1
|
Li Y, Yang Y, Zhu L, Xie S, Guo L, Zhang Z, Zhe C, Li W, Liu F. Angelica sinensis polysaccharide facilitates chondrogenic differentiation of adipose-derived stem cells via MDK-PI3K/AKT signaling cascade. Biomed Pharmacother 2024; 179:117349. [PMID: 39191028 DOI: 10.1016/j.biopha.2024.117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECT Adipose-derived mesenchymal stem cells (ADSCs) have received significant attention in the field of cartilage tissue repair. Angelica sinensis polysaccharide (ASP) can enhance both the proliferation and differentiation of mesenchymal stem cells. Therefore, we intend to explore the effect of ASP on chondrogenic differentiation of ADSCs in vitro, and elucidate the underlying mechanisms. METHOD ADSCs were treated with different concentrations of ASP to determine the optimal concentration. The chondrogenic differentiation of ADSCs was evaluated using Alcian blue staining, qRT-PCR, western blot, and IF staining. Transcriptome sequencing was performed to identify the expression profiles of ADSCs before and after ASP treatment, followed by bioinformatic analyses including differential expression analysis, enrichment analysis, and construction of PPI networks to identify differentially expressed genes (DEGs) associated with ASP and chondrogenic differentiation. RESULT Surface markers of isolated rat-derived ADSCs were identified by CD44+CD90+CD45-CD106-, and exhibited the capacity for lipogenic, osteogenic, and chondrogenic differentiation. With increasing concentration of ASP treatment, there was an upregulation in the activity and acidic mucosubstance of ADSCs. The levels of Aggrecan, COL2A1, and Sox9 showed an increase in ADSCs after 28 days of 80 µg/ml ASP treatment. Transcriptome sequencing revealed that ASP-associated DEGs regulate extracellular matrix synthesis, immune response, inflammatory response, and cell cycle, and are involved in the NF-κB, AGE-RAGE, and calcium pathways. Moreover, Edn1, Frzb, Mdk, Nog, and Sulf1 are hub genes in DEGs. Notably, ASP upregulated MDK levels in ADSCs, while knockdown of MDK mitigated ASP-induced elevations in acidic mucosubstance, chondrogenic differentiation-related markers (Aggrecan, COL2A1, and Sox9), and the activity of the PI3K/AKT pathway. CONCLUSION ASP enhances the proliferation and chondrogenic differentiation of ADSCs by activating the MDK-mediated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yangjie Li
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Yongqiang Yang
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Lina Zhu
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Shukang Xie
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Ling Guo
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Zhiming Zhang
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Chunyang Zhe
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Wenhui Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming City, Yunnan Province, China
| | - Feng Liu
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China.
| |
Collapse
|
2
|
Ruoss S, Nasamran CA, Ball ST, Chen JL, Halter KN, Bruno KA, Whisenant TC, Parekh JN, Dorn SN, Esparza MC, Bremner SN, Fisch KM, Engler AJ, Ward SR. Comparative single-cell transcriptional and proteomic atlas of clinical-grade injectable mesenchymal source tissues. SCIENCE ADVANCES 2024; 10:eadn2831. [PMID: 38996032 PMCID: PMC11244553 DOI: 10.1126/sciadv.adn2831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Bone marrow aspirate concentrate (BMAC) and adipose-derived stromal vascular fraction (ADSVF) are the most marketed stem cell therapies to treat a variety of conditions in the general population and elite athletes. Both tissues have been used interchangeably clinically even though their detailed composition, heterogeneity, and mechanisms of action have neither been rigorously inventoried nor compared. This lack of information has prevented investigations into ideal dosages and has facilitated anecdata and misinformation. Here, we analyzed single-cell transcriptomes, proteomes, and flow cytometry profiles from paired clinical-grade BMAC and ADSVF. This comparative transcriptional atlas challenges the prevalent notion that there is one therapeutic cell type present in both tissues. We also provide data of surface markers that may enable isolation and investigation of cell (sub)populations. Furthermore, the proteome atlas highlights intertissue and interpatient heterogeneity of injected proteins with potentially regenerative or immunomodulatory capacities. An interactive webtool is available online.
Collapse
Affiliation(s)
- Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Chanond A. Nasamran
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Scott T. Ball
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Jeffrey L. Chen
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kenneth N. Halter
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Kelly A. Bruno
- Department of Anesthesiology, Center for Pain, UC San Diego, La Jolla, CA, USA
| | - Thomas C. Whisenant
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
| | - Jesal N. Parekh
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Shanelle N. Dorn
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | - Mary C. Esparza
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
| | | | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, UC San Diego, La Jolla, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, UC San Diego, La Jolla, CA, USA
| | - Adam J. Engler
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Samuel R. Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, CA, USA
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Department of Radiology, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Chandrashekar S, Jeyaraman M, Mounissamy P, Jeyaraman N, Khanna M, Gupta A. Safety and Efficacy of Bone-Marrow Aspirate Concentrate in Hip Osteoarthritis: A Systematic Review of Current Clinical Evidence. Indian J Orthop 2024; 58:835-844. [PMID: 38948376 PMCID: PMC11208346 DOI: 10.1007/s43465-024-01183-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/04/2024] [Indexed: 07/02/2024]
Abstract
Introduction Hip osteoarthritis (OA) is one of the leading causes of disability and morbidity worldwide. It is estimated to affect 9.2% individuals globally with age over 45 years. Conventional treatment modalities have limitations and side-effects. To overcome these limitations, over the last decade, there has been an increased interest in the use of orthobiologics derived from autologous sources including platelet-rich plasma (PRP), bone-marrow aspirate concentrate (BMAC) and adipose tissue derived formulations. This review qualitatively presents the in-vitro, pre-clinical, clinical and on-going clinical studies exploring the safety and efficacy of BMAC for management of hip OA. Materials and methods The electronic database search was done through PubMed, Embase, Web of Science, Scopus, ProQuest and Google Scholar till February 2024. The search terms used were "osteoarthritis" OR "hip osteoarthritis" OR "orthobiologics" OR "efficacy or use of orthobiologic treatment" OR "bone-marrow concentrate" OR "bone-marrow aspirate concentrate", AND "BMAC". The inclusion criteria were clinical studies of any level of evidence written in the English language, published till February 2024, evaluating the safety and efficacy of intra-articular administration of BMAC for the management of hip OA. Results A total of 5 studies were included in this review for qualitative data synthesis. The total number of patients who participated in the study was 182, ranging from 4 to 112 in a single study. No adverse events were reported throughout the duration of the study. In addition, intra-articular administration of BMAC led to reduced pain, and improved function and overall quality of life (QoL). Conclusion The results from this review demonstrated that administration of BMAC is safe and potentially efficacious in terms of reducing pain, improving function and overall QoL of patients with hip OA in short- and mid-term average follow-up based on the included studies. Nonetheless, more adequately powered, multi-center, prospective, double-blind, non-randomized and randomized controlled trials with long-term follow-up are warranted to establish long-term safety and efficacy of BMAC for management of hip OA and justify its routine clinical use.
Collapse
Affiliation(s)
- Sushma Chandrashekar
- Fellow in Orthopaedic Rheumatology, Dr RML National Law University, Lucknow, 226010 Uttar Pradesh India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077 Tamil Nadu India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010 Uttar Pradesh India
- Department of Orthopaedics, South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
| | - Prabu Mounissamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, 605006 India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077 Tamil Nadu India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010 Uttar Pradesh India
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010 Uttar Pradesh India
- Department of Orthopaedics, Dr KNS Mayo Institute of Medical Sciences, Lucknow, 225001 Uttar Pradesh India
| | - Ashim Gupta
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, 226010 Uttar Pradesh India
- Department of Orthopaedics, South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
- Regenerative Orthopaedics, Noida, 201301 Uttar Pradesh India
- Future Biologics, Lawrenceville, GA 30043 USA
- BioIntegrate, Lawrenceville, GA 30043 USA
| |
Collapse
|
4
|
Yang H, Cheong S, He Y, Lu F. Mesenchymal stem cell-based therapy for autoimmune-related fibrotic skin diseases-systemic sclerosis and sclerodermatous graft-versus-host disease. Stem Cell Res Ther 2023; 14:372. [PMID: 38111001 PMCID: PMC10729330 DOI: 10.1186/s13287-023-03543-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) and sclerodermatous graft-versus-host disease (Scl-GVHD)-characterized by similar developmental fibrosis, vascular abnormalities, and innate and adaptive immune response, resulting in severe skin fibrosis at the late stage-are chronic autoimmune diseases of connective tissue. The significant immune system dysfunction, distinguishing autoimmune-related fibrosis from mere skin fibrosis, should be a particular focus of treating autoimmune-related fibrosis. Recent research shows that innovative mesenchymal stem cell (MSC)-based therapy, with the capacities of immune regulation, inflammation suppression, oxidation inhibition, and fibrosis restraint, shows great promise in overcoming the disease. MAIN BODY This review of recent studies aims to summarize the therapeutic effect and theoretical mechanisms of MSC-based therapy in treating autoimmune-related fibrotic skin diseases, SSc and Scl-GVHD, providing novel insights and references for further clinical applications. It is noteworthy that the efficacy of MSCs is not reliant on their migration into the skin. Working on the immune system, MSCs can inhibit the chemotaxis and infiltration of immune cells to the skin by down-regulating the expression of skin chemokines and chemokine receptors and reducing the inflammatory and pro-fibrotic mediators. Furthermore, to reduce levels of oxidative stress, MSCs may improve vascular abnormalities, and enhance the antioxidant defenses through inducible nitric oxide synthase, thioredoxin 1, as well as other mediators. The oxidative stress environment does not weaken MSCs and may even strengthen certain functions. Regarding fibrosis, MSCs primarily target the transforming growth factor-β signaling pathway to inhibit fibroblast activation. Here, miRNAs may play a critical role in ECM remodeling. Clinical studies have demonstrated the safety of these approaches, though outcomes have varied, possibly owing to the heterogeneity of MSCs, the disorders themselves, and other factors. Nevertheless, the research clearly reveals the immense potential of MSCs in treating autoimmune-related fibrotic skin diseases. CONCLUSION The application of MSCs presents a promising approach for treating autoimmune-related fibrotic skin diseases: SSc and Scl-GVHD. Therapies involving MSCs and MSC extracellular vesicles have been found to operate through three primary mechanisms: rebalancing the immune and inflammatory disorders, resisting oxidant stress, and inhibiting overactivated fibrosis (including fibroblast activation and ECM remodeling). However, the effectiveness of these interventions requires further validation through extensive clinical investigations, particularly randomized control trials and phase III/IV clinical trials. Additionally, the hypothetical mechanism underlying these therapies could be elucidated through further research.
Collapse
Affiliation(s)
- Han Yang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Entessari M, Oliveira LP. Current evidence on mesenchymal stem cells for hip osteoarthritis: a narrative review. Regen Med 2023; 18:749-758. [PMID: 37496424 DOI: 10.2217/rme-2023-0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
There are limited data on the use of mesenchymal stem cell injections for hip osteoarthritis. The goal of this study was to evaluate the literature by analyzing outcomes and comparing methodologies. Online search of PubMed, SportsDiscus and Case Reports Keywords was completed using the keywords 'stem cells' and 'hip' and 'osteoarthritis'. Six studies met the inclusion and exclusion criteria. Five out the six studies had statistically significant improvement in patient reported outcomes after mesenchymal stem cell injections. Only two studies provided information on radiological changes and findings were positive. None of the studies reported major complications. Small series of non-randomized controlled trials completed to date in the use of mesenchymal stem cells for the treatment of hip osteoarthritis reported the procedures to be safe and provide a positive clinical response. Randomized controlled trials must be performed to further confirm mesenchymal stem cells as a treatment option for hip osteoarthritis.
Collapse
Affiliation(s)
- Mina Entessari
- Florida International University, Herbert Wertheim College of Medicine, 11200 SW 8th Street, AHC2, Miami, FL 33199, USA
| | - Leonardo P Oliveira
- Levitetz Department of Orthopaedic Surgery, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd, Weston, FL 33331, USA
| |
Collapse
|
6
|
Baouche M, Ochota M, Locatelli Y, Mermillod P, Niżański W. Mesenchymal Stem Cells: Generalities and Clinical Significance in Feline and Canine Medicine. Animals (Basel) 2023; 13:1903. [PMID: 37370414 DOI: 10.3390/ani13121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells: they can proliferate like undifferentiated cells and have the ability to differentiate into different types of cells. A considerable amount of research focuses on the potential therapeutic benefits of MSCs, such as cell therapy or tissue regeneration, and MSCs are considered powerful tools in veterinary regenerative medicine. They are the leading type of adult stem cells in clinical trials owing to their immunosuppressive, immunomodulatory, and anti-inflammatory properties, as well as their low teratogenic risk compared with pluripotent stem cells. The present review details the current understanding of the fundamental biology of MSCs. We focus on MSCs' properties and their characteristics with the goal of providing an overview of therapeutic innovations based on MSCs in canines and felines.
Collapse
Affiliation(s)
- Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Małgorzata Ochota
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
- Museum National d'Histoire Naturelle, Réserve Zoologique de la Haute Touche, 36290 Obterre, France
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| |
Collapse
|
7
|
Giorgini A, Selleri F, Zambianchi F, Cataldo G, Francioni E, Catani F. Autologous micro-fragmented adipose tissue associated with arthroscopy in moderate–severe knee osteoarthritis: outcome at two year follow-up. BMC Musculoskelet Disord 2022; 23:963. [DOI: 10.1186/s12891-022-05921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Adipose tissue has recently gained growing interest in the treatment of osteoarthritis (OA). The aim of the present study was to evaluate the efficacy of a single injection of autologous micro-fragmented adipose tissue (aMFAT) associated with arthroscopy (cartilage debridement/meniscal regularization or selective meniscectomy/micro-drilling) for symptomatic knee OA.
Methods
This retrospective, single-center study included 49 patients (50 knees) affected by knee OA (radiographic Kellgren-Lawrence III-IV) treated with a single injection of autologous micro-fragmented adipose tissue and knee arthroscopy. Knee Injury and Osteoarthritis Outcome Score (KOOS) and subjective International Knee Documentation Committee (IKDC) score were the primary outcome measures and were collected at one and 2 years post-operatively. Patients were divided into clusters based on age, complexity of arthroscopic procedures and chondral lesion grade.
Results
Four patients underwent knee replacement (8%). No major adverse events were reported. Minimal Clinically Important Difference (MCID) for KOOS and IKDC was reached by 84 and 74% of all cases at 1 year and by 80 and 76% at 2 years, respectively. High grade chondral lesions negatively affected the outcome at 2 years follow-up (p < 0.05 for IKDC, KOOS overall and 3 out of 5 subscales).
Conclusion
The injection of micro-fragmented adipose tissue associated with arthroscopy demonstrated to be a safe and effective procedure for the treatment of knee OA, with a substantial improvement in IKDC and KOOS scores and without major complications.
Collapse
|
8
|
Vargel İ, Tuncel A, Baysal N, Hartuç-Çevik İ, Korkusuz F. Autologous Adipose-Derived Tissue Stromal Vascular Fraction (AD-tSVF) for Knee Osteoarthritis. Int J Mol Sci 2022; 23:13517. [PMID: 36362308 PMCID: PMC9658499 DOI: 10.3390/ijms232113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue contains adult mesenchymal stem cells that may modulate the metabolism when applied to other tissues. Stromal vascular fraction (SVF) can be isolated from adipose tissue mechanically and/or enzymatically. SVF was recently used to decrease the pain and improve the function of knee osteoarthritis (OA) patients. Primary and/or secondary OA causes inflammation and degeneration in joints, and regenerative approaches that may modify the natural course of the disease are limited. SVF may modulate inflammation and initiate regeneration in joint tissues by initiating a paracrine effect. Chemokines released from SVF may slow down degeneration and stimulate regeneration in joints. In this review, we overviewed articular joint cartilage structures and functions, OA, and macro-, micro-, and nano-fat isolation techniques. Mechanic and enzymatic SVF processing techniques were summarized. Clinical outcomes of adipose tissue derived tissue SVF (AD-tSVF) were evaluated. Medical devices that can mechanically isolate AD-tSVF were listed, and publications referring to such devices were summarized. Recent review manuscripts were also systematically evaluated and included. Transferring adipose tissues and cells has its roots in plastic, reconstructive, and aesthetic surgery. Micro- and nano-fat is also transferred to other organs and tissues to stimulate regeneration as it contains regenerative cells. Minimal manipulation of the adipose tissue is recently preferred to isolate the regenerative cells without disrupting them from their natural environment. The number of patients in the follow-up studies are recently increasing. The duration of follow up is also increasing with favorable outcomes from the short- to mid-term. There are however variations for mean age and the severity of knee OA patients between studies. Positive outcomes are related to the higher number of cells in the AD-tSVF. Repetition of injections and concomitant treatments such as combining the AD-tSVF with platelet rich plasma or hyaluronan are not solidified. Good results were obtained when combined with arthroscopic debridement and micro- or nano-fracture techniques for small-sized cartilage defects. The optimum pressure applied to the tissues and cells during filtration and purification of the AD-tSVF is not specified yet. Quantitative monitoring of articular joint cartilage regeneration by ultrasound, MR, and synovial fluid analysis as well as with second-look arthroscopy could improve our current knowledge on AD-tSVF treatment in knee OA. AD-tSVF isolation techniques and technologies have the potential to improve knee OA treatment. The duration of centrifugation, filtration, washing, and purification should however be standardized. Using gravity-only for isolation and filtration could be a reasonable approach to avoid possible complications of other methodologies.
Collapse
Affiliation(s)
- İbrahim Vargel
- Department of Plastic Reconstructive and Aesthetic Surgery, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Ali Tuncel
- Department of Chemical Engineering, Engineering Faculty, Hacettepe University, Universiteler Mahallesi, Hacettepe Beytepe Campus #31, Çankaya, Ankara 06800, Turkey
| | - Nilsu Baysal
- Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - İrem Hartuç-Çevik
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Medical Faculty, Hacettepe University, Altındag, Ankara 06230, Turkey
| |
Collapse
|
9
|
Xu X, Liang Z, Lin Y, Rao J, Lin F, Yang Z, Wang R, Chen C. Comparing the Efficacy and Safety of Cell Transplantation for Spinal Cord Injury: A Systematic Review and Bayesian Network Meta-Analysis. Front Cell Neurosci 2022; 16:860131. [PMID: 35444516 PMCID: PMC9013778 DOI: 10.3389/fncel.2022.860131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo compare the safety and effectiveness of transplanted cells from different sources for spinal cord injury (SCI).DesignA systematic review and Bayesian network meta-analysis.Data SourcesMedline, Embase, and the Cochrane Central Register of Controlled Trials.Study SelectionWe included randomized controlled trials, case–control studies, and case series related to cell transplantation for SCI patients, that included at least 1 of the following outcome measures: American Spinal Cord Injury Association (ASIA) Impairment Scale (AIS grade), ASIA motor score, ASIA sensory score, the Functional Independence Measure score (FIM), International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS), or adverse events. Follow-up data were analyzed at 6 and 12 months.ResultsForty-four eligible trials, involving 1,266 patients, investigated 6 treatments: olfactory ensheathing cells (OECs), neural stem cells/ neural progenitor cells (NSCs), mesenchymal stem cells (MSCs), Schwann cells, macrophages, and combinations of cells (MSCs plus Schwann cells). Macrophages improved the AIS grade at 12 months (mean 0.42, 95% credible interval: 0–0.91, low certainty) and FIM score at 12 months (42.83, 36.33–49.18, very low certainty). MSCs improved the AIS grade at 6 months (0.42, 0.15–0.73, moderate certainty), the motor score at 6 months (4.43, 0.91–7.78, moderate certainty), light touch at 6 (10.01, 5.81–13.88, moderate certainty) and 12 months (11.48, 6.31–16.64, moderate certainty), pinprick score at 6 (14.54, 9.76–19.46, moderate certainty) and 12 months (12.48, 7.09–18.12, moderate certainty), and the IANR-SCIFRS at 6 (3.96, 0.62–6.97, moderate certainty) and 12 months (5.54, 2.45–8.42, moderate certainty). OECs improved the FIM score at 6 months (9.35, 1.71–17.00, moderate certainty). No intervention improved the motor score significantly at 12 months. The certainty of other interventions was low or very low. Overall, the number of adverse events associated with transplanted cells was low.ConclusionsPatients with SCI who receive transplantation of macrophages, MSCs, NSCs, or OECs may have improved disease prognosis. MSCs are the primary recommendations. Further exploration of the mechanism of cell transplantation in the treatment of SCI, transplantation time window, transplantation methods, and monitoring of the number of transplanted cells and cell survival is needed.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD 42021282043.
Collapse
|
10
|
Phenotypic and functional properties of dedifferentiated fat cells derived from infrapatellar fat pad. Regen Ther 2022; 19:35-46. [PMID: 35059478 PMCID: PMC8739472 DOI: 10.1016/j.reth.2021.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction Mature adipocyte-derived dedifferentiated fat cells (DFATs) are mesenchymal stem cell (MSC)-like cells with high proliferative ability and multilineage differentiation potential. In this study, we first examined whether DFATs can be prepared from infrapatellar fat pad (IFP) and then compared phenotypic and functional properties of IFP-derived DFATs (IFP-DFATs) with those of subcutaneous adipose tissue (SC)-derived DFATs (SC-DFATs). Methods Mature adipocytes isolated from IFP and SC in osteoarthritis patients (n = 7) were cultured by ceiling culture method to generate DFATs. Obtained IFP-DFATs and SC-DFATs were subjected to flow cytometric and microarray analysis to compare their immunophenotypes and gene expression profiles. Cell proliferation assay and adipogenic, osteogenic, and chondrogenic differentiation assays were performed to evaluate their functional properties. Results DFATs could be prepared from IFP and SC with similar efficiency. IFP-DFATs and SC-DFATs exhibited similar immunophenotypes (CD73+, CD90+, CD105+, CD31-, CD45-, HLA-DR-) and tri-lineage (adipogenic, osteogenic, and chondrogenic) differentiation potential, consistent with the minimal criteria for defining MSCs. Microarray analysis revealed that the gene expression profiles in IFP-DFATs were very similar to those in SC-DFATs, although there were certain number of genes that showed different levels of expression. The proliferative activity in IFP-DFATs was significantly (p < 0.05) higher than that in the SC-DFATs. IFP-DFATs showed higher chondrogenic differentiation potential than SC-DFATs in regard to production of soluble galactosaminogalactan and gene expression of type II collagen. Conclusions IFP-DFATs showed higher cellular proliferative potential and higher chondrogenic differentiation capacity than SC-DFATs. IFP-DFAT cells may be an attractive cell source for chondrogenic regeneration.
Collapse
|
11
|
Mets M, Tootsi P, Sokk J, Ereline J, Haviko T, Pääsuke M, Gapeyeva H. Thigh Muscle Activation After a Home Exercise Program in Knee Osteoarthritis Patients. PHYSICAL & OCCUPATIONAL THERAPY IN GERIATRICS 2022. [DOI: 10.1080/02703181.2022.2036295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Monika Mets
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Tartu, Estonia
| | - Piret Tootsi
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Tartu, Estonia
| | - Jelena Sokk
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Tartu, Estonia
| | - Jaan Ereline
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Tartu, Estonia
| | - Tiit Haviko
- Department of Traumatology and Orthopaedics, Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Mati Pääsuke
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Tartu, Estonia
| | - Helena Gapeyeva
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Tartu, Estonia
| |
Collapse
|
12
|
Pandey V, Madi S, Gupta P. The promising role of autologous and allogeneic mesenchymal stromal cells in managing knee osteoarthritis. What is beyond Mesenchymal stromal cells? J Clin Orthop Trauma 2022; 26:101804. [PMID: 35242531 PMCID: PMC8857498 DOI: 10.1016/j.jcot.2022.101804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) express a wide range of properties anticipated to be beneficial for treating genetic, mechanical, and age-related degeneration in diseases such as osteoarthritis (OA). Although contemporary conservative management of OA is successful in many patients with mild-moderate OA, it often fails to improve symptoms in many patients who are not a candidate for any surgical management. Further, existing conservative treatment strategies do not prevent the progression of the disease and therefore fail to provide a long-term pain-free life. On the other hand, tremendous progress has been taking place in the exciting field of regenerative medicine involving MSCs (autologous and allogeneic), with promising translation taking place from basic science to the bedside. In this review, we comprehensively discuss the potential role of MSCs in treating OA, both autologous and off-the-shelf, allogeneic stem cells. Further, newer therapies are in the offing to treat OA, such as exosomes and growth factors.
Collapse
Affiliation(s)
- Vivek Pandey
- Sports Injury and Arthroscopy Division, Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India,Corresponding author. Sports injury and arthroscopy division, Orthopaedics, Kasturba medical college, Manipal. Manipal academy of Higher education, Manipal, 576104, India.
| | - Sandesh Madi
- Sports Injury and Arthroscopy Division, Orthopaedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Pawan Gupta
- Stempeutics Research Pvt. Ltd, Manipal Hospital, Whitefield, Banaglore, 560048, India
| |
Collapse
|
13
|
Amaroli A, Pasquale C, Zekiy A, Benedicenti S, Marchegiani A, Sabbieti MG, Agas D. Steering the multipotent mesenchymal cells towards an anti-inflammatory and osteogenic bias via photobiomodulation therapy: How to kill two birds with one stone. J Tissue Eng 2022; 13:20417314221110192. [PMID: 35832724 PMCID: PMC9272199 DOI: 10.1177/20417314221110192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
The bone marrow-derived multipotent mesenchymal cells (MSCs) have captured scientific interest due to their multi-purpose features and clinical applications. The operational dimension of MSCs is not limited to the bone marrow reservoir, which exerts bone-building and niche anabolic tasks; they also meet the needs of quenching inflammation and restoring inflamed tissues. Thus, the range of MSC activities extends to conditions such as neurodegenerative diseases, immune disorders and various forms of osteopenia. Steering these cells towards becoming an effective therapeutic tool has become mandatory. Many laboratories have employed distinct strategies to improve the plasticity and secretome of MSCs. We aimed to present how photobiomodulation therapy (PBM-t) can manipulate MSCs to render them an extraordinary anti-inflammatory and osteogenic instrument. Moreover, we discuss the outcomes of different PBM-t protocols on MSCs, concluding with some perplexities and complexities of PBM-t in vivo but encouraging and feasible in vitro solutions.
Collapse
Affiliation(s)
- Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy.,Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Angelina Zekiy
- Department of Orthopedic Dentistry, Faculty of Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | | | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| |
Collapse
|
14
|
Lee JS, Shim DW, Kang KY, Chae DS, Lee WS. Method Categorization of Stem Cell Therapy for Degenerative Osteoarthritis of the Knee: A Review. Int J Mol Sci 2021; 22:ijms222413323. [PMID: 34948119 PMCID: PMC8704290 DOI: 10.3390/ijms222413323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Current clinical applications of mesenchymal stem cell therapy for osteoarthritis lack consistency because there are no established criteria for clinical processes. We aimed to systematically organize stem cell treatment methods by reviewing the literature. The treatment methods used in 27 clinical trials were examined and reviewed. The clinical processes were separated into seven categories: cell donor, cell source, cell preparation, delivery methods, lesion preparation, concomitant procedures, and evaluation. Stem cell donors were sub-classified as autologous and allogeneic, and stem cell sources included bone marrow, adipose tissue, peripheral blood, synovium, placenta, and umbilical cord. Mesenchymal stem cells can be prepared by the expansion or isolation process and attached directly to cartilage defects using matrices or injected into joints under arthroscopic observation. The lesion preparation category can be divided into three subcategories: chondroplasty, microfracture, and subchondral drilling. The concomitant procedure category describes adjuvant surgery, such as high tibial osteotomy. Classification codes were assigned for each subcategory to provide a useful and convenient method for organizing documents associated with stem cell treatment. This classification system will help researchers choose more unified treatment methods, which will facilitate the efficient comparison and verification of future clinical outcomes of stem cell therapy for osteoarthritis.
Collapse
Affiliation(s)
- Jae Sun Lee
- Stem Cell Therapy Center, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Dong Woo Shim
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Kyung-Yil Kang
- Department of Medicine, Catholic Kwandong Graduate School, Gangneung-si 25601, Korea;
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| | - Woo-Suk Lee
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06276, Korea
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| |
Collapse
|
15
|
Ding W, Xu YQ, Zhang Y, Li AX, Qiu X, Wen HJ, Tan HB. Efficacy and Safety of Intra-Articular Cell-Based Therapy for Osteoarthritis: Systematic Review and Network Meta-Analysis. Cartilage 2021; 13:104S-115S. [PMID: 32693632 PMCID: PMC8808819 DOI: 10.1177/1947603520942947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a chronic joint disease characterized by degeneration of articular cartilage and secondary osteogenesis. Cell-based agents, such as mesenchymal stem cells, have turned into the most extensively explored new therapeutic agents for OA. However, evidence-based research is still lacking. METHODS We searched public databases up to February 2020 and only included randomized controlled trials. The outcomes included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), the Knee Injury and Osteoarthritis Outcome Score (KOOS), the visual analogue scale (VAS) score, and serious adverse events (SAEs). A network meta-analysis was also performed in this work. RESULTS We included 13 studies in the meta-analysis. The effect size showed that cell-based therapy did not significantly reduce the WOMAC score at the 6-month follow-up (standard mean difference [SMD] -3.6; 95% confidence interval [CI] -0.90 to 0.18; P = 0.1928). However, cell-based therapy significantly improved the KOOS at the 12-month follow-up (SMD 0.68; 95% CI 0.07-1.30; P = 0.0288) and relieved pain (SMD -1.05; 95% CI -1.46 to -0.64; P < 0.0001). The findings also indicated that high-dosage adipose-derived mesenchymal stem cells (ADMSCs) may be more advantageous in terms of long-term effects. CONCLUSIONS Cell-based therapy had a better effect on KOOS improvement and pain relief without safety concerns. However, cell-based therapy did not show a benefit in terms of the WOMAC. Allogeneic cells might have advantages compared to controls in the WOMAC and KOOS scores. The long-term effect of high-dose ADMSC treatment for OA is worthy of further study.
Collapse
Affiliation(s)
- Wei Ding
- Medical College, Yunnan University of
Business Management, Kunming, Yunnan, People’s Repuplic of China
| | - Yong-qing Xu
- Department of Orthopaedic, The 920th
Hospital of Joint Logistics Support Force, Kunming, Yunnan, People’s Republic of
China
| | - Ying Zhang
- Department of Orthopaedic, The 920th
Hospital of Joint Logistics Support Force, Kunming, Yunnan, People’s Republic of
China
| | - An-xu Li
- Department of Orthopaedic, The 920th
Hospital of Joint Logistics Support Force, Kunming, Yunnan, People’s Republic of
China
| | - Xiong Qiu
- Department of Orthopaedic, The 920th
Hospital of Joint Logistics Support Force, Kunming, Yunnan, People’s Republic of
China
| | - Hong-jie Wen
- Department of Orthopedic Surgery, The
Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, Peoples’
Republic of China
| | - Hong-bo Tan
- Department of Orthopaedic, The 920th
Hospital of Joint Logistics Support Force, Kunming, Yunnan, People’s Republic of
China,Hong-bo Tan, Department of Orthopaedic, The
920th Hospital of Joint Logistics Support Force, NO. 212, Daguan Road, Xishan
District, Kunming, Yunnan 650020, People’s Republic of China.
| |
Collapse
|
16
|
Smith JD, Schroeder AN. Second-Order Peer Reviews of Clinically Relevant Articles for the Physiatrist: Physical Therapy vs. Glucocorticoid Injection for Osteoarthritis of the Knee. Am J Phys Med Rehabil 2021; 100:e147-e152. [PMID: 33587453 DOI: 10.1097/phm.0000000000001715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jeffrey D Smith
- From the Department of Physical Medicine & Rehabilitation, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (JDS); and Department of Physical Medicine & Rehabilitation, Mayo Clinic, Minneapolis, Minnesota (ANS)
| | | |
Collapse
|
17
|
Lavagnolo U, Veronese S, Negri S, Magnan B, Sbarbati A. Lipoaspirate processing for the treatment of knee osteoarthritis: a review of clinical evidences. Biomed Pharmacother 2021; 142:111997. [PMID: 34392088 DOI: 10.1016/j.biopha.2021.111997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022] Open
Abstract
The autologous lipoaspirate processing allows to obtain a tissue product to be transplanted for regenerative purposes in multiple pathological sites, such as the knee joint affected by osteoarthritic disease. Recently, multiple protocols and devices have been designed for lipoaspirate processing. These protocols and devices do not use enzymatic digestion and respect the principles of the so-called "minimal manipulation in a closed system". In this study, we performed a systematic review of the literature to identify studies in which osteoarthritis was treated by minimally manipulated intra-articular SVF injection and assessment of therapeutic response was reported. All bias scores were analyzed based on the Coleman methodology score modified by Kon et al. [27] and a subsequent linear classification system of articles was proposed. We identified 12 clinical trials in which clinical evaluations were performed inconsistently using different scales of analysis. All studies reported a significant decrease in the patient's symptomatic discomfort, with improvement in joint function and reduction in pain. Most studies do not reach a high-quality level on the linear scale based on the Coleman-Kon scores. Although the treatment of osteoarthritis of the knee with regenerative methods is undoubtedly of interest, being aimed at healing the disease, this study highlights that the trials are numerically limited, and qualitatively not optimal according to the Coleman-Kon score. Reasonably, greater standardization of devices protocols will be desirable in the future. The high clinical potential offered by these methods could be optimized for all patients.
Collapse
Affiliation(s)
- Umberto Lavagnolo
- Department of Neurosciences, Biomedicine and Movement Sciences - Verona University, Verona, Italy; Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy.
| | - Sheila Veronese
- Department of Neurosciences, Biomedicine and Movement Sciences - Verona University, Verona, Italy
| | - Stefano Negri
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Bruno Magnan
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences - Verona University, Verona, Italy
| |
Collapse
|
18
|
Lee NH, Na SM, Ahn HW, Kang JK, Seon JK, Song EK. Allogenic Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Are More Effective Than Bone Marrow Aspiration Concentrate for Cartilage Regeneration After High Tibial Osteotomy in Medial Unicompartmental Osteoarthritis of Knee. Arthroscopy 2021; 37:2521-2530. [PMID: 33621649 DOI: 10.1016/j.arthro.2021.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to compare the outcome of cartilage regeneration between bone marrow aspirate concentrate (BMAC) augmentation and allogeneic human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSCs) transplantation in high tibial osteotomy (HTO) with microfracture (MFX) for medial unicompartmental osteoarthritis (OA) of the knee in the young and active patient. METHODS Between January 2015 and December 2019, the patients who underwent HTO and arthroscopy with MFX combined with BMAC or allogeneic hUCB-MSCs procedure for medial unicompartmental OA with kissing lesion, which was shown full-thickness cartilage defect (≥ International Cartilage Repair Society [ICRS] grade 3B) in medial femoral cartilage and medial tibial cartilage, were include in this study. Retrospectively we compared clinical outcomes, including Hospital for Special Surgery score, Knee Society Score (KSS) pain and function, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score between BMAC and hUCB-MSCs group at minimum of 1-year follow-up. Also, second-look arthroscopy was performed simultaneously with removal of the plate after complete bone union. Cartilage regeneration was graded by the ICRS grading system at second-look arthroscopy. Radiological measurement including hip-knee-ankle (HKA) angle, posterior tibial slope angle, and correction angle were assessed. RESULTS Of 150 cases that underwent HTO with MFX combined with BMAC or allogeneic hUCB-MSCs procedure for medial unicompartmental OA, 123 cases underwent plate removal and second-look arthroscopy after a minimum of 1 year after the HTO surgery. Seventy-four cases were kissing lesion in medial femoral cartilage and medial tibial cartilage during initial HTO surgery. Finally, the BMAC group composed of 42 cases and hUCB-MSCs group composed of 32 cases were retrospectively identified in patients who had kissing lesions and second-look arthroscopies with a minimum of 1 year of follow-up. At the final follow-up of mean 18.7 months (standard deviation = 4.6 months), clinical outcomes in both groups had improved. However, there were no significant differences between the IKDC, WOMAC, or KSS pain and function scores in the 2 groups (P > .05). At second-look arthroscopy, the ICRS grade was significantly better in the hUCB-MSC group than in the BMAC group in both medial femoral and medial tibial cartilage (P = .001 for both). The average ICRS grade of the BMAC group improved from 3.9 before surgery to 2.8 after surgery. The average ICRS grade of the hUBC-MSC group improved from 3.9 before surgery to 2.0 after surgery. Radiological findings comparing postoperative HKA angle, posterior tibial slope angle, and correction angle showed no significant differences between the groups (P > .05). Therefore it was found that the postoperative correction amount did not affect the postoperative cartilage regeneration results. CONCLUSIONS We found that the hUCB-MSC procedure was more effective than the BMAC procedure for cartilage regeneration in medial unicompartmental knee OA even though the clinical outcomes improved regardless of which treatment was administered. LEVEL OF EVIDENCE Level III, retrospective comparative study.
Collapse
Affiliation(s)
- Nam-Hun Lee
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Seung-Min Na
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Hyeon-Wook Ahn
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Joon-Kyoo Kang
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Jong-Keun Seon
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea.
| | - Eun-Kyoo Song
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| |
Collapse
|
19
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
20
|
Zhao D, Pan JK, Yang WY, Han YH, Zeng LF, Liang GH, Liu J. Intra-Articular Injections of Platelet-Rich Plasma, Adipose Mesenchymal Stem Cells, and Bone Marrow Mesenchymal Stem Cells Associated With Better Outcomes Than Hyaluronic Acid and Saline in Knee Osteoarthritis: A Systematic Review and Network Meta-analysis. Arthroscopy 2021; 37:2298-2314.e10. [PMID: 33713757 DOI: 10.1016/j.arthro.2021.02.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To perform a network meta-analysis to evaluate clinical efficacy and treatment-related adverse events (AEs) of intra-articular hyaluronic acid (HA), leukocyte-poor platelet-rich plasma (LP-PRP), leukocyte-rich platelet-rich plasma (LR-PRP), bone marrow mesenchymal stem cells (BM-MSCs), adipose mesenchymal stem cells (AD-MSCs), and saline (placebo) during 6 and 12 months of follow-up. METHODS Six databases were searched for randomized controlled trials. Outcome assessment included the visual analog scale (VAS) score, Western Ontario and McMaster Universities Osteoarthritis (WOMAC) pain subscore, WOMAC score, International Knee Documentation Committee (IKDC) subjective score, and treatment-related AEs. Main inclusion criteria were at least one of the aforementioned outcome measurements, a minimum follow-up period of 5 months, and >80% patient follow-up. Treatments combined with the use of other operations or drugs were excluded. RESULTS Forty-three studies meeting the eligibility criteria were included. At 6 months, VAS scores and WOMAC pain subscores showed that AD-MSCs were the best treatment option (surface under the cumulative ranking curve [SUCRA] = 96.7%, SUCRA = 85.3%, respectively). According to WOMAC scores and subjective IKDC scores, LP-PRP was the most effective treatment (SUCRA = 86.0%, SUCRA = 80.5%, respectively). At 12 months, only AD-MSCs were associated with improved VAS scores compared with the placebo (weighted mean difference [WMD] = -20.93, 95% credibility interval [CrI], -41.71 to -0.78). Both LP-PRP and AD-MSCs were more beneficial than the placebo for improving WOMAC pain subscores (WMD = -30.08; 95% CrI, -53.59 to -6.25; WMD = -34.85; 95% CrI, -68.03 to -4.86, respectively). For WOMAC scores, LP-PRP and LR-PRP were significantly associated with improved WOMAC scores compared with the placebo after sensitivity analysis was performed (WMD = -35.26; 95% CrI, -64.99 to -6.01; WMD = -38.69; 95% CrI, -76.21 to -2.76). LP-PRP exhibited relatively better efficacy in improving subjective IKDC scores than the placebo (WMD = 13.67; 95% CrI, 4.05-23.39). Regarding safety, all treatments except for LP-PRP (relative risk = 1.83; 95% CrI, 0.89-4.64) increased treatment-related AEs compared with the placebo. CONCLUSIONS Based on the results of current research findings, during 6 months of follow-up, AD-MSCs relieved pain the best; LP-PRP was most effective for functional improvement. During the 12-month follow-up, both AD-MSCs and LP-PRP showed potential clinical pain relief effects; functional improvement was achieved with LP-PRP. Unfortunately, AD-MSC/LP-PRP functional comparisons were only based on WOMAC scores due to missing IKDC scores. BM-MSCs seem to have potentially beneficial effects, but the wide credibility interval makes it impossible to draw a well-supported conclusion. HA viscosupplementation clinical efficacy was lower than that of biological agents during follow-up, which may be related to the properties of the drugs. Considering the evaluation of treatment-related AEs, LP-PRP is the most advisable choice; although the AEs of these treatments are not serious, they may affect treatment compliance and satisfaction. LEVEL OF EVIDENCE Level II, meta-analysis of Level I and II studies.
Collapse
Affiliation(s)
- Di Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-Ke Pan
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Yi Yang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hong Han
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-Feng Zeng
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Gui-Hong Liang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
| |
Collapse
|
21
|
Amodeo G, Niada S, Moschetti G, Franchi S, Savadori P, Brini AT, Sacerdote P. Secretome of human adipose-derived mesenchymal stem cell relieves pain and neuroinflammation independently of the route of administration in experimental osteoarthritis. Brain Behav Immun 2021; 94:29-40. [PMID: 33737173 DOI: 10.1016/j.bbi.2021.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Treatment of pain associated with osteoarthritis (OA) is unsatisfactory and innovative approaches are needed. The secretome from human adipose-derived mesenchymal stem cells (hASC-Conditioned Medium, CM) has been successfully used to relieve painful symptoms in models of chronic pain. The aim of this study was to explore the efficacy of the hASC-CM to control pain and neuroinflammation in an animal model of OA. METHODS OA was induced in mice by intra-articular monosodium-iodoacetate (MIA) injection. Thermal hyperalgesia and mechanical allodynia were assessed. Once hypersensitivity was established (7 days after MIA), hASC-CM was injected by IA, IPL and IV route and its effect monitored over time. Neuroinflammation in nerve, dorsal root ganglia and spinal cord was evaluated measuring proinflammatory markers and mediators by RT-qPCR. Protein content analysis of secretome by Mass Spectrometry was performed. RESULTS A single injection with hASC-CM induced a fast and long lasting antihyperalgesic and antiallodynic effect. The IV route of administration appeared to be the most efficacious although all the treatments were effective. The effect on pain correlated with the ability of hASC-CM to reduce the neuroinflammatory condition in both the peripheral and central nervous system. Furthermore, the secretome analysis revealed 101 factors associated with immune regulation. CONCLUSION We suggest that hASC-CM is a valid treatment option for controlling OA-related hypersensitivity, exerting a rapid and long lasting pain relief. The mechanisms underpinning its effects are likely linked to the positive modulation of neuroinflammation in peripheral and central nervous system that sustains peripheral and central sensitization.
Collapse
Affiliation(s)
- Giada Amodeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milano, Milano, Italy
| | | | - Giorgia Moschetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milano, Milano, Italy
| | - Silvia Franchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milano, Milano, Italy
| | | | - Anna T Brini
- IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, University of Milano, Milano, Italy
| | - Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milano, Milano, Italy.
| |
Collapse
|
22
|
Chae DS, Han JH, Park YJ, Kim SW. TGF-β1 overexpressing human MSCs generated using gene editing show robust therapeutic potential for treating collagen-induced arthritis. J Tissue Eng Regen Med 2021; 15:513-523. [PMID: 33749143 DOI: 10.1002/term.3191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 11/29/2020] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor β (TGF-β) plays a pivotal role in cartilage differentiation and other functions of mesenchymal stem cells (MSCs). In this study, we investigated the therapeutic potential of TGF-β1 overexpressing amniotic MSCs (AMMs) generated using gene editing in a mouse model of damaged cartilage. The TGF-β1 gene was inserted into a safe harbor genomic locus in AMMs using transcription activator-like effector nucleases. The chondrogenic properties of TGF-β1-overexpressing AMMs (AMM/T) were characterized using reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR, and histological analysis, and their therapeutic effects were evaluated in mouse model of collagen-induced arthritis (CIA). AMM/T expressed cartilage-specific genes and showed intense Safranin O and Alcian blue staining. Furthermore, injecting AMM/T attenuated CIA progression compared with AMM injection, and increased the regulatory T (Treg) cell population, while suppressing T helper (Th)17 cell activation in CIA mice. Proinflammatory factors, such as interleukin-1β (IL-1β), IL-6, monocyte chemoattractant protein-1, and tumor necrosis factor-α were significantly decreased in AMM/T injected CIA mice compared with their AMM injected counterparts. In conclusion, genome-edited AMMs overexpressing TGF-β1 may be a novel and alternative therapeutic option for protecting cartilage and treating inflammatory joint arthritis.
Collapse
Affiliation(s)
- Dong-Sik Chae
- Department of Orthopedic Surgery, Catholic Kwandong University College of Medicine, International St. Mary's Hospital, Incheon, Republic of Korea
| | - Ju Hye Han
- Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea
| | - Young-Jin Park
- Department of Family Medicine, Dong-A University College of Medicine, Dong-A University Medical Center, Busan, Republic of Korea
| | - Sung-Whan Kim
- Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea
| |
Collapse
|
23
|
Ahmed O, Block J, Mautner K, Plancher K, Anitescu M, Isaacson A, Filippiadis DK, Epelboym Y, Bercu Z, Mitchell JW, Cristescu M, White SB, Prologo JD. Percutaneous Management of Osteoarthritis in the Knee: Proceedings from the Society of Interventional Radiology Research Consensus Panel. J Vasc Interv Radiol 2021; 32:919.e1-919.e6. [PMID: 33689834 DOI: 10.1016/j.jvir.2021.03.409] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/21/2023] Open
Affiliation(s)
- Osman Ahmed
- Department of Radiology, Section of Interventional Radiology, University of Chicago, Chicago, Illinois.
| | - Joel Block
- Division of Rheumatology, Rush Medical College, Chicago, Illinois
| | - Kenneth Mautner
- Department of Rehabilitation Medicine and Department of Orthopedics, Emory University, Atlanta, Georgia
| | - Kevin Plancher
- Department of Orthopedics, Albert Einstein College of Medicine, Bronx, New York; Department of Orthopedics, Weill Cornell Medical College, Cornell University, Ithaca, New York
| | - Magdalena Anitescu
- Department of Anesthesia and Critical Care, Section of Anesthesia and Pain Medicine, University of Chicago, Chicago, Illinois
| | - Ari Isaacson
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Yan Epelboym
- Department of Radiology, Harvard University, Cambridge, Massachusetts, and Brigham & Women's Hospital, Boston, Massachusetts
| | - Zachary Bercu
- Department of Radiology, Division of Interventional Radiology and Image-Guided Medicine, Emory University, Atlanta, Georgia
| | - Jason W Mitchell
- Department of Radiology, Capital Regional Medical Center, Tallahassee, Florida
| | - Mircea Cristescu
- Department of Radiology and Imaging Services, Emory University, Atlanta, Georgia
| | - Sarah B White
- Department of Radiology, Division of Vascular and Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
24
|
Testa G, Giardina SMC, Culmone A, Vescio A, Turchetta M, Cannavò S, Pavone V. Intra-Articular Injections in Knee Osteoarthritis: A Review of Literature. J Funct Morphol Kinesiol 2021; 6:15. [PMID: 33546408 PMCID: PMC7931012 DOI: 10.3390/jfmk6010015] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Knee osteoarthritis (OA) is a chronic, degenerative, and progressive disease of articular cartilage, producing discomfort and physical disability in older adults. Thirteen percent of elderly people complain of knee OA. Management options for knee OA could be divided into the following categories: conservative, pharmacological, procedural, and surgical. Joint replacement is the gold standard, reserved for severe grades of knee OA, due to its complications rate and increased risk of joint revision. A nonsurgical approach is the first choice in the adult population with cartilage damage and knee OA. Yearly, more than 10% of knee OA-affected patients undergo intra-articular injections of different drugs, especially within three months after OA diagnosis. Several molecules, such as corticosteroids injection, hyaluronic acid (HA), and platelet-rich plasma (PRP), are managed to reduce the symptoms of patients with knee OA. The aim of this review was to offer an overview of intra-articular injections used for the treatment of OA and report the conventional pharmacological products used.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vito Pavone
- Department of General Surgery and Medical Surgical Specialties, Section of Orthopaedics and Traumatology, P.O. “Policlinico Gaspare Rodolico”, University of Catania, 95123 Catania, Italy; (G.T.); (S.M.C.G.); (A.C.); (A.V.); (M.T.); (S.C.)
| |
Collapse
|
25
|
Wu JQ, Jiang N, Yu B. Mechanisms of action of neuropeptide Y on stem cells and its potential applications in orthopaedic disorders. World J Stem Cells 2020; 12:986-1000. [PMID: 33033559 PMCID: PMC7524693 DOI: 10.4252/wjsc.v12.i9.986] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Jian-Qun Wu
- Department of Orthopedics and Traumatology, Huadu District People’s Hospital, Guangzhou 510800, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
26
|
Primorac D, Molnar V, Rod E, Jeleč Ž, Čukelj F, Matišić V, Vrdoljak T, Hudetz D, Hajsok H, Borić I. Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes (Basel) 2020; 11:E854. [PMID: 32722615 PMCID: PMC7464436 DOI: 10.3390/genes11080854] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
Affiliation(s)
- Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School, University of Split, 21000 Split, Croatia
- School of Medicine, Faculty of Dental Medicine and Health, University “Josip Juraj Strossmayer”, 31000 Osijek, Croatia
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96 450 Coburg, Germany
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nursing, University North, 48 000 Varaždin, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Hana Hajsok
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
27
|
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
|
28
|
Are Stem Cells Derived from Synovium and Fat Pad Able to Treat Induced Knee Osteoarthritis in Rats? Int J Rheumatol 2020; 2020:9610261. [PMID: 32765610 PMCID: PMC7374223 DOI: 10.1155/2020/9610261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Osteoarthritis (OA) is a chronic disease and a significant cause of joint pain, tenderness, and limitation of motion. At present, no specific treatment is available, and mesenchymal stem cells (MSCs) have shown promising potentials in this regard. Herein, we aimed to evaluate the repairing potentials of stem cells derived from the synovium and fat pad in the treatment of OA. Methods Twenty-eight male rats (220 ± 20 g, aged 10-12 weeks), were randomly divided into four groups (n = 7): C1: nontreated group, C2: Hyalgan-treated group, E1: adipose tissue-derived stem cell-treated group, and E2: synovial membrane-based stem cell-treated group. Collagenase type II was injected into the left knee; after eight weeks, OA was developed. Then, stem cells were injected, and rats were followed for three months. Afterward, specimens and radiological images were investigated. p value ≤ 0.05 was set as statistically significant. Results Compared to the C1 group, the E1 and E2 groups showed significantly better results in all six pathological criteria as well as joint space width and osteophytes of medial tibial, medial femoral, and medial fabellar condyles (p ≤ 0.001). Similarly, compared to the C2 group, the E1 and E2 groups had better scores regarding surface, matrix, cell distribution, and cell population viability (p < 0.05). E2 showed considerably higher scores compared to C2 regarding subchondral bone and cartilage mineralization (p < 0.05). The joint space width was similar between the C2 and E groups. Conclusion Treatment of OA with MSCs, particularly synovial membrane-derived stem cells, not only prevented but also healed OA of the knee to some extent in comparison to the Hyalgan and nontreatment groups.
Collapse
|
29
|
Bisicchia S, Bernardi G, Pagnotta SM, Tudisco C. Micro-fragmented stromal-vascular fraction plus microfractures provides better clinical results than microfractures alone in symptomatic focal chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 2020; 28:1876-1884. [PMID: 31297576 DOI: 10.1007/s00167-019-05621-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate clinical outcomes over a 1-year period in patients affected by symptomatic focal chondral lesions of the knee treated with micro-fragmented stromal-vascular fraction plus microfractures compared to microfractures alone. METHODS Two groups of 20 patients were arthroscopically treated with microfractures for a symptomatic focal chondral defect of the knee. At the end of surgery, in the experimental group, micro-fragmented stromal-vascular fraction was injected into the joint. Primary end point was WOMAC score at 12 months. Secondary end points were any adverse events, Oxford Knee Score, EQ-5D score, VAS for pain, analgesic and anti-inflammatory consumption. RESULTS All the patients were evaluated at 12-month follow-up. No adverse reactions were noted. Analgesic and anti-inflammatory consumption was similar in both groups. At 1-month follow-up, no differences were noted between groups when compared to pre-operative scores. At 3-month follow-up, patients in both groups improved from the baseline in all variables. Significantly lower VAS scores were found in the experimental group (4.2 ± 3.2 vs. 5.9 ± 1.7, p = 0.04). At 6- and 12-month follow-ups, patients in the experimental group scored better in all outcomes with a moderate effect size; in particular, better WOMAC scores were obtained at 12 months, achieving the primary end-point of the study (17.7 ± 11.1 vs. 25.5 ± 12.7; p = 0.03). CONCLUSIONS Injection of micro-fragmented stromal-vascular fraction is safe and, when associated with microfractures, is more effective in clinical terms than microfractures alone in patients affected by symptomatic focal chondral lesions of the knee. Results of the current study provide information that could help physicians to improve their counseling for patients concerning ADMSCs. LEVEL OF EVIDENCE Level 1-therapeutic study.
Collapse
Affiliation(s)
- Salvatore Bisicchia
- Applied Biotechnologies and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy. .,Department of Orthopaedic Surgery, Sports Traumatology Unit, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
| | - Gabriele Bernardi
- Department of Orthopaedic Surgery, Sports Traumatology Unit, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Susanna M Pagnotta
- Department of Orthopaedic Surgery, Sports Traumatology Unit, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Cosimo Tudisco
- Department of Orthopaedic Surgery, Sports Traumatology Unit, University of Rome Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| |
Collapse
|
30
|
Nie WB, Zhang D, Wang LS. Growth Factor Gene-Modified Mesenchymal Stem Cells in Tissue Regeneration. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1241-1256. [PMID: 32273686 PMCID: PMC7105364 DOI: 10.2147/dddt.s243944] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
There have been marked changes in the field of stem cell therapeutics in recent years, with many clinical trials having been conducted to date in an effort to treat myriad diseases. Mesenchymal stem cells (MSCs) are the cell type most frequently utilized in stem cell therapeutic and tissue regenerative strategies, and have been used with excellent safety to date. Unfortunately, these MSCs have limited ability to engraft and survive, reducing their clinical utility. MSCs are able to secrete growth factors that can support the regeneration of tissues, and engineering MSCs to express such growth factors can improve their survival, proliferation, differentiation, and tissue reconstructing abilities. As such, it is likely that such genetically modified MSCs may represent the next stage of regenerative therapy. Indeed, increasing volumes of preclinical research suggests that such modified MSCs expressing growth factors can effectively treat many forms of tissue damage. In the present review, we survey recent approaches to producing and utilizing growth factor gene-modified MSCs in the context of tissue repair and discuss its prospects for clinical application.
Collapse
Affiliation(s)
- Wen-Bo Nie
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Dan Zhang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| | - Li-Sheng Wang
- Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
31
|
Shu CC, Zaki S, Ravi V, Schiavinato A, Smith MM, Little CB. The relationship between synovial inflammation, structural pathology, and pain in post-traumatic osteoarthritis: differential effect of stem cell and hyaluronan treatment. Arthritis Res Ther 2020; 22:29. [PMID: 32059749 PMCID: PMC7023816 DOI: 10.1186/s13075-020-2117-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
Background Synovitis is implicated in the severity and progression of pain and structural pathology of osteoarthritis (OA). Increases in inflammatory or immune cell subpopulations including macrophages and lymphocytes have been reported in OA synovium, but how the particular subpopulations influence symptomatic or structural OA disease progression is unclear. Two therapies, hyaluronan (HA) and mesenchymal stem cells (MSCs), have demonstrated efficacy in some clinical settings: HA acting as device to improve joint function and provide pain relief, while MSCs may have immunomodulatory and disease-modifying effects. We used these agents to investigate whether changes in pain sensitization or structural damage were linked to modulation of the synovial inflammatory response in post-traumatic OA. Methods Skeletally mature C57BL6 male mice underwent medial-meniscal destabilisation (DMM) surgery followed by intra-articular injection of saline, a hyaluronan hexadecylamide derivative (Hymovis), bone marrow-derived stem cells (MSCs), or MSC + Hymovis. We quantified the progression of OA-related cartilage, subchondral bone and synovial histopathology, and associated pain sensitization (tactile allodynia). Synovial lymphocytes, monocyte/macrophages and their subpopulations were quantified by fluorescent-activated cell sorting (FACS), and the expression of key inflammatory mediators and catabolic enzyme genes quantified by real-time polymerase chain reaction (PCR). Results MSC but not Hymovis significantly reduced late-stage (12-week post-DMM) cartilage proteoglycan loss and structural damage. Allodynia was initially reduced by both treatments but significantly better at 8 and 12 weeks by Hymovis. Chondroprotection by MSCs was not associated with specific changes in synovial inflammatory cell populations but rather regulation of post-injury synovial Adamts4, Adamts5, Mmp3, and Mmp9 expression. Reduced acute post-injury allodynia with all treatments coincided with decreased synovial macrophage and T cell numbers, while longer-term effect on pain sensitization with Hymovis was associated with increased M2c macrophages. Conclusions This therapeutic study in mice demonstrated a poor correlation between cartilage, bone or synovium (histo)pathology, and pain sensitization. Changes in the specific synovial inflammatory cell subpopulations may be associated with chronic OA pain sensitization, and a novel target for symptomatic treatment.
Collapse
Affiliation(s)
- Cindy C Shu
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Sanaa Zaki
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Varshini Ravi
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | | | - Margaret M Smith
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Laboratory, Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney, Level 10 Kolling Building - B6, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.
| |
Collapse
|
32
|
Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, Truong DT, Pham VH, Ngoc VTN, Chu-Dinh T, Kushekhar K. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2020; 21:E708. [PMID: 31973182 PMCID: PMC7037097 DOI: 10.3390/ijms21030708] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BMSCs), which are known as multipotent cells, are widely used in the treatment of various diseases via their self-renewable, differentiation, and immunomodulatory properties. In-vitro and in-vivo studies have supported the understanding mechanisms, safety, and efficacy of BMSCs therapy in clinical applications. The number of clinical trials in phase I/II is accelerating; however, they are limited in the size of subjects, regulations, and standards for the preparation and transportation and administration of BMSCs, leading to inconsistency in the input and outcome of the therapy. Based on the International Society for Cellular Therapy guidelines, the characterization, isolation, cultivation, differentiation, and applications can be optimized and standardized, which are compliant with good manufacturing practice requirements to produce clinical-grade preparation of BMSCs. This review highlights and updates on the progress of production, as well as provides further challenges in the studies of BMSCs, for the approval of BMSCs widely in clinical application.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam;
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Thuy Luu Quang
- Center for Anesthesia and Surgical Intensive Care, Viet Duc Hospital, Hanoi 100000, Vietnam;
| | | | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Kushi Kushekhar
- Institute of Cancer Research, Oslo University Hospital, 0310 Oslo, Norway;
| |
Collapse
|
33
|
Regenerative Rehabilitative Medicine for Joints and Muscles. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-019-00254-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Peng C, Lu L, Li Y, Hu J. Neurospheres Induced from Human Adipose-Derived Stem Cells as a New Source of Neural Progenitor Cells. Cell Transplant 2019; 28:66S-75S. [PMID: 31813268 PMCID: PMC7016463 DOI: 10.1177/0963689719888619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Human adipose-derived stem cells are used in regenerative medicine for treating various diseases including osteoarthritis, degenerative arthritis, cartilage or tendon injury, etc. However, their use in neurological disorders is limited, probably due to the lack of a quick and efficient induction method of transforming these cells into neural stem or progenitor cells. In this study, we reported a highly efficient and simple method to induce adipose-derived stem cells into neural progenitor cells within 12 hours, using serum-free culture combined with a well-defined induction medium (epidermal growth factor 20 ng/ml and basic fibroblast growth factor, both at 20 ng/ml, with N2 and B27 supplements). These adipose-derived stem cell-derived neural progenitor cells grow as neurospheres, can self-renew to form secondary neurospheres, and can be induced to become neurons and glial cells. Real-time polymerase chain reaction showed significantly upregulated expression of neurogenic genes Sox2 and Nestin with a moderate increase in stemness gene expression. Raybio human growth factor analysis showed a significantly upregulated expression of multiple neurogenic and angiogenic cytokines such as brain-derived neurotrophic factor, glial cell line-derived neurotrophic growth factor, nerve growth factor, basic fibroblast growth factor and vascular endothelial growth factor etc. Therefore, adipose-derived stem cell-derived neurospheres can be a new source of neural progenitor cells and hold great potential for future cell replacement therapy for treatment of various refractory neurological diseases.
Collapse
Affiliation(s)
- Chunyang Peng
- Emergency Internal Medicine Department, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Stem Cell Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Lu
- Stem Cell Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yajiao Li
- Stem Cell Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Oncology, Xiangfan Central Hospital, Xiangfan, Hubei, China
| | - Jingqiong Hu
- Stem Cell Center, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
35
|
Effectiveness of Adhering Adipose-Derived Stem Cells to Defective Cartilage in Promoting Cartilage Regeneration in a Rabbit Model. Arthroscopy 2019; 35:2619-2626. [PMID: 31307837 DOI: 10.1016/j.arthro.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To evaluate the therapeutic effect of using a local adherent technique to transplant adipose-derived stem cells (ADSCs) for cartilage regeneration in a rabbit model for patients with traumatic damage or osteochondritis dissecans. METHODS Cartilage defects were created in the trochlear groove of 60 adult white rabbit knees. The rabbits were either left untreated (control group), treated with intra-articularly injected ADSCs (injected group), or treated by adhering ADSCs (adherent group). The 3 groups were compared at 4, 12, and 24 weeks postoperatively using the International Cartilage Repair Society macroscopic scoring system and a modified Wakitani histologic grading system to quantitatively evaluate the regenerated cartilage. The degree of defect repair, integration to the border zone, macroscopic appearance, cell morphology, matrix staining, surface regularity, cartilage thickness, and integration of the donor with the host were evaluated. RESULTS The mean International Cartilage Repair Society scores in the control, injected, and adherent groups were 6.4 ± 2.9, 7.6 ± 0.8, and 7.6 ± 1.4, respectively, at 4 weeks; 6.2 ± 2.4, 8.2 ± 1.5, and 9.6 ± 1.0, respectively, at 8 weeks; and 7.6 ± 1.0, 8.4 ± 1.4, and 10.2 ± 1.7, respectively, at 24 weeks. Although the scores were higher in the adherent group, no significant difference was noted. The mean modified Wakitani scores in the control, injected, and adherent groups were 3.8 ± 2.0, 5.1 ± 1.8, and 7.8 ± 1.3, respectively, at 4 weeks (P = .041); 5.1 ± 1.0, 5.4 ± 2.7, and 9.6 ± 1.4, respectively, at 12 weeks (P = .016); and 5.4 ± 1.0, 5.9 ± 1.5, and 9.8 ± 1.8, respectively, at 24 weeks (P = .007). CONCLUSIONS The histologic modified Wakitani scores showed that adhering ADSCs to osteochondral cartilage defects was more effective than intra-articular injection for promoting cartilage regeneration. CLINICAL RELEVANCE Local adhesion of ADSCs can promote cartilage regeneration and may be a treatment option for cartilage repair.
Collapse
|
36
|
Chen Z, Han X, Ouyang X, Fang J, Huang X, Wei H. Transplantation of induced pluripotent stem cell-derived mesenchymal stem cells improved erectile dysfunction induced by cavernous nerve injury. Am J Cancer Res 2019; 9:6354-6368. [PMID: 31588222 PMCID: PMC6771238 DOI: 10.7150/thno.34008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
Erectile dysfunction (ED) is an important kind of postoperative complication of pelvic surgery that affects patients' quality of life. Transplantation of mesenchymal stem cells (MSC) has been found to alleviate ED caused by cavernous nerve injury (CNI) in rats. However, little is known about whether induced pluripotent stem cell-derived mesenchymal stem cells (iMSC) have a therapeutic effect on CNI ED. We established an ED model on rats and evaluated the effect of iMSC on it. Methods: Eight-week-old male Sprague-Dawley rats were assigned to four groups and received following operation: sham operation (sham group); bilateral CNI and phosphate-buffered saline (PBS) injections (PBS group); bilateral CNI and adipose-derived mesenchymal stem cells transplantation (adMSC group); or bilateral CNI and iMSC injection (iMSC group). After therapy, the cavernous nerve was stimulated by electricity and the intracavernous pressure (IAP)/mean arterial blood pressure (MAP) was measured. The endothelial and smooth muscle tissue in the penis was assessed histologically with Masson's trichrome stain. Immunofluorescence/immunohistochemical stains were applied for the detection of nNOS, vWF, eNOS, SMA, Desmin, S100β, and caspase-3. Nude rats CNI ED model was established for the evaluation of iMSC longevity and differentiation capacity. The paracrine factors were assessed by real-time PCR. Results: Transplantation of iMSC significantly restored the IAP/MAP in this CNI ED model and showed long-term effects. It could rescue the expression of vWF, eNOS, SMA, and Desmin, which indicated the alleviation of endothelial and smooth muscle tissues of the penis. iMSC therapy also could increase the expression of nNOS in the cavernosum and S100β in the major pelvic ganglia (MPG) which contributed to the erectile function. Moreover, the level of BAX and caspase-3 were reduced and Bcl-2 was increased, which indicated the anti-apoptosis effects of iMSC. The iMSC showed little transdifferentiation and exerted their function by activating the secretome of the host. Conclusion: Transplantation of iMSC significantly improved ED induced by CNI. The iMSC may exert their effects via paracrine factors and may be a promising therapeutic candidate for treating CNI ED in the future.
Collapse
|
37
|
Wang AT, Feng Y, Jia HH, Zhao M, Yu H. Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: A concise review. World J Stem Cells 2019; 11:222-235. [PMID: 31110603 PMCID: PMC6503460 DOI: 10.4252/wjsc.v11.i4.222] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) refers to a chronic joint disease characterized by degenerative changes of articular cartilage and secondary bone hyperplasia. Since articular cartilage has a special structure, namely the absence of blood vessels as well as the low conversion rate of chondrocytes in the cartilage matrix, the treatment faces numerous clinical challenges. Traditional OA treatment (e.g., arthroscopic debridement, microfracture, autologous or allogeneic cartilage transplantation, chondrocyte transplantation) is primarily symptomatic treatment and pain management, which cannot contribute to regenerating degenerated cartilage or reducing joint inflammation. Also, the generated mixed fibrous cartilage tissue is not the same as natural hyaline cartilage. Mesenchymal stem cells (MSCs) have turned into the most extensively explored new therapeutic drugs in cell-based OA treatment as a result of their ability to differentiate into chondrocytes and their immunomodulatory properties. In this study, the preliminary results of preclinical (OA animal model)/clinical trials regarding the effects of MSCs on cartilage repair of knee joints are briefly summarized, which lay a solid application basis for more and deeper clinical studies on cell-based OA treatment.
Collapse
Affiliation(s)
- Ai-Tong Wang
- Cell Products of National Engineering Research Center, National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Ying Feng
- Cell Products of National Engineering Research Center, National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Hong-Hong Jia
- Cell Products of National Engineering Research Center, National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Meng Zhao
- Cell Products of National Engineering Research Center, National Stem Cell Engineering Research Center, Tianjin 300457, China
| | - Hao Yu
- Cell Products of National Engineering Research Center, National Stem Cell Engineering Research Center, Tianjin 300457, China
| |
Collapse
|
38
|
Dall'Oca C, Breda S, Elena N, Valentini R, Samaila EM, Magnan B. Mesenchymal Stem Cells injection in hip osteoarthritis: preliminary results. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:75-80. [PMID: 30715002 PMCID: PMC6503401 DOI: 10.23750/abm.v90i1-s.8084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
Background and aim of the work: Osteoarthritis will become even more common in the near future since the average life span is steadily growing. Pain and loss of function are the main complaints reported by patients, inevitably leading towards a worsened daily life performance. New modern techniques have been developed with advanced cell based therapies. Mesenchymal stem cells (MSC) have the inner ability to mature into different types of cells depending on the stimuli they undergo. This technique has already been proven successful in the knee and, with this retrospective study, we would like to assess its feasibility in the hip joint. Methods:6 consecutive patients affected by hip osteoarthritis were treated by intra-articular injection of autologous adipose-derived MSC between June 2017 and June 2018. Our study included only patients with constant hip pain resistant conservative treatment and OA graded 0-2 on the Tonnis grading scale. All 6 patients were evaluated in the preoperative setting and at the 6 months post-operative mark. Results: The HHS showed an improvement from the pre-operative baseline mean value of 67.2±3.4 to the 84.6±6.3 post-operative value. Moreover, the WOMAC score dropped from a baseline score of 36.3±4.7 to 19.8±3.4 at 6 months’ post-op follow up visit. Conclusions: MSC Lipogems is a fairly easy technique. No adverse effects were recorded in our experience. Preliminary results showed a positive outcome according to all the grading systems used in this study even though a longer follow up is needed to validate this technique. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Carlo Dall'Oca
- Azienda Ospedaliera Universitaria Integrata Verona, Ortopedia e Traumatologia B, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Xu P, Yang X. The Efficacy and Safety of Mesenchymal Stem Cell Transplantation for Spinal Cord Injury Patients: A Meta-Analysis and Systematic Review. Cell Transplant 2019; 28:36-46. [PMID: 30362373 PMCID: PMC6322141 DOI: 10.1177/0963689718808471] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disease, with a high rate of disability. In this meta-analysis, we aimed to comprehensively assess the efficacy and safety of mesenchymal stem cells (MSCs) in treating clinical SCI patients. We systematically searched the PUBMED, EMBASE, Chinese Biomedical (CBM), Web of Science and Cochrane databases using the strategy of combination of free-text words and MeSH terms. The indicators of the American Spinal Injury Association (ASIA) impairment scale (AIS)-grading improvement rate and adverse effects were displayed with an overall relative risk (RR). For the continuous variables of the ASIA motor score, light-touch score, pinprick score, activities of daily living (ADL) score, and residual urine volume, we used odds ratio (OR) to analyze the data. Eleven studies comprising 499 patients meeting all inclusion and exclusion criteria were included. No serious heterogeneity or publication bias was observed across each study. The results showed that significant improvements of total AIS grade (RR: 3.70; P < 0.001), AIS grade A (RR: 3.57; P < 0.001), ASIA sensory score (OR: 8.63; P < 0.001) and reduction of residual urine volume (OR: -36.37; P = 0.03) were observed in experimental group compared with control group. However, no significant differences of motor score (OR: 1.37, P = 0.19) and ADL score (OR: 2.61, P = 0.27) were observed between experimental and control groups. In addition, there were no serious and permanent adverse effects after cell transplantation. Cell transplantation with MSCs is effective and safe in improving the sensory and bladder functions of SCI patients.
Collapse
Affiliation(s)
- Panfeng Xu
- Department of Spine Surgery, Affiliated Wenling Hospital of Wenzhou Medical University, China
| | - Xianliang Yang
- Department of Spine Surgery, Affiliated Wenling Hospital of Wenzhou Medical University, China
| |
Collapse
|