1
|
Yang TN, Huang NN, Wang YX, Jian PA, Ma XY, Li XN, Li JL. Melatonin protects spermatogenic cells against DNA damage and necroptosis induced by atrazine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106209. [PMID: 39672631 DOI: 10.1016/j.pestbp.2024.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Atrazine (ATZ), a widely used triazine herbicide, has been shown to disrupt reproductive development in organisms. Melatonin (MLT) is a natural hormone and has been shown to have strong antioxidant properties. Due to its lipophilicity, it can cross biological barriers freely and act on germ cells directly. However, the mechanism through which melatonin affects atrazine-induced damage to male sperm cells remains unclear. This study aimed to investigate the effects of ATZ on spermatocyte development and to elucidate MLT's role in preventing ATZ-induced spermatogenesis failure. Pubertal mice were randomly divided into four groups: blank control group (Con), 5 mg/kg melatonin group (MLT), 170 mg/kg atrazine group (ATZ), and ATZ + MLT group. GC-1 cell culture was employed to access the in vitro effects of MLT and ATZ on spermatogonia. The results indicate that atrazine affected protein and metabolite composition, and reduced sperm viability, sperm motility (VAP, VSL and VCL) and levels of proteins related to spermatogenesis function in the mice testis. Melatonin alleviated the development of cellular DNA damage and necroptosis caused by atrazine both in vivo and in vitro. Moreover, we proposed that it was GC-1 cells developing necroptosis, but not other cell types in the testis. In conclusion, this study suggests that atrazine disrupts the development process, causing DNA damage in spermatozoa during spermatogenesis. Additionally, ATZ-induced necroptosis specifically targets spermatogenic cells. Notably, melatonin alleviates atrazine-induced necroptosis and DNA damage in spermatogenic cells. This study provides new insights into potential therapeutic strategies for atrazine-induced male infertility.
Collapse
Affiliation(s)
- Tian-Ning Yang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ning-Ning Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Xu L, Zhao W, Wang R, Hong M, Wang H, Sun Y, Zhong T, Hang D, Xie R, Chen L, Yao B, Ding L, Ju H. Aglycone Analysis and Quantitative Tracking of Correlated Terminal Glycan Pair on Spermatozoa. Anal Chem 2024; 96:16186-16194. [PMID: 39361617 DOI: 10.1021/acs.analchem.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Mammalian sperm glycans directly mediate several key life events. However, previous studies have not focused on two key factors that regulate these processes, the terminal glycan pattern and the anchoring sites. Herein, we group the capping monosaccharide sialic acid (Sia) and its capping substrates galactose/N-acetylgalactosamine (Gal/GalNAc) into a "correlated terminal glycan pair" (glycopair) and, for the first time, reveal the differences in the aglycone pattern of this pair on spermatozoa using glyco-selective in situ covalent labeling techniques. Sia is mainly found in glycoproteins, whereas terminal Gal/GalNAc is mainly found in glycolipids. We quantitatively track the dynamic changes of the glycopair during sperm epididymal migration and find that the Sia capping ratio decreases with the increased expression of the glycopair; caudal upswim spermatozoa also show a lower Sia capping ratio than down spermatozoa. We thus propose two new parameters reflecting the terminal glycoforms of spermatozoa, which can well distinguish the maturity of spermatozoa. By fluorescence imaging of the glycopair in different regions of the sperm, we find that different parts of the sperm contribute differently to the overall glycan changes.
Collapse
Affiliation(s)
- Lijia Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Changshu Foreign Language School, Suzhou 215000, China
| | - Wei Zhao
- Department of Reproductive Medical Center, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
- Center of Clinical Laboratory Science, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Ruiyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Min Hong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tong Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dong Hang
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer, Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Li Chen
- Department of Reproductive Medical Center, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Bing Yao
- Department of Reproductive Medical Center, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Suhaiman L, Belmonte SA. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front Cell Dev Biol 2024; 12:1457638. [PMID: 39376630 PMCID: PMC11456524 DOI: 10.3389/fcell.2024.1457638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
It has long been thought that exocytosis was driven exclusively by well-studied fusion proteins. Some decades ago, the role of lipids became evident and escalated interest in the field. Our laboratory chose a particular cell to face this issue: the human sperm. What makes this cell special? Sperm, as terminal cells, are characterized by their scarcity of organelles and the complete absence of transcriptional and translational activities. They are specialized for a singular membrane fusion occurrence: the exocytosis of the acrosome. This unique trait makes them invaluable for the study of exocytosis in isolation. We will discuss the lipids' role in human sperm acrosome exocytosis from various perspectives, with a primary emphasis on our contributions to the field. Sperm cells have a unique lipid composition, very rare and not observed in many cell types, comprising a high content of plasmalogens, long-chain, and very-long-chain polyunsaturated fatty acids that are particular constituents of some sphingolipids. This review endeavors to unravel the impact of membrane lipid composition on the proper functioning of the exocytic pathway in human sperm and how this lipid dynamic influences its fertilizing capability. Evidence from our and other laboratories allowed unveiling the role and importance of multiple lipids that drive exocytosis. This review highlights the role of cholesterol, diacylglycerol, and particular phospholipids like phosphatidic acid, phosphatidylinositol 4,5-bisphosphate, and sphingolipids in driving sperm acrosome exocytosis. Furthermore, we provide a comprehensive overview of the factors and enzymes that regulate lipid turnover during the exocytic course. A more thorough grasp of the role played by lipids transferred from sperm can provide insights into certain causes of male infertility. It may lead to enhancements in diagnosing infertility and techniques like assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Laila Suhaiman
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU)-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Silvia A. Belmonte
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) “Dr. Mario H. Burgos”, CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Sulc A, Czétány P, Máté G, Balló A, Semjén D, Szántó Á, Márk L. MALDI Imaging Mass Spectrometry Reveals Lipid Alterations in Physiological and Sertoli Cell-Only Syndrome Human Testicular Tissue Sections. Int J Mol Sci 2024; 25:8358. [PMID: 39125928 PMCID: PMC11313448 DOI: 10.3390/ijms25158358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Azoospermia, the absence of sperm cells in semen, affects around 15% of infertile males. Sertoli cell-only syndrome (SCOS) is the most common pathological lesion in the background of non-obstructive azoospermia and is characterised by the complete absence of germinal epithelium, with Sertoli cells exclusively present in the seminiferous tubules. Studies have shown a correlation between successful spermatogenesis and male fertility with lipid composition of spermatozoa, semen, seminal plasma or testis. The aim of this research was to discover the correlation between the Johnsen scoring system and phospholipid expressions in testicular cryosections of SCOS patients. MALDI imaging mass spectrometry is used to determine spatial distributions of molecular species, such as phospholipids. Phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingomyelins (SMs) are the most abundant phospholipids in mammalian cells and testis. SMs, the structural components of plasma membranes, are crucial for spermatogenesis and sperm function. Plasmalogens, are unique PCs in testis with strong antioxidative properties. This study, using imaging mass spectrometry, demonstrates the local distribution of phospholipids, particularly SMs, PCs, plasmalogens and PEs in human testicular samples with SCOS for the first time. This study found a strong relationship between the Johnsen scoring system and phospholipid expression levels in human testicular tissues. Future findings could enable routine diagnostic techniques during microTESE procedures for successful sperm extraction.
Collapse
Affiliation(s)
- Alexandra Sulc
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
| | - Péter Czétány
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - Gábor Máté
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
| | - András Balló
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - Dávid Semjén
- Institute of Pathology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Urology Clinic, University of Pécs, 7621 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary;
- National Laboratory on Human Reproduction, University of Pécs, 7622 Pécs, Hungary; (P.C.); (G.M.); (A.B.); (Á.S.)
- Imaging Centre for Life and Material Sciences, University of Pécs, 7624 Pécs, Hungary
- HUN-REN-PTE, Human Reproduction Research Group, 7624 Pécs, Hungary
| |
Collapse
|
5
|
Di Nisio A, De Toni L, Sabovic I, Vignoli A, Tenori L, Dall’Acqua S, Sut S, La Vignera S, Condorelli RA, Giacone F, Ferlin A, Foresta C, Garolla A. Lipidomic Profile of Human Sperm Membrane Identifies a Clustering of Lipids Associated with Semen Quality and Function. Int J Mol Sci 2023; 25:297. [PMID: 38203468 PMCID: PMC10778809 DOI: 10.3390/ijms25010297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Reduced sperm motility and/or count are among the major causes of reduced fertility in men, and sperm membranes play an important role in the spermatogenesis and fertilization processes. However, the impact of sperm lipid composition on male fertility remains under-investigated. The aim of the present study was to perform a lipidomic analysis of human sperm membranes: we performed an untargeted analysis of membrane lipid composition in fertile (N = 33) and infertile subjects (N = 29). In parallel, we evaluated their serum lipid levels. Twenty-one lipids were identified by their mass/charge ratio and post-source decay spectra. Sulfogalactosylglycerolipid (SGG, seminolipid) was the most abundant lipid component in the membranes. In addition, we observed a significant proportion of PUFAs. Important differences have emerged between the fertile and infertile groups, leading to the identification of a lipid cluster that was associated with semen parameters. Among these, cholesterol sulfate, SGG, and PUFAs represented the most important predictors of semen quality. No association was found between the serum and sperm lipids. Dietary PUFAs and SGG have acknowledged antioxidant functions and could, therefore, represent sensitive markers of sperm quality and testicular function. Altogether, these results underline the important role of sperm membrane lipids, which act independently of serum lipids levels and may rather represent an independent marker of reproductive function.
Collapse
Affiliation(s)
- Andrea Di Nisio
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| | - Luca De Toni
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| | - Iva Sabovic
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM) at the Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) at the Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy; (A.V.); (L.T.)
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35129 Padova, Italy; (S.D.); (S.S.)
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35129 Padova, Italy; (S.D.); (S.S.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (S.L.V.); (R.A.C.)
| | - Rosita Angela Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (S.L.V.); (R.A.C.)
| | - Filippo Giacone
- Centro HERA-Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant’Agata li Battiati, 95030 Catania, Italy;
| | - Alberto Ferlin
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| | - Carlo Foresta
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Andrea Garolla
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.N.); (L.D.T.); (I.S.); (A.F.); (A.G.)
| |
Collapse
|
6
|
Wang H, Li T, Shi H, Su M, Liu Z, Zhang Y, Ma Y. Analyses of widely targeted metabolic profiling reveals mechanisms of metabolomic variations during Tibetan sheep (Ovis aries) testis development. Theriogenology 2023; 197:116-126. [PMID: 36502589 DOI: 10.1016/j.theriogenology.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
In mammals, the testis is the organ with the highest transcriptional activity. After gene transcription, translation, and post-translational protein modification, the transcriptional results are finally presented at the metabolic level. Metabolites not only essential for cell signaling and energy transfer, but also directly influenced by the physiological and pathological changes in tissues and accurately reflect the physiological changes. The fact that the testes are oxygen-deprived organs can explain why Sertoli cells and germ cells may use distinctive metabolic pathways to obtain energy in their different stages of development. Therefore, studying metabolic changes during testis development can better elucidate metabolic profile of the testis, which is essential to revealing characteristic metabolic pathways. The present study applied a widely targeted UPLC-MS/MS-based metabolomics approach with large-scale detection, identification and quantification to investigate the widespread metabolic changes during Tibetan sheep testis development. Firstly, a total of 847 metabolites were detected in the sheep testis, and their changes along with the three testis-development stages were further investigated. The results indicated that those metabolites were clustered into amino acids and their derivatives, carbohydrates and their derivatives, organic acids and their derivatives, benzene and substituted derivatives, alcohols and amines, lipids, nucleotides and their derivatives, bile acids, coenzymes and vitamins, hormones and hormone-related compounds, etc. Among them, the most abundant metabolites in the testis were amino acids and lipid metabolites. The results showed that most of the lipids, carbohydrates with their derivatives, as well as alcohol and amines metabolites were high in sexually immature sheep while organic acids, amino acids and nucleotides showed a continuously increasing trend along with testis development stages. Among them, the content of metabolites with antioxidant effects increased along with testis development, while those related with energy synthesis was downregulated with age. Further correlation analyses of each metabolite-metabolite pair emphasized the cross talk between differential metabolisms across testis development, suggesting a significant correlation between lipids and other metabolites. Finally, based on KEGG pathway analysis, we found that the metabolic pathways in Tibetan sheep testis development were mainly clustered into energy metabolism, gonadal development, and anti-oxidative stress. Reactive oxygen species (ROS) are by-products of normal cellular metabolism and are inevitable during testicular energy metabolism. Thus, the anti-oxidative stress function is a key process in maintaining the normal physiological function of testis. These results contributed to a broader view of the testis metabolome and a comprehensive analysis on metabolomic variation among different testis-development stages, providing a theoretical basis for us to understand the sheep testis metabolic mechanism.
Collapse
Affiliation(s)
- Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Tan D, Konduri S, Erikci Ertunc M, Zhang P, Wang J, Chang T, Pinto AFM, Rocha A, Donaldson CJ, Vaughan JM, Ludwig RG, Willey E, Iyer M, Gray PC, Maher P, Allen NJ, Zuchero JB, Dillin A, Mori MA, Kohama SG, Siegel D, Saghatelian A. A class of anti-inflammatory lipids decrease with aging in the central nervous system. Nat Chem Biol 2023; 19:187-197. [PMID: 36266352 PMCID: PMC9898107 DOI: 10.1038/s41589-022-01165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/08/2022] [Indexed: 02/06/2023]
Abstract
Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited. Here we examined the brain lipidome of mice across their lifespan using untargeted lipidomics. Co-expression network analysis highlighted a progressive decrease in 3-sulfogalactosyl diacylglycerols (SGDGs) and SGDG pathway members, including the potential degradation products lyso-SGDGs. SGDGs show an age-related decline specifically in the central nervous system and are associated with myelination. We also found that an SGDG dramatically suppresses LPS-induced gene expression and release of pro-inflammatory cytokines from macrophages and microglia by acting on the NF-κB pathway. The detection of SGDGs in human and macaque brains establishes their evolutionary conservation. This work enhances interest in SGDGs regarding their roles in aging and inflammatory diseases and highlights the complexity of the brain lipidome and potential biological functions in aging.
Collapse
Affiliation(s)
- Dan Tan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Srihari Konduri
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Meric Erikci Ertunc
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pan Zhang
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin Wang
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tina Chang
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrea Rocha
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cynthia J Donaldson
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Elizabeth Willey
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Dillin
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Steven G Kohama
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
8
|
Blusztajn JK, Aytan N, Rajendiran T, Mellott TJ, Soni T, Burant CF, Serrano GE, Beach TG, Lin H, Stein TD. Cerebral Gray and White Matter Monogalactosyl Diglyceride Levels Rise with the Progression of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1623-1634. [PMID: 37718815 PMCID: PMC10911245 DOI: 10.3233/jad-230543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Multiple studies have reported brain lipidomic abnormalities in Alzheimer's disease (AD) that affect glycerophospholipids, sphingolipids, and fatty acids. However, there is no consensus regarding the nature of these abnormalities, and it is unclear if they relate to disease progression. OBJECTIVE Monogalactosyl diglycerides (MGDGs) are a class of lipids which have been recently detected in the human brain. We sought to measure their levels in postmortem human brain and determine if these levels correlate with the progression of the AD-related traits. METHODS We measured MGDGs by ultrahigh performance liquid chromatography tandem mass spectrometry in postmortem dorsolateral prefrontal cortex gray matter and subcortical corona radiata white matter samples derived from three cohorts of participants: the Framingham Heart Study, the Boston University Alzheimer's Disease Research Center, and the Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program (total n = 288). RESULTS We detected 40 molecular species of MGDGs (including diacyl and alkyl/acyl compounds) and found that the levels of 29 of them, as well as total MGDG levels, are positively associated with AD-related traits including pathologically confirmed AD diagnosis, clinical dementia rating, Braak and Braak stage, neuritic plaque score, phospho-Tau AT8 immunostaining density, levels of phospho-Tau396 and levels of Aβ40. Increased MGDG levels were present in both gray and white matter, indicating that they are widespread and likely associated with myelin-producing oligodendrocytes-the principal cell type of white matter. CONCLUSIONS Our data implicate the MGDG metabolic defect as a central correlate of clinical and pathological progression in AD.
Collapse
Affiliation(s)
- Jan Krzysztof Blusztajn
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
| | - Nurgul Aytan
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
| | | | | | | | | | | | | | | | - Thor D. Stein
- Boston University Chobanian & Avedisian School of Medicine
- Boston University Alzheimer’s Disease Research Center
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, U.S. Department of Veteran Affairs, Bedford, MA
| |
Collapse
|
9
|
Gautier C, Aurich C. "Fine feathers make fine birds" - The mammalian sperm plasma membrane lipid composition and effects on assisted reproduction. Anim Reprod Sci 2022; 246:106884. [PMID: 34776291 DOI: 10.1016/j.anireprosci.2021.106884] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
The sperm plasma membrane is important in modulating many sperm functions. The sperm membrane is composed of a complex mixture of lipids including phospholipids, glycolipids and sterols. There are differences of sperm membrane composition among mammalian species with two groups differing in the most abundant polyunsaturated fatty acid (PUFA), either docosahexaenoic (ω-3 PUFA) or docosapentaenoic acid (ω-6 PUFA). During testicular and epididymal maturation, composition of the sperm plasma membrane evolves with spermatozoa gaining the capacity for fertilization. The importance of fatty acid metabolism for complete spermatogenesis has been elucidated using gene knockout mice. During epididymal transit cholesterol content decreases and PUFA content increases, conferring more fluidity properties to the sperm membrane. The relatively lesser content of antioxidant enzymes and the relatively larger content of PUFA make the spermatozoa particularly susceptible to lipid peroxidation during sperm preservation. In numerous studies, there was adding of PUFA and antioxidants to the diet of animals or to semen extenders with the aim to improve sperm membrane integrity. This review highlights the current knowledge on the sperm membrane composition and effects on sperm function in mammalian domestic animals.
Collapse
Affiliation(s)
- Camille Gautier
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, 1210 Vienna, Austria
| | - Christine Aurich
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, 1210 Vienna, Austria.
| |
Collapse
|
10
|
Mostafa S, Nader N, Machaca K. Lipid Signaling During Gamete Maturation. Front Cell Dev Biol 2022; 10:814876. [PMID: 36204680 PMCID: PMC9531329 DOI: 10.3389/fcell.2022.814876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/30/2022] [Indexed: 01/24/2023] Open
Abstract
Cell lipids are differentially distributed in distinct organelles and within the leaflets of the bilayer. They can further form laterally defined sub-domains within membranes with important signaling functions. This molecular and spatial complexity offers optimal platforms for signaling with the associated challenge of dissecting these pathways especially that lipid metabolism tends to be highly interconnected. Lipid signaling has historically been implicated in gamete function, however the detailed signaling pathways involved remain obscure. In this review we focus on oocyte and sperm maturation in an effort to consolidate current knowledge of the role of lipid signaling and set the stage for future directions.
Collapse
Affiliation(s)
- Sherif Mostafa
- Medical Program, WCMQ, Education City, Qatar Foundation, Doha, Qatar
| | - Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Khaled Machaca,
| |
Collapse
|
11
|
Vuolo D, Do Nascimento CC, D’Almeida V. Reproduction in Animal Models of Lysosomal Storage Diseases: A Scoping Review. Front Mol Biosci 2021; 8:773384. [PMID: 34869599 PMCID: PMC8636128 DOI: 10.3389/fmolb.2021.773384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Lysosomal storage diseases (LSDs) are caused by a mutation in a specific gene. Enzymatic dysfunction results in a progressive storage of substrates that gradually affects lysosomal, cellular and tissue physiology. Their pathophysiological consequences vary according to the nature of the stored substrate, making LSDs complex and multisystemic diseases. Some LSDs result in near normal life expectancies, and advances in treatments mean that more people reach the age to have children, so considering the effects of LSDs on fertility and the risks associated with having children is of growing importance. Objectives: As there is a lack of clinical studies describing the effect of LSDs on the physiology of reproductivity, we undertook a scoping review of studies using animal models of LSDs focusing on reproductive parameters. Methods: We searched six databases: MEDLINE, LILACS, Scopus, Web of Science, Embase and SciELO, and identified 49 articles that met our inclusion criteria. Results: The majority of the studies used male animal models, and a number reported severe morphological and physiological damage in gametes and gonads in models of sphingolipidoses. Models of other LSDs, such as mucopolysaccharidoses, presented important morphological damage. Conclusion: Many of the models found alterations in reproductive systems. Any signs of subfertility or morphological damage in animal models are important, particularly in rodents which are extremely fertile, and may have implications for individuals with LSDs. We suggest the use of more female animal models to better understand the physiopathology of the diseases, and the use of clinical case studies to further explore the risks of individuals with LSDs having children.
Collapse
Affiliation(s)
- Daniela Vuolo
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Vânia D’Almeida
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Sperm Lipid Markers of Male Fertility in Mammals. Int J Mol Sci 2021; 22:ijms22168767. [PMID: 34445473 PMCID: PMC8395862 DOI: 10.3390/ijms22168767] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.
Collapse
|
13
|
Kongmanas K, Saewu A, Kiattiburut W, Baker MA, Faull KF, Burger D, Tanphaichitr N. Accumulation of Seminolipid in Sertoli Cells Is Associated with Increased Levels of Reactive Oxygen Species and Male Subfertility: Studies in Aging Arsa Null Male Mice. Antioxidants (Basel) 2021; 10:antiox10060912. [PMID: 34199863 PMCID: PMC8227610 DOI: 10.3390/antiox10060912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
Seminolipid (also known as sulfogalactosylglycerolipid-SGG), present selectively in male germ cells, plays important roles in spermatogenesis and sperm–egg interaction. The proper degradation of SGG in apoptotic germ cells is also as important. Sertoli cells first phagocytose apoptotic germ cells, then Sertoli lysosomal arylsulfatase A (ARSA) desulfates SGG, the first step of SGG degradation. We have reported that aging male Arsa−/− mice become subfertile with SGG accumulation in Sertoli cell lysosomes, typical of a lysosomal storage disorder (LSD). Since reactive oxygen species (ROS) levels are increased in other glycolipid-accumulated LSDs, we quantified ROS in Arsa−/− Sertoli cells. Our analyses indicated increases in superoxide and H2O2 in Arsa−/− Sertoli cells with elevated apoptosis rates, relative to WT counterparts. Excess H2O2 from Arsa−/− Sertoli cells could travel into testicular germ cells (TGCs) to induce ROS production. Our results indeed indicated higher superoxide levels in Arsa−/− TGCs, compared with WT TGCs. Increased ROS levels in Arsa−/− Sertoli cells and TGCs likely caused the decrease in spermatogenesis and increased the abnormal sperm population in aging Arsa−/− mice, including the 50% decrease in sperm SGG with egg binding ability. In summary, our study indicated that increased ROS production was the mechanism through which subfertility manifested following SGG accumulation in Sertoli cells.
Collapse
Affiliation(s)
- Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
- Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Division of Dengue Hemorrhagic Fever Research/Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
| | - Wongsakorn Kiattiburut
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
| | - Mark A Baker
- Department of Biological Science, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90024, USA;
| | - Dylan Burger
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (K.K.); (A.S.); (W.K.); (D.B.)
- Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-(613)-737-8899 (ext. 72793); Fax: +1-(613)-739-6968
| |
Collapse
|
14
|
Oku N, Hasada A, Kimura K, Honoki H, Katsuta R, Yajima A, Nukada T, Ishigami K, Igarashi Y. Sulfoquinovosylglyceryl ether, a new group of ether lipids from lake ball-forming green alga Aegagropilopsis moravica (family Pithophoraceae). Chem Asian J 2021; 16:1493-1498. [PMID: 33871157 DOI: 10.1002/asia.202100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Ether lipids are a minor group of glycerolipids but widespread in nature, playing a vital function as membrane lipids, signalling molecules, or buoyant material. We have discovered sulfoquinovosylchimyl alcohol (1), a sulfonate-substituted glyceroglycolipid, from a lake ball-forming green alga Aegagropilopsis moravica (family Pithophoraceae), with the guidance of antimicrobial activity. The structure of 1, including absolute configurations of all sterogenic centers, was established by extensive NMR analysis, chemical degradation studies, and finally by total synthesis. Lipid 1 is an ether variant of a lyso-form of sulfoquinovosyldiacylglycerol, a chloroplast-specific membrane lipid, and thus represents a new lipid class, sulfoquinovosylglyceryl ether. A high occurrence of mobile life form in the family Pithophoraceae and a unique behaviour of chloroplasts reported in closely related Aegagropila linnaei, the famous lake-ball alga, implies a possible role of lipid 1 or its acyl derivatives in ecological adaptation to dysphotic niches.
Collapse
Affiliation(s)
- Naoya Oku
- Research Center for Biotechnology and Pharmaceutical Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Atsumi Hasada
- Research Center for Biotechnology and Pharmaceutical Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Kenji Kimura
- Graduate School of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hideharu Honoki
- Toyama Science Museum, 1-8-31 Nishinakano, Toyama, 939-8034, Japan
| | - Ryo Katsuta
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Arata Yajima
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tomoo Nukada
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Ken Ishigami
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yasuhiro Igarashi
- Research Center for Biotechnology and Pharmaceutical Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
15
|
Fu T, Knittelfelder O, Geffard O, Clément Y, Testet E, Elie N, Touboul D, Abbaci K, Shevchenko A, Lemoine J, Chaumot A, Salvador A, Degli-Esposti D, Ayciriex S. Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in Gammarus fossarum lipid composition. iScience 2021; 24:102115. [PMID: 33615205 PMCID: PMC7881238 DOI: 10.1016/j.isci.2021.102115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepatopancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies. Baseline lipidome profiling of G. fossarum of different sex and reproductive stages Spatial localization of lipids in gammarid tissue by mass spectrometry imaging SIMS imaging guided discovery of sulfate-based lipids in hepatopancreas epithelium Disclosure of a dynamic lipid composition in maturing female oocytes
Collapse
Affiliation(s)
- Tingting Fu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Yohann Clément
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nicolas Elie
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Khedidja Abbaci
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Lemoine
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Arnaud Salvador
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Sophie Ayciriex
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
- Corresponding author
| |
Collapse
|
16
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
17
|
Engel KM, Dzyuba V, Dzyuba B, Schiller J. Different glycolipids in sperm from different freshwater fishes - A high-performance thin-layer chromatography/electrospray ionization mass spectrometry study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8875. [PMID: 32621632 DOI: 10.1002/rcm.8875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Glycolipids play important roles in many physiological processes - despite their commonly low abundance. This study summarizes selected data on the (glyco)lipid composition of sperm from different fish species. METHODS Lipid extraction of fish sperm was performed according to the procedure by Bligh and Dyer. The lipid composition of the organic extracts was analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and electrospray ionization ion trap (ESI-IT)MS coupled to high-performance thin-layer chromatography (HPTLC). RESULTS It was shown that sperm from carp, northern pike, rainbow trout and burbot contain high amounts of neutral and acidic glycosphingolipids as well as sulfoglycolipids. These particular lipids are presumably involved in reproduction requirements. CONCLUSIONS Phospholipids and glycolipids in crude lipid extracts can be analyzed in parallel by MS coupled to TLC. The direct application of tandem mass spectrometry (MS/MS) helps to elucidate the glycolipid structure. Thus, compositional analysis can be performed very rapidly.
Collapse
Affiliation(s)
- Kathrin M Engel
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, Leipzig, 04107, Germany
| | - Viktoriya Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Borys Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, Leipzig, 04107, Germany
| |
Collapse
|
18
|
Koch J, Lackner K, Wohlfarter Y, Sailer S, Zschocke J, Werner ER, Watschinger K, Keller MA. Unequivocal Mapping of Molecular Ether Lipid Species by LC-MS/MS in Plasmalogen-Deficient Mice. Anal Chem 2020; 92:11268-11276. [PMID: 32692545 PMCID: PMC7439256 DOI: 10.1021/acs.analchem.0c01933] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deficient ether lipid biosynthesis in rhizomelic chondrodysplasia punctata and other disorders is associated with a wide range of severe symptoms including small stature with proximal shortening of the limbs, contractures, facial dysmorphism, congenital cataracts, ichthyosis, spasticity, microcephaly, and mental disability. Mouse models are available but show less severe symptoms. In both humans and mice, it has remained elusive which of the symptoms can be attributed to lack of plasmanyl or plasmenyl ether lipids. The latter compounds, better known as plasmalogens, harbor a vinyl ether double bond conferring special chemical and physical properties. Discrimination between plasmanyl and plasmenyl ether lipids is a major analytical challenge, especially in complex lipid extracts with many isobaric species. Consequently, these lipids are often neglected also in recent lipidomic studies. Here, we present a comprehensive LC-MS/MS based approach that allows unequivocal distinction of these two lipid subclasses based on their chromatographic properties. The method was validated using a novel plasmalogen-deficient mouse model, which lacks plasmanylethanolamine desaturase and therefore cannot form plasmenyl ether lipids. We demonstrate that plasmanylethanolamine desaturase deficiency causes an accumulation of plasmanyl species, a too little studied but biologically important substance class.
Collapse
Affiliation(s)
- Jakob Koch
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katharina Lackner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ernst R Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Engel KM, Dzyuba V, Ninhaus-Silveira A, Veríssimo-Silveira R, Dannenberger D, Schiller J, Steinbach C, Dzyuba B. Sperm Lipid Composition in Early Diverged Fish Species: Internal vs. External Mode of Fertilization. Biomolecules 2020; 10:biom10020172. [PMID: 31979037 PMCID: PMC7072473 DOI: 10.3390/biom10020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of sperm membranes is crucial for fertilization and differs among species. As the evolution of internal fertilization modes in fishes is not understood, a comparative study of the sperm lipid composition in freshwater representatives of externally and internally fertilizing fishes is needed for a better understanding of taxa-specific relationships between the lipid composition of the sperm membrane and the sperm physiology. The lipidomes of spermatozoa from stingray, a representative of cartilaginous fishes possessing internal fertilization, and sterlet, a representative of chondrostean fishes with external fertilization, have been studied by means of nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), electrospray MS, gas chromatography-(GC) MS, and thin-layer chromatography (TLC). NMR experiments revealed higher cholesterol content and the presence of phosphatidylserine in stingray compared to sterlet sperm. Unknown MS signals could be assigned to different glycosphingolipids in sterlet (neutral glycosphingolipid Gal-Cer(d18:1/16:0)) and stingray (acidic glycosphingolipid sulpho-Gal-Cer(d18:1/16:0)). Free fatty acids in sterlet sperm indicate internal energy storage. GC-MS experiments indicated a significant amount of adrenic acid, but only a low amount of docosahexaenoic acid in stingray sperm. In a nutshell, this study provides novel data on sperm lipid composition for freshwater stingray and sterlet possessing different modes of fertilization.
Collapse
Affiliation(s)
- Kathrin M. Engel
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany;
- Correspondence: ; Tel.: +49-341-97-15708
| | - Viktoriya Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší, 728/II, 38925 Vodňany, Czech Republic; (V.D.); (C.S.); (B.D.)
| | - Alexandre Ninhaus-Silveira
- Department of Biology and Zootechny, Ilha Solteira, Faculty of Engineering, São Paulo State University, Neotropical Ichthyology Laboratory—LINEO, Monção Street, 226, 15385-000, Ilha Solteira, SP, Brazil; (A.N.-S.); (R.V.-S.)
| | - Rosicleire Veríssimo-Silveira
- Department of Biology and Zootechny, Ilha Solteira, Faculty of Engineering, São Paulo State University, Neotropical Ichthyology Laboratory—LINEO, Monção Street, 226, 15385-000, Ilha Solteira, SP, Brazil; (A.N.-S.); (R.V.-S.)
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Lipid Metabolism and Muscular Adaptation Workgroup, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany;
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší, 728/II, 38925 Vodňany, Czech Republic; (V.D.); (C.S.); (B.D.)
| | - Borys Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší, 728/II, 38925 Vodňany, Czech Republic; (V.D.); (C.S.); (B.D.)
| |
Collapse
|
20
|
Saewu A, Kongmanas K, Raghupathy R, Netherton J, Kadunganattil S, Linton JJ, Chaisuriyong W, Faull KF, Baker MA, Tanphaichitr N. Primary Sertoli Cell Cultures From Adult Mice Have Different Properties Compared With Those Derived From 20-Day-Old Animals. Endocrinology 2020; 161:bqz020. [PMID: 31730175 PMCID: PMC7188083 DOI: 10.1210/endocr/bqz020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
Abstract
Cultures of Sertoli cells isolated from 20-day-old mice are widely used in research as substitutes for adult Sertoli cell cultures. This practice is based on the fact that Sertoli cells cease to proliferate and become mature in vivo by 16 to 20 days after birth. However, it is important to verify whether cultured Sertoli cells derived from 20-day-old mice do not proliferate ex vivo and whether they have the same properties as cultured adult Sertoli cells. Herein we described an isolation/culture method of Sertoli cells from 10-week-old adult mice with > 90% purity. Properties of these cultured adult Sertoli cells were then compared with those of cultured Sertoli cells derived from 20-day-old mice (also > 90% purity). By cell counting, bromo-2-deoxyuridine incorporation, and metaphase plate detection, we demonstrated that only adult Sertoli cells did not proliferate throughout 12 culture days. In contrast, Sertoli cells derived from 20-day-old mice still proliferated until Day 10 in culture. The morphology and profiles of intracellular lipidomics and spent medium proteomics of the 2 cultures were also different. Cultured adult Sertoli cells were larger in size and contained higher levels of triacylglycerols, cholesteryl esters, and seminolipid, and the proteins in their spent medium were mainly engaged in cellular metabolism. In contrast, proteins involved in cell division, including anti-Mullerian hormone, cell division cycle protein 42 (CDC42), and collagen isoforms, were at higher levels in Sertoli cell cultures derived from 20-day-old mice. Therefore, cultured Sertoli cells derived from 10-week-old mice, rather than those from 20-day-old animals, should be used for studies on properties of adult Sertoli cells.
Collapse
Affiliation(s)
- Arpornrad Saewu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Riya Raghupathy
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jacob Netherton
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Suraj Kadunganattil
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - James-Jules Linton
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, California
| | - Mark A Baker
- Department of Environmental and Life Science, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Lopalco P, Vitale R, Cho YS, Totaro P, Corcelli A, Lobasso S. Alteration of Cholesterol Sulfate/Seminolipid Ratio in Semen Lipid Profile of Men With Oligoasthenozoospermia. Front Physiol 2019; 10:1344. [PMID: 31736776 PMCID: PMC6828844 DOI: 10.3389/fphys.2019.01344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
The reduction of sperm motility and count, or oligoasthenozoospermia, is one of the major causes of reduced fertility or infertility in men. Lipid composition of spermatozoa is important in determining their functional characteristics, in particular on motility, acrosomal exocytosis or fusogenic properties of the sperm. Here we investigated the levels of semen lipids in 11 infertile patients with severe oligoasthenozoospermia and 9 normozoospermic subjects with normal motility values. Sperm polar and neutral lipids were analyzed by thin-layer chromatography (TLC) and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Semen of patients with oligoasthenozoospermia showed a reduction of the degree of fatty acid unsaturation in the phospholipids chains that might affect the membrane fluidity. Furthermore, a significant higher cholesterol sulfate/seminolipid ratio was found in semen of oligoasthenozoospermic patients than in subjects with normal motility values, suggesting a critical role of sulfolipids in semen quality. The results may facilitate the understanding of the role of lipids on male fertility and offer interesting perspectives to find innovative treatments for oligoasthenozoospermia.
Collapse
Affiliation(s)
- Patrizia Lopalco
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Rita Vitale
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Yoon Sung Cho
- Centre for Medically Assisted Procreation, Santa Maria Hospital, Bari, Italy
| | - Pasquale Totaro
- Centre for Medically Assisted Procreation, Santa Maria Hospital, Bari, Italy
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Simona Lobasso
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
22
|
Shimada N, Fukuhara K, Urata S, Makino K. Total syntheses of seminolipid and its analogues by using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent. Org Biomol Chem 2019; 17:7325-7329. [PMID: 31353379 DOI: 10.1039/c9ob01445d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concise total synthesis of seminolipid, a sulfoglycolipid, has been achieved; key features include regioselective, tin-free sulfation of allyl β-d-galactopyranoside using 2,6-bis(trifluoromethyl)phenylboronic acid as protective reagent, stereoselective epoxidation, and site-selective acylation. The utility of this divergent synthetic approach to introduce 2,2,2-trichloroethyl-protected sulfate group at an early stage without toxic and environmentally unfavorable tin reagents was demonstrated by the syntheses of three seminolipid analogues with different side-chains from the common intermediate.
Collapse
Affiliation(s)
- Naoyuki Shimada
- Department of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minatao-ku, Tokyo 108-8641, Japan.
| | | | | | | |
Collapse
|
23
|
Cuffaro D, Landi M, D'Andrea F, Guazzelli L. Preparation of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives by aminocyclization of a 1,5-dicarbonyl derivative. Carbohydr Res 2019; 482:107744. [PMID: 31306898 DOI: 10.1016/j.carres.2019.107744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022]
Abstract
Iminosugars are known glycosidase inhibitors which are the subject of drug development efforts against several diseases. The access to structurally-related families of iminosugars is of primary importance for running structure-activity relationship studies. In this work, the double reductive amination (aminocyclization) reaction of a dicarbonyl derivative of the l-arabino series, in turn obtained from lactose, is reported. Different ratios of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives were obtained depending on the amine employed in this transformation which provided an insight into the effects of their structure on the outcome of the reaction. Of particular interest were the results obtained when two enantiomeric amino acids (d-Phe-OMe and l-Phe-OMe) were used, which resulted in the inversion of the reaction stereoselectivity.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Martina Landi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Felicia D'Andrea
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| |
Collapse
|
24
|
Young CD, Tatieng S, Kongmanas K, Fongmoon D, Lomenick B, Yoon AJ, Kiattiburut W, Compostella F, Faull KF, Suree N, Angel JB, Tanphaichitr N. Sperm can act as vectors for HIV-1 transmission into vaginal and cervical epithelial cells. Am J Reprod Immunol 2019; 82:e13129. [PMID: 31066971 DOI: 10.1111/aji.13129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/02/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Sperm are the major cells in semen. Human sperm possess a number of HIV-1 gp120 binding ligands including sulfogalactosylglycerolipid (SGG). However, the mechanisms of how sperm capture HIV-1 onto their surface are unclear. Furthermore, the ability of sperm to deliver HIV-1 to vaginal/cervical epithelial cells lining the lower female reproductive tract, as a first step in HIV-1 transmission, needs to be determined. METHOD OF STUDY Sperm from healthy donors were incubated with dual-tropic HIV-1CS204 (clinical isolate), and virus capture was determined by p24 antigen ELISA. The involvement of SGG in HIV-1 capture was assessed by determining Kd values of HIV-1 gp120-SGG binding as well as computational docking of SGG to the gp120 V3 loop. The ability of sperm-associated HIV-1 to infect peripheral blood mononuclear cells (PBMCs) and TZM-bl indicator cells was determined. Lastly, infection of vaginal (Vk2/E6E7), ectocervical (Ect1/E6E7), and endocervical (End1/E6E7) epithelial cells mediated by HIV-1-associated sperm was evaluated. RESULTS Sperm were able to capture HIV-1 in a dose-dependent manner, and the capture reached a maximum within 5 minutes. Captured HIV-1, however, could be removed from sperm by Percoll-gradient centrifugation. Affinity of gp120 for SGG was substantial, implicating sperm SGG in HIV-1 capture. Sperm-associated HIV-1 could productively infect PBMCs and TZM-bl cells, and was capable of being transmitted into vaginal/cervical epithelial cells. CONCLUSION Sperm are able to capture HIV-1, which remains infectious and is able to be transmitted into vaginal/cervical epithelial cells, a result indicating the importance of sperm in HIV transmission.
Collapse
Affiliation(s)
- Charlene D Young
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Suriya Tatieng
- Multidisciplinary Program in Biotechnology, The Graduate School, Division of Biochemistry and Biochemical Technology, Faculty of Science, Department of Chemistry, Chiang Mai University, Chiang Mai, Thailand
| | - Kessiri Kongmanas
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Duriya Fongmoon
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Brett Lomenick
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, Los Angeles, California
| | - Alexander J Yoon
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, Los Angeles, California
| | - Wongsakorn Kiattiburut
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, Los Angeles, California
| | - Nuttee Suree
- Multidisciplinary Program in Biotechnology, The Graduate School, Division of Biochemistry and Biochemical Technology, Faculty of Science, Department of Chemistry, Chiang Mai University, Chiang Mai, Thailand
| | - Jonathan B Angel
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Division in Infectious Diseases, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|