accumulation of α-synuclein and worsens mortality and disinhibited behaviors in tauopathy mice. The increased inclusions paradoxically protect against spatial memory deficit and hippocampal neurodegeneration. PGRN reduction in male tauopathy attenuates activity of β-glucocerebrosidase (GCase), a protein previously associated with synucleinopathy, while increasing glucosylceramide (GlcCer)-positive tau inclusions. In neuronal culture, GCase inhibition enhances tau aggregation induced by AD-tau. Furthermore, purified GlcCer directly promotes tau aggregation in vitro. Neurofibrillary tangles in human tauopathies are also GlcCer-immunoreactive. Thus, in addition to TDP-43, PGRN regulates tau- and synucleinopathies via GCase and GlcCer. A lysosomal PGRN-GCase pathway may be a common therapeutic target for age-related comorbid proteinopathies.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Sanaea Bhagwagar
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah H Nies
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074, Tübingen, Germany
| | - Hongping Ye
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Marius T Chiasseu
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Guilin Wang
- Department of Molecular Biophysics and Biochemistry, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, 06536, USA.
| |
Collapse
|
14
|
Ali S, Ni X, Khan M, Zhao X, Yang H, Danzeng B, Raja IH, Quan G. Effects of Dietary Protein Levels on Sheep Gut Metabolite Profiles during the Lactating Stage. Animals (Basel) 2023; 14:121. [PMID: 38200852 PMCID: PMC10778572 DOI: 10.3390/ani14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Diet-associated characteristics such as dietary protein levels can modulate the gut's primary or secondary metabolites, leading to effects on the productive performance and overall health of animals. Whereas fecal metabolite changes are closely associated with gut metabolome, this study aimed to see changes in the rumen metabolite profile of lactating ewes fed different dietary protein levels. For this, eighteen lactating ewes (approximately 2 years old, averaging 38.52 ± 1.57 kg in their initial body weight) were divided into three groups (n = 6 ewes/group) by following the complete randomized design, and each group was assigned to one of three low-protein (D_I), medium-protein (D_m), and high-protein (D_h) diets containing 8.58%, 10.34%, and 13.93% crude protein contents on a dry basis, respectively. The fecal samples were subjected to untargeted metabolomics using ultra-performance liquid chromatography (UPLC). The metabolomes of the sheep fed to the high-protein-diet group were distinguished as per principal-component analysis from the medium- and low-protein diets. Fecal metabolite concentrations as well as their patterns were changed by feeding different dietary protein levels. The discriminating metabolites between groups of nursing sheep fed different protein levels were identified using partial least-squares discriminant analysis. The pathway enrichment revealed that dietary protein levels mainly influenced the metabolism-associated pathways (n = 63 and 39 in positive as well as negative ionic modes, respectively) followed by protein (n = 15 and 8 in positive as well as negative ionic modes, respectively) and amino-acid (n = 14 and 7 in positive as well as negative ionic modes, respectively) synthesis. Multivariate and univariate analyses showed comparative changes in the fecal concentrations of metabolites in both positive and negative ionic modes. Major changes were observed in protein metabolism, organic-acid biosynthesis, and fatty-acid oxidation. Pairwise analysis and PCA reveal a higher degree of aggregation within the D-h group than all other pairs. In both the PCA and PLS-DA plots, the comparative separation among the D_h/D_m, D_h/D_I, and D_m/D_I groups was superior in positive as well as negative ionic modes, which indicated that sheep fed higher protein levels had alterations in the levels of the metabolites. These metabolic findings provide insights into potentiated biomarker changes in the metabolism influenced by dietary protein levels. The target identification may further increase our knowledge of sheep gut metabolome, particularly regarding how dietary protein levels influence the molecular mechanisms of nutritional metabolism, growth performance, and milk synthesis of sheep.
Collapse
Affiliation(s)
- Sikandar Ali
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Xiaojun Ni
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| | - Muhammad Khan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Xiaoqi Zhao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| | - Hongyuan Yang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| | - Baiji Danzeng
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| | - Imtiaz Hussain Raja
- Department of Animal Nutrition, Faculty of Animal Production & Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650225, China; (S.A.); (X.N.); (M.K.); (X.Z.); (H.Y.); (B.D.)
- Yunnan Provincial Animal Genetic Resource Conservation and Germplasm Innovation Engineering Research Center, Jindian, Panlong District, Kunming 650225, China
| |
Collapse
|
15
|
de Lima CB, Milazzotto MP, Vireque AA, Joaquim DC, Sobreira TJP, Ferreira CR. Effect of lipid extraction and room temperature transportation of bovine oocytes determined by MRM profiling. RESEARCH SQUARE 2023:rs.3.rs-3788683. [PMID: 38196623 PMCID: PMC10775384 DOI: 10.21203/rs.3.rs-3788683/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Lipids play many important physiological roles in mammalian reproduction, being essential for the acquisition of oocyte competence and post-fertilization embryonic development. Lipid profiling in samples of minute size, such as oocytes, is challenging but has been achieved by mass spectrometry technologies such as multiple reaction monitoring (MRM) profiling. With the goals of further simplifying sample workflow and investigating the influence of pre-analytical conditions, we have evaluated how different extraction methods and transportation of lipid extracts in vacuum and at room temperature impacted the lipid profile of bovine oocytes. Using a comprehensive method, 316 MRMs associated with lipids of 10 different classes were screened in oocyte lipid extracts prepared by 2 extraction methods (one-step methanol addition or Bligh and Dyer) and transporting them in dry ice or at room temperature inside vacuum packages. No changes in the multivariate analysis (PCA) were noticeable due to transportation temperature, while lipid profiles were more affected by the lipid extraction protocol. Sample extraction using pure methanol favored the detection of phospholipids uniformly, while Bligh and Dyer favored the detection of neutral intracellular lipids. Triacylglycerol lipids and free fatty acids yielded decreased abundances when samples were transported at room temperature. We conclude that if samples are submitted to the same lipid extraction protocol and same transportation batch at room temperature coupled with vacuum conditions it is possible to analyze lipid extracts of bovine oocytes and still obtain informative lipid profiling results.
Collapse
|
16
|
Tabassum R, Widén E, Ripatti S. Effect of biological sex on human circulating lipidome: An overview of the literature. Atherosclerosis 2023; 384:117274. [PMID: 37743161 DOI: 10.1016/j.atherosclerosis.2023.117274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide for both men and women, but their prevalence and burden show marked sex differences. The existing knowledge gaps in research, prevention, and treatment for women emphasize the need for understanding the biological mechanisms contributing to the sex differences in CVD. Sex differences in the plasma lipids that are well-known risk factors and predictors of CVD events have been recognized and are believed to contribute to the known disparities in CVD manifestations in men and women. However, the current understanding of sex differences in lipids has mainly come from the studies on routinely measured standard lipids- low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total triglycerides, and total cholesterol, which have been the mainstay of the lipid profiling. Sex differences in individual lipid species, collectively called the lipidome, have until recently been less explored due to the technological challenges and analytic costs. With the technological advancements in the last decade and growing interest in understanding mechanisms of sexual dimorphism in metabolic disorders, many investigators utilized metabolomics and lipidomics based platforms to examine the effect of biological sex on detailed lipidomic profiles and individual lipid species. This review presents an overview of the research on sex differences in the concentrations of circulating lipid species, focusing on findings from the metabolome- and lipidome-wide studies. We also discuss the potential contribution of genetic factors including sex chromosomes and sex-specific physiological factors such as menopause and sex hormones to the sex differences in lipidomic profiles.
Collapse
Affiliation(s)
- Rubina Tabassum
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland; Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
17
|
Bolshette N, Ezagouri S, Dandavate V, Karavaeva I, Golik M, Wang H, Espenshade PJ, Osborne TF, Han X, Asher G. Carbon dioxide regulates cholesterol levels through SREBP2. PLoS Biol 2023; 21:e3002367. [PMID: 37967106 PMCID: PMC10651039 DOI: 10.1371/journal.pbio.3002367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023] Open
Abstract
In mammals, O2 and CO2 levels are tightly regulated and are altered under various pathological conditions. While the molecular mechanisms that participate in O2 sensing are well characterized, little is known regarding the signaling pathways that participate in CO2 signaling and adaptation. Here, we show that CO2 levels control a distinct cellular transcriptional response that differs from mere pH changes. Unexpectedly, we discovered that CO2 regulates the expression of cholesterogenic genes in a SREBP2-dependent manner and modulates cellular cholesterol accumulation. Molecular dissection of the underlying mechanism suggests that CO2 triggers SREBP2 activation through changes in endoplasmic reticulum (ER) membrane cholesterol levels. Collectively, we propose that SREBP2 participates in CO2 signaling and that cellular cholesterol levels can be modulated by CO2 through SREBP2.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Saar Ezagouri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Vaishnavi Dandavate
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iuliia Karavaeva
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hu Wang
- The Sam & Ann Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Peter J. Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Timothy F. Osborne
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, and Medicine in the Division of Endocrinology, Diabetes and Metabolism of the Johns Hopkins University School of Medicine, Petersburg, Florida, United States of America
| | - Xianlin Han
- The Sam & Ann Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
He Y, Kaya I, Shariatgorji R, Lundkvist J, Wahlberg LU, Nilsson A, Mamula D, Kehr J, Zareba-Paslawska J, Biverstål H, Chergui K, Zhang X, Andren PE, Svenningsson P. Prosaposin maintains lipid homeostasis in dopamine neurons and counteracts experimental parkinsonism in rodents. Nat Commun 2023; 14:5804. [PMID: 37726325 PMCID: PMC10509278 DOI: 10.1038/s41467-023-41539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Prosaposin (PSAP) modulates glycosphingolipid metabolism and variants have been linked to Parkinson's disease (PD). Here, we find altered PSAP levels in the plasma, CSF and post-mortem brain of PD patients. Altered plasma and CSF PSAP levels correlate with PD-related motor impairments. Dopaminergic PSAP-deficient (cPSAPDAT) mice display hypolocomotion and depression/anxiety-like symptoms with mildly impaired dopaminergic neurotransmission, while serotonergic PSAP-deficient (cPSAPSERT) mice behave normally. Spatial lipidomics revealed an accumulation of highly unsaturated and shortened lipids and reduction of sphingolipids throughout the brains of cPSAPDAT mice. The overexpression of α-synuclein via AAV lead to more severe dopaminergic degeneration and higher p-Ser129 α-synuclein levels in cPSAPDAT mice compared to WT mice. Overexpression of PSAP via AAV and encapsulated cell biodelivery protected against 6-OHDA and α-synuclein toxicity in wild-type rodents. Thus, these findings suggest PSAP may maintain dopaminergic lipid homeostasis, which is dysregulated in PD, and counteract experimental parkinsonism.
Collapse
Affiliation(s)
- Yachao He
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Ibrahim Kaya
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Johan Lundkvist
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
- Sinfonia Biotherapeutics AB, Huddinge, Sweden
| | - Lars U Wahlberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Dejan Mamula
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Section of Pharmacological Neurochemistry, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Justyna Zareba-Paslawska
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Biverstål
- Sinfonia Biotherapeutics AB, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karima Chergui
- Laboratory of Molecular Neurophysiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per E Andren
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
19
|
Takahashi H, Perez-Canamas A, Ye H, Han X, Strittmatter SM. Lysosomal TMEM106B interacts with galactosylceramidase to regulate myelin lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557804. [PMID: 37745346 PMCID: PMC10515910 DOI: 10.1101/2023.09.14.557804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
TMEM106B is an endolysosomal transmembrane protein not only associated with multiple neurological disorders including frontotemporal dementia, Alzheimer's disease, and hypomyelinating leukodystrophy but also potentially involved in COVID-19. Additionally, recent studies have identified amyloid fibrils of C-terminal TMEM106B in both aged healthy and neurodegenerative brains. However, so far little is known about physiological functions of TMEM106B in the endolysosome and how TMEM106B is involved in a wide range of human conditions at molecular levels. Here, we performed lipidomic analysis of the brain of TMEM106B-deficient mice. We found that TMEM106B deficiency significantly decreases levels of two major classes of myelin lipids, galactosylceramide and its sulfated derivative sulfatide. Subsequent co-immunoprecipitation assay showed that TMEM106B physically interacts with galactosylceramidase. We also found that galactosyceramidase activity was significantly increased in TMEM106B-deficient brains. Thus, our results reveal a novel function of TMEM106B interacting with galactosyceramidase to regulate myelin lipid metabolism and have implications for TMEM106B-associated diseases.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Azucena Perez-Canamas
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Hongping Ye
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229, USA
| | - Stephen M. Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
20
|
Huang S, Zhang D, Wang Q, Shang B, Liu J, Xing X, Hong Y, Duan X, Sun H. Shotgun lipidomics reveals the changes in phospholipids of brown rice during accelerated aging. Food Res Int 2023; 171:113073. [PMID: 37330832 DOI: 10.1016/j.foodres.2023.113073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Brown rice exhibits higher nutritional value and attracts more and more attentions; however, the change in phospholipid molecular species in brown rice during aging is poorly understood. In this study, shotgun lipidomics was employed to investigate the changes in phospholipid molecular species in four brown rice varieties (two japonica rice and two indica rice) during accelerated aging. A total of 64 phospholipid molecular species were identified, and most of them were rich in polyunsaturated fatty acids. For japonica rice, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) gradually decreased during accelerated aging. However, the content of PC, PE, and PG in indica rice showed no difference during accelerated aging. Significantly different phospholipid molecular species from four brown rice were screened during accelerated aging. Based on these significantly different phospholipids, the metabolic pathways including glycerophospholipid metabolism and linoleic acid metabolism during accelerated aging were depicted. The findings from this study could be helpful in explaining the impact of accelerated aging on phospholipids of brown rice, and offer an understanding on relationships between phospholipids degradation and brown rice deterioration.
Collapse
Affiliation(s)
- Shanshan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jianlei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoting Xing
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
21
|
Carrard J, Angst T, Weber N, Bienvenue J, Infanger D, Streese L, Hinrichs T, Croci I, Schmied C, Gallart-Ayala H, Höchsmann C, Koehler K, Hanssen H, Ivanisevic J, Schmidt-Trucksäss A. Investigating the circulating sphingolipidome response to a single high-intensity interval training session within healthy females and males in their twenties (SphingoHIIT): Protocol for a randomised controlled trial. F1000Res 2023; 11:1565. [PMID: 37533665 PMCID: PMC10390797 DOI: 10.12688/f1000research.128978.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction: Growing scientific evidence indicates that sphingolipids predict cardiometabolic risk, independently of and beyond traditional biomarkers such as low-density lipoprotein cholesterol. To date, it remains largely unknown if and how exercise, a simple, low-cost, and patient-empowering modality to optimise cardiometabolic health, influences sphingolipid levels. The SphingoHIIT study aims to assess the response of circulating sphingolipid species to a single session of high-intensity interval training (HIIT). Methods: This single-centre randomised controlled trial (RCT) will last 11 days per participant and aim to include 32 young and healthy individuals aged 20-29 (50% females). Participants will be randomly allocated to the HIIT (n= 16) or control groups (physical rest, n= 16). Participants will self-sample fasted dried blood spots for three consecutive days before the intervention (HIIT versus rest) to determine baseline sphingolipid levels. Dried blood spots will also be collected at five time points (2, 15, 30, 60min, and 24h) following the intervention (HIIT versus rest). To minimise the dietary influence, participants will receive a standardised diet for four days, starting 24 hours before the first dried blood sampling. For females, interventions will be timed to fall within the early follicular phase to minimise the menstrual cycle's influence on sphingolipid levels. Finally, physical activity will be monitored for the whole study duration using a wrist accelerometer. Ethics and dissemination: The Ethics Committee of Northwest and Central Switzerland approved this protocol (ID 2022-00513). Findings will be disseminated in scientific journals and meetings. Trial Registration The trial was registered on www.clinicaltrials.gov (NCT05390866, https://clinicaltrials.gov/ct2/show/NCT05390866) on May 25, 2022.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Thomas Angst
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Nadia Weber
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Joëlle Bienvenue
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Denis Infanger
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Lukas Streese
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Timo Hinrichs
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Ilaria Croci
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
- Cardiac Exercise Research Group, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Schmied
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich,, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, 1005, Switzerland
| | - Christoph Höchsmann
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Karsten Koehler
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Henner Hanssen
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, 1005, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sport and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, 4052, Switzerland
| |
Collapse
|
22
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
23
|
Guilherme A, Rowland LA, Wetoska N, Tsagkaraki E, Santos KB, Bedard AH, Henriques F, Kelly M, Munroe S, Pedersen DJ, Ilkayeva OR, Koves TR, Tauer L, Pan M, Han X, Kim JK, Newgard CB, Muoio DM, Czech MP. Acetyl-CoA carboxylase 1 is a suppressor of the adipocyte thermogenic program. Cell Rep 2023; 42:112488. [PMID: 37163372 PMCID: PMC10286105 DOI: 10.1016/j.celrep.2023.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Disruption of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) in mice induces browning in inguinal white adipose tissue (iWAT). However, adipocyte FASN knockout (KO) increases acetyl-coenzyme A (CoA) and malonyl-CoA in addition to depletion of palmitate. We explore which of these metabolite changes triggers adipose browning by generating eight adipose-selective KO mouse models with loss of ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), ACC2, malonyl-CoA decarboxylase (MCD) or FASN, or dual KOs ACLY/FASN, ACC1/FASN, and ACC2/FASN. Preventing elevation of acetyl-CoA and malonyl-CoA by depletion of adipocyte ACLY or ACC1 in combination with FASN KO does not block the browning of iWAT. Conversely, elevating malonyl-CoA levels in MCD KO mice does not induce browning. Strikingly, adipose ACC1 KO induces a strong iWAT thermogenic response similar to FASN KO while also blocking malonyl-CoA and palmitate synthesis. Thus, ACC1 and FASN are strong suppressors of adipocyte thermogenesis through promoting lipid synthesis rather than modulating the DNL intermediates acetyl-CoA or malonyl-CoA.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaltinaitis B Santos
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sean Munroe
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David J Pedersen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Lauren Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
24
|
Shi C, Zi Y, Huang S, Chen J, Wang X, Zhong J. Development and application of lipidomics for food research. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:1-42. [PMID: 37236729 DOI: 10.1016/bs.afnr.2022.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lipidomics is an emerging and promising omics derived from metabolomics to comprehensively analyze all of lipid molecules in biological matrices. The purpose of this chapter is to introduce the development and application of lipidomics for food research. First, three aspects of sample preparation are introduced: food sampling, lipid extraction, and transportation and storage. Second, five types of instruments for data acquisition are summarized: direct infusion-mass spectrometry (MS), chromatographic separation-MS, ion mobility-MS, MS imaging, and nuclear magnetic resonance spectroscopy. Third, data acquisition and analysis software are described for the lipidomics software development. Fourth, the application of lipidomics for food research is discussed such as food origin and adulteration analysis, food processing research, food preservation research, and food nutrition and health research. All the contents suggest that lipidomics is a powerful tool for food research based on its ability of lipid component profile analysis.
Collapse
Affiliation(s)
- Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Zi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Shudan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jiahui Chen
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
25
|
Rowland LA, Guilherme A, Henriques F, DiMarzio C, Munroe S, Wetoska N, Kelly M, Reddig K, Hendricks G, Pan M, Han X, Ilkayeva OR, Newgard CB, Czech MP. De novo lipogenesis fuels adipocyte autophagosome and lysosome membrane dynamics. Nat Commun 2023; 14:1362. [PMID: 36914626 PMCID: PMC10011520 DOI: 10.1038/s41467-023-37016-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Adipocytes robustly synthesize fatty acids (FA) from carbohydrate through the de novo lipogenesis (DNL) pathway, yet surprisingly DNL contributes little to their abundant triglyceride stored in lipid droplets. This conundrum raises the hypothesis that adipocyte DNL instead enables membrane expansions to occur in processes like autophagy, which requires an abundant supply of phospholipids. We report here that adipocyte Fasn deficiency in vitro and in vivo markedly impairs autophagy, evident by autophagosome accumulation and severely compromised degradation of the autophagic substrate p62. Our data indicate the impairment occurs at the level of autophagosome-lysosome fusion, and indeed, loss of Fasn decreases certain membrane phosphoinositides necessary for autophagosome and lysosome maturation and fusion. Autophagy dependence on FA produced by Fasn is not fully alleviated by exogenous FA in cultured adipocytes, and interestingly, imaging studies reveal that Fasn colocalizes with nascent autophagosomes. Together, our studies identify DNL as a critical source of FAs to fuel autophagosome and lysosome maturation and fusion in adipocytes.
Collapse
Affiliation(s)
- Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sean Munroe
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Keith Reddig
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Gregory Hendricks
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute, Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
26
|
Julve J, Genua I, Quifer-Rada P, Yanes Ó, Barranco-Altirriba M, Hernández M, Junza A, Capellades J, Granado-Casas M, Alonso N, Castelblanco E, Mauricio D. Circulating metabolomic and lipidomic changes in subjects with new-onset type 1 diabetes after optimization of glycemic control. Diabetes Res Clin Pract 2023; 197:110578. [PMID: 36804334 DOI: 10.1016/j.diabres.2023.110578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
AIMS To uncover novel candidate metabolomic and lipidomic biomarkers in newly-diagnosed type 1 diabetes (T1DM) after achieving optimal glucose control. METHODS Comprehensive lipidomic and metabolomic analysis was performed in serum of 12 adults with T1DM at onset and after achieving optimal glycemic control (HbA1c < 7 %) (after 2-6 months). RESULTS After intensive therapy, subjects (mean age 25.2 years, 58.3 % men) showed decreases in blood glucose (p < 0.001), HbA1c [11.5 % (9.2-13.4) to 6.2 % (5.2 - 6.7); p < 0.001] and changes in 51 identified lipids. Among these changes, we found that triglycerides (TG) containing medium chain fatty acids (TG45:0, TG47:1), sphingomyelins (SM) (SM(d18:2/20:0), SM42:4)), and phosphatidylcholines (PC) (PC(O-26:2), PC(O-30:0), PC(O-32:0), PC(O-42:6), PC(O-44:5), PC(O-38:3), PC(O-33:0), PC(O-46:8), PC(O-44:6), PC(O-40:3), PC(O-42:4), PC(O-46:7), PC(O-46:6), PC(O-44:5), PC(O-42:3), PC(O-44:4)) decreased; whereas PC(35:1), PC(37:1) and TG containing longer chain fatty acids (TG(52:1), TG(55:7), TG(51:2), TG(53:3), TG52:2), TG(53:2), TG(57:3), TG(61:3), TG(61:2) increased. Further, dihydro O-acylceramide (18:1/18:0/16:0), diacylglycerophosphoethanolamine (PE(34:1)), diacylglycerophosphoinositol (PI(38:6), and dihydrosphingomyelins (dihydroSM(36:0), dihydroSM(40:0), dihydroSM(41:0), dihydroSM(42:0)) increased. Uric acid, mannitol, and mannitol-1-acetate levels also increased. CONCLUSIONS Our data uncovered potential favorable changes in the metabolism of glycerophospholipids, glycerolipids, and sphingolipids in new-onset T1DM after achieving optimal glycemic control. Further research on their potential role in developing diabetes-related complications is needed.
Collapse
Affiliation(s)
- Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
| | - Idoia Genua
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Paola Quifer-Rada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; LactApp Women's Health, Barcelona, Spain
| | - Óscar Yanes
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, Tarragona, Spain
| | - Maria Barranco-Altirriba
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain; Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta Hernández
- Department of Endocrinology & Nutrition, University Hospital Arnau de Vilanova, Lleida, Spain; Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Alexandra Junza
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, Tarragona, Spain
| | - Jordi Capellades
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, Tarragona, Spain
| | - Minerva Granado-Casas
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain; Department of Endocrinology & Nutrition, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Esmeralda Castelblanco
- Endocrinology, Metabolism and Lipid Research Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007 Barcelona, Spain.
| | - Didac Mauricio
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007 Barcelona, Spain; Department of Medicine, University of Vic - Central University of Catalonia, Vic, Spain.
| |
Collapse
|
27
|
Gertner DS, Violi JP, Bishop DP, Padula MP. Lipid Spectrum Generator: A Simple Script for the Generation of Accurate In Silico Lipid Fragmentation Spectra. Anal Chem 2023; 95:2909-2916. [PMID: 36692449 DOI: 10.1021/acs.analchem.2c04518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Due to the complexity of lipids in nature, the use of in silico generated spectral libraries to identify lipid species from mass spectral data has become an integral part of many lipidomic workflows. However, many in silico libraries are either limited in usability or their capacity to represent lipid species. Here, we introduce Lipid Spectrum Generator, an open-source in silico spectral library generator specifically designed to aid in the identification of lipids in liquid chromatography-tandem mass spectrometry analysis.
Collapse
Affiliation(s)
- David S Gertner
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Jake P Violi
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - David P Bishop
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| |
Collapse
|
28
|
Robust and high-throughput lipidomic quantitation of human blood samples using flow injection analysis with tandem mass spectrometry for clinical use. Anal Bioanal Chem 2023; 415:935-951. [PMID: 36598539 DOI: 10.1007/s00216-022-04490-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
Direct infusion of lipid extracts into the ion source of a mass spectrometer is a well-established method for lipid analysis. In most cases, nanofluidic devices are used for sample introduction. However, flow injection analysis (FIA) based on sample infusion from a chromatographic pump can offer a simple alternative to shotgun-based approaches. Here, we describe important modification of a method based on FIA and tandem mass spectrometry (MS/MS). We focus on minimizing contamination of the FIA/MS both to render the lipidomic platform more robust and to increase its capacity and applicability for long-sequence measurements required in clinical applications. Robust validation of the developed method confirms its suitability for lipid quantitation in human plasma analysis. Measurements of standard human plasma reference material (NIST SRM 1950) and a set of plasma samples collected from kidney cancer patients and from healthy volunteers yielded highly similar results between FIA-MS/MS and ultra-high-performance supercritical fluid chromatography (UHPSFC)/MS, thereby demonstrating that all modifications have practically no effect on the statistical output. Newly modified FIA-MS/MS allows for the quantitation of 141 lipid species in plasma (11 major lipid classes) within 5.7 min. Finally, we tested the method in a clinical laboratory of the General University Hospital in Prague. In the clinical setting, the method capacity reached 257 samples/day. We also show similar performance of the classification models trained based on the results obtained in clinical settings and the analytical laboratory at the University of Pardubice. Together, these findings demonstrate the high potential of the modified FIA-MS/MS for application in clinical laboratories to measure plasma and serum lipid profiles.
Collapse
|
29
|
Zhang J, Zhang Q, Fan J, Yu J, Li K, Bai J. Lipidomics reveals alterations of lipid composition and molecular nutrition in irradiated marble beef. Food Chem X 2023; 17:100617. [PMID: 36974174 PMCID: PMC10039263 DOI: 10.1016/j.fochx.2023.100617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
Electron beam irradiation can effectively inhibit microbial growth, but the changes of lipid during irradiation have not been comprehensively analyzed in marble beef. Here, UHPLC-MS/MS was used to detect lipids changes of irradiated marble beef. A total of 1032 lipids were identified and classified into 3 lipid classes and 8 subclasses in irradiated marble beef. 9 lipid biomarkers were screened with increasing irradiation dose. 122 differential lipids were generated and involved in 4 metabolic pathways included Glycerophospholipid metabolism, Linoleic acid metabolism, alpha-Linolenic acid metabolism and Arachidonic acid metabolism though PC(18:0/14:0), PE(16:0/16:0) and PE(18:0/16:0) in irradiated. Our results showed that irradiation had effect on the lipid of marbled beef, but the increase of irradiation dose from 2.5 kGy to 4.5 kGy had little effect on lipids. These results help us to understand the dynamic changes of irradiated meat lipids and lay a foundation for the application of irradiation in meat preservation.
Collapse
|
30
|
Damiani T, Bonciarelli S, Thallinger GG, Koehler N, Krettler CA, Salihoğlu AK, Korf A, Pauling JK, Pluskal T, Ni Z, Goracci L. Software and Computational Tools for LC-MS-Based Epilipidomics: Challenges and Solutions. Anal Chem 2023; 95:287-303. [PMID: 36625108 PMCID: PMC9835057 DOI: 10.1021/acs.analchem.2c04406] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tito Damiani
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Stefano Bonciarelli
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gerhard G. Thallinger
- Institute
of Biomedical Informatics, Graz University
of Technology, 8010 Graz, Austria,
| | - Nikolai Koehler
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | | | - Arif K. Salihoğlu
- Department
of Physiology, Faculty of Medicine and Institute of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ansgar Korf
- Bruker Daltonics
GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Josch K. Pauling
- LipiTUM,
Chair of Experimental Bioinformatics, Technical
University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | - Tomáš Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Praha 6, Czech Republic
| | - Zhixu Ni
- Center of
Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| | - Laura Goracci
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy,
| |
Collapse
|
31
|
Chang CT, Chiu WC, Lin ZR, Shieh YT, Chang IT, Hsia MH, Wang CJ, Chen CJ, Liu MY. Determination of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine products in human very low-density lipoproteins by nonaqueous low-flow capillary electrophoresis-mass spectrometry. J Chromatogr A 2023; 1687:463694. [PMID: 36502642 DOI: 10.1016/j.chroma.2022.463694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A simple and fast low-flow capillary electrophoresis-mass spectrometry (low-flow CE-MS) method has been developed to analyze oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products in human very low-density lipoproteins (VLDLs). Native PAPC standard was analyzed to optimize the low-flow CE-MS method. The optimal CE conditions included separation buffer (60% (v/v) acetonitrile, 40% (v/v) methanol, 0.1% (v/v) water, 0.5% (v/v) formic acid, 20 mM ammonium acetate), sheath liquid (60% (v/v) acetonitrile, 40% (v/v) methanol, 0.1% (v/v) water, 20 mM ammonium acetate), separation voltage (20 kV), separation capillary internal diameter (i.d.) (75 µm), separation capillary temperature (23˚C) and sample injection time (6 s). The selected MS conditions included heated capillary temperature (250°C), capillary voltage (10 V), and injection time (1 s). Sheath gas was not used in this study. The total ion chromatograms (TICs), extracted ion chromatograms (EICs) and MS spectra of native PAPC standard and its in vitro oxidation products showed good repeatability and sensitivity. To determine the ox-PAPC products in human VLDLs, the EICs and MS spectra of VLDLs were compared with the in vitro oxidation products of native PAPC standard. For native PAPC standard, the measured linear range was 2.5 - 100.0 µg/mL, and the coefficients of determination (R2) was 0.9994. The concentration limit of detection (LOD) was 0.44 µg/mL, and the concentration limit of quantitation (LOQ) was 1.34 µg/mL. A total of 21 ox-PAPC products were analyzed for the VLDLs of healthy and uremic subjects. The levels of 7 short-chain and 5 long-chain ox-PAPC products on uremic VLDLs were significantly higher than healthy VLDLs. This simple low-flow CE-MS method might be a good alternative for LC-MS for the analysis of ox-PAPC products. Furthermore, it might also help scientists to expedite the search for uremic biomarkers.
Collapse
Affiliation(s)
- Chiz-Tzung Chang
- Department of Medicine, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Chiu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Zhi-Ru Lin
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Ying-Tzu Shieh
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - I-Ting Chang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Min-Hui Hsia
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chuan-Jun Wang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan; Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| | - Mine-Yine Liu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan.
| |
Collapse
|
32
|
Lu D, Fujiwara H, Lodhi IJ, Hsu FF. Isolation and Mass Spectrometry-Based Profiling of Major Lipids in Brown Adipose Tissue. Methods Mol Biol 2023; 2662:219-239. [PMID: 37076685 DOI: 10.1007/978-1-0716-3167-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Brown adipose tissue (BAT) is an important regulator of metabolic homeostasis through its role in adaptive thermogenesis and control of whole-body glucose metabolism. Lipids play multiple roles in BAT functions, including serving as a fuel source for thermogenesis, mediating inter-organelle cross talk, and acting as BAT-derived signaling molecules that influence systemic energy metabolism. Profiling of various lipids in BAT under distinct metabolic states could provide new insights into their roles in the biology of the thermogenic fat. In this chapter, we describe a step-by-step workflow starting from sample preparations to mass spectrometry-based analysis of fatty acids and phospholipids in BAT.
Collapse
Affiliation(s)
- Dongliang Lu
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hideji Fujiwara
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
33
|
Xia F, Wan JB. Chemical derivatization strategy for mass spectrometry-based lipidomics. MASS SPECTROMETRY REVIEWS 2023; 42:432-452. [PMID: 34486155 DOI: 10.1002/mas.21729] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Lipids, serving as the structural components of cellular membranes, energy storage, and signaling molecules, play the essential and multiple roles in biological functions of mammals. Mass spectrometry (MS) is widely accepted as the first choice for lipid analysis, offering good performance in sensitivity, accuracy, and structural characterization. However, the untargeted qualitative profiling and absolute quantitation of lipids are still challenged by great structural diversity and high structural similarity. In recent decade, chemical derivatization mainly targeting carboxyl group and carbon-carbon double bond of lipids have been developed for lipidomic analysis with diverse advantages: (i) offering more characteristic structural information; (ii) improving the analytical performance, including chromatographic separation and MS sensitivity; (iii) providing one-to-one chemical isotope labeling internal standards based on the isotope derivatization regent in quantitative analysis. Moreover, the chemical derivatization strategy has shown great potential in combination with ion mobility mass spectrometry and ambient mass spectrometry. Herein, we summarized the current states and advances in chemical derivatization-assisted MS techniques for lipidomic analysis, and their strengths and challenges are also given. In summary, the chemical derivatization-based lipidomic approach has become a promising and reliable technique for the analysis of lipidome in complex biological samples.
Collapse
Affiliation(s)
- Fangbo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| |
Collapse
|
34
|
Roberts BM, Deemer SE, Smith DL, Mobley JA, Musi N, Plaisance EP. Effects of an exogenous ketone ester using multi-omics in skeletal muscle of aging C57BL/6J male mice. Front Nutr 2022; 9:1041026. [PMID: 36458175 PMCID: PMC9707703 DOI: 10.3389/fnut.2022.1041026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Exogenous ketone ester supplementation provides a means to increase circulating ketone concentrations without the dietary challenges imposed by ketogenic diets. Our group has shown that oral R,S-1,3, butanediol diacetoacetate (BD-AcAc2) consumption results in body weight loss or maintenance with moderate increases in circulating ketones. We have previously shown a diet consisting of 25% BD-AcAc2 can maintain lean body mass (LBM) and induce fat mass (FM) loss in young, healthy male mice, but the underlying mechanisms are still unknown. Therefore, the purpose of this study was to determine if a diet consisting of 25% BD-AcAc2 (ketone ester, KE) would alter body composition, transcriptional regulation, the proteome, and the lipidome of skeletal muscle in aged mice. We hypothesized that the KE group would remain weight stable with improvements in body composition compared to controls, resulting in a healthy aging phenotype. Male C57BL/6J mice (n = 16) were purchased from Jackson Laboratories at 72 weeks of age. After 1 week of acclimation, mice were weighed and randomly assigned to one of two groups (n = 8 per group): control (CON) or KE. A significant group by time interaction was observed for body weight (P < 0.001), with KE fed mice weighing significantly less than CON. FM increased over time in the control group but was unchanged in the KE group. Furthermore, LBM was not different between CON and KE mice despite KE mice weighing less than CON mice. Transcriptional analysis of skeletal muscle identified 6 genes that were significantly higher and 21 genes that were significantly lower in the KE group compared to CON. Lipidomic analysis of skeletal muscle identified no differences between groups for any lipid species, except for fatty acyl chains in triacylglycerol which was 46% lower in the KE group. Proteomics analysis identified 44 proteins that were different between groups, of which 11 were lower and 33 were higher in the KE group compared to CON. In conclusion, 72-week-old male mice consuming the exogenous KE, BD-AcAc2, had lower age-related gains in body weight and FM compared to CON mice. Furthermore, transcriptional and proteomics data suggest a signature in skeletal muscle of KE-treated mice consistent with markers of improved skeletal muscle regeneration, improved electron transport chain utilization, and increased insulin sensitivity.
Collapse
Affiliation(s)
- Brandon M. Roberts
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah E. Deemer
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, United States
| | - Daniel L. Smith
- Department of Nutrition Sciences, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
- San Antonio Geriatric Research, Education, and Clinical Center, San Antonio, TX, United States
| | - Eric P. Plaisance
- Department of Human Studies, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Eric P. Plaisance,
| |
Collapse
|
35
|
Gutiérrez Y, Fresch M, Scherber C, Brockmeyer J. The lipidome of an omnivorous insect responds to diet composition and social environment. Ecol Evol 2022; 12:e9497. [PMID: 36381391 PMCID: PMC9643132 DOI: 10.1002/ece3.9497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022] Open
Abstract
Lipids are biomolecules with essential roles in metabolic processes, signaling, and cellular architecture. In this study, we investigated changes in the lipidome of the house cricket Acheta domesticus subjected to diets of different nutritional composition (i.e., protein to carbohydrate ratio) and two distinct social environments (i.e., solitary or in groups). We measured relative abundances of 811 lipid species in whole-body cricket samples using flow injection analysis coupled to tandem mass spectrometry. We assessed differences in the relative abundances of lipid species induced by diet composition and social environment in female and male A. domesticus. Additionally, we performed a functional analysis of the lipids with significant differences using a recently developed database. We found that most differences in the relative abundances of lipid species were explained by sex alone. Furthermore, the lipidome of female A. domesticus was responsive to diet composition. Females fed with the balanced diet had an even higher abundance of lipids involved in lipid storage than their counterparts fed with a protein-rich diet. Interestingly, the male cricket lipidome was not responsive to diet composition. In addition, the social environment did not induce significant changes in the lipid profile neither in female nor in male crickets.
Collapse
Affiliation(s)
- Yeisson Gutiérrez
- Centro de Bioinformática y Biología Computacional de Colombia – BIOSManizalesColombia
| | - Marion Fresch
- Institute for Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Christoph Scherber
- Institute of Landscape EcologyUniversity of MünsterMünsterGermany
- Centre for Biodiversity MonitoringZoological Research Museum Alexander KoenigBonnGermany
| | - Jens Brockmeyer
- Institute for Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| |
Collapse
|
36
|
Magnuson AD, Bukowski MR, Rosenberger TA, Picklo MJ. Quantifying Sphingomyelin in Dairy through Infusion-Based Shotgun Mass Spectrometry with Lithium-Ion-Induced Fragmentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13808-13817. [PMID: 36239443 DOI: 10.1021/acs.jafc.2c04587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Quantifying sphingomyelin (SM) species by infusion-based mass spectrometry (MS) is complicated by the presence of isobaric phosphatidylcholine (PC) species, which generate a common m/z 184 product ion in the presence of ammonium ions as a result of the phosphocholine headgroup. Lithium ion adducts of SM undergo a selective dehydration [Li + H2O + (CH3)3NC2H4PO4] with a corresponding neutral loss of -207 Da. This neutral loss was employed to create a SM-selective method for identifying target species, which were quantitated using multiple reaction monitoring (MRM). SM-selective fragments in MS3 were used to characterize the sphingosine base and acyl chain. These methods were used to identify 50 individual SM species in bovine milk ranging from SM 28:1 to SM 44:2, with d16:1, d17:1, d18:1, d19:1, and d20:1 bases, and acyl fatty acids ranging from 10 to 25 carbons and 0-1 desaturations. Spiked SM standards into milk had a recovery of 99.7%, and endogenous milk SM had <10% coefficient of variation for both intra- and interday variability, with limits of detection of 1.4-5.55 nM and limits of quantitation of 11.8-178.1 nM. This MS-MRM method was employed to accurately and precisely quantify SM species in dairy products, including bovine-derived whole milk, half and half, whipping cream, and goat milk.
Collapse
Affiliation(s)
- Andrew D Magnuson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 2420 Second Avenue North, Grand Forks, North Dakota 58203, United States
| | - Michael R Bukowski
- Beltsville Agricultural Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Thad A Rosenberger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58201, United States
| | - Matthew J Picklo
- Grand Forks Human Nutrition Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 2420 Second Avenue North, Grand Forks, North Dakota 58203, United States
| |
Collapse
|
37
|
Rapid Evaporative Ionization Mass Spectrometry-Based Lipidomics for Identification of Canine Mammary Pathology. Int J Mol Sci 2022; 23:ijms231810562. [PMID: 36142485 PMCID: PMC9502565 DOI: 10.3390/ijms231810562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The present work proposes the use of a fast analytical platform for the mass spectrometric (MS) profiling of canine mammary tissues in their native form for the building of a predictive statistical model. The latter could be used as a novel diagnostic tool for the real-time identification of different cellular alterations in order to improve tissue resection during veterinary surgery, as previously validated in human oncology. Specifically, Rapid Evaporative Ionization Mass Spectrometry (REIMS) coupled with surgical electrocautery (intelligent knife—iKnife) was used to collect MS data from histologically processed mammary samples, classified into healthy, hyperplastic/dysplastic, mastitis and tumors. Differences in the lipid composition enabled tissue discrimination with an accuracy greater than 90%. The recognition capability of REIMS was tested on unknown mammary samples, and all of them were correctly identified with a correctness score of 98–100%. Triglyceride identification was increased in healthy mammary tissues, while the abundance of phospholipids was observed in altered tissues, reflecting morpho-functional changes in cell membranes, and oxidized species were also tentatively identified as discriminant features. The obtained lipidomic profiles represented unique fingerprints of the samples, suggesting that the iKnife technique is capable of differentiating mammary tissues following chemical changes in cellular metabolism.
Collapse
|
38
|
Ganeshalingam M, Enstad S, Sen S, Cheema S, Esposito F, Thomas R. Role of lipidomics in assessing the functional lipid composition in breast milk. Front Nutr 2022; 9:899401. [PMID: 36118752 PMCID: PMC9478754 DOI: 10.3389/fnut.2022.899401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Breast milk is the ideal source of nutrients for infants in early life. Lipids represent 2–5% of the total breast milk composition and are a major energy source providing 50% of an infant’s energy intake. Functional lipids are an emerging class of lipids in breast milk mediating several different biological functions, health, and developmental outcome. Lipidomics is an emerging field that studies the structure and function of lipidome. It provides the ability to identify new signaling molecules, mechanisms underlying physiological activities, and possible biomarkers for early diagnosis and prognosis of diseases, thus laying the foundation for individualized, targeted, and precise nutritional management strategies. This emerging technique can be useful to study the major role of functional lipids in breast milk in several dimensions. Functional lipids are consumed with daily food intake; however, they have physiological benefits reported to reduce the risk of disease. Functional lipids are a new area of interest in lipidomics, but very little is known of the functional lipidome in human breast milk. In this review, we focus on the role of lipidomics in assessing functional lipid composition in breast milk and how lipid bioinformatics, a newly emerging branch in this field, can help to determine the mechanisms by which breast milk affects newborn health.
Collapse
Affiliation(s)
- Moganatharsa Ganeshalingam
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- *Correspondence: Moganatharsa Ganeshalingam,
| | - Samantha Enstad
- Neonatal Intensive Care Unit, Orlando Health Winne Palmer Hospital for Women and Babies, Orlando, FL, United States
| | - Sarbattama Sen
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sukhinder Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Flavia Esposito
- Department of Mathematics, University of Bari Aldo Moro, Bari, Italy
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Raymond Thomas,
| |
Collapse
|
39
|
Pranneshraj V, Sangha MK, Djalovic I, Miladinovic J, Djanaguiraman M. Lipidomics-Assisted GWAS (lGWAS) Approach for Improving High-Temperature Stress Tolerance of Crops. Int J Mol Sci 2022; 23:ijms23169389. [PMID: 36012660 PMCID: PMC9409476 DOI: 10.3390/ijms23169389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
High-temperature stress (HT) over crop productivity is an important environmental factor demanding more attention as recent global warming trends are alarming and pose a potential threat to crop production. According to the Sixth IPCC report, future years will have longer warm seasons and frequent heat waves. Thus, the need arises to develop HT-tolerant genotypes that can be used to breed high-yielding crops. Several physiological, biochemical, and molecular alterations are orchestrated in providing HT tolerance to a genotype. One mechanism to counter HT is overcoming high-temperature-induced membrane superfluidity and structural disorganizations. Several HT lipidomic studies on different genotypes have indicated the potential involvement of membrane lipid remodelling in providing HT tolerance. Advances in high-throughput analytical techniques such as tandem mass spectrometry have paved the way for large-scale identification and quantification of the enormously diverse lipid molecules in a single run. Physiological trait-based breeding has been employed so far to identify and select HT tolerant genotypes but has several disadvantages, such as the genotype-phenotype gap affecting the efficiency of identifying the underlying genetic association. Tolerant genotypes maintain a high photosynthetic rate, stable membranes, and membrane-associated mechanisms. In this context, studying the HT-induced membrane lipid remodelling, resultant of several up-/down-regulations of genes and post-translational modifications, will aid in identifying potential lipid biomarkers for HT tolerance/susceptibility. The identified lipid biomarkers (LIPIDOTYPE) can thus be considered an intermediate phenotype, bridging the gap between genotype–phenotype (genotype–LIPIDOTYPE–phenotype). Recent works integrating metabolomics with quantitative genetic studies such as GWAS (mGWAS) have provided close associations between genotype, metabolites, and stress-tolerant phenotypes. This review has been sculpted to provide a potential workflow that combines MS-based lipidomics and the robust GWAS (lipidomics assisted GWAS-lGWAS) to identify membrane lipid remodelling related genes and associations which can be used to develop HS tolerant genotypes with enhanced membrane thermostability (MTS) and heat stable photosynthesis (HP).
Collapse
Affiliation(s)
- Velumani Pranneshraj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Manjeet Kaur Sangha
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
- Correspondence: (I.D.); (M.D.)
| | - Jegor Miladinovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Correspondence: (I.D.); (M.D.)
| |
Collapse
|
40
|
Shields SWJ, Sanders JD, Brodbelt JS. Enhancing the Signal-to-Noise of Diagnostic Fragment Ions of Unsaturated Glycerophospholipids via Precursor Exclusion Ultraviolet Photodissociation Mass Spectrometry (PEx-UVPD-MS). Anal Chem 2022; 94:11352-11359. [PMID: 35917227 PMCID: PMC9484799 DOI: 10.1021/acs.analchem.2c02128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and elucidating the diverse structures and functions of lipids has motivated the development of many innovative tandem mass spectrometry (MS/MS) strategies. Higher-energy activation methods, such as ultraviolet photodissociation (UVPD), generate unique fragment ions from glycerophospholipids that can be used to perform in-depth structural analysis and facilitate the deconvolution of isomeric lipid structures in complex samples. Although detailed characterization is central to the correlation of lipid structure to biological function, it is often impeded by the lack of sufficient instrument sensitivity for highly bioactive but low-abundance phospholipids. Here, we present precursor exclusion (PEx) UVPD, a simple yet powerful technique to enhance the signal-to-noise (S/N) of informative low-abundance fragment ions produced from UVPD of glycerophospholipids. Through the exclusion of the large population of undissociated precursor ions with an MS3 strategy, the S/N of diagnostic fragment ions from PC 18:0/18:2(9Z, 12Z) increased up to an average of 13x for PEx-UVPD compared to UVPD alone. These enhancements were extended to complex mixtures of lipids from bovine liver extract to confidently identify 35 unique structures using liquid chromatography PEx-UVPD. This methodology has the potential to advance lipidomics research by offering deeper structure elucidation and confident identification of biologically active lipids.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Gao X, Lin L, Hu A, Zhao H, Kang L, Wang X, Yuan C, Yang P, Shen H. Shotgun lipidomics combined targeted MRM reveals sphingolipid signatures of coronary artery disease. Talanta 2022; 245:123475. [DOI: 10.1016/j.talanta.2022.123475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
|
42
|
Analysis of Oxidized 1-Palmitoyl-2-Arachidonoyl-Sn-Glycero-3 Phosphocholine Products in Uremic Patients by LC-ESI/MS. SEPARATIONS 2022. [DOI: 10.3390/separations9080192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A simple liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI/MS) method has been developed to analyze oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products on the lipoproteins of uremic patients. The native PAPC standard was in vitro oxidized by the Fenton reaction, and the ox-PAPC products were analyzed by LC- ESI/MS. For LC, a C8 column and a mobile phase (acetonitrile-isopropanol containing 0.1% formic acid (70:30, v/v)) were selected. For ESI/MS, the optimal conditions included sheath gas pressure (10 psi), capillary temperature (270 °C), and injection time (1000 ms). The identification of ox-PAPC products on human lipoproteins was based on the extracted ion chromatograms (EICs) and the ESI-MS spectra of the in vitro oxidation products of PAPC standard. The EICs and ESI-MS spectra showed good repeatability and sensitivity. A total of 21 ox-PAPC products was determined. Linear analysis has been performed for the phospholipid standard, 1, 2-Di-O-hexadecyl-sn-glycero-3-phosphocholine (PC(O-16:0/O-16:0)). The linear range was 5.0–100.0 µg/mL, and the coefficient of determination (R2) was 0.989. The concentration limit of detection (LOD) was 1.50 µg/mL, and the concentration limit of quantitation (LOQ) was 4.54 µg/mL. The selected 21 ox-PAPC products have been identified and quantified in very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) of uremic and healthy subjects. Interestingly, the results showed that the levels of 18 products in VLDL, one product in LDL, and 19 products in HDL were significantly higher for uremic patients than healthy controls. This simple LC-ESI/MS method might accelerate the searching for biomarkers of uremia in the future.
Collapse
|
43
|
Bouza M, García-Martínez J, Gilbert-López B, Moreno-González D, Rocío-Bautista P, Parras-Guijarro D, Sánchez-Vizcaino A, Brandt S, García-Reyes JF, Molina-Díaz A, Franzke J. Liquid Chromatography-Dielectric Barrier Discharge Ionization Mass Spectrometry for the analysis of neutral lipids of archaeological interest. J Sep Sci 2022; 45:3105-3114. [PMID: 35801641 PMCID: PMC9544991 DOI: 10.1002/jssc.202200402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022]
Abstract
Dielectric barrier discharge ionization has gained attention in the last few years due to its versatility and the vast array of molecules that can be ionized. In this study, we report on the assessment of liquid chromatography coupled to dielectric barrier discharge ionization with mass spectrometry for neutral lipid analysis. A set of different neutral lipid subclasses (triacylglycerides, diacylglycerides, and sterols) were selected for the study. The main species detected from our ionization source were [M‐H2O+H]+, [M+H]+ or [M‐R‐H2O+H]+, attributed to sterol dehydration, protonation or the fragmentation of an acyl chain accompanied by a water loss of the glycerolipids, respectively. In terms of sensitivity, the dielectric barrier discharge displayed overall improved abundances and comparable or better limits of quantitation than atmospheric pressure chemical ionization for both acylglycerols and sterols. As a case study, different archaeological samples with variable content in neutral lipids, particularly triacylglycerides, were studied. The identification was carried out by combining accurate mass and the tentative formula associated with the exact mass, retention time matching with standards, and additional structural information from in‐source fragmentation. The high degree of unsaturation and the presence of sterols revealed the potential vegetal origin of the material stored in the analyzed samples.
Collapse
Affiliation(s)
- Marcos Bouza
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - Julio García-Martínez
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain.,University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - David Moreno-González
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - Priscilla Rocío-Bautista
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - David Parras-Guijarro
- University Research Institute for Iberian Archaeology, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - Alberto Sánchez-Vizcaino
- University Research Institute for Iberian Archaeology, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - Sebastian Brandt
- ISAS-Leibniz Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139, Dortmund, Germany
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain.,University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain.,University Research Institute for Iberian Archaeology, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain.,University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, Jaén, 23071, Spain
| | - Joachim Franzke
- ISAS-Leibniz Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139, Dortmund, Germany
| |
Collapse
|
44
|
Picataggi A, Rodrigues A, Cromley DA, Wang H, Wiener JP, Garliyev V, Billheimer JT, Grabiner BC, Hurt JA, Chen AC, Han X, Rader DJ, Praticò D, Lyssenko NN. Specificity of ABCA7-mediated cell lipid efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159157. [PMID: 35381375 PMCID: PMC9058236 DOI: 10.1016/j.bbalip.2022.159157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/31/2022]
Abstract
Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) performs incompletely understood biochemical functions that affect pathogenesis of Alzheimer's disease. ABCA7 is most similar in primary structure to ABCA1, the protein that mediates cell lipid efflux and formation of high-density lipoprotein (HDL). Lipid metabolic labeling/tracer efflux assays were employed to investigate lipid efflux in BHK-ABCA7(low expression), BHK-ABCA7(high expression) and BHK-ABCA1 cells. Shotgun lipid mass spectrometry was used to determine lipid composition of HDL synthesized by BHK-ABCA7 and BHK-ABCA1 cells. BHK-ABCA7(low) cells exhibited significant efflux only of choline-phospholipid and phosphatidylinositol. BHK-ABCA7(high) cells had significant cholesterol and choline-phospholipid efflux to apolipoprotein (apo) A-I, apo E, the 18A peptide, HDL, plasma and cerebrospinal fluid and significant efflux of sphingosine-lipid, serine-lipid (which is composed of phosphatidylserine and phosphatidylethanolamine in BHK cells) and phosphatidylinositol to apo A-I. In efflux assays to apo A-I, after adjustment to choline-phospholipid, ABCA7-mediated efflux removed ~4 times more serine-lipid and phosphatidylinositol than ABCA1-mediated efflux, while ABCA1-mediated efflux removed ~3 times more cholesterol than ABCA7-mediated efflux. Shotgun lipidomic analysis revealed that ABCA7-HDL had ~20 mol% less phosphatidylcholine and 3-5 times more serine-lipid and phosphatidylinositol than ABCA1-HDL, while ABCA1-HDL contained only ~6 mol% (or ~1.1 times) more cholesterol than ABCA7-HDL. The discrepancy between the tracer efflux assays and shotgun lipidomics with respect to cholesterol may be explained by an underestimate of ABCA7-mediated cholesterol efflux in the former approach. Overall, these results suggest that ABCA7 lacks specificity for phosphatidylcholine and releases significantly but not dramatically less cholesterol in comparison with ABCA1.
Collapse
Affiliation(s)
- Antonino Picataggi
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amrith Rodrigues
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Debra A Cromley
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hu Wang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Joel P Wiener
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Viktor Garliyev
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jeffrey T Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nicholas N Lyssenko
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
45
|
Qi J, Yan HM, Xu Y, Peng YL, Jia CK, Ye M, Fan ZH, Xiong GY, Mei L, Xu XL. Effect of short-term frozen storage of raw meat on aroma retention of chicken broth: A perspective on physicochemical properties of broth. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Liu Q, Zhao J, Liu Y, Qiao W, Jiang T, Liu Y, Yu X, Chen L. Advances in analysis, metabolism and mimicking of human milk lipids. Food Chem 2022; 393:133332. [PMID: 35661604 DOI: 10.1016/j.foodchem.2022.133332] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022]
Abstract
Human milk lipids differ from the milk lipids of other mammals in composition and positional distribution of fatty acids. Analysis and detection technology of lipids is key to understanding milk lipids, and thus the concentrations, compositions and distribution characteristics of milk lipids are discussed. Differences between human milk lipids and their substitutes in form, composition and structure affect their digestion, absorption and function in infants. Characteristics and mimicking of human milk lipids have been intensively studied with the objective of narrowing the gap between human milk and infant formulae. Based on the existing achievements, further progress may be made by improving detection techniques, deepening knowledge of metabolic pathways and perfecting fat substitutes. This review detailed the characteristics of human milk lipids and related detection technologies with a view towards providing a clear direction for research on mimicking human milk lipids in formulae to further improve infant nutrition.
Collapse
Affiliation(s)
- Qian Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin 541006, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaowen Yu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
47
|
Optimized Identification of Triacylglycerols in Milk by HPLC-HRMS. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThis work has developed an optimized workflow for the targeted analysis of triacylglycerols (TAGs) in milk by liquid chromatography coupled with a Q-Exactive Orbitrap mass spectrometer. First, the effects of resolution (17,500; 35,000; 70,000; 140,000) and automatic gain control target (AGC, from 2×104, 2×105, 1×106, and 3×106) have been optimized with the goal to minimize the injection time, maximize the number of scans, and minimize the mass error. Then, the flow rate of the liquid chromatography system was also optimized by maximizing the number of theoretical plates. The resulting optimized parameters consisted of a flow rate of 200 μL/min, mass resolution of 35,000, and AGC target of 2×105. Such optimal conditions were applied for targeted TAG analysis of milk fat extracts. Up to 14 target triglycerides in milk fat were identified performing a data-dependent HPLC-HRMS-MS2 experiment (t-SIM-ddMS2). The findings reported here can be helpful for MS-based lipidomic workflows and targeted milk lipid analysis.
Collapse
|
48
|
Structural Characterization of Mono- and Dimethylphosphatidylethanolamines from Various Organisms Using a Complex Analytical Strategy Including Chiral Chromatography. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two minor phospholipids, i.e., mono- and/or dimethylphosphatidylethanolamines, are widespread in many organisms, from bacteria to higher plants and animals. A molecular mixture of methyl-PE and dimethyl-PE was obtained from total lipids by liquid chromatography and further identified by mass spectrometry. Total methyl-PE and dimethyl-PE were cleaved by phospholipase C, and the resulting diacylglycerols, in the form of acetyl derivatives, were separated into alkyl-acyl, alkenyl-acyl, and diacylglycerols. Reversed-phase LC/MS allowed dozens of molecular species to be identified and further analyzed. This was performed on a chiral column, and identification by tandem positive ESI revealed that diacyl derivatives from all four bacteria were mixtures of both R and S enantiomers. The same applied to alkenyl-acyl derivatives of anaerobic bacteria. Analysis thus confirmed that some bacteria biosynthesize phospholipids having both sn-glycerol-3-phosphate and sn-glycerol-1-phosphate as precursors. These findings were further supported by data already published in GenBank. The use of chiral chromatography made it possible to prove that both enantiomers of glycerol phosphate of some molecular species of mono- and dimethylphosphatidylethanolamines are present. The result of the analysis can be interpreted that the cultured bacteria do not have homochiral membranes but, on the contrary, have an asymmetric, i.e., heterochiral membranes.
Collapse
|
49
|
Sun W, Li P, Cai J, Ma J, Zhang X, Song Y, Liu Y. Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Front Immunol 2022; 13:860586. [PMID: 35371016 PMCID: PMC8971568 DOI: 10.3389/fimmu.2022.860586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease characterized by the production of abnormal autoantibodies and immune complexes that can affect the organ and organ systems, particularly the kidneys and the cardiovascular system. Emerging evidence suggests that dysregulated lipid metabolism, especially in key effector cells, such as T cells, B cells, and innate immune cells, exerts complex effects on the pathogenesis and progression of SLE. Beyond their important roles as membrane components and energy storage, different lipids can also modulate different cellular processes, such as proliferation, differentiation, and survival. In this review, we summarize altered lipid metabolism and the associated mechanisms involved in the pathogenesis and progression of SLE. Furthermore, we discuss the recent progress in the role of lipid metabolism as a potential therapeutic target in SLE.
Collapse
Affiliation(s)
- Wei Sun
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Pengchong Li
- Department of Rheumatology and Clinical Immunology, The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Beijing, China
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| |
Collapse
|
50
|
Shotgun Lipidomic Analysis for Differentiation of Niche Cold Pressed Oils. Molecules 2022; 27:molecules27061848. [PMID: 35335212 PMCID: PMC8949066 DOI: 10.3390/molecules27061848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fast-growing food industry is bringing significant number of new products to the market. To protect consumers’ health and rights, it is crucial that food control laboratories are able to ensure reliable quality testing, including product authentication and detection of adulterations. In our study, we applied a fast and eco-friendly method based on shotgun-lipidomic mass spectrometry for the authentication of niche edible oils. Comprehensive lipid profiles of camelina (CA), flax (FL) and hemp (HP) seed oils were obtained. With the aid of principal component analysis (PCA), it was possible to detect and distinguish each of them based on their lipid profiles. Lipidomic markers characteristic ofthe oils were also identified, which can be used as targets and expedite development of new multiplexed testing methods.
Collapse
|