1
|
Chakraborty P, Saha S, Deco G, Banerjee A, Roy D. Contributions of short- and long-range white matter tracts in dynamic compensation with aging. Cereb Cortex 2025:bhae496. [PMID: 39807971 DOI: 10.1093/cercor/bhae496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/26/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Optimal brain function is shaped by a combination of global information integration, facilitated by long-range connections, and local processing, which relies on short-range connections and underlying biological factors. With aging, anatomical connectivity undergoes significant deterioration, which affects the brain's overall function. Despite the structural loss, previous research has shown that normative patterns of functions remain intact across the lifespan, defined as the compensatory mechanism of the aging brain. However, the crucial components in guiding the compensatory preservation of the dynamical complexity and the underlying mechanisms remain uncovered. Moreover, it remains largely unknown how the brain readjusts its biological parameters to maintain optimal brain dynamics with age; in this work, we provide a parsimonious mechanism using a whole-brain generative model to uncover the role of sub-communities comprised of short-range and long-range connectivity in driving the dynamic compensation process in the aging brain. We utilize two neuroimaging datasets to demonstrate how short- and long-range white matter tracts affect compensatory mechanisms. We unveil their modulation of intrinsic global scaling parameters, such as global coupling strength and conduction delay, via a personalized large-scale brain model. Our key finding suggests that short-range tracts predominantly amplify global coupling strength with age, potentially representing an epiphenomenon of the compensatory mechanism. This mechanistically explains the significance of short-range connections in compensating for the major loss of long-range connections during aging. This insight could help identify alternative avenues to address aging-related diseases where long-range connections are significantly deteriorated.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH-8, Manesar, Haryana 122051, India
- Department of Mathematics, Rampurhat College, Rampurhat, West Bengal 731224, India
| | - Suman Saha
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH-8, Manesar, Haryana 122051, India
- School of Electronics Engineering, Vellore Institute of Technology, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127 India
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institucío Catalana de la Recerca i Estudis Avançats, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, NH-8, Manesar, Haryana 122051, India
| | - Dipanjan Roy
- School of AIDE, Center for Brain Science and Applications, IIT Jodhpur, NH-62, Surpura Bypass Rd, Karwar, Rajasthan 342030, India
| |
Collapse
|
2
|
Dickinson A, McDonald N, Dapretto M, Campos E, Senturk D, Jeste S. Accelerated Infant Brain Rhythm Maturation in Autism. Dev Sci 2025; 28:e13593. [PMID: 39704490 DOI: 10.1111/desc.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Electroencephalography (EEG) captures characteristic oscillatory shifts in infant brain rhythms over the first year of life, offering unique insights into early functional brain development and potential markers for detecting neural differences associated with autism. This study used functional principal component analysis (FPCA) to derive dynamic markers of spectral maturation from task-free EEG recordings collected at 3, 6, 9, and 12 months from 87 infants, 51 of whom were at higher likelihood of developing autism due to an older sibling diagnosed with the condition. FPCA revealed three principal components explaining over 96% of the variance in infant power spectra, with power increases between 6 and 9 Hz (FPC1) representing the most significant age-related trend, accounting for more than 71% of the variance. Notably, this oscillatory change occurred at a faster rate in infants later diagnosed with autism, indicated by a steeper trajectory of FPC1 scores between 3 and 12 months (p < 0.001). Age-related spectral changes were consistent regardless of familial likelihood status, suggesting that differences in oscillatory timing are associated with autism outcomes rather than genetic predisposition. These findings indicate that while the typical sequence of oscillatory maturation is preserved in autism, the timing of these changes is altered, underscoring the critical role of timing in autism pathophysiology and the development of potential screening tools.
Collapse
Affiliation(s)
- Abigail Dickinson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Nicole McDonald
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, California, USA
| | - Emilie Campos
- UCLA Department of Biostatistics, Center for Health Sciences, University of California, Los Angeles, California, USA
| | - Damla Senturk
- UCLA Department of Biostatistics, Center for Health Sciences, University of California, Los Angeles, California, USA
| | - Shafali Jeste
- Division of Neurology and Neurological Institute, The Children's Hospital of Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Weber CF, Kebets V, Benkarim O, Lariviere S, Wang Y, Ngo A, Jiang H, Chai X, Park BY, Milham MP, Di Martino A, Valk S, Hong SJ, Bernhardt BC. Contracted functional connectivity profiles in autism. Mol Autism 2024; 15:38. [PMID: 39261969 PMCID: PMC11391747 DOI: 10.1186/s13229-024-00616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition that is associated with atypical brain network organization, with prior work suggesting differential connectivity alterations with respect to functional connection length. Here, we tested whether functional connectopathy in ASD specifically relates to disruptions in long- relative to short-range functional connections. Our approach combined functional connectomics with geodesic distance mapping, and we studied associations to macroscale networks, microarchitectural patterns, as well as socio-demographic and clinical phenotypes. METHODS We studied 211 males from three sites of the ABIDE-I dataset comprising 103 participants with an ASD diagnosis (mean ± SD age = 20.8 ± 8.1 years) and 108 neurotypical controls (NT, 19.2 ± 7.2 years). For each participant, we computed cortex-wide connectivity distance (CD) measures by combining geodesic distance mapping with resting-state functional connectivity profiling. We compared CD between ASD and NT participants using surface-based linear models, and studied associations with age, symptom severity, and intelligence scores. We contextualized CD alterations relative to canonical networks and explored spatial associations with functional and microstructural cortical gradients as well as cytoarchitectonic cortical types. RESULTS Compared to NT, ASD participants presented with widespread reductions in CD, generally indicating shorter average connection length and thus suggesting reduced long-range connectivity but increased short-range connections. Peak reductions were localized in transmodal systems (i.e., heteromodal and paralimbic regions in the prefrontal, temporal, and parietal and temporo-parieto-occipital cortex), and effect sizes correlated with the sensory-transmodal gradient of brain function. ASD-related CD reductions appeared consistent across inter-individual differences in age and symptom severity, and we observed a positive correlation of CD to IQ scores. LIMITATIONS Despite rigorous harmonization across the three different acquisition sites, heterogeneity in autism poses a potential limitation to the generalizability of our results. Additionally, we focussed male participants, warranting future studies in more balanced cohorts. CONCLUSIONS Our study showed reductions in CD as a relatively stable imaging phenotype of ASD that preferentially impacted paralimbic and heteromodal association systems. CD reductions in ASD corroborate previous reports of ASD-related imbalance between short-range overconnectivity and long-range underconnectivity.
Collapse
Affiliation(s)
- Clara F Weber
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Valeria Kebets
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Hongxiu Jiang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, USA
| | | | - Sofie Valk
- Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Research, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Chiappini E, Massaccesi C, Korb S, Steyrl D, Willeit M, Silani G. Neural Hyperresponsivity During the Anticipation of Tangible Social and Nonsocial Rewards in Autism Spectrum Disorder: A Concurrent Neuroimaging and Facial Electromyography Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:948-957. [PMID: 38642898 DOI: 10.1016/j.bpsc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Atypical anticipation of social reward has been shown to lie at the core of the social challenges faced by individuals with autism spectrum disorder (ASD). However, previous research has yielded inconsistent results and has often overlooked crucial characteristics of stimuli. Here, we investigated ASD reward processing using social and nonsocial tangible stimuli, carefully matched on several key dimensions. METHODS We examined the anticipation and consumption of social (interpersonal touch) and nonsocial (flavored milk) rewards in 25 high-functioning individuals with ASD and 25 neurotypical adult individuals. In addition to subjective ratings of wanting and liking, we measured physical energetic expenditure to obtain the rewards, brain activity with neuroimaging, and facial reactions through electromyography on a trial-by-trial basis. RESULTS Participants with ASD did not exhibit reduced motivation for social or nonsocial rewards; their subjective ratings, motivated efforts, and facial reactions were comparable to those of neurotypical participants. However, anticipation of higher-value rewards increased neural activation in lateral parietal cortices, sensorimotor regions, and the orbitofrontal cortex. Moreover, participants with ASD exhibited hyperconnectivity between frontal medial regions and occipital regions and the thalamus. CONCLUSIONS Individuals with ASD who experienced rewards with tangible characteristics, whether social or nonsocial, displayed typical subjective and objective motivational and hedonic responses. Notably, the observed hyperactivations in sensory and attentional nodes during anticipation suggest atypical sensory overprocessing of forthcoming rewards rather than decreased reward value. While these atypicalities may not have manifested in observable behavior here, they could impact real-life social interactions that require nuanced predictions, potentially leading to the misperception of reduced interest in rewarding social stimuli in ASD.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Claudia Massaccesi
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Sebastian Korb
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria; Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| | - David Steyrl
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Giorgia Silani
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Asad Z, Fakheir Y, Abukhaled Y, Khalil R. Implications of altered pyramidal cell morphology on clinical symptoms of neurodevelopmental disorders. Eur J Neurosci 2024; 60:4877-4892. [PMID: 39054743 DOI: 10.1111/ejn.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The prevalence of pyramidal cells (PCs) in the mammalian cerebral cortex underscore their value as they play a crucial role in various brain functions, ranging from cognition, sensory processing, to motor output. PC morphology significantly influences brain connectivity and plays a critical role in maintaining normal brain function. Pathological alterations to PC morphology are thought to contribute to the aetiology of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. This review explores the relationship between abnormalities in PC morphology in key cortical areas and the clinical manifestations in schizophrenia and ASD. We focus largely on human postmortem studies and provide evidence that dendritic segment length, complexity and spine density are differentially affected in these disorders. These morphological alterations can lead to disruptions in cortical connectivity, potentially contributing to the cognitive and behavioural deficits observed in these disorders. Furthermore, we highlight the importance of investigating the functional and structural characteristics of PCs in these disorders to illuminate the underlying pathogenesis and stimulate further research in this area.
Collapse
Affiliation(s)
- Zummar Asad
- School of Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Yara Fakheir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Yara Abukhaled
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
Beckerson ME, Kerr-German AN, Buss AT. Examining the relationship between functional connectivity and broader autistic traits in non-autistic children. Child Neuropsychol 2024:1-22. [PMID: 39105456 DOI: 10.1080/09297049.2024.2386072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
In the current study, we used functional near-infrared spectroscopy (fNIRS) to examine functional connectivity (FC) in relation to measures of cognitive flexibility and autistic features in non-autistic children. Previous research suggests that disruptions in FC between brain regions may underlie the cognitive and behavioral traits of autism. Moreover, research has identified a broader autistic phenotype (BAP), which refers to a set of behavioral traits that fall along a continuum of behaviors typical for autism but which do not cross a clinically relevant threshold. Thus, by examining FC in relation to the BAP in non-autistic children, we can better understand the spectrum of behaviors related to this condition and their neural basis. Results indicated age-related differences in performance across three measures of cognitive flexibility, as expected given the rapid development of this skill within this time period. Additionally, results showed that across the flexibility tasks, measures of autistic traits were associated with weaker FC along the executive control network, though task performance was not associated with FC. These results suggest that behavioral scores may be less sensitive than neural measures to autistic traits. Further, these results corroborate the use of broader autistic traits and the BAP to better understand disruptions to neural function associated with autism.
Collapse
Affiliation(s)
- Meagan E Beckerson
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Aaron T Buss
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
7
|
Kaminskaya YP, Ilchibaeva TV, Shcherbakova AI, Allayarova ER, Popova NK, Naumenko VS, Tsybko AS. Brain-Derived Neurotrophic Factor (BDNF) in the Frontal Cortex Enhances Social Interest in the BTBR Mouse Model of Autism. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1509-1518. [PMID: 39245458 DOI: 10.1134/s0006297924080091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 09/10/2024]
Abstract
A large body of evidence implies the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of autism spectrum disorders (ASDs). A deficiency of BDNF in the hippocampus and frontal cortex of BTBR mice (a model of autism) has been noted in a number of studies. Earlier, we showed that induction of BDNF overexpression in the hippocampus of BTBR mice reduced anxiety and severity of stereotyped behavior, but did not affect social interest. Here, we induced BDNF overexpression in the frontal cortex neurons of BTBR mice using an adeno-associated viral vector, which resulted in a significant increase in the social interest in the three-chamber social test. At the same time, the stereotypy, exploratory behavior, anxiety-like behavior, and novel object recognition were not affected. Therefore, we have shown for the first time that the presence of BDNF in the frontal cortex is critical for the expression of social interest in BTBR mice, since compensation for its deficiency in this structure eliminated the autism-like deficiencies in the social behavior characteristic for these animals.
Collapse
Affiliation(s)
- Yana P Kaminskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatiana V Ilchibaeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexandra I Shcherbakova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elina R Allayarova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
8
|
Wang H, Liu Y, Ding Y. Identifying Diagnostic Biomarkers for Autism Spectrum Disorder From Higher-order Interactions Using the PED Algorithm. Neuroinformatics 2024; 22:285-296. [PMID: 38771433 DOI: 10.1007/s12021-024-09662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 05/22/2024]
Abstract
In the field of neuroimaging, more studies of abnormalities in brain regions of the autism spectrum disorder (ASD) usually focused on two brain regions connected, and less on abnormalities of higher-order interactions of brain regions. To explore the complex relationships of brain regions, we used the partial entropy decomposition (PED) algorithm to capture higher-order interactions by computing the higher-order dependencies of all three brain regions (triads). We proposed a method for examining the effect of individual brain regions on triads based on the PED and surrogate tests. The key triads were discovered by analyzing the effects. Further, the hypergraph modularity maximization algorithm revealed the higher-order brain structures, of which the link between right thalamus and left thalamus in ASD was more loose compared with the typical control (TC). Redundant key triad (left cerebellum crus 1 and left precuneus and right inferior occipital gyrus) exhibited a discernible attenuation in interaction in ASD, while the synergistic key triad (right cerebellum crus 1 and left postcentral gyrus and left lingual gyrus) indicated a notable decline. The results of classification model further confirmed the potential of the key triads as diagnostic biomarkers.
Collapse
Affiliation(s)
- Hao Wang
- School of Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanting Liu
- School of Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
9
|
Itoi C, Ujiie Y, Ooishi Y, Kashino M. The relationship between subjective difficulty in interoceptive processing and accuracy of heartbeat perception in autistic individuals. DISCOVER MENTAL HEALTH 2024; 4:13. [PMID: 38637435 PMCID: PMC11026320 DOI: 10.1007/s44192-024-00065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Most autistic people experience difficulties in sensory processing, including interoceptive processing. For example, they often report subjective difficulties in the interoceptive processing of interoceptive input, such as difficulty in interpreting bodily signals, including hunger, thirst, and fatigue. However, whether these subjective interoceptive difficulties are from underlying problems in interoceptive accuracy remains unclear. This study investigated the relationship between subjective interoceptive difficulty and behavioral interoceptive accuracy in autistic adults and a control group. Subjective interoceptive accuracy was measured using an interoceptive sensitivity questionnaire, and behavioral interoceptive accuracy was measured using a heartbeat counting task. The results showed no significant relationship between subjective interoceptive difficulty and behavioral interoceptive accuracy in the autistic or control groups. This suggests that subjective interoceptive difficulty and behavioral interoceptive accuracy reflect different aspects of interoceptive processing. One possible interpretation is that autistic adults can identify individual local sensory inputs, such as heartbeats, however, they have difficulty integrating multiple inputs and recognizing internal body states such as hunger and fatigue.
Collapse
Affiliation(s)
- Chihiro Itoi
- NTT Communication Science Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan.
- Division of Psychology, Institute of Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Yuta Ujiie
- College of Contemporary Psychology, Rikkyo University, 1-2-26 Kitano, Niiza-shi, Saitama, 352-8558, Japan
- Research Organization of Open Innovation and Collaboration, Ritsumeikan University, 2-150 Iwakura-cho, Ibaraki, 567-8570, Japan
| | - Yuuki Ooishi
- NTT Communication Science Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Makio Kashino
- NTT Communication Science Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| |
Collapse
|
10
|
Yi T, Ji C, Wei W, Wu G, Jin K, Jiang G. Cortical-cerebellar circuits changes in preschool ASD children by multimodal MRI. Cereb Cortex 2024; 34:bhae090. [PMID: 38615243 DOI: 10.1093/cercor/bhae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 04/15/2024] Open
Abstract
OBJECTIVE To investigate the alterations in cortical-cerebellar circuits and assess their diagnostic potential in preschool children with autism spectrum disorder using multimodal magnetic resonance imaging. METHODS We utilized diffusion basis spectrum imaging approaches, namely DBSI_20 and DBSI_combine, alongside 3D structural imaging to examine 31 autism spectrum disorder diagnosed patients and 30 healthy controls. The participants' brains were segmented into 120 anatomical regions for this analysis, and a multimodal strategy was adopted to assess the brain networks using a multi-kernel support vector machine for classification. RESULTS The results revealed consensus connections in the cortical-cerebellar and subcortical-cerebellar circuits, notably in the thalamus and basal ganglia. These connections were predominantly positive in the frontoparietal and subcortical pathways, whereas negative consensus connections were mainly observed in frontotemporal and subcortical pathways. Among the models tested, DBSI_20 showed the highest accuracy rate of 86.88%. In addition, further analysis indicated that combining the 3 models resulted in the most effective performance. CONCLUSION The connectivity network analysis of the multimodal brain data identified significant abnormalities in the cortical-cerebellar circuits in autism spectrum disorder patients. The DBSI_20 model not only provided the highest accuracy but also demonstrated efficiency, suggesting its potential for clinical application in autism spectrum disorder diagnosis.
Collapse
Affiliation(s)
- Ting Yi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510317, China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317,China
- Department of Radiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha 410007, China
| | - Changquan Ji
- School of Smart City,Chongqing Jiaotong University, Chongqing, 400074,China
| | - Weian Wei
- Department of Radiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha 410007, China
| | - Guangchung Wu
- Department of Radiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha 410007, China
| | - Ke Jin
- Department of Radiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Hunan Children's Hospital, Central South University, Changsha 410007, China
| | - Guihua Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510317, China
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 510317,China
| |
Collapse
|
11
|
McManus B, Kana R, Rajpari I, Holm HB, Stavrinos D. Risky driving behavior among individuals with Autism, ADHD, and typically developing persons. ACCIDENT; ANALYSIS AND PREVENTION 2024; 195:107367. [PMID: 38096625 DOI: 10.1016/j.aap.2023.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 10/24/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Many individuals with Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD) often experience difficulty with driving, including difficulty with obtaining a driver's license as well as driving safely and efficiently. Such difficulties negatively impact their ability to function independently and participate in daily activities that require driving. ASD and ADHD commonly occur co-morbidly and share many overlapping clinical features. Few studies have directly compared the nature of difficulties in driving safety outcomes between ASD and ADHD. The overarching goal of the current study was to characterize and compare self-reported driving behavior among young autistic drivers, ADHD drivers, and typically developing (TD) drivers. METHOD Fifty-four participants (14 ASD, 20 ADHD, 20 TD); ages 16-30) completed the Autism Spectrum Quotient and ADHD Adult Rating scale as a method of screening of symptoms. All three groups then completed the Driving Behavior Questionnaire (DBQ), which measured self-reported driving violations, driving errors, and overall risky driving behavior. The three groups of ASD, ADHD, and TD individuals were then compared regarding symptomology and driving behavior differences. RESULTS One-way ANOVAs indicated group differences in DBQ total scores and DBQ errors. Drivers with ADHD reported significantly greater overall risky driving behaviors and driving errors compared to ASD and TD drivers. There were no significant differences between ASD and TD drivers in reported risky driving behaviors and errors. Linear regressions indicated that among all drivers, self-reported ADHD symptoms were significantly associated with higher levels of self-reported overall risky driving and driving errors, regardless of diagnostic group. DISCUSSION Risky driving and driving errors may be more closely related to symptoms that are characteristic of ADHD. This has implications for individuals with ADHD and autistic individuals who often show or report higher rates of ADHD symptoms. Future studies should compare driving skills of ASD and ADHD drivers using objective measures of driving performance, such as driving simulators or on-road tests.
Collapse
Affiliation(s)
- Benjamin McManus
- University of Alabama at Birmingham, Department of Psychology, Campbell Hall 415, 1300 University Blvd., Birmingham, AL 35233, United States; The University of Alabama, Institute for Social Science Research, 306 Paul W. Bryant Dr, Tuscaloosa, AL 35401, United States.
| | - Rajesh Kana
- University of Alabama, Department of Psychology, 505 Hackberry Lane, Tuscaloosa, AL 35487, United States.
| | - Inaara Rajpari
- University of Alabama at Birmingham, Department of Psychology, Campbell Hall 415, 1300 University Blvd., Birmingham, AL 35233, United States.
| | - Haley B Holm
- Children's Healthcare of Atlanta, 1400 Tullie Road NE, Atlanta, GA 30329, United States.
| | - Despina Stavrinos
- University of Alabama at Birmingham, Department of Psychology, Campbell Hall 415, 1300 University Blvd., Birmingham, AL 35233, United States; The University of Alabama, Institute for Social Science Research, 306 Paul W. Bryant Dr, Tuscaloosa, AL 35401, United States.
| |
Collapse
|
12
|
Deng L, He WZ, Zhang QL, Wei L, Dai Y, Liu YQ, Chen ZL, Ren T, Zhang LL, Gong JB, Li F. Caregiver-child interaction as an effective tool for identifying autism spectrum disorder: evidence from EEG analysis. Child Adolesc Psychiatry Ment Health 2023; 17:138. [PMID: 38098032 PMCID: PMC10722789 DOI: 10.1186/s13034-023-00690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that affects individuals across their lifespan. Early diagnosis and intervention are crucial for improving outcomes. However, current diagnostic methods are often time-consuming, and costly, making them inaccessible to many families. In the current study, we aim to test caregiver-child interaction as a potential tool for screening children with ASD in clinic. METHODS We enrolled 85 preschool children (Mean age: 4.90 ± 0.65 years, 70.6% male), including ASD children with or without developmental delay (DD), and typical development (TD) children, along with their caregivers. ASD core symptoms were evaluated by Childhood Autism Rating Scale (CARS) and Autism Diagnostic Observation Schedule-Calibrated Severity Scores (ADOS-CSS). Behavioral indicators were derived from video encoding of caregiver-child interaction, including social involvement of children (SIC), interaction time (IT), response of children to social cues (RSC), time for caregiver initiated social interactions (GIS) and time for children initiated social interactions (CIS)). Power spectral density (PSD) values were calculated by EEG signals simultaneously recorded. Partial Pearson correlation analysis was used in both ASD groups to investigate the correlation among behavioral indicators scores and ASD symptom severity and PSD values. Receiver operating characteristic (ROC) analysis was used to describe the discrimination accuracy of behavioral indicators. RESULTS Compared to TD group, both ASD groups demonstrated significant lower scores of SIC, IT, RSC, CIS (all p values < 0.05), and significant higher time for GIS (all p values < 0.01). SIC scores negatively correlated with CARS (p = 0.006) and ADOS-CSS (p = 0.023) in the ASD with DD group. Compared to TD group, PSD values elevated in ASD groups (all p values < 0.05), and was associated with SIC (theta band: p = 0.005; alpha band: p = 0.003) but not IQ levels. SIC was effective in identifying both ASD groups (sensitivity/specificity: ASD children with DD, 76.5%/66.7%; ASD children without DD, 82.6%/82.2%). CONCLUSION Our results verified the behavioral paradigm of caregiver-child interaction as an efficient tool for early ASD screening.
Collapse
Affiliation(s)
- Lin Deng
- Department of Developmental and Behavioral Pediatric and Child Primary Care & Ministry of Education, Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Wei-Zhong He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qing-Li Zhang
- Ministry of Education - Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ling Wei
- College of Medical Imaging, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Yuan Dai
- Department of Developmental and Behavioral Pediatric and Child Primary Care & Ministry of Education, Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu-Qi Liu
- Department of Developmental and Behavioral Pediatric and Child Primary Care & Ministry of Education, Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zi-Lin Chen
- Department of Developmental and Behavioral Pediatric and Child Primary Care & Ministry of Education, Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Tai Ren
- Ministry of Education - Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lin-Li Zhang
- Department of Developmental and Behavioral Pediatric and Child Primary Care & Ministry of Education, Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing-Bo Gong
- Shanghai Changning Mental Health Center, Shanghai, 200335, China.
| | - Fei Li
- Department of Developmental and Behavioral Pediatric and Child Primary Care & Ministry of Education, Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
13
|
Peristeri E, Andreou M, Ketseridou SN, Machairas I, Papadopoulou V, Stravoravdi AS, Bamidis PD, Frantzidis CA. Animacy Processing in Autism: Event-Related Potentials Reflect Social Functioning Skills. Brain Sci 2023; 13:1656. [PMID: 38137104 PMCID: PMC10742338 DOI: 10.3390/brainsci13121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Though previous studies with autistic individuals have provided behavioral evidence of animacy perception difficulties, the spatio-temporal dynamics of animacy processing in autism remain underexplored. This study investigated how animacy is neurally encoded in autistic adults, and whether potential deficits in animacy processing have cascading deleterious effects on their social functioning skills. We employed a picture naming paradigm that recorded accuracy and response latencies to animate and inanimate pictures in young autistic adults and age- and IQ-matched healthy individuals, while also employing high-density EEG analysis to map the spatio-temporal dynamics of animacy processing. Participants' social skills were also assessed through a social comprehension task. The autistic adults exhibited lower accuracy than controls on the animate pictures of the task and also exhibited altered brain responses, including larger and smaller N100 amplitudes than controls on inanimate and animate stimuli, respectively. At late stages of processing, there were shorter slow negative wave latencies for the autistic group as compared to controls for the animate trials only. The autistic individuals' altered brain responses negatively correlated with their social difficulties. The results suggest deficits in brain responses to animacy in the autistic group, which were related to the individuals' social functioning skills.
Collapse
Affiliation(s)
- Eleni Peristeri
- Language Development Lab, Department of English Studies, Faculty of Philosophy, Aristotle University of Thessaloniki, PC 54124 Thessaloniki, Greece;
| | - Maria Andreou
- Department of Speech and Language Therapy, University of Peloponnese, PC 24100 Kalamata, Greece
| | - Smaranda-Nafsika Ketseridou
- Laboratory of Medical Physics & Digital Innovation, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, PC 54124 Thessaloniki, Greece; (S.-N.K.); (I.M.); (P.D.B.); (C.A.F.)
| | - Ilias Machairas
- Laboratory of Medical Physics & Digital Innovation, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, PC 54124 Thessaloniki, Greece; (S.-N.K.); (I.M.); (P.D.B.); (C.A.F.)
| | - Valentina Papadopoulou
- Department of Psychology, Aristotle University of Thessaloniki, PC 54124 Thessaloniki, Greece;
| | | | - Panagiotis D. Bamidis
- Laboratory of Medical Physics & Digital Innovation, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, PC 54124 Thessaloniki, Greece; (S.-N.K.); (I.M.); (P.D.B.); (C.A.F.)
| | - Christos A. Frantzidis
- Laboratory of Medical Physics & Digital Innovation, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, PC 54124 Thessaloniki, Greece; (S.-N.K.); (I.M.); (P.D.B.); (C.A.F.)
- School of Computer Science, University of Lincoln, Lincoln PC LN6 7TS, UK;
| |
Collapse
|
14
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
15
|
Karavallil Achuthan S, Stavrinos D, Holm HB, Anteraper SA, Kana RK. Alterations of Functional Connectivity in Autism and Attention-Deficit/Hyperactivity Disorder Revealed by Multi-Voxel Pattern Analysis. Brain Connect 2023; 13:528-540. [PMID: 37522594 DOI: 10.1089/brain.2023.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Background: Autism and attention-deficit/hyperactivity disorder (ADHD) are comorbid neurodevelopmental disorders that share common and distinct neurobiological mechanisms, with disrupted brain connectivity patterns being a hallmark feature of both conditions. It is challenging to gain a mechanistic understanding of the underlying disorder, because brain connectivity changes in autism and ADHD are heterogeneous. Objectives: The present resting state functional MRI (rs-fMRI) study focuses on investigating the shared and distinct resting state-fMRI connectivity (rsFC) patterns in autistic and ADHD adults using multi-voxel pattern analysis (MVPA). By identifying spatial patterns of fMRI activity across a given time course, MVPA is an innovative and powerful method for generating seed regions of interest (ROIs) without a priori hypotheses. Methods: We performed a data-driven, whole-brain, connectome-wide MVPA on rs-fMRI data collected from 15 autistic, 19 ADHD, and 15 neurotypical (NT) young adults. Results: MVPA identified cerebellar vermis 9, precuneus, and the right cerebellum VI for autistic versus NT, right inferior frontal gyrus and vermis 9 for ADHD versus NT, and right dorsolateral prefrontal cortex for autistic versus ADHD as significant clusters. Post hoc seed-to-voxel analyses using these clusters as seed ROIs were performed for further characterization of group differences. The cerebellum VI, vermis, and precuneus in autistic adults, and the vermis and frontal regions in ADHD showed different connectivity patterns in comparison with NT. Conclusions: The study characterizes the rsFC profile of cerebellum with key cortical areas in autism and ADHD, and it emphasizes the importance of studying the role of the functional connectivity of the cerebellum in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Smitha Karavallil Achuthan
- Department of Psychology & The Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, Alabama, USA
| | - Despina Stavrinos
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Haley B Holm
- Children's Hospital of Atlanta, Atlanta, Georgia, USA
| | - Sheeba Arnold Anteraper
- Stephens Family Clinical Research Institute, Carle Illinois Advanced Imaging Center, Urbana, Illinois, USA
| | - Rajesh K Kana
- Department of Psychology & The Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
16
|
Duvall L, May KE, Waltz A, Kana RK. The neurobiological map of theory of mind and pragmatic communication in autism. Soc Neurosci 2023; 18:191-204. [PMID: 37724352 DOI: 10.1080/17470919.2023.2242095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 09/20/2023]
Abstract
Children with autism often have difficulty with Theory of Mind (ToM), the ability to infer mental states, and pragmatic skills, the contextual use of language. Neuroimaging research suggests ToM and pragmatic skills overlap, as the ability to understand another's mental state is a prerequisite to interpersonal communication. To our knowledge, no study in the last decade has examined this overlap further. To assess the emerging consensus across neuroimaging studies of ToM and pragmatic skills in autism, we used coordinate-based activation likelihood estimation (ALE) analysis of 35 functional magnetic resonance imaging (MRI) studies (13 pragmatic skills, 22 ToM), resulting in a meta-analysis of 1,295 participants (647 autistic, 648 non-autistic) aged 7 to 49 years. Group difference analysis revealed decreased left inferior frontal gyrus (LIFG) activation in autistic participants during pragmatic skills tasks. For ToM tasks, we found reduced anterior cingulate cortex (ACC), medial prefrontal cortex (MPFC), and temporoparietal junction (TPJ) activation in autistic participants. Collectively, both ToM and pragmatic tasks showed activation in IFG and superior temporal gyrus (STG) and a reduction in left hemispheric activation in autistic participants. Overall, the findings underscore the cognitive and neural processing similarities between ToM and pragmatic skills, and their underlying neurobiological differences in autism.
Collapse
Affiliation(s)
- Lauren Duvall
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kaitlyn E May
- Department of Educational Studies in Psychology, Research Methodologies, and Counseling, University of Alabama, Tuscaloosa, AL,USA
| | - Abby Waltz
- Department of Psychology & the Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, USA
| | - Rajesh K Kana
- Department of Psychology & the Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
17
|
Voldsbekk I, Kjelkenes R, Dahl A, Holm MC, Lund MJ, Kaufmann T, Tamnes CK, Andreassen OA, Westlye LT, Alnæs D. Delineating disorder-general and disorder-specific dimensions of psychopathology from functional brain networks in a developmental clinical sample. Dev Cogn Neurosci 2023; 62:101271. [PMID: 37348146 PMCID: PMC10439505 DOI: 10.1016/j.dcn.2023.101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
The interplay between functional brain network maturation and psychopathology during development remains elusive. To establish the structure of psychopathology and its neurobiological mechanisms, mapping of both shared and unique functional connectivity patterns across developmental clinical populations is needed. We investigated shared associations between resting-state functional connectivity and psychopathology in children and adolescents aged 5-21 (n = 1689). Specifically, we used partial least squares (PLS) to identify latent variables (LV) between connectivity and both symptom scores and diagnostic information. We also investigated associations between connectivity and each diagnosis specifically, controlling for other diagnosis categories. PLS identified five significant LVs between connectivity and symptoms, mapping onto the psychopathology hierarchy. The first LV resembled a general psychopathology factor, followed by dimensions of internalising- externalising, neurodevelopment, somatic complaints, and thought problems. Another PLS with diagnostic data revealed one significant LV, resembling a cross-diagnostic case-control pattern. The diagnosis-specific PLS identified a unique connectivity pattern for autism spectrum disorder (ASD). All LVs were associated with distinct patterns of functional connectivity. These dimensions largely replicated in an independent sample (n = 420) from the same dataset, as well as to an independent cohort (n = 3504). This suggests that covariance in developmental functional brain networks supports transdiagnostic dimensions of psychopathology.
Collapse
Affiliation(s)
- Irene Voldsbekk
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway.
| | - Rikka Kjelkenes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Andreas Dahl
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Madelene C Holm
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Martina J Lund
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, & Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, & Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Kristiania University College, Oslo, Norway
| |
Collapse
|
18
|
Oprisan SA, Clementsmith X, Tompa T, Lavin A. Empirical mode decomposition of local field potential data from optogenetic experiments. Front Comput Neurosci 2023; 17:1223879. [PMID: 37476356 PMCID: PMC10354259 DOI: 10.3389/fncom.2023.1223879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction This study investigated the effects of cocaine administration and parvalbumin-type interneuron stimulation on local field potentials (LFPs) recorded in vivo from the medial prefrontal cortex (mPFC) of six mice using optogenetic tools. Methods The local network was subject to a brief 10 ms laser pulse, and the response was recorded for 2 s over 100 trials for each of the six subjects who showed stable coupling between the mPFC and the optrode. Due to the strong non-stationary and nonlinearity of the LFP, we used the adaptive, data-driven, Empirical Mode Decomposition (EMD) method to decompose the signal into orthogonal Intrinsic Mode Functions (IMFs). Results Through trial and error, we found that seven is the optimum number of orthogonal IMFs that overlaps with known frequency bands of brain activity. We found that the Index of Orthogonality (IO) of IMF amplitudes was close to zero. The Index of Energy Conservation (IEC) for each decomposition was close to unity, as expected for orthogonal decompositions. We found that the power density distribution vs. frequency follows a power law with an average scaling exponent of ~1.4 over the entire range of IMF frequencies 2-2,000 Hz. Discussion The scaling exponent is slightly smaller for cocaine than the control, suggesting that neural activity avalanches under cocaine have longer life spans and sizes.
Collapse
Affiliation(s)
- Sorinel A. Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Xandre Clementsmith
- Department of Computer Science, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Faculty of Healthcare, Department of Preventive Medicine, University of Miskolc, Miskolc, Hungary
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
19
|
Zhao W, Johnston KG, Ren H, Xu X, Nie Q. Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat. Nat Commun 2023; 14:1128. [PMID: 36854676 PMCID: PMC9974942 DOI: 10.1038/s41467-023-36800-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Neural communication networks form the fundamental basis for brain function. These communication networks are enabled by emitted ligands such as neurotransmitters, which activate receptor complexes to facilitate communication. Thus, neural communication is fundamentally dependent on the transcriptome. Here we develop NeuronChat, a method and package for the inference, visualization and analysis of neural-specific communication networks among pre-defined cell groups using single-cell expression data. We incorporate a manually curated molecular interaction database of neural signaling for both human and mouse, and benchmark NeuronChat on several published datasets to validate its ability in predicting neural connectivity. Then, we apply NeuronChat to three different neural tissue datasets to illustrate its functionalities in identifying interneural communication networks, revealing conserved or context-specific interactions across different biological contexts, and predicting communication pattern changes in diseased brains with autism spectrum disorder. Finally, we demonstrate NeuronChat can utilize spatial transcriptomics data to infer and visualize neural-specific cell-cell communication.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Mathematics and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Kevin G Johnston
- Department of Mathematics and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Honglei Ren
- Department of Mathematics and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
20
|
Neurobiological correlates and attenuated positive social intention attribution during laughter perception associated with degree of autistic traits. J Neural Transm (Vienna) 2023; 130:585-596. [PMID: 36808307 PMCID: PMC10049931 DOI: 10.1007/s00702-023-02599-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
Laughter plays an important role in group formation, signaling social belongingness by indicating a positive or negative social intention towards the receiver. In adults without autism, the intention of laughter can be correctly differentiated without further contextual information. In autism spectrum disorder (ASD), however, differences in the perception and interpretation of social cues represent a key characteristic of the disorder. Studies suggest that these differences are associated with hypoactivation and altered connectivity among key nodes of the social perception network. How laughter, as a multimodal nonverbal social cue, is perceived and processed neurobiologically in association with autistic traits has not been assessed previously. We investigated differences in social intention attribution, neurobiological activation, and connectivity during audiovisual laughter perception in association with the degree of autistic traits in adults [N = 31, Mage (SD) = 30.7 (10.0) years, nfemale = 14]. An attenuated tendency to attribute positive social intention to laughter was found with increasing autistic traits. Neurobiologically, autistic trait scores were associated with decreased activation in the right inferior frontal cortex during laughter perception and with attenuated connectivity between the bilateral fusiform face area with bilateral inferior and lateral frontal, superior temporal, mid-cingulate and inferior parietal cortices. Results support hypoactivity and hypoconnectivity during social cue processing with increasing ASD symptoms between socioemotional face processing nodes and higher-order multimodal processing regions related to emotion identification and attribution of social intention. Furthermore, results reflect the importance of specifically including signals of positive social intention in future studies in ASD.
Collapse
|
21
|
Wang Y, Xu L, Fang H, Wang F, Gao T, Zhu Q, Jiao G, Ke X. Social Brain Network of Children with Autism Spectrum Disorder: Characterization of Functional Connectivity and Potential Association with Stereotyped Behavior. Brain Sci 2023; 13:brainsci13020280. [PMID: 36831823 PMCID: PMC9953760 DOI: 10.3390/brainsci13020280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Objective: To identify patterns of social dysfunction in adolescents with autism spectrum disorder (ASD), study the potential linkage between social brain networks and stereotyped behavior, and further explore potential targets of non-invasive nerve stimulation to improve social disorders. Methods: Voxel-wise and ROI-wise analysis methods were adopted to explore abnormalities in the functional activity of social-related regions of the brain. Then, we analyzed the relationships between clinical variables and the statistical indicators of social-related brain regions. Results: Compared with the typically developing group, the functional connectivity strength of social-related brain regions with the precentral gyrus, postcentral gyrus, supplementary motor area, paracentral lobule, median cingulum, and paracingulum gyri was significantly weakened in the ASD group (all p < 0. 01). The functional connectivity was negatively correlated with communication, social interaction, communication + social interaction, and the total score of the ADOS scale (r = -0.38, -0.39, -0.40, and -0.3, respectively; all p < 0.01), with social awareness, social cognition, social communication, social motivation, autistic mannerisms, and the total score of the SRS scale (r = -0.32, -0.32, -0.40, -0.30, -0.28, and -0.27, respectively; all p < 0.01), and with the total score of SCQ (r = -0.27, p < 0.01). In addition, significant intergroup differences in clustering coefficients and betweenness centrality were seen across multiple brain regions in the ASD group. Conclusions: The functional connectivity between social-related brain regions and many other brain regions was significantly weakened compared to the typically developing group, and it was negatively correlated with social disorders. Social network dysfunction seems to be related to stereotyped behavior. Therefore, these social-related brain regions may be taken as potential stimulation targets of non-invasive nerve stimulation to improve social dysfunction in children with ASD in the future.
Collapse
|
22
|
Wu D, Zhu J, You L, Wang J, Zhang S, Liu Z, Xu Q, Yuan X, Yang L, Wang W, Tong M, Hong Q, Chi X. NRXN1 depletion in the medial prefrontal cortex induces anxiety-like behaviors and abnormal social phenotypes along with impaired neurite outgrowth in rat. J Neurodev Disord 2023; 15:6. [PMID: 36737720 PMCID: PMC9896742 DOI: 10.1186/s11689-022-09471-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are a group of disorders induced by abnormal brain developmental processes. The prefrontal cortex (PFC) plays an essential role in executive function, and its role in NDDs has been reported. NDDs are associated with high-risk gene mutations and share partially overlapping genetic abnormalities. METHODS Neurexins (NRXNs) are related to autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). NRXN1, an essential susceptibility gene for NDDs, has been reported to be associated with NDDs. However, little is known about its key role in NDDs. RESULTS NRXN1 downregulation in the medial PFC induced anxiety-like behaviors and abnormal social phenotypes with impaired neurite outgrowth in Sh-NRXN1 in prefrontal neurons. Moreover, tandem mass tag (TMT)-based proteomic analysis of rat brain samples showed that NRXN1 downregulation led to significant proteome alterations, including pathways related to the extracellular matrix, cell membrane, and morphologic change. Furthermore, full-automatic immunoblotting analysis verified the differently expressed proteins related to cell morphology and membrane structure. CONCLUSIONS Our results confirmed the association of NRXN1 with abnormal behaviors in NDDs and provided richer insights into specific prefrontal knockdown in adolescence, potentially expanding the NRXN1 interactome and contributing to human health.
Collapse
Affiliation(s)
- Di Wu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansheng Zhu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lianghui You
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyu Wang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Sufen Zhang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhonghui Liu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qu Xu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaojie Yuan
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lei Yang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wang
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qin Hong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xia Chi
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
23
|
Fittipaldi S, Armony JL, García AM, Migeot J, Cadaveira M, Ibáñez A, Baez S. Emotional descriptions increase accidental harm punishment and its cortico-limbic signatures during moral judgment in autism. Sci Rep 2023; 13:1745. [PMID: 36720905 PMCID: PMC9889714 DOI: 10.1038/s41598-023-27709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/06/2023] [Indexed: 02/01/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) present difficulties in integrating mental state information in complex moral tasks. Yet, ASD research has not examined whether this process is influenced by emotions, let alone while capturing its neural bases. We investigated how language-induced emotions modulate intent-based moral judgment in ASD. In a fMRI task, 30 adults with ASD and 27 neurotypical controls read vignettes whose protagonists commit harm either accidentally or intentionally, and then decided how much punishment the protagonist deserved. Emotional content was manipulated across scenarios through the use of graphic language (designed to trigger arousing negative responses) vs. plain (just-the-facts, emotionless) language. Off-line functional connectivity correlates of task performance were also analyzed. In ASD, emotional (graphic) descriptions amplified punishment ratings of accidental harms, associated with increased activity in fronto-temporo-limbic, precentral, and postcentral/supramarginal regions (critical for emotional and empathic processes), and reduced connectivity among the orbitofrontal cortex and the angular gyrus (involved in mentalizing). Language manipulation did not influence intentional harm processing in ASD. In conclusion, in arousing and ambiguous social situations that lack intentionality clues (i.e. graphic accidental harm scenarios), individuals with ASD would misuse their emotional responses as the main source of information to guide their moral decisions. Conversely, in face of explicit harmful intentions, they would be able to compensate their socioemotional alterations and assign punishment through non-emotional pathways. Despite limitations, such as the small sample size and low ecological validity of the task, results of the present study proved reliable and have relevant theoretical and translational implications.
Collapse
Affiliation(s)
- Sol Fittipaldi
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Jorge L Armony
- Douglas Mental Health University Institute and Dept. of Psychiatry, McGill University, Montreal, Canada
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, USA
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Joaquín Migeot
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Center for Social and Cognitive Neuroscience, School of Psychology (CSCN), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
| | | | - Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, USA
- Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
- Cognitive Neuroscience Center (CNC), Universidad de San Andres, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
24
|
Alho J, Khan S, Mamashli F, Perrachione TK, Losh A, McGuiggan NM, Graham S, Nayal Z, Joseph RM, Hämäläinen MS, Bharadwaj H, Kenet T. Atypical cortical processing of bottom-up speech binding cues in children with autism spectrum disorders. Neuroimage Clin 2023; 37:103336. [PMID: 36724734 PMCID: PMC9898310 DOI: 10.1016/j.nicl.2023.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
Individuals with autism spectrum disorder (ASD) commonly display speech processing abnormalities. Binding of acoustic features of speech distributed across different frequencies into coherent speech objects is fundamental in speech perception. Here, we tested the hypothesis that the cortical processing of bottom-up acoustic cues for speech binding may be anomalous in ASD. We recorded magnetoencephalography while ASD children (ages 7-17) and typically developing peers heard sentences of sine-wave speech (SWS) and modulated SWS (MSS) where binding cues were restored through increased temporal coherence of the acoustic components and the introduction of harmonicity. The ASD group showed increased long-range feedforward functional connectivity from left auditory to parietal cortex with concurrent decreased local functional connectivity within the parietal region during MSS relative to SWS. As the parietal region has been implicated in auditory object binding, our findings support our hypothesis of atypical bottom-up speech binding in ASD. Furthermore, the long-range functional connectivity correlated with behaviorally measured auditory processing abnormalities, confirming the relevance of these atypical cortical signatures to the ASD phenotype. Lastly, the group difference in the local functional connectivity was driven by the youngest participants, suggesting that impaired speech binding in ASD might be ameliorated upon entering adolescence.
Collapse
Affiliation(s)
- Jussi Alho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA.
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave, Boston, MA 02215, USA
| | - Ainsley Losh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Nicole M McGuiggan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Steven Graham
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Zein Nayal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord St, Boston, MA 02118, USA
| | - Matti S Hämäläinen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA
| | - Hari Bharadwaj
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical Engineering, Purdue University, 715 Clinic Drive, West Lafayette, IN 47907, USA
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Boston, MA 02129, USA.
| |
Collapse
|
25
|
Zhao W, Johnston KG, Ren H, Xu X, Nie Q. Inferring neuron-neuron communications from single-cell transcriptomics through NeuronChat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523826. [PMID: 36712056 PMCID: PMC9882151 DOI: 10.1101/2023.01.12.523826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neural communication networks form the fundamental basis for brain function. These communication networks are enabled by emitted ligands such as neurotransmitters, which activate receptor complexes to facilitate communication. Thus, neural communication is fundamentally dependent on the transcriptome. Here we develop NeuronChat, a method and package for the inference, visualization and analysis of neural-specific communication networks among pre-defined cell groups using single-cell expression data. We incorporate a manually curated molecular interaction database of neural signaling for both human and mouse, and benchmark NeuronChat on several published datasets to validate its ability in predicting neural connectivity. Then, we apply NeuronChat to three different neural tissue datasets to illustrate its functionalities in identifying interneural communication networks, revealing conserved or context-specific interactions across different biological contexts, and predicting communication pattern changes in diseased brains with autism spectrum disorder. Finally, we demonstrate NeuronChat can utilize spatial transcriptomics data to infer and visualize neural-specific cell-cell communication.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Mathematics and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697
| | - Kevin G. Johnston
- Department of Mathematics and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697
| | - Honglei Ren
- Department of Mathematics and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Department of Computer Science, University of California, Irvine, CA 92697
- The Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697
- The Center for Neural Circuit Mapping, University of California, Irvine, CA 92697
| | - Qing Nie
- Department of Mathematics and the NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- The Center for Neural Circuit Mapping, University of California, Irvine, CA 92697
| |
Collapse
|
26
|
Karavallil Achuthan S, Coburn KL, Beckerson ME, Kana RK. Amplitude of low frequency fluctuations during resting state fMRI in autistic children. Autism Res 2023; 16:84-98. [PMID: 36349875 DOI: 10.1002/aur.2846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Resting state fMRI (rs-fMRI) provides an excellent platform for examining the amplitude of low frequency fluctuations (ALFF) and fractional amplitude of low frequency fluctuations (fALFF), which are key indices of brain functioning. However, ALFF and fALFF have been used only sporadically to study autism. rs-fMRI data from 69 children (40 autistic, mean age = 8.47 ± 2.20 years; age range: 5.2 to 13.2; and 29 non-autistic, mean age = 9.02 ± 1.97 years; age range 5.9 to 12.9) were obtained from the Autism Brain Imaging Data Exchange (ABIDE II). ALFF and fALFF were measured using CONN connectivity toolbox and SPM12, at whole-brain & network-levels. A two-sampled t-test and a 2 Group (autistic, non-autistic) × 7 Networks ANOVA were conducted to test group differences in ALFF and fALFF. The whole-brain analysis identified significantly reduced ALFF values for autistic participants in left parietal opercular cortex, precuneus, and right insula. At the network level, there was a significant effect of diagnostic group and brain network on ALFF values, and only significant effect of network, not group, on fALFF values. Regression analyses indicated a significant effect of age on ALFF values of certain networks in autistic participants. Such intrinsically different network-level responses in autistic participants may have implications for task-level recruitment and synchronization of brain areas, which may in turn impact optimal cognitive functioning. Moreover, differences in low frequency fluctuations of key networks, such as the DMN and SN, may underlie alterations in brain responses in autism that are frequently reported in the literature.
Collapse
Affiliation(s)
- Smitha Karavallil Achuthan
- Department of Psychology & The Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, Alabama, USA
| | - Kelly L Coburn
- Department of Speech-Language Pathology & Audiology, Towson University, Towson, Maryland, USA
| | - Meagan E Beckerson
- Department of Psychology & The Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, Alabama, USA
| | - Rajesh K Kana
- Department of Psychology & The Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
27
|
Zhang F, Moerman F, Niu H, Warreyn P, Roeyers H. Atypical brain network development of infants at elevated likelihood for autism spectrum disorder during the first year of life. Autism Res 2022; 15:2223-2237. [PMID: 36193817 DOI: 10.1002/aur.2827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral features that appear early in life. Although studies have shown that atypical brain functional and structural connectivity are associated with these behavioral traits, the occurrence and initial alterations of brain networks have not been fully investigated. The current study aimed to map early brain network efficiency and information transferring in infants at elevated likelihood (EL) compared to infants at typical likelihood (TL) for ASD in the first year of life. This study used a resting-state functional near-infrared spectroscopy (fNIRS) approach to obtain the length and strength of functional connections in the frontal and temporal areas in 45 5-month-old and 38 10-month-old infants. Modular organization and small-world properties were detected in both EL and TL infants at 5 and 10 months. In 5-month-old EL infants, local and nodal efficiency were significantly greater than age-matched TL infants, indicating overgrown local connections. Furthermore, we used a support vector machine (SVM) model to classify infants with or without EL based on the obtained global properties of the network, achieving an accuracy of 77.6%. These results suggest that infants with EL for ASD exhibit inefficiencies in the organization of brain networks during the first year of life.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Floor Moerman
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Haijing Niu
- State Key Lab. of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Petra Warreyn
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Herbert Roeyers
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Aberrant Cortical Layer Development of Brain Organoids Derived from Noonan Syndrome-iPSCs. Int J Mol Sci 2022; 23:ijms232213861. [PMID: 36430334 PMCID: PMC9699065 DOI: 10.3390/ijms232213861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Noonan syndrome (NS) is a genetic disorder mainly caused by gain-of-function mutations in Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2). Although diverse neurological manifestations are commonly diagnosed in NS patients, the mechanisms as to how SHP2 mutations induce the neurodevelopmental defects associated with NS remain elusive. Here, we report that cortical organoids (NS-COs) derived from NS-induced pluripotent stem cells (iPSCs) exhibit developmental abnormalities, especially in excitatory neurons (ENs). Although NS-COs develop normally in their appearance, single-cell transcriptomic analysis revealed an increase in the EN population and overexpression of cortical layer markers in NS-COs. Surprisingly, the EN subpopulation co-expressing the upper layer marker SATB2 and the deep layer maker CTIP2 was enriched in NS-COs during cortical development. In parallel with the developmental disruptions, NS-COs also exhibited reduced synaptic connectivity. Collectively, our findings suggest that perturbed cortical layer identity and impeded neuronal connectivity contribute to the neurological manifestations of NS.
Collapse
|
29
|
Oda K, Colman R, Koshiba M. Simplified Attachable EEG Revealed Child Development Dependent Neurofeedback Brain Acute Activities in Comparison with Visual Numerical Discrimination Task and Resting. SENSORS (BASEL, SWITZERLAND) 2022; 22:7207. [PMID: 36236305 PMCID: PMC9572555 DOI: 10.3390/s22197207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The development of an easy-to-attach electroencephalograph (EEG) would enable its frequent use for the assessment of neurodevelopment and clinical monitoring. In this study, we designed a two-channel EEG headband measurement device that could be used safely and was easily attachable and removable without the need for restraint or electrode paste or gel. Next, we explored the use of this device for neurofeedback applications relevant to education or neurocognitive development. We developed a prototype visual neurofeedback game in which the size of a familiar local mascot changes in the PC display depending on the user's brain wave activity. We tested this application at a local children's play event. Children at the event were invited to experience the game and, upon agreement, were provided with an explanation of the game and support in attaching the EEG device. The game began with a consecutive number visual discrimination task which was followed by an open-eye resting condition and then a neurofeedback task. Preliminary linear regression analyses by the least-squares method of the acquired EEG and age data in 30 participants from 5 to 20 years old suggested an age-dependent left brain lateralization of beta waves at the neurofeedback stage (p = 0.052) and of alpha waves at the open-eye resting stage (p = 0.044) with potential involvement of other wave bands. These results require further validation.
Collapse
Affiliation(s)
- Kazuyuki Oda
- Engineering Department, Graduate School of Sciences and Technology for Innovation Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Ricki Colman
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Mamiko Koshiba
- Engineering Department, Graduate School of Sciences and Technology for Innovation Yamaguchi University, Yamaguchi 755-8611, Japan
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
30
|
Autism spectrum disorders: current issues and future directions. Ir J Psychol Med 2022; 39:237-239. [DOI: 10.1017/ipm.2022.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis edition of Irish Journal of Psychological Medicine is a Special Themed Issue on Autism Spectrum Disorders (ASD). Mental health services are not currently meeting the needs of autistic people across the lifespan. We have limited evidence based treatments for core symptoms and comorbidities and there is lack of awareness and under-recognition of ASD, particularly in adults and certain groups of individuals. The key themes in this edition focus on challenges with recognition and diagnosis and address these from both clinical and research perspectives. Co-occurring conditions also feature, which are also under-recognised and can contribute to less optimal outcomes. New and existing research developments in stratification for clinical trials and neuroimaging are also discussed. We hope this Issue highlights relevant current issues in ASD, and provides insights which can help address the challenges in providing evidence based pathways to better meet the needs of autistic people into the future.
Collapse
|
31
|
Park S, Zikopoulos B, Yazdanbakhsh A. Visual illusion susceptibility in autism: A neural model. Eur J Neurosci 2022; 56:4246-4265. [PMID: 35701859 PMCID: PMC9541695 DOI: 10.1111/ejn.15739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
While atypical sensory perception is reported among individuals with autism spectrum disorder (ASD), the underlying neural mechanisms of autism that give rise to disruptions in sensory perception remain unclear. We developed a neural model with key physiological, functional and neuroanatomical parameters to investigate mechanisms underlying the range of representations of visual illusions related to orientation perception in typically developed subjects compared to individuals with ASD. Our results showed that two theorized autistic traits, excitation/inhibition imbalance and weakening of top‐down modulation, could be potential candidates for reduced susceptibility to some visual illusions. Parametric correlation between cortical suppression, balance of excitation/inhibition, feedback from higher visual areas on one hand and susceptibility to a class of visual illusions related to orientation perception on the other hand provide the opportunity to investigate the contribution and complex interactions of distinct sensory processing mechanisms in ASD. The novel approach used in this study can be used to link behavioural, functional and neuropathological studies; estimate and predict perceptual and cognitive heterogeneity in ASD; and form a basis for the development of novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sangwook Park
- Computational Neuroscience and Vision Laboratory, Boston University, Boston, Massachusetts, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts, USA.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Arash Yazdanbakhsh
- Computational Neuroscience and Vision Laboratory, Boston University, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Xie Y, Xu Z, Xia M, Liu J, Shou X, Cui Z, Liao X, He Y. Alterations in Connectome Dynamics in Autism Spectrum Disorder: A Harmonized Mega- and Meta-analysis Study Using the Autism Brain Imaging Data Exchange Dataset. Biol Psychiatry 2022; 91:945-955. [PMID: 35144804 DOI: 10.1016/j.biopsych.2021.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuroimaging studies have reported functional connectome aberrancies in autism spectrum disorder (ASD). However, the time-varying patterns of connectome topology in individuals with ASD and the connection between these patterns and gene expression profiles remain unknown. METHODS To investigate case-control differences in dynamic connectome topology, we conducted mega- and meta-analyses of resting-state functional magnetic resonance imaging data of 939 participants (440 patients with ASD and 499 healthy control subjects, all males) from 18 independent sites, selected from the Autism Brain Imaging Data Exchange (ABIDE) dataset. Functional data were preprocessed and analyzed using harmonized protocols, and brain module dynamics was assessed using a multilayer network model. We further leveraged postmortem brain-wide gene expression data to identify transcriptomic signatures associated with ASD-related alterations in brain dynamics. RESULTS Compared with healthy control participants, individuals with ASD exhibited a higher global mean and lower standard deviation of whole-brain module dynamics, indicating an unstable and less regionally differentiated pattern. More specifically, individuals with ASD showed higher module switching, primarily in the medial prefrontal cortex, posterior cingulate gyrus, and angular gyrus, and lower switching in the visual regions. These alterations in brain dynamics were predictive of social impairments in individuals with ASD and were linked with expression profiles of genes primarily involved in the regulation of neurotransmitter transport and secretion as well as with previously identified autism-related genes. CONCLUSIONS This study is the first to identify consistent alterations in brain network dynamics in ASD and the transcriptomic signatures related to those alterations, furthering insights into the biological basis behind this disorder.
Collapse
Affiliation(s)
- Yapei Xie
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaojing Shou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Xuhong Liao
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; School of Systems Science, Beijing Normal University, Beijing, China.
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
33
|
A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity. MACHINE LEARNING WITH APPLICATIONS 2022. [DOI: 10.1016/j.mlwa.2022.100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
34
|
Peng L, Liu X, Ma D, Chen X, Xu X, Gao X. The Altered Pattern of the Functional Connectome Related to Pathological Biomarkers in Individuals for Autism Spectrum Disorder Identification. Front Neurosci 2022; 16:913377. [PMID: 35600614 PMCID: PMC9120576 DOI: 10.3389/fnins.2022.913377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by the development of multiple symptoms, with incidences rapidly increasing worldwide. An important step in the early diagnosis of ASD is to identify informative biomarkers. Currently, the use of functional brain network (FBN) is deemed important for extracting data on brain imaging biomarkers. Unfortunately, most existing studies have reported the utilization of the information from the connection to train the classifier; such an approach ignores the topological information and, in turn, limits its performance. Thus, effective utilization of the FBN provides insights for improving the diagnostic performance. Methods We propose the combination of the information derived from both FBN and its corresponding graph theory measurements to identify and distinguish ASD from normal controls (NCs). Specifically, a multi-kernel support vector machine (MK-SVM) was used to combine multiple types of information. Results The experimental results illustrate that the combination of information from multiple connectome features (i.e., functional connections and graph measurements) can provide a superior identification performance with an area under the receiver operating characteristic curve (ROC) of 0.9191 and an accuracy of 82.60%. Furthermore, the graph theoretical analysis illustrates that the significant nodal graph measurements and consensus connections exists mostly in the salience network (SN), default mode network (DMN), attention network, frontoparietal network, and social network. Conclusion This work provides insights into potential neuroimaging biomarkers that may be used for the diagnosis of ASD and offers a new perspective for the exploration of the brain pathophysiology of ASD through machine learning.
Collapse
Affiliation(s)
- Liling Peng
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Xiao Liu
- School of Business Administration, José Rizal University, Mandaluyong, Philippines
| | - Di Ma
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Xiaofeng Chen
- College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xiaowen Xu,
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
- Xin Gao,
| |
Collapse
|
35
|
Han YMY, Yau SY, Chan MMY, Wong CK, Chan AS. Altered Cytokine and BDNF Levels in Individuals with Autism Spectrum Disorders. Brain Sci 2022; 12:brainsci12040460. [PMID: 35447993 PMCID: PMC9026457 DOI: 10.3390/brainsci12040460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Previous studies have shown that immunological factors are involved in the pathogenesis of autism spectrum disorders (ASDs). The present study examined whether immunological abnormalities are associated with cognitive and behavioral deficits in children with ASD and whether children with ASD show different immunological biomarkers and brain-derived neurotrophic factor BDNF levels than typically developing (TD) children. Sixteen children with TD and 18 children with ASD, aged 6–18 years, voluntarily participated in the study. Participants’ executive functions were measured using neuropsychological tests, and behavioral measures were measured using parent ratings. Immunological measures were assessed by measuring the participants’ blood serum levels of chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5). Children with ASD showed greater deficits in cognitive functions as well as altered levels of immunological measures when compared to TD children, and their cognitive functions and behavioral deficits were significantly associated with increased CCL5 levels and decreased BDNF levels. These results provide evidence to support the notion that altered immune functions and neurotrophin deficiency are involved in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yvonne M. Y. Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
- Correspondence: ; Tel.: +852-2766-7578
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
| | - Melody M. Y. Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
36
|
Lin P, Zang S, Bai Y, Wang H. Reconfiguration of Brain Network Dynamics in Autism Spectrum Disorder Based on Hidden Markov Model. Front Hum Neurosci 2022; 16:774921. [PMID: 35211000 PMCID: PMC8861306 DOI: 10.3389/fnhum.2022.774921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopment disorders characterized by altered brain connectivity. However, the majority of neuroimaging studies for ASD focus on the static pattern of brain function and largely neglect brain activity dynamics, which might provide deeper insight into the underlying mechanism of brain functions for ASD. Therefore, we proposed a framework with Hidden Markov Model (HMM) analysis for resting-state functional MRI (fMRI) from a large multicenter dataset of 507 male subjects. Specifically, the 507 subjects included 209 subjects with ASD and 298 well-matched health controls across 14 sites from the Autism Brain Imaging Data Exchange (ABIDE). Based on the HMM, we can identify the recurring brain function networks over time across ASD and healthy controls (HCs). Then we assessed the dynamical configuration of the whole-brain networks and further analyzed the community structure of transitions across the brain states. Based on the 19 HMM states, we found that the global temporal statistics of the specific HMM states (including fractional occupancies and lifetimes) were significantly altered in ASD compared to HCs. These specific HMM states were characterized by the activation pattern of default mode network (DMN), sensory processing networks [including visual network, auditory network, and sensory and motor network (SMN)]. Meanwhile, we also find that the specific modules of transitions between states were closely related to ASD. Our findings indicate the temporal reconfiguration of the brain network in ASD and provide novel insights into the dynamics of the whole-brain networks for ASD.
Collapse
Affiliation(s)
- Pingting Lin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
- Research Center for Learning Science, Southeast University, Nanjing, China
| | - Shiyi Zang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
- Research Center for Learning Science, Southeast University, Nanjing, China
| | - Yi Bai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
- Research Center for Learning Science, Southeast University, Nanjing, China
| | - Haixian Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
- Research Center for Learning Science, Southeast University, Nanjing, China
- *Correspondence: Haixian Wang,
| |
Collapse
|
37
|
Ma L, Yuan T, Li W, Guo L, Zhu D, Wang Z, Liu Z, Xue K, Wang Y, Liu J, Man W, Ye Z, Liu F, Wang J. Dynamic Functional Connectivity Alterations and Their Associated Gene Expression Pattern in Autism Spectrum Disorders. Front Neurosci 2022; 15:794151. [PMID: 35082596 PMCID: PMC8784878 DOI: 10.3389/fnins.2021.794151] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental disorders that are highly heritable and are associated with impaired dynamic functional connectivity (DFC). However, the molecular mechanisms behind DFC alterations remain largely unknown. Eighty-eight patients with ASDs and 87 demographically matched typical controls (TCs) from the Autism Brain Imaging Data Exchange II database were included in this study. A seed-based sliding window approach was then performed to investigate the DFC changes in each of the 29 seeds in 10 classic resting-state functional networks and the whole brain. Subsequently, the relationships between DFC alterations in patients with ASDs and their symptom severity were assessed. Finally, transcription-neuroimaging association analyses were conducted to explore the molecular mechanisms of DFC disruptions in patients with ASDs. Compared with TCs, patients with ASDs showed significantly increased DFC between the right dorsolateral prefrontal cortex (DLPFC) and left fusiform/lingual gyrus, between the DLPFC and the superior temporal gyrus, between the right frontal eye field (FEF) and left middle frontal gyrus, between the FEF and the right angular gyrus, and between the left intraparietal sulcus and the right middle temporal gyrus. Moreover, significant relationships between DFC alterations and symptom severity were observed. Furthermore, the genes associated with DFC changes in ASDs were identified by performing gene-wise across-sample spatial correlation analysis between gene expression extracted from six donors’ brain of the Allen Human Brain Atlas and case-control DFC difference. In enrichment analysis, these genes were enriched for processes associated with synaptic signaling and voltage-gated ion channels and calcium pathways; also, these genes were highly expressed in autistic disorder, chronic alcoholic intoxication and several disorders related to depression. These results not only demonstrated higher DFC in patients with ASDs but also provided novel insight into the molecular mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengfei Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixuan Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaoyi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiawei Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Weiqi Man
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Zhaoxiang Ye,
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Feng Liu,
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Junping Wang,
| |
Collapse
|
38
|
Garrido D, Beretta S, Grabrucker S, Bauer HF, Bayer D, Sala C, Verpelli C, Roselli F, Bockmann J, Proepper C, Catanese A, Boeckers TM. Shank2/3 double knockout-based screening of cortical subregions links the retrosplenial area to the loss of social memory in autism spectrum disorders. Mol Psychiatry 2022; 27:4994-5006. [PMID: 36100669 PMCID: PMC9763120 DOI: 10.1038/s41380-022-01756-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023]
Abstract
Members of the Shank protein family are master scaffolds of the postsynaptic architecture and mutations within the SHANK genes are causally associated with autism spectrum disorders (ASDs). We generated a Shank2-Shank3 double knockout mouse that is showing severe autism related core symptoms, as well as a broad spectrum of comorbidities. We exploited this animal model to identify cortical brain areas linked to specific autistic traits by locally deleting Shank2 and Shank3 simultaneously. Our screening of 10 cortical subregions revealed that a Shank2/3 deletion within the retrosplenial area severely impairs social memory, a core symptom of ASD. Notably, DREADD-mediated neuronal activation could rescue the social impairment triggered by Shank2/3 depletion. Data indicate that the retrosplenial area has to be added to the list of defined brain regions that contribute to the spectrum of behavioural alterations seen in ASDs.
Collapse
Affiliation(s)
- Débora Garrido
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748International Graduate School, Ulm University, 89081 Ulm, Germany
| | - Stefania Beretta
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Stefanie Grabrucker
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Helen Friedericke Bauer
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748International Graduate School, Ulm University, 89081 Ulm, Germany
| | - David Bayer
- grid.6582.90000 0004 1936 9748International Graduate School, Ulm University, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Carlo Sala
- grid.418879.b0000 0004 1758 9800CNR, Institute for Neuroscience, Milano, Italy
| | - Chiara Verpelli
- grid.418879.b0000 0004 1758 9800CNR, Institute for Neuroscience, Milano, Italy
| | - Francesco Roselli
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany ,grid.6582.90000 0004 1936 9748Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Juergen Bockmann
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Christian Proepper
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Alberto Catanese
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- grid.6582.90000 0004 1936 9748Institute of Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Ulm site, 89081 Ulm, Germany
| |
Collapse
|
39
|
Chouhan T, Black MH, Girdler S, Bölte S, Tan T, Guan C. Altered task induced functional brain networks and small-world properties in autism. Front Psychiatry 2022; 13:1039820. [PMID: 36741564 PMCID: PMC9893112 DOI: 10.3389/fpsyt.2022.1039820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Facial emotion recognition (FER) requires the integration of multi-dimensional information across various brain regions. Autistic individuals commonly experience difficulties in FER, a phenomenon often attributed to differences in brain connectivity. The nature of task-induced functional brain networks could provide insight into the neuromechanisms underlying FER difficulties in autism, however, to date, these mechanisms remain poorly understood. METHODS In this study, the task induced functional brain networks of 19 autistic and 19 gender, age, and IQ matched non-autistic individuals were examined during a complex FER task. Electroencephalogram (EEG)-based functional brain networks were examined, including the investigation of differences in the time-varying whole-brain functional networks and the exploration of the task induced small-world properties. RESULTS The results showed statistically significant differences in the task-induced functional networks between autistic and non-autistic adults. Autistic adults compared to non-autistic adults showed a significant shift in the connectivity-based FER processing from the lower to the higher EEG frequency bands. DISCUSSION These findings may provide evidence at a neural level for the notion that autistic individuals have a preference for bottom-up lower-level processing, or alterations in top-down global processing, potentially contributing to the FER difficulties observed in this population. Results also suggest that functional brain networks in autism show significantly altered task-induced whole-brain small-world properties as compared to non-autistic individuals during complex FER. This study motivates further investigation of the underlying networks-basis of altered emotion processing in autism.
Collapse
Affiliation(s)
- Tushar Chouhan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Melissa H Black
- School of Allied Health, Curtin University, Perth, WA, Australia.,Curtin Autism Research Group, Curtin University, Perth, WA, Australia.,Cooperative Research Centre for Living With Autism (Autism CRC), Brisbane, QLD, Australia.,Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Sonya Girdler
- School of Allied Health, Curtin University, Perth, WA, Australia.,Curtin Autism Research Group, Curtin University, Perth, WA, Australia.,Cooperative Research Centre for Living With Autism (Autism CRC), Brisbane, QLD, Australia.,Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,School of Allied Health, University of Western Australia, Perth, WA, Australia
| | - Sven Bölte
- School of Allied Health, Curtin University, Perth, WA, Australia.,Curtin Autism Research Group, Curtin University, Perth, WA, Australia.,Cooperative Research Centre for Living With Autism (Autism CRC), Brisbane, QLD, Australia.,Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Tele Tan
- Curtin Autism Research Group, Curtin University, Perth, WA, Australia.,Cooperative Research Centre for Living With Autism (Autism CRC), Brisbane, QLD, Australia.,School of Mechanical Engineering, Curtin University, Perth, WA, Australia
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
40
|
Liang D, Xia S, Zhang X, Zhang W. Analysis of Brain Functional Connectivity Neural Circuits in Children With Autism Based on Persistent Homology. Front Hum Neurosci 2021; 15:745671. [PMID: 34588970 PMCID: PMC8473898 DOI: 10.3389/fnhum.2021.745671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neuropsychiatric disorder with a complex and unknown etiology. Statistics demonstrate that the number of people diagnosed with ASD is increasing in countries around the world. Currently, although many neuroimaging studies indicate that ASD is characterized by abnormal functional connectivity (FC) patterns within brain networks rather than local functional or structural abnormalities, the FC characteristics of ASD are still poorly understood. In this study, a Vietoris-Rips (VR) complex filtration model of the brain functional network was established by using resting-state functional magnetic resonance imaging (fMRI) data of children aged 6–13 years old [including 54 ASD patients and 52 typical development (TD) controls] from the Autism Brain Imaging Data Exchange (ABIDE) public database. VR complex filtration barcodes are calculated by using persistent homology to describe the changes in the FC neural circuits of brain networks. The number of FC neural circuits with different length ranges at different threshold values is calculated by using the barcodes, the different brain regions participating in FC neural circuits are discussed, and the connectivity characteristics of brain FC neural circuits in the two groups are compared and analyzed. Our results show that the number of FC neural circuits with lengths of 8–12 is significantly decreased in the ASD group compared with the TD control group at threshold values of 0.7, 0.8 and 0.9, and there is no significant difference in the number of FC neural circuits with lengths of 4–7 and 13–16 and lengths 16. When the thresholds are 0.7, 0.8, and 0.9, the number of FC neural circuits in some brain regions, such as the right orbital part of the superior frontal gyrus, the left supplementary motor area, the left hippocampus, and the right caudate nucleus, involved in the study is significantly decreased in the ASD group compared with the TD control group. The results of this study indicate that there are significant differences in the FC neural circuits of brain networks in the ASD group compared with the TD control group.
Collapse
Affiliation(s)
- Di Liang
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shengxiang Xia
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Xianfu Zhang
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Weiwei Zhang
- School of Science, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
41
|
The Comparison of Quantitative Electroencephalography of Neural Connections between Children aged 6 to 13 years with Autism Spectrum Disorder and Typically Developing Children. JOURNAL OF COGNITIVE PSYCHOLOGY 2021. [DOI: 10.52547/jcp.9.3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Loomba N, Beckerson ME, Ammons CJ, Maximo JO, Kana RK. Corpus callosum size and homotopic connectivity in Autism spectrum disorder. Psychiatry Res Neuroimaging 2021; 313:111301. [PMID: 34022542 DOI: 10.1016/j.pscychresns.2021.111301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
By examining how morphology of the corpus callosum (CC) in autism spectrum disorder (ASD) may affect functional communication across hemispheres, we hope to provide new insights into the structure-function relationship in the brain. We used a sample of 94 participants from the Autism Brain Imaging Data Exchange (ABIDE) database (55 typically-developing (TD) and 39 with ASD). The CC was segmented into five sub-regions (anterior, mid-anterior, central, mid-posterior, posterior) using FreeSurfer software, which were further examined for group differences. The total volume and specific sub-region volumes of the CC, and interhemispheric (homotopic) functional connectivity were calculated, along with the relationship between volume and connectivity. These measures were correlated with social ability assessed by the Social Responsiveness Scale (SRS). The central sub-region of CC was significantly smaller in ASD, although there was no group difference in total CC volume. ASD participants also showed stronger homotopic connectivity in the superior frontal gyrus. SRS scores were negatively correlated with the CC central sub-region volumes in ASD. The findings of this study add to the body of research showing morphological differences in the CC in ASD as well as connectivity differences. The absence of a significant relationship between structure and homotopic functional connectivity aligns with previous findings.
Collapse
Affiliation(s)
- Niharika Loomba
- Interdisciplinary Graduate Program, Vanderbilt University, Nashville, TN, United States
| | - Meagan E Beckerson
- Department of Psychology, University of Alabama, Tuscaloosa, AL, United States; Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, United States
| | - Carla J Ammons
- Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| | - Jose O Maximo
- Department of Psychiatry & Behavior Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rajesh K Kana
- Department of Psychology, University of Alabama, Tuscaloosa, AL, United States; Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, United States.
| |
Collapse
|
43
|
McCarty MJ, Brumback AC. Rethinking Stereotypies in Autism. Semin Pediatr Neurol 2021; 38:100897. [PMID: 34183141 PMCID: PMC8654322 DOI: 10.1016/j.spen.2021.100897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 11/30/2022]
Abstract
Stereotyped movements ("stereotypies") are semi-voluntary repetitive movements that are a prominent clinical feature of autism spectrum disorder. They are described in first-person accounts by people with autism as relaxing and that they help focus the mind and cope in overwhelming sensory environments. Therefore, we generally recommend against techniques that aim to suppress stereotypies in individuals with autism. Further, we hypothesize that understanding the neurobiology of stereotypies could guide development of treatments to produce the benefits of stereotypies without the need to generate repetitive motor movements. Here, we link first-person reports and clinical findings with basic neuroanatomy and physiology to produce a testable model of stereotypies. We hypothesize that stereotypies improve sensory processing and attention by regulating brain rhythms, either directly from the rhythmic motor command, or via rhythmic sensory feedback generated by the movements.
Collapse
|
44
|
He C, Cortes JM, Kang X, Cao J, Chen H, Guo X, Wang R, Kong L, Huang X, Xiao J, Shan X, Feng R, Chen H, Duan X. Individual-based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder. Hum Brain Mapp 2021; 42:3282-3294. [PMID: 33934442 PMCID: PMC8193534 DOI: 10.1002/hbm.25434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Individual-based morphological brain networks built from T1-weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual-based morphological networks were constructed by using high-resolution structural MRI data from 40 young children with ASD (age range: 2-8 years) and 38 age-, gender-, and handedness-matched typically developing children (TDC). Measurements were recorded as threefold. Results showed that compared with TDC, young children with ASD exhibited lower values of small-worldness (i.e., σ) of individual-level morphological brain networks, increased morphological connectivity in cortico-striatum-thalamic-cortical (CSTC) circuitry, and decreased morphological connectivity in the cortico-cortical network. In addition, morphological connectivity abnormalities can predict the severity of social communication deficits in young children with ASD, thus confirming an associational impact at the behavioral level. These findings suggest that the morphological brain network in the autistic developmental brain is inefficient in segregating and distributing information. The results also highlight the crucial role of abnormal morphological connectivity patterns in the socio-cognitive deficits of ASD and support the possible use of the aberrant developmental patterns of morphological brain networks in revealing new clinically-relevant biomarkers for ASD.
Collapse
Affiliation(s)
- Changchun He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Jesus M. Cortes
- Computational Neuroimaging LaboratoryBiocruces‐Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque: The Basque Foundation for ScienceBilbaoSpain
- Department of Cell Biology and HistologyUniversity of the Basque CountryLeioaSpain
| | - Xiaodong Kang
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCMSichuan Bayi Rehabilitation CenterChengduChina
| | - Jing Cao
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCMSichuan Bayi Rehabilitation CenterChengduChina
| | - Heng Chen
- School of MedicineMedical College of Guizhou UniversityGuiyangChina
| | - Xiaonan Guo
- School of Information Science and EngineeringYanshan UniversityQinhuangdaoChina
- Hebei Key Laboratory of information transmission and signal processingYanshan UniversityQinhuangdaoChina
| | - Ruishi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Lingyin Kong
- Department of Biomedical Engineering, School of Material Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
45
|
Nayar K, Kang X, Xing J, Gordon PC, Wong PCM, Losh M. A cross-cultural study showing deficits in gaze-language coordination during rapid automatized naming among individuals with ASD. Sci Rep 2021; 11:13401. [PMID: 34183686 PMCID: PMC8238959 DOI: 10.1038/s41598-021-91911-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) and their first-degree relatives demonstrate automaticity deficits reflected in reduced eye-voice coordination during rapid automatized naming (RAN), suggesting that RAN deficits may be a genetically meaningful marker of ASD language-related impairments. This study investigated whether RAN deficits in ASD extend to a language typologically distinct from English. Participants included 23 Cantonese-speaking individuals with ASD and 39 controls from Hong Kong (HK), and age- and IQ-comparable groups of previously-studied English-speaking individuals with ASD (n = 45) and controls (n = 44) from the US. Participants completed RAN on an eye tracker. Analyses examined naming time, error rate, measures of eye movement reflecting language automaticity, including eye-voice span (EVS; location of eyes versus the named item) and refixations. The HK-ASD group exhibited longer naming times and more refixations than HK-Controls, in a pattern similar to that observed in the US-ASD group. Cultural effects revealed that both HK groups showed longer EVS and more fixations than US groups. Naming time and refixation differences may be ASD-specific impairments spanning cultures/languages, whereas EVS and fixation frequency may be more variably impacted. A potential underlying mechanism of visual "stickiness" may be contributing to this breakdown in language automaticity in ASD.
Collapse
Affiliation(s)
- Kritika Nayar
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Frances Searle Building, #2-366, Evanston, IL, 60208, USA
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiayin Xing
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Frances Searle Building, #2-366, Evanston, IL, 60208, USA
| | - Peter C Gordon
- Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Drive, Frances Searle Building, #2-366, Evanston, IL, 60208, USA.
| |
Collapse
|
46
|
Nassar MR, Troiani V. The stability flexibility tradeoff and the dark side of detail. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:607-623. [PMID: 33236296 PMCID: PMC8141540 DOI: 10.3758/s13415-020-00848-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 12/26/2022]
Abstract
Learning in dynamic environments requires integrating over stable fluctuations to minimize the impact of noise (stability) but rapidly responding in the face of fundamental changes (flexibility). Achieving one of these goals often requires sacrificing the other to some degree, producing a stability-flexibility tradeoff. Individuals navigate this tradeoff in different ways; some people learn rapidly (emphasizing flexibility) and others rely more heavily on historical information (emphasizing stability). Despite the prominence of such individual differences in learning tasks, the degree to which they relate to broader characteristics of real-world behavior or pathologies has not been well explored. We relate individual differences in learning behavior to self-report measures thought to capture collectively the characteristics of the Autism spectrum. We show that young adults who learn most slowly tend to integrate more effective samples into their beliefs about the world making them more robust to noise (more stability) but are more likely to integrate information from previous contexts (less flexibility). We show that individuals who report paying more attention to detail tend to use high flexibility and low stability information processing strategies. We demonstrate the robustness of this inverse relationship between attention to detail and formation of stable beliefs in a heterogeneous population of children that includes a high proportion of Autism diagnoses. Together, our results highlight that attention to detail reflects an information processing policy that comes with a substantial downside, namely the ability to integrate data to overcome environmental noise.
Collapse
Affiliation(s)
- Matthew R Nassar
- Department of Neuroscience; Carney Institute for Brain Science, Brown University, Providence, RI, 02912-1821, USA.
| | - Vanessa Troiani
- Geisinger-Bucknell Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| |
Collapse
|
47
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
48
|
Maximo JO, Nelson CM, Kana RK. "Unrest while Resting"? Brain entropy in autism spectrum disorder. Brain Res 2021; 1762:147435. [PMID: 33753068 DOI: 10.1016/j.brainres.2021.147435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
Biological systems typically exhibit complex behavior with nonlinear dynamic properties. Nonlinear signal processing techniques such as sample entropy is a novel approach to characterize the temporal dynamics of brain connectivity. Estimating entropy is especially important in clinical populations such as autism spectrum disorder (ASD) as differences in entropy may signal functional alterations in the brain. Considering the models of disrupted brain network connectivity in ASD, sample entropy would provide a novel direction to understand brain organization. Resting state fMRI data from 45 high-functioning children with ASD and 45 age-and-IQ-matched typically developing (TD) children were obtained from the Autism Brain Imaging Data Exchange (ABIDE-II) database. Data were preprocessed using the CONN toolbox. Sample entropy was then calculated using the complexity toolbox, in a whole-brain voxelwise manner as well as in regions of interests (ROIs) based methods. ASD participants demonstrated significantly increased entropy in left angular gyrus, superior parietal lobule, and right inferior temporal gyrus; and reduced sample entropy in superior frontal gyrus compared to TD participants. Positive correlations of average entropy in clusters of significant group differences scores across all subjects were found. Finally, ROI analysis revealed a main effect of lobes. Differences in entropy between the ASD and TD groups suggests that entropy may provide another important index of brain dysfunction in clinical populations like ASD. Further, the relationship between increased entropy and ASD symptoms in our study underscores the role of optimal brain synchronization in cognitive and behavioral functions.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, United States
| | - Cailee M Nelson
- Department of Educational Studies in Psychology, Research Methodology, & Counseling, University of Alabama, United States
| | - Rajesh K Kana
- Department of Psychology, University of Alabama, United States; Center for Innovative Research in Autism, University of Alabama, United States.
| |
Collapse
|
49
|
Cerullo S, Fulceri F, Muratori F, Contaldo A. Acting with shared intentions: A systematic review on joint action coordination in Autism Spectrum Disorder. Brain Cogn 2021; 149:105693. [PMID: 33556847 DOI: 10.1016/j.bandc.2021.105693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Joint actions, described as a form of social interaction in which individuals coordinate their actions in space and time to bring about a change in the environment, rely on sensory-motor processes that play a role in the development of social skills. Two brain networks, associated with "mirroring" and "mentalizing", are engaged during these actions: the mirror neuron and the theory of mind systems. People with autism spectrum disorder (ASD) showed impairment in interpersonal coordination during joint actions. Studying joint action coordination in ASD will contribute to clarify the interplay between sensory-motor and social processes throughout development and the interactions between the brain and the behavior. METHOD This review focused on empirical studies that reported behavioral and kinematic findings related to joint action coordination in people with ASD. RESULTS Literature on mechanisms involved in the joint action coordination impairment in ASD is still limited. Data are controversial. Different key-components of joint action coordination may be impaired, such as cooperative behavior, temporal coordination, and motor planning. CONCLUSIONS Interpersonal coordination during joint actions relies on early sensory-motor processes that have a key role in guiding social development. Early intervention targeting the sensory-motor processes involved in the development of joint action coordination could positively support social skills.
Collapse
Affiliation(s)
- Sonia Cerullo
- IRCCS Stella Maris Foundation, 331 Viale del Tirreno, 56018 Pisa, Italy
| | - Francesca Fulceri
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, 331 Viale del Tirreno, 56018 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annarita Contaldo
- IRCCS Stella Maris Foundation, 331 Viale del Tirreno, 56018 Pisa, Italy.
| |
Collapse
|
50
|
Sexually dimorphic neuroanatomical differences relate to ASD-relevant behavioral outcomes in a maternal autoantibody mouse model. Mol Psychiatry 2021; 26:7530-7537. [PMID: 34290368 PMCID: PMC8776898 DOI: 10.1038/s41380-021-01215-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Immunoglobulin G (IgG) autoantibodies reactive to fetal brain proteins in mothers of children with ASD have been described by several groups. To understand their pathologic significance, we developed a mouse model of maternal autoantibody related ASD (MAR-ASD) utilizing the peptide epitopes from human autoantibody reactivity patterns. Male and female offspring prenatally exposed to the salient maternal autoantibodies displayed robust deficits in social interactions and increased repetitive self-grooming behaviors as juveniles and adults. In the present study, neuroanatomical differences in adult MAR-ASD and control offspring were assessed via high-resolution ex vivo magnetic resonance imaging (MRI) at 6 months of age. Of interest, MAR-ASD mice displayed significantly larger total brain volume and of the 159 regions examined, 31 were found to differ significantly in absolute volume (mm3) at an FDR of <5%. Specifically, the absolute volumes of several white matter tracts, cortical regions, and basal nuclei structures were significantly increased in MAR-ASD animals. These phenomena were largely driven by female MAR-ASD offspring, as no significant differences were seen with either absolute or relative regional volume in male MAR-ASD mice. However, structural covariance analysis suggests network-level desynchronization in brain volume in both male and female MAR-ASD mice. Additionally, preliminary correlational analysis with behavioral data relates that volumetric increases in numerous brain regions of MAR-ASD mice were correlated with social interaction and repetitive self-grooming behaviors in a sex-specific manner. These results demonstrate significant sex-specific effects in brain size, regional relationships, and behavior for offspring prenatally exposed to MAR-ASD autoantibodies relative to controls.
Collapse
|