1
|
Monràs-Riera P, Avila C, Ballesté E. Plastisphere in an Antarctic environment: A microcosm approach. MARINE POLLUTION BULLETIN 2024; 208:116961. [PMID: 39293370 DOI: 10.1016/j.marpolbul.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Microplastics are present even in remote regions like the Southern Ocean. Once in the water, they are rapidly colonised by marine microorganisms, forming the plastisphere. To address this issue in Antarctic waters, we conducted a microcosm experiment by incubating polypropylene, polyethylene, polystyrene microplastic pellets, and quartz for 33 days on Livingston Island, South Shetland Islands, Antarctica. We analysed plastic colonisation and plastisphere dynamics using scanning electron microscopy, flow cytometry, bacterial cultivation, qPCR, and 16S rRNA gene metabarcoding. Our results show rapid and consistent colonisation, although biomass formation was slightly slower than in other oceans, indicating unique environmental constraints. Time was the main factor influencing biofilm communities, while plastic polymer types had little effect. We observed a transition in microbial communities from early- to late-biofilm stages between days 12 and 19. Additionally, we described the bacterial plastisphere composition in this Antarctic environment, including the presence of hydrocarbon-degrading bacteria.
Collapse
Affiliation(s)
- Pere Monràs-Riera
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Conxita Avila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
2
|
Batty CA, Pearson VK, Olsson-Francis K, Morgan G. Volatile organic compounds (VOCs) in terrestrial extreme environments: implications for life detection beyond Earth. Nat Prod Rep 2024. [PMID: 39431456 DOI: 10.1039/d4np00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Covering: 1961 to 2024Discovering and identifying unique natural products/biosignatures (signatures that can be used as evidence for past or present life) that are abundant, and complex enough that they indicate robust evidence of life is a multifaceted process. One distinct category of biosignatures being explored is organic compounds. A subdivision of these compounds not yet readily investigated are volatile organic compound (VOCs). When assessing these VOCs as a group (volatilome) a fingerprint of all VOCs within an environment allows the complex patterns in metabolic data to be unravelled. As a technique already successfully applied to many biological and ecological fields, this paper explores how analysis of volatilomes in terrestrial extreme environments could be used to enhance processes (such as metabolomics and metagenomics) already utilised in life detection beyond Earth. By overcoming some of the complexities of collecting VOCs in remote field sites, a variety of lab based analytical equipment and techniques can then be utilised. Researching volatilomics in astrobiology requires time to characterise the patterns of VOCs. They must then be differentiated from abiotic (non-living) signals within extreme environments similar to those found on other planetary bodies (analogue sites) or in lab-based simulated environments or microcosms. Such an effort is critical for understanding data returned from past or upcoming missions, but it requires a step change in approach which explores the volatilome as a vital additional tool to current 'Omics techniques.
Collapse
Affiliation(s)
- Claire A Batty
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | - Geraint Morgan
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
3
|
Kurfman EA, Mora MF, Willis PA, Lunte SM. Development of capillary electrophoresis methods for the detection of microbial metabolites on potential future spaceflight missions. Electrophoresis 2024; 45:1684-1691. [PMID: 38924581 PMCID: PMC11502272 DOI: 10.1002/elps.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The search for chemical indicators of life is a fundamental component of potential future spaceflight missions to ocean worlds. Capillary electrophoresis (CE) is a useful separation method for the determination of the small organic molecules, such as amino acids and nucleobases, that could be used to help determine whether or not life is present in a sample collected during such missions. CE is under development for spaceflight applications using multiple detection systems, such as laser induced fluorescence (LIF) and mass spectrometry (MS). Here we report CE-based methods for separation and detection of major polar metabolites in cells, such as amino acids, nucleobases/sides, and oxidized and reduced glutathione using detectors that are less expensive alternatives to LIF and MS. Direct UV detection, indirect UV detection, and capacitvely coupled contactless conductivity detection (C4D) were tested with CE, and a combination of direct UV and C4D allowed the detection of the widest variety of metabolites. The optimized method was used to profile metabolites found in samples of Escherichia coli and Pseudoalteromonas haloplanktis and showed distinct differences between the species.
Collapse
Affiliation(s)
- Emily A. Kurfman
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Maria F. Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Peter A. Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Susan M. Lunte
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
4
|
Deng Y, Li F, Shang L, Hu Z, Yue C, Tang YZ. The resting cyst of dinoflagellate Scrippsiella acuminata host bacterial microbiomes with more diverse trophic strategies under conditions typically observed in marine sediments. Front Microbiol 2024; 15:1407459. [PMID: 39104580 PMCID: PMC11298437 DOI: 10.3389/fmicb.2024.1407459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Variation in the condition of marine sediments provides selective preservation milieus, which act as a key determinant for the abundance and distribution of dinoflagellate resting cysts in natural sediments. Microbial degradation is an understudied biological factor of potential importance in the processes. However, gaps remain in our knowledge about the fundamental information of the bacterial consortia associated with dinoflagellate resting cysts both in laboratory cultures and in the field. Here we used Scrippsiella acuminata as a representative of cyst-producing dinoflagellates to delineate the diversity and composition of bacterial microbiomes co-existing with the laboratory-cultured resting cysts, and to explore possible impacts of low temperature, darkness, and anoxia (the mock conditions commonly observed in marine sediments) on the associated bacterial consortia. Bacterial microbiome with high diversity were revealed associated with S. acuminata at resting stage. The mock conditions could significantly shift bacterial community structure and exert notably inhibitory effects on growth-promoting bacteria. Resting cysts under conditions typically observed in marine sediments fostered bacterial microbiomes with more diverse trophic strategies, characteristic of prominently enriched anaerobic chemotrophic bacteria generating energy via respiration with several different terminal electron acceptors, which yielded more acidic milieu unfavorable for the preservation of calcareous resting cysts. Our findings suggest that there is complex and dynamic interaction between dinoflagellates resting cysts and the associated bacterial consortia in natural sediments. This intrinsic interaction may influence the maintenance and/or accumulation of dinoflagellate resting cysts with potential of germination and initiation blooms in the field.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
5
|
Hassan S, Mushtaq M, Ganiee SA, Zaman M, Yaseen A, Shah AJ, Ganai BA. Microbial oases in the ice: A state-of-the-art review on cryoconite holes as diversity hotspots and their scientific connotations. ENVIRONMENTAL RESEARCH 2024; 252:118963. [PMID: 38640991 DOI: 10.1016/j.envres.2024.118963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Cryoconite holes, small meltwater pools on the surface of glaciers and ice sheets, represent extremely cold ecosystems teeming with diverse microbial life. Cryoconite holes exhibit greater susceptibility to the impacts of climate change, underlining the imperative nature of investigating microbial communities as an essential module of polar and alpine ecosystem monitoring efforts. Microbes in cryoconite holes play a critical role in nutrient cycling and can produce bioactive compounds, holding promise for industrial and pharmaceutical innovation. Understanding microbial diversity in these delicate ecosystems is essential for effective conservation strategies. Therefore, this review discusses the microbial diversity in these extreme environments, aiming to unveil the complexity of their microbial communities. The current study envisages that cryoconite holes as distinctive ecosystems encompass a multitude of taxonomically diverse and functionally adaptable microorganisms that exhibit a rich microbial diversity and possess intricate ecological functions. By investigating microbial diversity and ecological functions of cryoconite holes, this study aims to contribute valuable insights into the broader field of environmental microbiology and enhance further understanding of these ecosystems. This review seeks to provide a holistic overview regarding the formation, evolution, characterization, and molecular adaptations of cryoconite holes. Furthermore, future research directions and challenges underlining the need for long-term monitoring, and ethical considerations in preserving these pristine environments are also provided. Addressing these challenges and resolutely pursuing future research directions promises to enrich our comprehension of microbial diversity within cryoconite holes, revealing the broader ecological and biogeochemical implications. The inferences derived from the present study will provide researchers, ecologists, and policymakers with a profound understanding of the significance and utility of cryoconite holes in unveiling the microbial diversity and its potential applications.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Misba Mushtaq
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
6
|
Videau P, Shlafstein MD, Oline DK, Givan SA, Chapman LF, Strangman WK, Hahnke RL, Saw JH, Ushijima B. Genome-based taxonomic analysis of the genus Pseudoalteromonas reveals heterotypic synonyms. Environ Microbiol 2024; 26:e16672. [PMID: 39040020 DOI: 10.1111/1462-2920.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
The Pseudoalteromonas genus comprises members that have been demonstrated to play significant ecological roles and produce enzymes, natural products, and activities that are beneficial to the environment and economy. A comprehensive evaluation of the genus revealed that the genomes of several Pseudoalteromonas species are highly similar to each other, exceeding species cutoff values. This evaluation involved determining and comparing the average nucleotide identity, in silico DNA-DNA hybridization, average amino acid identity, and the difference in G + C% between Pseudoalteromonas type strains with publicly available genomes. The genome of the Pseudoalteromonas elyakovii type strain was further assessed through additional sequencing and genomic comparisons to historical sequences. These findings suggest that six Pseudoalteromonas species, namely P. mariniglutinosa, P. donghaensis, P. maricaloris, P. elyakovii, P. profundi, and P. issachenkonii, should be reclassified as later heterotypic synonyms of the following validly published species: P. haloplanktis, P. lipolytica, P. flavipulchra, P. distincta, P. gelatinilytica, and P. tetraodonis. Furthermore, two names without valid standing, 'P. telluritireducens' and 'P. spiralis', should be associated with the validly published Pseudoalteromonas species P. agarivorans and P. tetraodonis, respectively.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | | | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | - Scott A Givan
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Linda Fleet Chapman
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Wendy K Strangman
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Richard L Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
7
|
Calvanese M, D'Angelo C, Lauro C, Tutino ML, Parrilli E. Recombinant protein production in Pseudoalteromonas haloplanktis TAC125 biofilm. Biofilm 2024; 7:100179. [PMID: 38322580 PMCID: PMC10844681 DOI: 10.1016/j.bioflm.2024.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Biofilms have great potential for producing valuable products, and recent research has been performed on biofilms for the production of compounds with biotechnological and industrial relevance. However, the production of recombinant proteins using this system is still limited. The recombinant protein production in microbial hosts is a well-established technology and a variety of expression systems are available. Nevertheless, the production of some recombinant proteins can result in proteolyzed, insoluble, and non-functional forms, therefore it is necessary to start the exploration of non-conventional production systems that, in the future, could be helpful to produce some "difficult" proteins. Non-conventional production systems can be based on the use of alternative hosts and/or on non-conventional ways to grow recombinant cells. In this paper, the use of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 grown in biofilm conditions was explored to produce two fluorescent proteins, GFP and mScarlet. The best conditions for the production were identified by working on media composition, and induction conditions, and by building a new expression vector suitable for the biofilm conditions. Results reported demonstrated that the optimized system for the recombinant protein production in biofilm, although it takes longer than planktonic production, has the same potentiality as the classical planktonic approach with additional advantages since it needs a lower concentration of the carbon sources and doesn't require antibiotic addition. Moreover, in the case of mScarlet, the production in biofilm outperforms the planktonic system in terms of a better quality of the recombinant product.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B, Viale Medaglie D’Oro, 305-00136, Roma, Italy
| | - Caterina D'Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B, Viale Medaglie D’Oro, 305-00136, Roma, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi I.N.B.B, Viale Medaglie D’Oro, 305-00136, Roma, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy
| |
Collapse
|
8
|
Möller L, Vainshtein Y, Meyer B, Neidhardt J, Eren AM, Sohn K, Rabus R. Rich microbial and depolymerising diversity in Antarctic krill gut. Microbiol Spectr 2024; 12:e0403523. [PMID: 38466097 PMCID: PMC10986584 DOI: 10.1128/spectrum.04035-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
With almost a quadrillion individuals, the Antarctic krill processes five million tons of organic carbon every day during austral summer. This high carbon flux requires a broad range of hydrolytic enzymes to decompose the diverse food-derived biopolymers. While krill itself possesses numerous such enzymes, it is unclear, to what extent the endogenous microbiota contribute to the hydrolytic potential of the gut environment. Here we applied amplicon sequencing, shotgun metagenomics, cultivation, and physiological assays to characterize the krill gut microbiota. The broad bacterial diversity (273 families, 919 genera, and 2,309 species) also included a complex potentially anaerobic sub-community. Plate-based assays with 198 isolated pure cultures revealed widespread capacities to utilize lipids (e.g., tributyrin), followed by proteins (casein) and to a lesser extent by polysaccharides (e.g., alginate and chitin). While most isolates affiliated with the genera Pseudoalteromonas and Psychrobacter, also Rubritalea spp. (Verrucomicrobia) were observed. The krill gut microbiota growing on marine broth agar plates possess 13,012 predicted hydrolyses; 15-fold more than previously predicted from a transcriptome-proteome compendium of krill. Cultivation-independent and -dependent approaches indicated members of the families Flavobacteriaceae and Pseudoalteromonadaceae to dominate the capacities for lipid/protein hydrolysis and to provide a plethora of carbohydrate-active enzymes, sulfatases, and laminarin- or porphyrin-depolymerizing hydrolases. Notably, also the potential to hydrolyze plastics such as polyethylene terephthalate and polylactatide was observed, affiliating mostly with Moraxellaceae. Overall, this study shows extensive microbial diversity in the krill gut, and suggests that the microbiota likely play a significant role in the nutrient acquisition of the krill by enriching its hydrolytic enzyme repertoire.IMPORTANCEThe Antarctic krill (Euphausia superba) is a keystone species of the Antarctic marine food web, connecting the productivity of phyto- and zooplankton with the nutrition of the higher trophic levels. Accordingly, krill significantly contributes to biomass turnover, requiring the decomposition of seasonally varying plankton-derived biopolymers. This study highlights the likely role of the krill gut microbiota in this ecosystem function by revealing the great number of diverse hydrolases that microbes contribute to the krill gut environment. The here resolved repertoire of hydrolytic enzymes could contribute to the overall nutritional resilience of krill and to the general organic matter cycling under changing environmental conditions in the Antarctic sea water. Furthermore, the krill gut microbiome could serve as a valuable resource of cold-adapted hydrolytic enzymes for diverse biotechnological applications.
Collapse
Affiliation(s)
- Lars Möller
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Yevhen Vainshtein
- In Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University Oldenburg (HIFMB), Oldenburg, Germany
- Biosciences, Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - John Neidhardt
- Department of Human Medicine, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - A. Murat Eren
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University Oldenburg (HIFMB), Oldenburg, Germany
- HIFMB-MPG Bridging Group for Marine Genomics, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute (AWI), Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Kai Sohn
- In Vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Ratnawati SE, Kuuliala L, Verschuere N, Cnockaert M, Vandamme P, Devlieghere F. The exploration of dominant spoilage bacteria in blue mussels (Mytilus edulis) stored under different modified atmospheres by MALDI-TOF MS in combination with 16S rRNA sequencing. Food Microbiol 2024; 118:104407. [PMID: 38049269 DOI: 10.1016/j.fm.2023.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 12/06/2023]
Abstract
Few studies have addressed species-level identification of spoilage bacteria in blue mussels packed under modified atmospheres (MAs). We investigated the effect of MAs and seasons on the tentative species-level of dominant spoilage bacteria in blue mussels. Summer (s) and winter (w) blue mussels were stored at 4 °C in the atmospheres (%CO2/O2/N2): A40s (30/40/30), B60s (40/60/0), C60s (0/60/40), A40w (30/40/30), and D75w (25/75/0). In total, 122 culturable isolates were obtained at the final stage of shelf life, when mortality was high (56-100%) and total psychrotrophic bacteria counted >7 log CFU g-1. Biochemical properties were analyzed using gram reactions, catalase and oxidase activities, and salt tolerance tests. Culturable isolates were identified through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16 S rRNA gene sequence analysis. Spoilage potential tests were investigated by evaluating protease, lipase, and fermentation activities as well as gas and H2S production. The culturable isolates showed tolerance to varied salt concentrations. Psychromonas arctica, Pseudoalteromonas elyakovii, and Shewanella frigidimarina were dominating in specific MAs. Winter blue mussels resulted in a higher variation of spoilage bacteria, including S. frigidimarina, S. vesiculosa, S. polaris, Micrococcus luteus, Paeniglutamicibacter terrestris sp. nov., and Alteromonas sp.
Collapse
Affiliation(s)
- S E Ratnawati
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - L Kuuliala
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Research Unit Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Part of Food2Know, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - N Verschuere
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - M Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - P Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - F Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Part of Food2Know, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Ren Y, Liu R, Zheng Y, Wang H, Meng Q, Zhu T, Yin J, Cao X, Yu Z. Biosynthetic mechanism of the yellow pigments in the marine bacterium Pseudoalteromonas sp. strain T1lg65. Appl Environ Microbiol 2024; 90:e0177923. [PMID: 38193673 PMCID: PMC10880671 DOI: 10.1128/aem.01779-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
The Pseudoalteromonas genus marine bacteria have attracted increasing interest because of their abilities to produce bioactive metabolites. The pigmented Pseudoalteromonas group encodes more secondary metabolite biosynthetic gene clusters (BGCs) than the non-pigmented group. Here, we report a yellow pigmented bacterium Pseudoalteromonas sp. strain T1lg65, which was isolated from a mangrove forest sediment. We showed that the yellow pigments of T1lg65 belong to the group of lipopeptide alterochromides. Further genetic analyses of the alterochromide BGC revealed that the yellow pigments are biosynthesized by aryl-polyene synthases and nonribosomal peptide synthases. Within the gene cluster, altA encodes a tyrosine ammonia acid lyase, which catalyzes synthesis of the precursor 4-hydroxycinnamic acid (4-HCA) from tyrosine in the alterochromide biosynthetic pathway. In addition, altN, encoding a putative flavin-dependent halogenase, was proven to be responsible for the bromination of alterochromides based on gene deletion, molecular docking, and site mutagenesis analyses. In summary, the biosynthetic pathway, precursor synthesis, and bromination mechanism of the lipopeptide alterochromides were studied in-depth. Our results expand the knowledge on biosynthesis of Pseudoalteromonas pigments and could promote the development of active pigments in the future.IMPORTANCEThe marine bacteria Pseudoalteromonas spp. are important biological resources because they are producers of bioactive natural products, including antibiotics, pigments, enzymes, and antimicrobial peptides. One group of the microbial pigments, alterochromides, holds a great value for their novel lipopeptide structures and antimicrobial activities. Previous studies were limited to the structural characterization of alterochromides and genome mining for the alterochromide biosynthesis. This work focused on the biosynthetic mechanism for alterochromide production, especially revealing functions of two key genes within the gene cluster for the alterochromide biosynthesis. On the one hand, our study provides a target for metabolic engineering of the alterochromide biosynthesis; on the other hand, the 4-HCA synthase AltA and brominase AltN show potential in the biocatalyst industry.
Collapse
Affiliation(s)
- Yixuan Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruoyu Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yifan Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xueqiang Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
11
|
Qiu X, Hu XM, Tang XX, Huang CH, Jian HH, Lin DH. Metabolic adaptations of Microbacterium sediminis YLB-01 in deep-sea high-pressure environments. Appl Microbiol Biotechnol 2024; 108:170. [PMID: 38265689 DOI: 10.1007/s00253-023-12906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 01/25/2024]
Abstract
The deep-sea environment is an extremely difficult habitat for microorganisms to survive in due to its intense hydrostatic pressure. However, the mechanisms by which these organisms adapt to such extreme conditions remain poorly understood. In this study, we investigated the metabolic adaptations of Microbacterium sediminis YLB-01, a cold and stress-tolerant microorganism isolated from deep-sea sediments, in response to high-pressure conditions. YLB-01 cells were cultured at normal atmospheric pressure and 28 ℃ until they reached the stationary growth phase. Subsequently, the cells were exposed to either normal pressure or high pressure (30 MPa) at 4 ℃ for 7 days. Using NMR-based metabolomic and proteomic analyses of YLB-01 cells exposed to high-pressure conditions, we observed significant metabolic changes in several metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. In particular, the high-pressure treatment stimulates cell division and triggers the accumulation of UDP-glucose, a critical factor in cell wall formation. This finding highlights the adaptive strategies used by YLB-01 cells to survive in the challenging high-pressure environments of the deep sea. Specifically, we discovered that YLB-01 cells regulate amino acid metabolism, promote carbohydrate metabolism, enhance cell wall synthesis, and improve cell membrane fluidity in response to high pressure. These adaptive mechanisms play essential roles in supporting the survival and growth of YLB-01 in high-pressure conditions. Our study offers valuable insights into the molecular mechanisms underlying the metabolic adaptation of deep-sea microorganisms to high-pressure environments. KEY POINTS: • NMR-based metabolomic and proteomic analyses were conducted on Microbacterium sediminis YLB-01 to investigate the significant alterations in several metabolic pathways in response to high-pressure treatment. • YLB-01 cells used adaptive strategies (such as regulated amino acid metabolism, promoted carbohydrate metabolism, enhanced cell wall synthesis, and improved cell membrane fluidity) to survive in the challenging high-pressure environment of the deep sea. • High-pressure treatment stimulated cell division and triggered the accumulation of UDP-glucose, a critical factor in cell wall formation, in Microbacterium sediminis YLB-01 cells.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiao-Min Hu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xi-Xiang Tang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
| | - Cai-Hua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
| | - Hua-Hua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Hai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Chen T, Zhang S, Yang J, Li Y, Kogure E, Zhu Y, Xiong W, Chen E, Shi G. Metabarcoding Analysis of Microorganisms Inside Household Washing Machines in Shanghai, China. Microorganisms 2024; 12:160. [PMID: 38257987 PMCID: PMC10819172 DOI: 10.3390/microorganisms12010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Washing machines are one of the tools that bring great convenience to people's daily lives. However, washing machines that have been used for a long time often develop issues such as odor and mold, which can pose health hazards to consumers. There exists a conspicuous gap in our understanding of the microorganisms that inhabit the inner workings of washing machines. In this study, samples were collected from 22 washing machines in Shanghai, China, including both water eluted from different parts of washing machines and biofilms. Quantitative qualitative analysis was performed using fluorescence PCR quantification, and microbial communities were characterized by high-throughput sequencing (HTS). This showed that the microbial communities in all samples were predominantly composed of bacteria. HTS results showed that in the eluted water samples, the bacteria mainly included Pseudomonas, Enhydrobacter, Brevibacterium, and Acinetobacter. Conversely, in the biofilm samples, Enhydrobacter and Brevibacterium were the predominant bacterial microorganisms. Correlation analysis results revealed that microbial colonies in washing machines were significantly correlated with years of use and the type of detergent used to clean the washing machine. As numerous pathogenic microorganisms can be observed in the results, effective preventive measures and future research are essential to mitigate these health problems and ensure the continued safe use of these household appliances.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shu Zhang
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Juan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Eiichi Kogure
- Kao Corporation, 1334, Minato, Wakayama 640-8580, Japan
| | - Ye Zhu
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Weiqi Xiong
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Enhui Chen
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Mettler MK, Goemann HM, Mueller RC, Vanegas OA, Lopez G, Singh N, Venkateswaran K, Peyton BM. Development of Martian saline seep models and their implications for planetary protection. Biofilm 2023; 5:100127. [PMID: 37252227 PMCID: PMC10209689 DOI: 10.1016/j.bioflm.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
While life on Mars has not been found, Earth-based microorganisms may contaminate the Red Planet during rover expeditions and human exploration. Due to the survival advantages conferred by the biofilm morphology to microorganisms, such as resistance to UV and osmotic stress, biofilms are particularly concerning from a planetary protection perspective. Modeling and data from the NASA Phoenix mission indicate that temporary liquid water might exist on Mars in the form of high salinity brines. These brines could provide colonization opportunities for terrestrial microorganisms brought by spacecraft or humans. To begin testing for potential establishment of microbes, results are presented from a simplified laboratory model of a Martian saline seep inoculated with sediment from Hailstone Basin, a terrestrial saline seep in Montana (USA). The seep was modeled as a sand-packed drip flow reactor at room temperature fed media with either 1 M MgSO4 or 1 M NaCl. Biofilms were established within the first sampling point of each experiment. Endpoint 16S rRNA gene community analysis showed significant selection of halophilic microorganisms by the media. Additionally, we detected 16S rRNA gene sequences highly similar to microorganisms previously detected in two spacecraft assembly cleanrooms. These experimental models provide an important foundation for identifying microbes that could hitch-hike on spacecraft and may be able to colonize Martian saline seeps. Future model optimization will be vital to informing cleanroom sterilization procedures.
Collapse
Affiliation(s)
- Madelyn K. Mettler
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Hannah M. Goemann
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Rebecca C. Mueller
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- USDA Agricultural Research Service, Western Regional Research Center, Albany, CA, USA
| | | | | | - Nitin Singh
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Brent M. Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| |
Collapse
|
14
|
Artini M, Papa R, Vrenna G, Trecca M, Paris I, D’Angelo C, Tutino ML, Parrilli E, Selan L. Antarctic Marine Bacteria as a Source of Anti-Biofilm Molecules to Combat ESKAPE Pathogens. Antibiotics (Basel) 2023; 12:1556. [PMID: 37887257 PMCID: PMC10604463 DOI: 10.3390/antibiotics12101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The ESKAPE pathogens, including bacteria such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, pose a global health threat due to their ability to resist antimicrobial drugs and evade the immune system. These pathogens are responsible for hospital-acquired infections, especially in intensive care units, and contribute to the growing problem of multi-drug resistance. In this study, researchers focused on exploring the potential of Antarctic marine bacteria as a source of anti-biofilm molecules to combat ESKAPE pathogens. Four Antarctic bacterial strains were selected, and their cell-free supernatants were tested against 60 clinical ESKAPE isolates. The results showed that the supernatants did not exhibit antimicrobial activity but effectively prevented biofilm formation and dispersed mature biofilms. This research highlights the promising potential of Antarctic bacteria in producing compounds that can counteract biofilms formed by clinically significant bacterial species. These findings contribute to the development of new strategies for preventing and controlling infections caused by ESKAPE pathogens.
Collapse
Affiliation(s)
- Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Gianluca Vrenna
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Irene Paris
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (C.D.); (M.L.T.); (E.P.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p.le Aldo Moro 5, 00185 Rome, Italy; (M.A.); (G.V.); (M.T.); (I.P.); (L.S.)
| |
Collapse
|
15
|
de França P, Costa JH, Fill TP, Lancellotti M, Ruiz ALTG, Fantinatti-Garboggini F. Genome mining reveals secondary metabolites of Antarctic bacterium Streptomyces albidoflavus related to antimicrobial and antiproliferative activities. Arch Microbiol 2023; 205:354. [PMID: 37828121 DOI: 10.1007/s00203-023-03691-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
The urgent need for new antimicrobials arises from antimicrobial resistance. Actinobacteria, especially Streptomyces genus, are responsible for production of numerous clinical antibiotics and anticancer agents. Genome mining reveals the biosynthetic gene clusters (BGCs) related to secondary metabolites and the genetic potential of a strain to produce natural products. However, this potential may not be expressed under laboratory conditions. In the present study, the Antarctic bacterium was taxonomically affiliated as Streptomyces albidoflavus ANT_B131 (CBMAI 1855). The crude extracts showed antimicrobial activity against both fungi, Gram-positive and Gram-negative bacteria and antiproliferative activity against five human tumor cell lines. Whole-genome sequencing reveals a genome size of 6.96 Mb, and the genome mining identified 24 BGCs, representing 13.3% of the genome. The use of three culture media and three extraction methods reveals the expression and recovery of 20.8% of the BGCs. The natural products identified included compounds, such as surugamide A, surugamide D, desferrioxamine B + Al, desferrioxamine E, and ectoine. This study reveals the potential of S. albidoflavus ANT_B131 as a natural product producer. Yet, the diversity of culture media and extraction methods could enhance the BGCs expression and recovery of natural products, and could be a strategy to intensify the BGC expression of natural products.
Collapse
Affiliation(s)
- Paula de França
- Division of Microbial Resources, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, University of Campinas, Paulínia, SP, Brazil.
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Jonas Henrique Costa
- Institute of Chemistry, University of Campinas, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Taícia Pacheco Fill
- Institute of Chemistry, University of Campinas, CP 6154, Campinas, SP, 13083-970, Brazil
| | - Marcelo Lancellotti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Fabiana Fantinatti-Garboggini
- Division of Microbial Resources, Pluridisciplinary Center for Chemical, Biological and Agricultural Research, University of Campinas, Paulínia, SP, Brazil.
| |
Collapse
|
16
|
Arcadi E, Buschi E, Rastelli E, Tangherlini M, De Luca P, Esposito V, Calogero R, Andaloro F, Romeo T, Danovaro R. Novel Insights on the Bacterial and Archaeal Diversity of the Panarea Shallow-Water Hydrothermal Vent Field. Microorganisms 2023; 11:2464. [PMID: 37894122 PMCID: PMC10608945 DOI: 10.3390/microorganisms11102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Current knowledge of the microbial diversity of shallow-water hydrothermal vents is still limited. Recent evidence suggests that these peculiar and heterogeneous systems might host highly diversified microbial assemblages with novel or poorly characterized lineages. In the present work, we used 16S rRNA gene metabarcoding to provide novel insights into the diversity of the bacterial and archaeal assemblages in seawater and sediments of three shallow-water hydrothermal systems of Panarea Island (Tyrrhenian Sea). The three areas were characterized by hot, cold, or intermediate temperatures and related venting activities. Microbial biodiversity in seawater largely differed from the benthic one, both in α-diversity (i.e., richness of amplicon sequence variants-ASVs) and in prokaryotic assemblage composition. Furthermore, at the class level, the pelagic prokaryotic assemblages were very similar among sites, whereas the benthic microbial assemblages differed markedly, reflecting the distinct features of the hydrothermal activities at the three sites we investigated. Our results show that ongoing high-temperature emissions can influence prokaryotic α-diversity at the seafloor, increasing turnover (β-)diversity, and that the intermediate-temperature-venting spot that experienced a violent gas explosion 20 years ago now displays the highest benthic prokaryotic diversity. Overall, our results suggest that hydrothermal vent dynamics around Panarea Island can contribute to an increase in the local heterogeneity of physical-chemical conditions, especially at the seafloor, in turn boosting the overall microbial (γ-)diversity of this peculiar hydrothermal system.
Collapse
Affiliation(s)
- Erika Arcadi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167 Messina, Italy; (E.A.); (R.C.); (F.A.)
| | - Emanuela Buschi
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy
| | - Pasquale De Luca
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Valentina Esposito
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale—OGS Borgo Grotta Gigante 42/C, 34010 Sgonico, Italy;
| | - Rosario Calogero
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167 Messina, Italy; (E.A.); (R.C.); (F.A.)
| | - Franco Andaloro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167 Messina, Italy; (E.A.); (R.C.); (F.A.)
| | - Teresa Romeo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Via dei Mille 46, 98057 Milazzo, Italy
- National Institute for Environmental Protection and Research, Via dei Mille 46, 98057 Milazzo, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
- National Biodiversity Future Centre (NBFC), 90133 Palermo, Italy
| |
Collapse
|
17
|
Adigüzel AO, Könen-Adigüzel S, Cilmeli S, Mazmancı B, Yabalak E, Üstün-Odabaşı S, Kaya NG, Mazmancı MA. Heterologous expression, purification, and characterization of thermo- and alkali-tolerant laccase-like multicopper oxidase from Bacillus mojavensis TH309 and determination of its antibiotic removal potential. Arch Microbiol 2023; 205:287. [PMID: 37454356 DOI: 10.1007/s00203-023-03626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Laccases or laccase-like multicopper oxidases have great potential in bioremediation to oxidase phenolic or non-phenolic substrates. However, their inability to maintain stability in harsh environmental conditions and against non-substrate compounds is one of the main reasons for their limited use. The gene (mco) encoding multicopper oxidase from Bacillus mojavensis TH309 were cloned into pET14b( +), expressed in Escherichia coli, and purified as histidine tagged enzyme (BmLMCO). The molecular weight of the enzyme was about 60 kDa. The enzyme exhibited laccase-like activity toward 2,6-dimethoxyphenol (2,6-DMP), syringaldazine (SGZ), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The highest enzyme activity was recorded at 80 °C and pH 8. BmLMCO showed a half-life of ~ 305, 99, 50, 46, 36, and 20 min at 40, 50, 60, 70, 80, and 90 °C, respectively. It retained more than 60% of its activity after pre-incubation in the range of pH 5-12 for 60 min. The enzyme activity significantly increased in the presence of 1 mM of Cu2+. Moreover, BmLMCO tolerated various chemicals and showed excellent compatibility with organic solvents. The Michaelis constant (Km) and the maximum velocity (Vmax) values of BmLMCO were 0.98 mM and 93.45 µmol/min, respectively, with 2,6-DMP as the substrate. BmLMCO reduced the antibacterial activity of cefprozil, gentamycin, and erythromycin by 72.3 ± 1.5%, 79.6 ± 6.4%, and 19.7 ± 4.1%, respectively. This is the first revealing shows the recombinant production of laccase-like multicopper oxidase from any B. mojavensis strains, its biochemical properties, and potential for use in bioremediation.
Collapse
Affiliation(s)
- Ali Osman Adigüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey.
| | | | - Sümeyye Cilmeli
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | - Birgül Mazmancı
- Department of Biology, Faculty of Science, Mersin University, Mersin, Turkey
| | - Erdal Yabalak
- Department of Chemistry Technology, Vocational School of Technical Sciences, Mersin University, Mersin, Turkey
| | - Sevde Üstün-Odabaşı
- Department of Environmental Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Nisa Gül Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayıs University, Samsun, Turkey
| | | |
Collapse
|
18
|
Najafpour B, Pinto PIS, Sanz EC, Martinez-Blanch JF, Canario AVM, Moutou KA, Power DM. Core microbiome profiles and their modification by environmental, biological, and rearing factors in aquaculture hatcheries. MARINE POLLUTION BULLETIN 2023; 193:115218. [PMID: 37441915 DOI: 10.1016/j.marpolbul.2023.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
16S rRNA gene sequencing and bacteria- and genus-specific quantitative PCR was used to profile microbial communities and their associated functions in water, live feed (microalgae, Artemia, and rotifer), and European sea bass and gilthead sea bream larvae from hatcheries in Greece and Italy. The transfer to larvae of genus containing potential pathogens of fish was more likely with Artemia and rotifer than with microalgae or water, irrespective of geographic location. The presence of potentially pathogenic bacteria (Vibrio and Pseudoalteromonas) in the core microbiota of water, live feed, and fish larvae, the enrichment of different bacterial resistance pathways and biofilm formation, and the overall low beneficial bacteria load during larval ontogeny emphasizes the risk for disease outbreaks. The present data characterizing microbiota in commercial aquaculture hatcheries provides a baseline for the design of strategies to manage disease and to model or remediate potential adverse environmental impacts.
Collapse
Affiliation(s)
- Babak Najafpour
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Patricia I S Pinto
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Eric Climent Sanz
- ADM Biopolis, Parc Cientific Universidad De Valencia, Paterna, Spain
| | | | - Adelino V M Canario
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Shanghai Ocean University International Center for Marine Studies, Shanghai, China
| | - Katerina A Moutou
- Department of Biochemistry & Biotechnology, University of Thessaly, Ploutonos 26, Larissa, Greece
| | - Deborah M Power
- CCMAR - Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Shanghai Ocean University International Center for Marine Studies, Shanghai, China.
| |
Collapse
|
19
|
Cao R, Zhang Y, Ju Y, Wang W, Zhao Y, Liu N, Zhang G, Wang X, Xie X, Dai C, Liu Y, Yin H, Shi K, He C, Wang W, Zhao L, Jeon CO, Hao L. Exopolysaccharide-producing bacteria enhanced Pb immobilization and influenced the microbiome composition in rhizosphere soil of pakchoi (Brassica chinensis L.). Front Microbiol 2023; 14:1117312. [PMID: 36970682 PMCID: PMC10034174 DOI: 10.3389/fmicb.2023.1117312] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Lead (Pb) contamination of planting soils is increasingly serious, leading to harmful effects on soil microflora and food safety. Exopolysaccharides (EPSs) are carbohydrate polymers produced and secreted by microorganisms, which are efficient biosorbent materials and has been widely used in wastewater treatment to remove heavy metals. However, the effects and underlying mechanism of EPS-producing marine bacteria on soil metal immobilization, plant growth and health remain unclear. The potential of Pseudoalteromonas agarivorans Hao 2018, a high EPS-producing marine bacterium, to produce EPS in soil filtrate, immobilize Pb, and inhibit its uptake by pakchoi (Brassica chinensis L.) was studied in this work. The effects of strain Hao 2018 on the biomass, quality, and rhizospheric soil bacterial community of pakchoi in Pb-contaminated soil were further investigated. The results showed that Hao 2018 reduced the Pb concentration in soil filtrate (16%–75%), and its EPS production increased in the presence of Pb2+. When compared to the control, Hao 2018 remarkably enhanced pakchoi biomass (10.3%–14.3%), decreased Pb content in edible tissues (14.5%–39.2%) and roots (41.3%–41.9%), and reduced the available Pb content (34.8%–38.1%) in the Pb-contaminated soil. Inoculation with Hao 2018 raised the pH of the soil, the activity of several enzymes (alkaline phosphatase, urease, and dehydrogenase), the nitrogen content (NH4+-N and NO3−-N), and the pakchoi quality (Vc and soluble protein content), while also raising the relative abundance of bacteria that promote plant growth and immobilize metals, such as Streptomyces and Sphingomonas. In conclusion, Hao 2018 reduced the available Pb in soil and pakchoi Pb absorption by increasing the pH and activity of multiple enzymes and regulating microbiome composition in rhizospheric soil.
Collapse
Affiliation(s)
- Ruiwen Cao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yiling Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuhao Ju
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanqiu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Nan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Gangrui Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xingbao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xuesong Xie
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cunxi Dai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yue Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongfei Yin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kaiyuan Shi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenchen He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Weiyan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lingyu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Lujiang Hao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Lujiang Hao,
| |
Collapse
|
20
|
Metabolic Robustness to Growth Temperature of a Cold- Adapted Marine Bacterium. mSystems 2023; 8:e0112422. [PMID: 36847563 PMCID: PMC10134870 DOI: 10.1128/msystems.01124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Microbial communities experience continuous environmental changes, with temperature fluctuations being the most impacting. This is particularly important considering the ongoing global warming but also in the "simpler" context of seasonal variability of sea-surface temperature. Understanding how microorganisms react at the cellular level can improve our understanding of their possible adaptations to a changing environment. In this work, we investigated the mechanisms through which metabolic homeostasis is maintained in a cold-adapted marine bacterium during growth at temperatures that differ widely (15 and 0°C). We have quantified its intracellular and extracellular central metabolomes together with changes occurring at the transcriptomic level in the same growth conditions. This information was then used to contextualize a genome-scale metabolic reconstruction, and to provide a systemic understanding of cellular adaptation to growth at 2 different temperatures. Our findings indicate a strong metabolic robustness at the level of the main central metabolites, counteracted by a relatively deep transcriptomic reprogramming that includes changes in gene expression of hundreds of metabolic genes. We interpret this as a transcriptomic buffering of cellular metabolism, able to produce overlapping metabolic phenotypes, despite the wide temperature gap. Moreover, we show that metabolic adaptation seems to be mostly played at the level of few key intermediates (e.g., phosphoenolpyruvate) and in the cross talk between the main central metabolic pathways. Overall, our findings reveal a complex interplay at gene expression level that contributes to the robustness/resilience of core metabolism, also promoting the leveraging of state-of-the-art multi-disciplinary approaches to fully comprehend molecular adaptations to environmental fluctuations. IMPORTANCE This manuscript addresses a central and broad interest topic in environmental microbiology, i.e. the effect of growth temperature on microbial cell physiology. We investigated if and how metabolic homeostasis is maintained in a cold-adapted bacterium during growth at temperatures that differ widely and that match measured changes on the field. Our integrative approach revealed an extraordinary robustness of the central metabolome to growth temperature. However, this was counteracted by deep changes at the transcriptional level, and especially in the metabolic part of the transcriptome. This conflictual scenario was interpreted as a transcriptomic buffering of cellular metabolism, and was investigated using genome-scale metabolic modeling. Overall, our findings reveal a complex interplay at gene expression level that contributes to the robustness/resilience of core metabolism, also promoting the use of state-of-the-art multi-disciplinary approaches to fully comprehend molecular adaptations to environmental fluctuations.
Collapse
|
21
|
Computational Insight into Intraspecies Distinctions in Pseudoalteromonas distincta: Carotenoid-like Synthesis Traits and Genomic Heterogeneity. Int J Mol Sci 2023; 24:ijms24044158. [PMID: 36835570 PMCID: PMC9966250 DOI: 10.3390/ijms24044158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Advances in the computational annotation of genomes and the predictive potential of current metabolic models, based on more than thousands of experimental phenotypes, allow them to be applied to identify the diversity of metabolic pathways at the level of ecophysiology differentiation within taxa and to predict phenotypes, secondary metabolites, host-associated interactions, survivability, and biochemical productivity under proposed environmental conditions. The significantly distinctive phenotypes of members of the marine bacterial species Pseudoalteromonas distincta and an inability to use common molecular markers make their identification within the genus Pseudoalteromonas and prediction of their biotechnology potential impossible without genome-scale analysis and metabolic reconstruction. A new strain, KMM 6257, of a carotenoid-like phenotype, isolated from a deep-habituating starfish, emended the description of P. distincta, particularly in the temperature growth range from 4 to 37 °C. The taxonomic status of all available closely related species was elucidated by phylogenomics. P. distincta possesses putative methylerythritol phosphate pathway II and 4,4'-diapolycopenedioate biosynthesis, related to C30 carotenoids, and their functional analogues, aryl polyene biosynthetic gene clusters (BGC). However, the yellow-orange pigmentation phenotypes in some strains coincide with the presence of a hybrid BGC encoding for aryl polyene esterified with resorcinol. The alginate degradation and glycosylated immunosuppressant production, similar to brasilicardin, streptorubin, and nucleocidines, are the common predicted features. Starch, agar, carrageenan, xylose, lignin-derived compound degradation, polysaccharide, folate, and cobalamin biosynthesis are all strain-specific.
Collapse
|
22
|
Wen J, Liao L, Duan Z, Su S, Zhang J, Chen B. Identification and Regulatory Roles of a New Csr Small RNA from Arctic Pseudoalteromonas fuliginea BSW20308 in Temperature Responses. Microbiol Spectr 2023; 11:e0409422. [PMID: 36625662 PMCID: PMC9927453 DOI: 10.1128/spectrum.04094-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Small RNAs (sRNAs) play a very important role in gene regulation at the posttranscriptional level. However, sRNAs from nonmodel microorganisms, extremophiles in particular, have been rarely explored. We discovered a putative sRNA, termed Pf1 sRNA, in Pseudoalteromonas fuliginea BSW20308 isolated from the polar regions in our previous work. In this study, we identified the sRNA and investigated its regulatory role in gene expression under different temperatures. Pf1 sRNA was confirmed to be a new member of the CsrB family but has little sequence similarity with Escherichia coli CsrB. However, Pf1 sRNA was able to bind to CsrA from E. coli and P. fuliginea BSW20308 to regulate glycogen synthesis. The Pf1 sRNA knockout strain (ΔPf1) affected motility, fitness, and global gene expression in transcriptomes and proteomes at 4°C and 32°C. Genes related to carbon metabolism, amino acid metabolism, salinity tolerance, antibiotic resistance, oxidative stress, motility, chemotaxis, biofilm, and secretion systems were differentially expressed in the wild-type strain and the ΔPf1 mutant. Our study suggested that Pf1 sRNA might play an important role in response to environmental changes by regulating global gene expression. Specific targets of the Pf1 sRNA-CsrA system were tentatively proposed, such as genes involved in the type VI secretion system, TonB-dependent receptors, and response regulators, but most of them have an unknown function. Since this is the first study of CsrB family sRNA in Pseudoalteromonas and microbes from the polar regions, it provides a novel insight at the posttranscriptional level into the responses and adaptation to temperature changes in bacteria from extreme environments. This study also sheds light on the evolution of sRNA in extreme environments and expands the bacterial sRNA database. IMPORTANCE Previous research on microbial temperature adaptation has focused primarily on functional genes, with little attention paid to posttranscriptional regulation. Small RNAs, the major posttranscriptional modulators of gene expression, are greatly underexplored, especially in nonpathogenic and nonmodel microorganisms. In this study, we verified the first Csr sRNA, named Pf1 sRNA, from Pseudoalteromonas, a model genus for studying cold adaptation. We revealed that Pf1 sRNA played an important role in global regulation and was indispensable in improving fitness. This study provided us a comprehensive view of sRNAs from Pseudoalteromonas and expanded our understanding of bacterial sRNAs from extreme environments.
Collapse
Affiliation(s)
- Jiao Wen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Li Liao
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Zedong Duan
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Shiyuan Su
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Jin Zhang
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| | - Bo Chen
- Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai, China
| |
Collapse
|
23
|
D’Angelo C, Casillo A, Melchiorre C, Lauro C, Corsaro MM, Carpentieri A, Tutino ML, Parrilli E. CATASAN Is a New Anti-Biofilm Agent Produced by the Marine Antarctic Bacterium Psychrobacter sp. TAE2020. Mar Drugs 2022; 20:md20120747. [PMID: 36547894 PMCID: PMC9785100 DOI: 10.3390/md20120747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The development of new approaches to prevent microbial surface adhesion and biofilm formation is an emerging need following the growing understanding of the impact of biofilm-related infections on human health. Staphylococcus epidermidis, with its ability to form biofilm and colonize biomaterials, represents the most frequent causative agent involved in infections of medical devices. In the research of new anti-biofilm agents against S. epidermidis biofilm, Antarctic marine bacteria represent an untapped reservoir of biodiversity. In the present study, the attention was focused on Psychrobacter sp. TAE2020, an Antarctic marine bacterium that produces molecules able to impair the initial attachment of S. epidermidis strains to the polystyrene surface. The setup of suitable purification protocols allowed the identification by NMR spectroscopy and LC-MS/MS analysis of a protein-polysaccharide complex named CATASAN. This complex proved to be a very effective anti-biofilm agent. Indeed, it not only interferes with cell surface attachment, but also prevents biofilm formation and affects the mature biofilm matrix structure of S. epidermidis. Moreover, CATASAN is endowed with a good emulsification activity in a wide range of pH and temperature. Therefore, its use can be easily extended to different biotechnological applications.
Collapse
Affiliation(s)
- Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi—I.N.B.B., Viale Medaglie d’Oro, 305-00136 Rome, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy
- Correspondence: ; Tel.: +39-081674003; Fax: +39-081674113
| |
Collapse
|
24
|
Núñez-Montero K, Rojas-Villalta D, Barrientos L. Antarctic Sphingomonas sp. So64.6b showed evolutive divergence within its genus, including new biosynthetic gene clusters. Front Microbiol 2022; 13:1007225. [DOI: 10.3389/fmicb.2022.1007225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
IntroductionThe antibiotic crisis is a major human health problem. Bioprospecting screenings suggest that proteobacteria and other extremophile microorganisms have biosynthetic potential for the production novel antimicrobial compounds. An Antarctic Sphingomonas strain (So64.6b) previously showed interesting antibiotic activity and elicitation response, then a relationship between environmental adaptations and its biosynthetic potential was hypothesized. We aimed to determine the genomic characteristics in So64.6b strain related to evolutive traits for the adaptation to the Antarctic environment that could lead to its diversity of potentially novel antibiotic metabolites.MethodsThe complete genome sequence of the Antarctic strain was obtained and mined for Biosynthetic Gene Clusters (BGCs) and other unique genes related to adaptation to extreme environments. Comparative genome analysis based on multi-locus phylogenomics, BGC phylogeny, and pangenomics were conducted within the closest genus, aiming to determine the taxonomic affiliation and differential characteristics of the Antarctic strain.Results and discussionThe Antarctic strain So64.6b showed a closest identity with Sphingomonas alpina, however containing a significant genomic difference of ortholog cluster related to degradation multiple pollutants. Strain So64.6b had a total of six BGC, which were predicted with low to no similarity with other reported clusters; three were associated with potential novel antibiotic compounds using ARTS tool. Phylogenetic and synteny analysis of a common BGC showed great diversity between Sphingomonas genus but grouping in clades according to similar isolation environments, suggesting an evolution of BGCs that could be linked to the specific ecosystems. Comparative genomic analysis also showed that Sphingomonas species isolated from extreme environments had the greatest number of predicted BGCs and a higher percentage of genetic content devoted to BGCs than the isolates from mesophilic environments. In addition, some extreme-exclusive clusters were found related to oxidative and thermal stress adaptations, while pangenome analysis showed unique resistance genes on the Antarctic strain included in genetic islands. Altogether, our results showed the unique genetic content on Antarctic strain Sphingomonas sp. So64.6, −a probable new species of this genetically divergent genus–, which could have potentially novel antibiotic compounds acquired to cope with Antarctic poly-extreme conditions.
Collapse
|
25
|
Baria DM, Patel NY, Yagnik SM, Panchal RR, Rajput KN, Raval VH. Exopolysaccharides from marine microbes with prowess for environment cleanup. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76611-76625. [PMID: 36166130 DOI: 10.1007/s11356-022-23198-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
A variety of both small and large biologically intriguing compounds can be found abundantly in the marine environment. Researchers are particularly interested in marine bacteria because they can produce classes of bioactive secondary metabolites that are structurally diverse. The main secondary metabolites produced by marine bacteria are regarded as steroids, alkaloids, peptides, terpenoids, biopolymers, and polyketides. The global urbanization leads to the increased use of organic pollutants that are both persistent and toxic for humans, other life forms and tend to biomagnified in environment. The issue can be addressed, by using marine microbial biopolymers with ability for increased bioremediation. Amongst biopolymers, the exopolysaccharides (EPS) are the most prominent under adverse environmental stress conditions. The present review emphasizes the use of EPS as a bio-flocculent for wastewater treatment, as an adsorbent for the removal of textile dye and heavy metals from industrial effluents. The biofilm-forming ability of EPS helps with soil reclamation and reduces soil erosion. EPS are an obvious choice being environmentally friendly and cost-effective in processes for developing sustainable technology. However, a better understanding of EPS biosynthetic pathways and further developing novel sustainable technologies is desirable and certainly will pave the way for efficient usage of EPS for environment cleanup.
Collapse
Affiliation(s)
- Dhritiksha Mansukhlal Baria
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | - Nidhi Yogeshbhai Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | | | - Rakeshkumar Ramanlal Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | - Kiransinh Narendrasinh Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India
| | - Vikram Hiren Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, 380 009, Ahmedabad, Gujarat, India.
| |
Collapse
|
26
|
Wang M, Wang H, Wang P, Fu HH, Li CY, Qin QL, Liang Y, Wang M, Chen XL, Zhang YZ, Zhang W. TCA cycle enhancement and uptake of monomeric substrates support growth of marine Roseobacter at low temperature. Commun Biol 2022; 5:705. [PMID: 35835984 PMCID: PMC9283371 DOI: 10.1038/s42003-022-03631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Members of the marine Roseobacter group are ubiquitous in global oceans, but their cold-adaptive strategies have barely been studied. Here, as represented by Loktanella salsilacus strains enriched in polar regions, we firstly characterized the metabolic features of a cold-adapted Roseobacter by multi-omics, enzyme activities, and carbon utilization procedures. Unlike in most cold-adapted microorganisms, the TCA cycle is enhanced by accumulating more enzyme molecules, whereas genes for thiosulfate oxidation, sulfate reduction, nitrate reduction, and urea metabolism are all expressed at lower abundance when L. salsilacus was growing at 5 °C in comparison with higher temperatures. Moreover, a carbon-source competition experiment has evidenced the preferential use of glucose rather than sucrose at low temperature. This selective utilization is likely to be controlled by the carbon source uptake and transformation steps, which also reflects an economic calculation balancing energy production and functional plasticity. These findings provide a mechanistic understanding of how a Roseobacter member and possibly others as well counteract polar constraints. The metabolic adaptation of Loktanella salsilacus strains to cold involves an increase of enzymes involved in the TCA cycle and preferential use of glucose rather than sucrose at low temperature, providing insights into how Roseobacter adapts in polar regions.
Collapse
Affiliation(s)
- Meng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Huan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qi-Long Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266373, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China. .,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266373, China.
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
27
|
Liu L, Cai X, Ai Y, Li J, Long H, Ren W, Huang A, Zhang X, Xie ZY. Effects of Lactobacillus pentosus combined with Arthrospira platensis on the growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 120:345-352. [PMID: 34883257 DOI: 10.1016/j.fsi.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Litopenaeus vannamei is one of the most productive shrimp species in the world. However, shrimp farming is suffering from adverse environmental conditions and disease outbreaks. Typically, Lactobacillus pentosus and Arthrospira platensis are used as substitutes for some antibiotics. In the present study, we assessed the effects of dietary supplements along with living bacteria or cell-free extracts of L. pentosus combined with A. platensis on the growth performance, immune response, intestinal microbiota, and disease resistance of L. vannamei against Vibrio alginolyticus. Shrimp fed L. pentosus live bacteria combined with A. platensis showed the best growth performance and lowest feed conversion rate. The supplementation diet with L. pentosus live bacteria and A. platensis could significantly enhance the trypsin activity in shrimp after the feeding trial. Given the lowest feed conversion rate in shrimp fed L. pentosus live bacteria combined with A. platensis, we reasonably speculated that the decrease in feed conversion rate may be related to the increase in trypsin activity. In addition, dietary cell-free extracts of L. pentosus combined with A. platensis enhanced the expression of immune-related genes after the feeding trial or challenge test. Moreover, results of the bacterial challenge test indicated that the shrimp fed cell-free extracts of L. pentosus combined with A. platensis diet resulted in the highest survival rate, which suggested that cell-free extracts of L. pentosus and A. platensis could improve the disease resistance against V. alginolyticus by up-regulating the expressions of immune-related genes. Dietary L.pentosus or A. platensis, or their combination, reduced the abundance of harmful bacteria, including Proteobacteria in shrimp intestine, which suggested that L. pentosus and A. platensis could improve the growth performance and health of shrimp by regulating the structure of the intestinal microbiota. The findings of this study demonstrated that L. pentosus live bacteria and A. platensis exerted synergistic effects on the growth performance and digestion in shrimp, while cell-free extracts of L. pentosus and A. platensis showed synergistic effects on the immune response and disease resistance of shrimp against V. alginolyticus.
Collapse
Affiliation(s)
- Lei Liu
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Xiaoni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China.
| | - Yu Ai
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Juan Li
- College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China
| | - Zhen-Yu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, PR China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan Province, PR China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, PR China.
| |
Collapse
|
28
|
Ferrer-Miralles N, Saccardo P, Corchero JL, Garcia-Fruitós E. Recombinant Protein Production and Purification of Insoluble Proteins. Methods Mol Biol 2022; 2406:1-31. [PMID: 35089548 DOI: 10.1007/978-1-0716-1859-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The efficient production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and its growth conditions to minimize the formation of insoluble protein aggregates should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.
Collapse
Affiliation(s)
- Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
29
|
Zhang Y, Xu H, Wang L, Liu R, Fu L, Lin K. Unique bacterial communities and potential function along the vertical gradient in the deepest marine blue hole. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:911-927. [PMID: 34490729 DOI: 10.1111/1758-2229.13001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 05/27/2023]
Abstract
The Sansha Yongle Blue Hole is the deepest blue hole in the world discovered so far, while its great potential and values have not been fully exploited regarding microbial communities. A large-scale sampling was performed at different depths (0-270 m) inside the blue hole. Based on high-throughput sequencing, the diversity and richness of bacterial communities were relatively higher in oxic and euphotic layer, and at depths of 180-230 m in anoxic layer. Proteobacteria was dominant with mean relative abundance of 64.7%. As the representative genera, Thiomicrospira and Arcobacter were detected with higher abundances up to 96.1% and 31.5% in the anaerobic environment. Principal co-ordinates analysis, one-way ANOVA and network analysis highlighted the distinctive species at different depths. Correlation analysis illustrated the significant correlations between the bacteria and environmental elements of dissolved oxygen, temperature, salinity, pH, sulphur and nutrient. Phylogenetic analysis indicated that the microbial ecosystem was characterized with infrequent and unidentified microorganisms in the deep layer. This research revealed the unique microbial ecosystem and potential functions in regulating ecosystem productivity and cycling of carbon, sulphur and nitrogen. Comprehensive and long-term investigations in the Sansha Blue Hole should be taken to conserve the peculiar ecosystem.
Collapse
Affiliation(s)
- Yuxuan Zhang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huitao Xu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liping Wang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruizhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liang Fu
- Sansha Trackline Institute of Coral Reef Environment Protection, Sansha, 571400, China
| | - Kuixuan Lin
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
30
|
Lack of N-Terminal Segment of the Flagellin Protein Results in the Production of a Shortened Polar Flagellum in the Deep-Sea Sedimentary Bacterium Pseudoalteromonas sp. Strain SM9913. Appl Environ Microbiol 2021; 87:e0152721. [PMID: 34406825 DOI: 10.1128/aem.01527-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial polar flagella, comprised of flagellin, are essential for bacterial motility. Pseudoalteromonas sp. strain SM9913 is a bacterium isolated from deep-sea sediments. Unlike other Pseudoalteromonas strains that have a long polar flagellum, strain SM9913 has an abnormally short polar flagellum. Here, we investigated the underlying reason for the short flagellum and found that a single-base mutation was responsible for the altered flagellar assembly. This mutation leads to the fragmentation of the flagellin gene into two genes, PSM_A2281, encoding the core segment and the C-terminal segment, and PSM_A2282, encoding the N-terminal segment, and only gene PSM_A2281 is involved in the production of the short polar flagellum. When a chimeric gene of PSM_A2281 and PSM_A2282 encoding an intact flagellin, A2281::82, was expressed, a long polar flagellum was produced, indicating that the N-terminal segment of flagellin contributes to the production of a polar flagellum of a normal length. Analyses of the simulated structures of A2281 and A2281::82 and that of the flagellar filament assembled with A2281::82 indicate that due to the lack of two α-helices, the core of the flagellar filament assembled with A2281 is incomplete and is likely too weak to support the stability and movement of a long flagellum. This mutation in strain SM9913 had little effect on its growth and only a small effect on its swimming motility, implying that strain SM9913 can live well with this mutation in natural sedimentary environments. This study provides a better understanding of the assembly and production of bacterial flagella. IMPORTANCE Polar flagella, which are essential organelles for bacterial motility, are comprised of multiple flagellin subunits. A flagellin molecule contains an N-terminal segment, a core segment, and a C-terminal segment. The results of this investigation of the deep-sea sedimentary bacterium Pseudoalteromonas sp. strain SM9913 demonstrate that a single-base mutation in the flagellin gene leads to the production of an incomplete flagellin without the N-terminal segment and that the loss of the N-terminal segment of the flagellin protein results in the production of a shortened polar flagellar filament. Our results shed light on the important function of the N-terminal segment of flagellin in the assembly and stability of bacterial flagellar filament.
Collapse
|
31
|
Faure E, Ayata SD, Bittner L. Towards omics-based predictions of planktonic functional composition from environmental data. Nat Commun 2021; 12:4361. [PMID: 34272373 PMCID: PMC8285379 DOI: 10.1038/s41467-021-24547-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Marine microbes play a crucial role in climate regulation, biogeochemical cycles, and trophic networks. Unprecedented amounts of data on planktonic communities were recently collected, sparking a need for innovative data-driven methodologies to quantify and predict their ecosystemic functions. We reanalyze 885 marine metagenome-assembled genomes through a network-based approach and detect 233,756 protein functional clusters, from which 15% are functionally unannotated. We investigate all clusters' distributions across the global ocean through machine learning, identifying biogeographical provinces as the best predictors of protein functional clusters' abundance. The abundances of 14,585 clusters are predictable from the environmental context, including 1347 functionally unannotated clusters. We analyze the biogeography of these 14,585 clusters, identifying the Mediterranean Sea as an outlier in terms of protein functional clusters composition. Applicable to any set of sequences, our approach constitutes a step towards quantitative predictions of functional composition from the environmental context.
Collapse
Affiliation(s)
- Emile Faure
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
| | - Sakina-Dorothée Ayata
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
32
|
Wei W, Wang L, Fang J, Liu R. Population structure, activity potential and ecotype partitioning of Pseudoalteromonas along the vertical water column of the New Britain Trench. FEMS Microbiol Lett 2021; 368:6308368. [PMID: 34160584 DOI: 10.1093/femsle/fnab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
Microbial degradation of organic matter along the vertical profile of the water column is a major process driving the carbon cycle in the ocean. Pseudoalteromonas has been identified as a dominant genus in pelagic marine environments worldwide, playing important roles in the remineralization of organic carbon. However, the current understanding of Pseudoalteromonas was mainly based on shallow water populations or cultivated species. This study analyzed for the first time the structure, activity potential and ecotypes differentiation of Pseudoalteromonas in the water column of the New Britain Trench (NBT) down to 6000 m. Analysis on diversities of the 16S rRNA gene and their transcripts showed that Pseudoalteromonas was greatly enriched in deep-sea waters and showed high activity potentials. The deep-sea Pseudoalteromonas were significantly different from their shallow-water counterparts, suggesting an obvious ecotype division along with the vertical profile. Phylogenetic analysis on the 16S rRNA gene and hsp60 gene of 219 Pseudoalteromonas strains isolated from different depths further showed that the vertical ecotype division could even occur at the strain level, which might be a result of long-term adaptation to environmental conditions at different depths. The discovered depth-specific strains provide valuable models for further studies on adaptation, evolution and functions of the deep-sea Pseudoalteromonas.
Collapse
Affiliation(s)
- Wenxia Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao,266000, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
33
|
Physiological and Molecular Responses to Main Environmental Stressors of Microalgae and Bacteria in Polar Marine Environments. Microorganisms 2020; 8:microorganisms8121957. [PMID: 33317109 PMCID: PMC7764121 DOI: 10.3390/microorganisms8121957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022] Open
Abstract
The Arctic and Antarctic regions constitute 14% of the total biosphere. Although they differ in their physiographic characteristics, both are strongly affected by snow and ice cover changes, extreme photoperiods and low temperatures, and are still largely unexplored compared to more accessible sites. This review focuses on microalgae and bacteria from polar marine environments and, in particular, on their physiological and molecular responses to harsh environmental conditions. The data reported in this manuscript show that exposure to cold, increase in CO2 concentration and salinity, high/low light, and/or combination of stressors induce variations in species abundance and distribution for both polar bacteria and microalgae, as well as changes in growth rate and increase in cryoprotective compounds. The use of -omics techniques also allowed to identify specific gene losses and gains which could have contributed to polar environmental adaptation, and metabolic shifts, especially related to lipid metabolism and defence systems, such as the up-regulation of ice binding proteins, chaperones and antioxidant enzymes. However, this review also provides evidence that -omics resources for polar species are still few and several sequences still have unknown functions, highlighting the need to further explore polar environments, the biology and ecology of the inhabiting bacteria and microalgae, and their interactions.
Collapse
|
34
|
Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic). WATER 2020. [DOI: 10.3390/w12113098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial communities promptly respond to the environmental perturbations, especially in the Arctic and sub-Arctic systems that are highly impacted by climate change, and fluctuations in the diversity level of microbial assemblages could give insights on their expected response. 16S rRNA gene amplicon sequencing was applied to describe the bacterial community composition in water and sediment through the sub-Arctic Pasvik River. Our results showed that river water and sediment harbored distinct communities in terms of diversity and composition at genus level. The distribution of the bacterial communities was mainly affected by both salinity and temperature in sediment samples, and by oxygen in water samples. Glacial meltwaters and runoff waters from melting ice probably influenced the composition of the bacterial community at upper and middle river sites. Interestingly, marine-derived bacteria consistently accounted for a small proportion of the total sequences and were also more prominent in the inner part of the river. Results evidenced that particular conditions occurring at sampling sites (such as algal blooms, heavy metal contamination and anaerobiosis) may select species at local scale from a shared bacterial pool, thus favoring certain bacterial taxa. Conversely, the few phylotypes specifically detected in some sites are probably due to localized external inputs introducing allochthonous microbial groups.
Collapse
|
35
|
Rizzo C, Lo Giudice A. The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules. Microorganisms 2020; 8:microorganisms8091422. [PMID: 32947905 PMCID: PMC7564310 DOI: 10.3390/microorganisms8091422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
The application of an ever-increasing number of methodological approaches and tools is positively contributing to the development and yield of bioprospecting procedures. In this context, cold-adapted bacteria from polar environments are becoming more and more intriguing as valuable sources of novel biomolecules, with peculiar properties to be exploited in a number of biotechnological fields. This review aims at highlighting the biotechnological potentialities of bacteria from Arctic and Antarctic habitats, both biotic and abiotic. In addition to cold-enzymes, which have been intensively analysed, relevance is given to recent advances in the search for less investigated biomolecules, such as biosurfactants, exopolysaccharides and antibiotics.
Collapse
Affiliation(s)
- Carmen Rizzo
- Stazione Zoologica Anton Dohrn, Department Marine Biotechnology, National Institute of Biology, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
- Correspondence:
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata San Raineri 86, 98122 Messina, Italy;
| |
Collapse
|
36
|
Savvichev AS, Kadnikov VV, Rusanov II, Beletsky AV, Krasnova ED, Voronov DA, Kallistova AY, Veslopolova EF, Zakharova EE, Kokryatskaya NM, Losyuk GN, Demidenko NA, Belyaev NA, Sigalevich PA, Mardanov AV, Ravin NV, Pimenov NV. Microbial Processes and Microbial Communities in the Water Column of the Polar Meromictic Lake Bol'shie Khruslomeny at the White Sea Coast. Front Microbiol 2020; 11:1945. [PMID: 32849486 PMCID: PMC7432294 DOI: 10.3389/fmicb.2020.01945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
Microbiological, molecular ecological, biogeochemical, and isotope geochemical research was carried out at the polar Lake Bol'shie Khruslomeny at the coast of the Kandalaksha Bay, White Sea in March and September 2017. The uppermost mixolimnion was oxic, with low salinity (3-5%). The lower chemocline layer was brown-green colored, with very high content of particulate organic matter (up to 11.8 mg C L-1). The lowermost monimolimnion had marine salinity (22-24%) and very high concentrations of sulfide (up to 18 mmol L-1) and CH4 (up to 1.8 mmol L-1). In the chemocline, total microbial abundance and the rate of anoxygenic photosynthesis were 8.8 × 106 cells mL-1 and 34.4 μmol C L-1 day-1, respectively. Both in March and September, sulfate reduction rate increased with depth, peaking (up to 0.6-1.1 μmol S L-1 day-1) in the lower chemocline. Methane oxidation rates in the chemocline were up to 85 and 180 nmol CH4 L-1 day-1 in March and September, respectively; stimulation of this process by light was observed in September. The percentages of cyanobacteria and methanotrophs in the layer where light-induced methane oxidation occurred were similar, ∼2.5% of the microbial community. Light did not stimulate methane oxidation in deeper layers. The carbon isotope composition of particulate organic matter (δ13C-Corg), dissolved carbonates (δ13C-DIC), and methane (δ13C- CH4) indicated high microbial activity in the chemocline. Analysis of the 16S rRNA gene sequences revealed predominance of Cyanobium cyanobacteria (order Synechococcales) in the mixolimnion. Green sulfur bacteria Chlorobium phaeovibrioides capable of anoxygenic photosynthesis constituted ∼20% of the chemocline community both in March and in September. Methyloprofundus gammaptoteobacteria (family Methylomonaceae) were present in the upper chemocline, where active methane oxidation occurred. During winter, cyanobacteria were less abundant in the chemocline, while methanotrophs occurred in higher horizons, including the under-ice layer. Chemolithotrophic gammaproteobacteria of the genus Thiomicrorhabdus, oxidizing reduced sulfur compounds at low oxygen concentrations, were revealed in the chemocline in March. Both in March and September archaea constituted up to 50% of all microorganisms in the hypolimnion. The percentage of putative methanogens in the archaeal community was low, and they occurred mainly in near-bottom horizons.
Collapse
Affiliation(s)
- Alexander S. Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Igor I. Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena D. Krasnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A. Voronov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Yu. Kallistova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena F. Veslopolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena E. Zakharova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya M. Kokryatskaya
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Moscow, Russia
| | - Galina N. Losyuk
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Moscow, Russia
| | | | - Nikolai A. Belyaev
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Sigalevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
37
|
Lo Giudice A, Poli A, Finore I, Rizzo C. Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications. Appl Microbiol Biotechnol 2020; 104:2923-2934. [PMID: 32076778 DOI: 10.1007/s00253-020-10448-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Extracellular polymeric substances (EPSs) possess diversified ecological role, including the cell adhesion to surfaces and cell protection, and are highly involved in the interactions between the bacterial cells and the bulk environments. Interestingly, EPSs find valuable applications in the industrial field, due to their chemical versatility. In this context, Antarctic bacteria have not been given the attention they deserve as producers of EPS molecules and a very limited insight into their EPS production capabilities and biotechnological potential is available in literature to date. Antarctic EPS-producing bacteria are mainly psychrophiles deriving from the marine environments (generally sea ice and seawater) around the continent, whereas a unique thermophilic bacterium, namely Parageobacillus thermantarcticus strain M1, was isolated from geothermal soil of the crater of Mount Melbourne. This mini-review is aimed at showcasing the current knowledge on EPS-producing Antarctic bacteria and the chemical peculiarities of produced EPSs, highlighting their biotechnological potential and the yet unexplored treasure they represent for biodiscovery.
Collapse
Affiliation(s)
- Angelina Lo Giudice
- National Research Council (CNR-ISP), Institute of Polar Sciences, Spianata S. Raineri 86, 98122, Messina, Italy.
| | - Annarita Poli
- National Research Council (CNR-ICB), Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Ilaria Finore
- National Research Council (CNR-ICB), Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Carmen Rizzo
- Department BIOTECH, Stazione Zoologica Anton Dohrn,, National Institute of Biology, Villa Pace, Contrada Porticatello 29, 98167, Messina, Italy
| |
Collapse
|
38
|
Ice Binding Proteins: Diverse Biological Roles and Applications in Different Types of Industry. Biomolecules 2020; 10:biom10020274. [PMID: 32053888 PMCID: PMC7072191 DOI: 10.3390/biom10020274] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
More than 80% of Earth’s surface is exposed periodically or continuously to temperatures below 5 °C. Organisms that can live in these areas are called psychrophilic or psychrotolerant. They have evolved many adaptations that allow them to survive low temperatures. One of the most interesting modifications is production of specific substances that prevent living organisms from freezing. Psychrophiles can synthesize special peptides and proteins that modulate the growth of ice crystals and are generally called ice binding proteins (IBPs). Among them, antifreeze proteins (AFPs) inhibit the formation of large ice grains inside the cells that may damage cellular organelles or cause cell death. AFPs, with their unique properties of thermal hysteresis (TH) and ice recrystallization inhibition (IRI), have become one of the promising tools in industrial applications like cryobiology, food storage, and others. Attention of the industry was also caught by another group of IBPs exhibiting a different activity—ice-nucleating proteins (INPs). This review summarizes the current state of art and possible utilizations of the large group of IBPs.
Collapse
|
39
|
Tang BL, Yang J, Chen XL, Wang P, Zhao HL, Su HN, Li CY, Yu Y, Zhong S, Wang L, Lidbury I, Ding H, Wang M, McMinn A, Zhang XY, Chen Y, Zhang YZ. A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria. Nat Commun 2020; 11:285. [PMID: 31941905 PMCID: PMC6962226 DOI: 10.1038/s41467-019-14133-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022] Open
Abstract
Predator-prey interactions play important roles in the cycling of marine organic matter. Here we show that a Gram-negative bacterium isolated from marine sediments (Pseudoalteromonas sp. strain CF6-2) can kill Gram-positive bacteria of diverse peptidoglycan (PG) chemotypes by secreting the metalloprotease pseudoalterin. Secretion of the enzyme requires a Type II secretion system. Pseudoalterin binds to the glycan strands of Gram positive bacterial PG and degrades the PG peptide chains, leading to cell death. The released nutrients, including PG-derived D-amino acids, can then be utilized by strain CF6-2 for growth. Pseudoalterin synthesis is induced by PG degradation products such as glycine and glycine-rich oligopeptides. Genes encoding putative pseudoalterin-like proteins are found in many other marine bacteria. This study reveals a new microbial interaction in the ocean. Predator-prey interactions play important roles in the cycling of marine organic matter. Here the authors show that a Gram-negative bacterium isolated from marine sediments can kill and feed on Gram-positive bacteria by secreting a peptidoglycan-degrading enzyme.
Collapse
Affiliation(s)
- Bai-Lu Tang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Jie Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
| | - Hui-Lin Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Yang Yu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Shuai Zhong
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Lei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ian Lidbury
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Haitao Ding
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Min Wang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yin Chen
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China. .,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China.
| |
Collapse
|
40
|
Abstract
Despite the typical human notion that the Earth is a habitable planet, over three quarters of our planet is uninhabitable by us without assistance. The organisms that live and thrive in these “inhospitable” environments are known by the name extremophiles and are found in all Domains of Life. Despite our general lack of knowledge about them, they have already assisted humans in many ways and still have much more to give. In this review, I describe how they have adapted to live/thrive/survive in their niches, helped scientists unlock major scientific discoveries, advance the field of biotechnology, and inform us about the boundaries of Life and where we might find it in the Universe.
Collapse
Affiliation(s)
- James A Coker
- Department of Sciences, University of Maryland Global Campus, Adelphi, MD, USA
| |
Collapse
|
41
|
Casillo A, Parrilli E, Tutino ML, Corsaro MM. The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity. FEMS Microbiol Ecol 2019; 95:5519854. [DOI: 10.1093/femsec/fiz094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023] Open
Abstract
ABSTRACTLipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. Microorganisms that colonize permanently or transiently cold habitats have evolved an array of structural adaptations, some of which involve components of bacterial membranes. These adaptations assure the perfect functionality of the membrane even at freezing or sub-freezing growth temperatures. This review summarizes the state-of-the-art information concerning the structural features of the LPSs produced by cold-adapted bacteria. The LPS structure has recently been elucidated from species mainly belonging to Gammaproteobacteria and Flavobacteriaceae. Although the reported structural heterogeneity may arise from the phylogenetic diversity of the analyzed source strains, some generalized trends can be deduced. For instance, it is clear that only a small portion of LPSs displays the O-chain. In addition, the biological activity of the lipid A portion from several cold-adapted strains is reported.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| |
Collapse
|