1
|
Yu SP, Choi E, Jiang MQ, Wei L. Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease. Neural Regen Res 2025; 20:1981-1988. [PMID: 39101641 DOI: 10.4103/nrr.nrr-d-24-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated "silent" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Emily Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Hurley EP, Mukherjee B, Fang LZ, Barnes JR, Barron JC, Nafar F, Hirasawa M, Parsons MP. GluN3A and Excitatory Glycine Receptors in the Adult Hippocampus. J Neurosci 2024; 44:e0401242024. [PMID: 39256046 PMCID: PMC11484551 DOI: 10.1523/jneurosci.0401-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
The GluN3A subunit of N-methyl-D-aspartate receptors (NMDARs) plays an established role in synapse development, but its contribution to neural circuits in the adult brain is less clear. Recent work has demonstrated that in select cell populations, GluN3A assembles with GluN1 to form GluN1/GluN3A receptors that are insensitive to glutamate and instead serve as functional excitatory glycine receptors (eGlyRs). Our understanding of these eGlyRs, and how they contribute to intrinsic excitability and synaptic communication within relevant networks of the developing and the mature brain, is only beginning to be uncovered. Here, using male and female mice, we demonstrate that GluN3A subunits are enriched in the adult ventral hippocampus (VH), where they localize to synaptic and extrasynaptic sites and can assemble as functional eGlyRs on CA1 pyramidal cells. GluN3A expression was barely detectable in the adult dorsal hippocampus (DH). We also observed a high GluN2B content in the adult VH, characterized by slow NMDAR current decay kinetics and a high sensitivity to the GluN2B-containing NMDAR antagonist ifenprodil. Interestingly, the GluN2B enrichment in the adult VH was dependent on GluN3A as GluN3A deletion accelerated NMDAR decay and reduced ifenprodil sensitivity in the VH, suggesting that GluN3A expression can regulate the balance of conventional NMDAR subunit composition at synaptic sites. Lastly, we found that GluN3A knock-out also enhanced both NMDAR-dependent calcium influx and NMDAR-dependent long-term potentiation in the VH. Together, these data reveal a novel role for GluN3A and eGlyRs in the control of ventral hippocampal circuits in the mature brain.
Collapse
Affiliation(s)
- Emily P Hurley
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Bandhan Mukherjee
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Lisa Z Fang
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Jocelyn R Barnes
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Jessica C Barron
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Firoozeh Nafar
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Michiru Hirasawa
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| | - Matthew P Parsons
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL A1B3V6, Canada
| |
Collapse
|
3
|
Wunsch AM, Hwang EK, Funke JR, Baker R, Moutier A, Milovanovic M, Green TA, Wolf ME. Retinoic acid-mediated homeostatic plasticity in the nucleus accumbens core contributes to incubation of cocaine craving. Psychopharmacology (Berl) 2024; 241:1983-2001. [PMID: 38935096 DOI: 10.1007/s00213-024-06612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
RATIONALE Incubation of cocaine craving refers to the progressive intensification of cue-induced craving during abstinence from cocaine self-administration. We showed previously that homomeric GluA1 Ca2+-permeable AMPARs (CP-AMPAR) accumulate in excitatory synapses of nucleus accumbens core (NAcc) medium spiny neurons (MSN) after ∼1 month of abstinence and thereafter their activation is required for expression of incubation. Therefore, it is important to understand mechanisms underlying CP-AMPAR plasticity. OBJECTIVES We hypothesize that CP-AMPAR upregulation represents a retinoic acid (RA)-dependent form of homeostatic plasticity, previously described in other brain regions, in which a reduction in neuronal activity disinhibits RA synthesis, leading to GluA1 translation and CP-AMPAR synaptic insertion. We tested this using viral vectors to bidirectionally manipulate RA signaling in NAcc during abstinence following extended-access cocaine self-administration. RESULTS We used shRNA targeted to the RA degradative enzyme Cyp26b1 to increase RA signaling. This treatment accelerated incubation; rats expressed incubation on abstinence day (AD) 15, when it is not yet detected in control rats. It also accelerated CP-AMPAR synaptic insertion measured with slice physiology. CP-AMPARs were detected in Cyp26b1 shRNA-expressing MSN, but not control MSN, on AD15-18. Next, we used shRNA targeted to the major RA synthetic enzyme Aldh1a1 to reduce RA signaling. In MSN expressing Aldh1a1 shRNA, synaptic CP-AMPARs were reduced in late withdrawal (AD42-60) compared to controls. However, we did not detect an effect of this manipulation on incubated cocaine seeking (AD40). CONCLUSIONS These findings support the hypothesis that increased RA signaling during abstinence contributes to CP-AMPAR accumulation and incubation of cocaine craving.
Collapse
Affiliation(s)
- Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Jonathan R Funke
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Raines Baker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Alana Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | - Mike Milovanovic
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA.
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
4
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
5
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611703. [PMID: 39314388 PMCID: PMC11419102 DOI: 10.1101/2024.09.12.611703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs, and that this pathway is operative only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, this effect of RA is occluded; instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes the incubation-associated elevation of cue-induced cocaine seeking. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| |
Collapse
|
6
|
Hjukse JB, Puebla MFDL, Vindedal GF, Sprengel R, Jensen V, Nagelhus EA, Tang W. Increased membrane Ca 2+ permeability drives astrocytic Ca 2+ dynamics during neuronal stimulation at excitatory synapses. Glia 2023; 71:2770-2781. [PMID: 37564028 DOI: 10.1002/glia.24450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Astrocytes are intricately involved in the activity of neural circuits; however, their basic physiology of interacting with nearby neurons is not well established. Using two-photon imaging of neurons and astrocytes during higher frequency stimulation of hippocampal CA3-CA1 Schaffer collateral (Scc) excitatory synapses, we could show that increasing levels of released glutamate accelerated local astrocytic Ca2+ elevation. However, blockage of glutamate transporters did not abolish this astrocytic Ca2+ response, suggesting that astrocytic Ca2+ elevation is indirectly associated with an uptake of extracellular glutamate. However, during the astrocytic glutamate uptake, the Na+ /Ca2+ exchanger (NCX) reverse mode was activated, and mediated extracellular Ca2+ entry, thereby triggering the internal release of Ca2+ . In addition, extracellular Ca2+ entry via membrane P2X receptors further facilitated astrocytic Ca2+ elevation via ATP binding. These findings suggest a novel mechanism of activity induced Ca2+ permeability increases of astrocytic membranes, which drives astrocytic responses during neuronal stimulation of CA3-CA1 Scc excitatory synapses.
Collapse
Affiliation(s)
- Jarand B Hjukse
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mario F D L Puebla
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology, Neuroclinic, St. Olavs Hospital, Trondheim, Norway
| | - Gry Fluge Vindedal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rolf Sprengel
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Vidar Jensen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Erlend A Nagelhus
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Research Group of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Wannan Tang
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology, Neuroclinic, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
7
|
Gautam D, Naik UP, Naik MU, Yadav SK, Chaurasia RN, Dash D. Glutamate Receptor Dysregulation and Platelet Glutamate Dynamics in Alzheimer's and Parkinson's Diseases: Insights into Current Medications. Biomolecules 2023; 13:1609. [PMID: 38002291 PMCID: PMC10669830 DOI: 10.3390/biom13111609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Two of the most prevalent neurodegenerative disorders (NDDs), Alzheimer's disease (AD) and Parkinson's disease (PD), present significant challenges to healthcare systems worldwide. While the etiologies of AD and PD differ, both diseases share commonalities in synaptic dysfunction, thereby focusing attention on the role of neurotransmitters. The possible functions that platelets may play in neurodegenerative illnesses including PD and AD are becoming more acknowledged. In AD, platelets have been investigated for their ability to generate amyloid-ß (Aß) peptides, contributing to the formation of neurotoxic plaques. Moreover, platelets are considered biomarkers for early AD diagnosis. In PD, platelets have been studied for their involvement in oxidative stress and mitochondrial dysfunction, which are key factors in the disease's pathogenesis. Emerging research shows that platelets, which release glutamate upon activation, also play a role in these disorders. Decreased glutamate uptake in platelets has been observed in Alzheimer's and Parkinson's patients, pointing to a systemic dysfunction in glutamate handling. This paper aims to elucidate the critical role that glutamate receptors play in the pathophysiology of both AD and PD. Utilizing data from clinical trials, animal models, and cellular studies, we reviewed how glutamate receptors dysfunction contributes to neurodegenerative (ND) processes such as excitotoxicity, synaptic loss, and cognitive impairment. The paper also reviews all current medications including glutamate receptor antagonists for AD and PD, highlighting their mode of action and limitations. A deeper understanding of glutamate receptor involvement including its systemic regulation by platelets could open new avenues for more effective treatments, potentially slowing disease progression and improving patient outcomes.
Collapse
Affiliation(s)
- Deepa Gautam
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Ulhas P. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Meghna U. Naik
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Santosh K. Yadav
- The Cardeza Foundation for Hematologic Research, Center for Hemostasis, Thrombosis and Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (U.P.N.); (M.U.N.); (S.K.Y.)
| | - Rameshwar Nath Chaurasia
- The Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
8
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Zhang M, Kong X, Chen J, Liu W, Liu C, Dou X, Jiang L, Luo Y, Song M, Miao P, Tang Y, Xiu Y. Dysfunction of GluN3A subunit is involved in depression-like behaviors through synaptic deficits. J Affect Disord 2023; 332:72-82. [PMID: 36997126 DOI: 10.1016/j.jad.2023.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of depression. However, as the unique inhibitory subunit of NMDARs, the role of GluN3A in depression is largely unclear. METHODS Firstly, expression of GluN3A was examined in a mouse model of depression induced by chronic restraint stress (CRS). Then, rescue experiment with rAAV-Grin3a injection into hippocampus of CRS mice was carried out. Lastly, GluN3A knockout (KO) mouse was generated via CRISPR/Cas9 technique, and the molecular mechanism underlying involvement of GluN3A in depression was initially explored using RNA-seq technique, RT-PCR and western blotting. RESULTS GluN3A expression in hippocampus was significantly decreased in CRS mice. Depression-like behaviors induced by CRS were ameliorated when the decrease of GluN3A expression in mice exposed to CRS was restored. GluN3A KO mice exhibited symptoms of anhedonia reported as reduced sucrose preference, and symptoms of despair assayed by a longer immobility time in FST. Transcriptome analysis revealed genetic ablation of GluN3A was associated with downregulation of genes implicated in synapse and axon development. Postsynaptic protein PSD95 was decreased in GluN3A KO mice. More importantly, reduction of PSD95 in CRS mice can be rescued by viral mediated Grin3a re-expression. LIMITATIONS The mechanism underlying GluN3A involvement in depression is not fully determined. CONCLUSIONS Our data suggested that GluN3A dysfunction is involved in depression, which might be mediated by synaptic deficits. These findings will facilitate the understanding of the role of GluN3A in depression, and they might provide a new strategy for the development of subunit-selective NMDAR antagonists as antidepressant drugs.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiangru Kong
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jing Chen
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenqin Liu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Can Liu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoyun Dou
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Lab Teaching Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanmin Luo
- Department of Physiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Mingrui Song
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Peng Miao
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yun Xiu
- Molecular Medicine Diagnostic and Testing Center, Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
10
|
Bossi S, Pizzamiglio L, Paoletti P. Excitatory GluN1/GluN3A glycine receptors (eGlyRs) in brain signaling. Trends Neurosci 2023:S0166-2236(23)00127-3. [PMID: 37248111 DOI: 10.1016/j.tins.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
GluN3A is a glycine-binding subunit belonging to the NMDA receptor (NMDAR) family that can assemble with GluN1 subunits to form unconventional NMDARs insensitive to glutamate and activated by glycine only. The existence of such excitatory glycine receptors (eGlyRs) in the central nervous system (CNS) has long remained elusive. Recently, eGlyRs have been identified in specific brain regions, where they represent a novel neuronal signaling modality by which extracellular glycine tunes neuronal excitability, circuit function, and behavior. In this review, we summarize the emerging knowledge regarding these underappreciated receptors. The existence of eGlyRs reshapes current understanding of NMDAR diversity and of glycinergic signaling, previously thought to be primarily inhibitory. Given that GluN3A expression is concentrated in brain regions regulating emotional responses, eGlyRs are potential new targets of therapeutic interest in neuropsychiatry.
Collapse
Affiliation(s)
- Simon Bossi
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Lara Pizzamiglio
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
11
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
12
|
Khantakova JN, Bondar NP, Sapronova AA, Reshetnikov VV. Delayed effects of neonatal immune activation on brain neurochemistry and hypothalamic-pituitary-adrenal axis functioning. Eur J Neurosci 2022; 56:5931-5951. [PMID: 36156830 DOI: 10.1111/ejn.15831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022]
Abstract
During the postnatal period, the brain is highly sensitive to stress and inflammation, which are hazardous to normal growth and development. There is increasing evidence that inflammatory processes in the early postnatal period increase the risk of psychopathologies and cognitive impairment later in life. On the other hand, there are few studies on the ability of infectious agents to cause long-term neuroinflammation, leading to changes in the hypothalamic-pituitary-adrenal axis functioning and an imbalance in the neurotransmitter system. In this review, we examine short- and long-term effects of neonatal-induced inflammation in rodents on glutamatergic, GABAergic and monoaminergic systems and on hypothalamic-pituitary-adrenal axis activity.
Collapse
Affiliation(s)
- Julia N Khantakova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' (RIFCI), Novosibirsk, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anna A Sapronova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
13
|
Liu YJ, Li YL, Fang ZH, Liao HL, Zhang YY, Lin J, Liu F, Shen JF. NMDARs mediate peripheral and central sensitization contributing to chronic orofacial pain. Front Cell Neurosci 2022; 16:999509. [PMID: 36238833 PMCID: PMC9553029 DOI: 10.3389/fncel.2022.999509] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral and central sensitizations of the trigeminal nervous system are the main mechanisms to promote the development and maintenance of chronic orofacial pain characterized by allodynia, hyperalgesia, and ectopic pain after trigeminal nerve injury or inflammation. Although the pathomechanisms of chronic orofacial pain are complex and not well known, sufficient clinical and preclinical evidence supports the contribution of the N-methyl-D-aspartate receptors (NMDARs, a subclass of ionotropic glutamate receptors) to the trigeminal nociceptive signal processing pathway under various pathological conditions. NMDARs not only have been implicated as a potential mediator of pain-related neuroplasticity in the peripheral nervous system (PNS) but also mediate excitatory synaptic transmission and synaptic plasticity in the central nervous system (CNS). In this review, we focus on the pivotal roles and mechanisms of NMDARs in the trigeminal nervous system under orofacial neuropathic and inflammatory pain. In particular, we summarize the types, components, and distribution of NMDARs in the trigeminal nervous system. Besides, we discuss the regulatory roles of neuron-nonneuronal cell/neuron-neuron communication mediated by NMDARs in the peripheral mechanisms of chronic orofacial pain following neuropathic injury and inflammation. Furthermore, we review the functional roles and mechanisms of NMDARs in the ascending and descending circuits under orofacial neuropathic and inflammatory pain conditions, which contribute to the central sensitization. These findings are not only relevant to understanding the underlying mechanisms, but also shed new light on the targeted therapy of chronic orofacial pain.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| |
Collapse
|
14
|
Chen J, Zhang J, Yang DD, Li ZC, Zhao B, Chen Y, He Z. Clonidine ameliorates cerebral ischemia-reperfusion injury by up-regulating the GluN3 subunits of NMDA receptor. Metab Brain Dis 2022; 37:1829-1841. [PMID: 35727521 DOI: 10.1007/s11011-022-01028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
This study aimed to investigate the protective effects of the alpha-2 adrenergic receptor (α2-AR) agonist, clonidine, on the cerebral ischemia-reperfusion (I/R) injury and elaborate the underlying mechanisms. Cerebral I/R model was established by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 4 h in adult male SD rats. Saline, clonidine and yohimbine (an α2-AR antagonist) were intraperitoneally administered each day for one week before surgery. Neurological deficit was evaluated just before decapitation. TTC staining was applied for correlation of cerebral infarction volume. HE staining was performed to observe the neuron morphology. Immunohistochemical staining was performed to detect the localization and expression of GluN3 proteins. Western blot analysis also was used to detect the expression levels of GluN3 proteins. Our data showed that clonidine ameliorated neurological deficit and reduced the cerebral infarction volume of the rats with cerebral I/R. It is worth noting that treatment with clonidine up-regulated the protein expression of GluN3 in the rats with the cerebral I/R, especially in the cell membrane. Moreover, clonidine also up-regulated the transposition from cytoplasm to cell membrane of GluN3 after cerebral I/R. In addition, yohimbine abolished the neuroprotective effects of clonidine. The results indicated that clonidine played a protective role in cerebral I/R injury through regulation of the protein expression of GluN3 subunits of N-methyl-D-aspartate (NMDA) receptor.
Collapse
Affiliation(s)
- Jing Chen
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Juan Zhang
- The First People's Hospital of Yichang, Yichang, 443000, People's Republic of China
| | - Dan-Dan Yang
- The Second People's Hospital of China Three Gorges University, Yichang, 443000, People's Republic of China
| | - Zi-Cheng Li
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Bo Zhao
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Yue Chen
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China
| | - Zhi He
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, People's Republic of China.
- Medical College, China Three Gorges University, Yichang, 443002, People's Republic of China.
| |
Collapse
|
15
|
Tyler RE, Bluitt MN, Engers JL, Lindsley CW, Besheer J. The effects of predator odor (TMT) exposure and mGlu 3 NAM pretreatment on behavioral and NMDA receptor adaptations in the brain. Neuropharmacology 2022; 207:108943. [PMID: 35007623 PMCID: PMC8844221 DOI: 10.1016/j.neuropharm.2022.108943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
A stressor can trigger lasting adaptations that contribute to neuropsychiatric disorders. Predator odor (TMT) exposure is an innate stressor that may activate the metabotropic glutamate receptor 3 (mGlu3) to produce stress adaptations. To evaluate functional involvement, the mGlu3 negative allosteric modulator (NAM, VU6010572; 3 mg/kg, i.p.) was administered before TMT exposure in male, Long Evans rats. Two weeks after, rats underwent context re-exposure, elevated zero maze (ZM), and acoustic startle (ASR) behavioral tests, followed by RT-PCR gene expression in the insular cortex and bed nucleus of the stria terminalis (BNST) to evaluate lasting behavioral and molecular adaptations from the stressor. Rats displayed stress-reactive behaviors in response to TMT exposure that were not affected by VU6010572. Freezing and hyperactivity were observed during the context re-exposure, and mGlu3-NAM pretreatment during stressor prevented the context freezing response. TMT exposure did not affect ZM or ASR measures, but VU6010572 increased time spent in the open arms of the ZM and ASR habituation regardless of stressor treatment. In the insular cortex, TMT exposure increased expression of mGlu (Grm3, Grm5) and NMDA (GriN2A, GriN2B, GriN2C, GriN3A, GriN3B) receptor transcripts, and mGlu3-NAM pretreatment blocked GriN3B upregulation. In the BNST, TMT exposure increased expression of GriN2B and GriN3B in vehicle-treated rats, but decreased expression in the mGlu3-NAM group. Similar to the insular cortex, mGlu3-NAM reversed the stressor-induced upregulation of GriN3B in the BNST. mGlu3-NAM also upregulated GriN2A, GriN2B, GriN3B and Grm2 in the control group, but not the TMT group. Together, these data implicate mGlu3 receptor signaling in some lasting adaptations of predator odor stressor and anxiolytic-like effects.
Collapse
Affiliation(s)
- Ryan E Tyler
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Maya N Bluitt
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julie L Engers
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Joyce Besheer
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Presynaptic NMDA Receptors Influence Ca2+ Dynamics by Interacting with Voltage-Dependent Calcium Channels during the Induction of Long-Term Depression. Neural Plast 2022; 2022:2900875. [PMID: 35178084 PMCID: PMC8844386 DOI: 10.1155/2022/2900875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 12/29/2022] Open
Abstract
Spike-timing-dependent long-term depression (t-LTD) of glutamatergic layer (L)4-L2/3 synapses in developing neocortex requires activation of astrocytes by endocannabinoids (eCBs), which release glutamate onto presynaptic NMDA receptors (preNMDARs). The exact function of preNMDARs in this context is still elusive and strongly debated. To elucidate their function, we show that bath application of the eCB 2-arachidonylglycerol (2-AG) induces a preNMDAR-dependent form of chemically induced LTD (eCB-LTD) in L2/3 pyramidal neurons in the juvenile somatosensory cortex of rats. Presynaptic Ca2+ imaging from L4 spiny stellate axons revealed that action potential (AP) evoked Ca2+ transients show a preNMDAR-dependent broadening during eCB-LTD induction. However, blockade of voltage-dependent Ca2+ channels (VDCCs) did not uncover direct preNMDAR-mediated Ca2+ transients in the axon. This suggests that astrocyte-mediated glutamate release onto preNMDARs does not result in a direct Ca2+ influx, but that it instead leads to an indirect interaction with presynaptic VDCCs, boosting axonal Ca2+ influx. These results reveal one of the main remaining missing pieces in the signaling cascade of t-LTD at developing cortical synapses.
Collapse
|
17
|
Zhong W, Wu A, Berglund K, Gu X, Jiang M, Talati J, Zhao J, Wei L, Yu SP. Pathogenesis of sporadic Alzheimer's disease by deficiency of NMDA receptor subunit GluN3A. Alzheimers Dement 2022; 18:222-239. [PMID: 34151525 PMCID: PMC8685302 DOI: 10.1002/alz.12398] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
The Ca2+ hypothesis for Alzheimer's disease (AD) conceives Ca2+ dyshomeostasis as a common mechanism of AD; the cause of Ca2+ dysregulation, however, is obscure. Meanwhile, hyperactivities of N-Methyl-D-aspartate receptors (NMDARs), the primary mediator of Ca2+ influx, are reported in AD. GluN3A (NR3A) is an NMDAR inhibitory subunit. We hypothesize that GluN3A is critical for sustained Ca2+ homeostasis and its deficiency is pathogenic for AD. Cellular, molecular, and functional changes were examined in adult/aging GluN3A knockout (KO) mice. The GluN3A KO mouse brain displayed age-dependent moderate but persistent neuronal hyperactivity, elevated intracellular Ca2+ , neuroinflammation, impaired synaptic integrity/plasticity, and neuronal loss. GluN3A KO mice developed olfactory dysfunction followed by psychological/cognitive deficits prior to amyloid-β/tau pathology. Memantine at preclinical stage prevented/attenuated AD syndromes. AD patients' brains show reduced GluN3A expression. We propose that chronic "degenerative excitotoxicity" leads to sporadic AD, while GluN3A represents a primary pathogenic factor, an early biomarker, and an amyloid-independent therapeutic target.
Collapse
Affiliation(s)
- Weiwei Zhong
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Department of Veteran’s Affair, Decatur, GA 30033, USA
| | - Anika Wu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Department of Veteran’s Affair, Decatur, GA 30033, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Department of Veteran’s Affair, Decatur, GA 30033, USA
| | - Michael Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Department of Veteran’s Affair, Decatur, GA 30033, USA
| | - Jay Talati
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jingjie Zhao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Department of Veteran’s Affair, Decatur, GA 30033, USA
| |
Collapse
|
18
|
Di Castro MA, Volterra A. Astrocyte control of the entorhinal cortex-dentate gyrus circuit: Relevance to cognitive processing and impairment in pathology. Glia 2021; 70:1536-1553. [PMID: 34904753 PMCID: PMC9299993 DOI: 10.1002/glia.24128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
The entorhinal cortex-dentate gyrus circuit is centrally involved in memory processing conveying to the hippocampus spatial and nonspatial context information via, respectively, medial and lateral perforant path (MPP and LPP) excitatory projections onto dentate granule cells (GCs). Here, we review work of several years from our group showing that astrocytes sense local synaptic transmission and exert in turn a presynaptic control at PP-GC synapses. Modulation of neurotransmitter release probability by astrocytes sets basal synaptic strength and dynamic range for long-term potentiation of PP-GC synapses. Intriguingly, this astrocyte control is circuit-specific, being present only at MPP-GC (not LPP-GC) synapses, which selectively express atypical presynaptic N-methyl-D-aspartate receptors (NMDAR) suitable to activation by astrocyte-released glutamate. Moreover, the astrocytic control is peculiarly dependent on the cytokine TNFα, which at constitutive levels acts as a gating factor for the astrocyte signaling. During inflammation/infection processes, increased levels of TNFα lead to uncontrolled astrocyte glutamate release, altered PP-GC circuit processing and, ultimately, impaired contextual memory performance. The TNFα-dependent pathological switch of the synaptic control from astrocytes and its deleterious consequences are observed in animal models of HIV brain infection and multiple sclerosis, conditions both known to cause cognitive disturbances in up to 50% of patients. The review also discusses open issues related to the identified astrocytic pathway: its role in contextual memory processing, potential damaging role in Alzheimer's disease, the existence of vesicular glutamate release from DG astrocytes, and the possible synaptic-like connectivity between astrocytic output sites and PP receptive sites.
Collapse
Affiliation(s)
- Maria Amalia Di Castro
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Andrea Volterra
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Lalo U, Koh W, Lee CJ, Pankratov Y. The tripartite glutamatergic synapse. Neuropharmacology 2021; 199:108758. [PMID: 34433089 DOI: 10.1016/j.neuropharm.2021.108758] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
Astroglial cells were long considered as structural and metabolic supporting cells are which do not directly participate in information processing in the brain. Discoveries of responsiveness of astrocytes to synaptically-released glutamate and their capability to release agonists of glutamate receptors awakened extensive studies of glia-neuron communications and led to the revolutionary changes in our understanding of brain cellular networks. Nowadays, astrocytes are widely acknowledged as inseparable element of glutamatergic synapses and role for glutamatergic astrocyte-neuron interactions in the brain computation is emerging. Astroglial glutamate receptors, in particular of NMDA, mGluR3 and mGluR5 types, can activate a variety of molecular cascades leading astroglial-driven modulation of extracellular levels of glutamate and activity of neuronal glutamate receptors. Their preferential location to the astroglial perisynaptic processes facilitates interaction of astrocytes with individual excitatory synapses. Bi-directional glutamatergic communication between astrocytes and neurons underpins a complex, spatially-distributed modulation of synaptic signalling thus contributing to the enrichment of information processing by the neuronal networks. Still, further research is needed to bridge the substantial gaps in our understanding of mechanisms and physiological relevance of astrocyte-neuron glutamatergic interactions, in particular ability of astrocytes directly activate neuronal glutamate receptors by releasing glutamate and, arguably, d-Serine. An emerging roles for aberrant changes in glutamatergic astroglial signalling, both neuroprotective and pathogenic, in neurological and neurodegenerative diseases also require further investigation. This article is part of the special Issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
20
|
Sun Q, Cao W, Luo J. The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:651-658. [PMID: 34986531 DOI: 10.3724/zdxbyxb-2021-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) in central nerve system is mostly composed of GluN1 and GluN2 subunits. The classical NMDAR has been intensively studied. However, GluN3‑containing NMDAR is much less expressed and have atypical channel properties. Recently, accumulating evidences have revealed two types of GluN3‑containing NMDAR: glutamate-gated GluN1/GluN2/GluN3 NMDAR and glycine-gated GluN1/GluN3 NMDAR. The former may play important roles in regulating synapse maturation and pruning non-used synapses, and its elevated expression at the adult stage may alter synaptic reorganization in some neuropsychiatric disorders. The latter is expressed in the medial habenula and involves in control of aversion. This article reviews the recent progresses on the expression, functional properties of GluN3‑containing atypical NMDARs and the physiological and pathological relevance.
Collapse
Affiliation(s)
- Qi Sun
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Cao
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianhong Luo
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Obolenskaya M, Dotsenko V, Martsenyuk O, Ralchenko S, Krupko O, Pastukhov A, Filimonova N, Starosila D, Chernykh S, Borisova T. A new insight into mechanisms of interferon alpha neurotoxicity: Expression of GRIN3A subunit of NMDA receptors and NMDA-evoked exocytosis. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110317. [PMID: 33785426 DOI: 10.1016/j.pnpbp.2021.110317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Neurological and psychiatric side effects accompany the high-dose interferon-alpha (IFNA) therapy. The primary genes responsible for these complications are mostly unknown. Our genome-wide search in mouse and rat genomes for the conservative genes containing IFN-stimulated response elements (ISRE) in their promoters revealed a new potential target gene of IFNA, Grin3α, which encodes the 3A subunit of NMDA receptor. This study aimed to explore the impact of IFNA on the expression of Grin3α and Ifnα genes and neurotransmitters endo/exocytosis in the mouse brain. We administered recombinant human IFN-alpha 2b (rhIFN-α2b) intracranially, and 24 h later, we isolated six brain regions and used the samples for RT-qPCR and western blot analysis. Synaptosomes were isolated from the cortex to analyze endo/exocytosis with acridine orange and L-[14C]glutamate. IFNA induced an increase in Grin3α mRNA and GRIN3A protein, but a decrease in Ifnα mRNA and protein. IFNA did not affect the accumulation and distribution of L-[14C]glutamate and acridine orange between synaptosomes and the extra-synaptosomal space. It caused the more significant acridine orange release activated by NMDA or glutamate than from control mice's synaptosomes. In response to IFNA, the newly discovered association between elevated Grin3α expression and NMDA- and glutamate-evoked neurotransmitters release from synaptosomes implies a new molecular mechanism of IFNA neurotoxicity.
Collapse
Affiliation(s)
- M Obolenskaya
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine.
| | - V Dotsenko
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - O Martsenyuk
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - S Ralchenko
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - O Krupko
- The Department of Neurochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of, Kyiv, Ukraine
| | - A Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of, Kyiv, Ukraine
| | - N Filimonova
- Educational and scientific center "Institute of Biology, Taras Shevchenko National University of Kyiv, Ukraine
| | - D Starosila
- State Institution LV. Gromashevskiy Institute of Epidemiology and Infectious Diseases of the National Academy of Medical Sciences of, Kyiv, Ukraine
| | - S Chernykh
- Laboratory of systems biology, Institute of molecular biology and genetics of the National Academy of Sciences of, Kyiv, Ukraine
| | - T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry of the National Academy of Sciences of, Kyiv, Ukraine
| |
Collapse
|
22
|
Stroebel D, Mony L, Paoletti P. Glycine agonism in ionotropic glutamate receptors. Neuropharmacology 2021; 193:108631. [PMID: 34058193 DOI: 10.1016/j.neuropharm.2021.108631] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the majority of excitatory neurotransmission in the vertebrate CNS. Classified as AMPA, kainate, delta and NMDA receptors, iGluRs are central drivers of synaptic plasticity widely considered as a major cellular substrate of learning and memory. Surprisingly however, five out of the eighteen vertebrate iGluR subunits do not bind glutamate but glycine, a neurotransmitter known to mediate inhibitory neurotransmission through its action on pentameric glycine receptors (GlyRs). This is the case of GluN1, GluN3A, GluN3B, GluD1 and GluD2 subunits, all also binding the D amino acid d-serine endogenously present in many brain regions. Glycine and d-serine action and affinities broadly differ between glycinergic iGluR subtypes. On 'conventional' GluN1/GluN2 NMDA receptors, glycine (or d-serine) acts in concert with glutamate as a mandatory co-agonist to set the level of receptor activity. It also regulates the receptor's trafficking and expression independently of glutamate. On 'unconventional' GluN1/GluN3 NMDARs, glycine acts as the sole agonist directly triggering opening of excitatory glycinergic channels recently shown to be physiologically relevant. On GluD receptors, d-serine on its own mediates non-ionotropic signaling involved in excitatory and inhibitory synaptogenesis, further reinforcing the concept of glutamate-insensitive iGluRs. Here we present an overview of our current knowledge on glycine and d-serine agonism in iGluRs emphasizing aspects related to molecular mechanisms, cellular function and pharmacological profile. The growing appreciation of the critical influence of glycine and d-serine on iGluR biology reshapes our understanding of iGluR signaling diversity and complexity, with important implications in neuropharmacology.
Collapse
Affiliation(s)
- David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| |
Collapse
|
23
|
Crawley O, Conde-Dusman MJ, Pérez-Otaño I. GluN3A NMDA receptor subunits: more enigmatic than ever? J Physiol 2021; 600:261-276. [PMID: 33942912 DOI: 10.1113/jp280879] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Non-conventional N-methyl-d-aspartate receptors (NMDARs) containing GluN3A subunits have unique biophysical, signalling and localization properties within the NMDAR family, and are typically thought to counterbalance functions of classical NMDARs made up of GluN1/2 subunits. Beyond their recognized roles in synapse refinement during postnatal development, recent evidence is building a wider perspective for GluN3A functions. Here we draw particular attention to the latest developments for this multifaceted and unusual subunit: from finely timed expression patterns that correlate with plasticity windows in developing brains or functional hierarchies in the mature brain to new insight onto presynaptic GluN3A-NMDARs, excitatory glycine receptors and behavioural impacts, alongside further connections to a range of brain disorders.
Collapse
Affiliation(s)
- Oliver Crawley
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| | - María J Conde-Dusman
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| | - Isabel Pérez-Otaño
- Unidad de Neurobiología Celular y de Sistemas, Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, 03550, Spain
| |
Collapse
|
24
|
Drug-Evoked Synaptic Plasticity of Excitatory Transmission in the Ventral Tegmental Area. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039701. [PMID: 32341062 DOI: 10.1101/cshperspect.a039701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cocaine leads to a strong euphoria, which is at the origin of its recreational use. Past the acute effects, the drug leaves traces in the brain that persist long after it has been cleared from the body. These traces eventually shape behavior such that drug use may become compulsive, and addiction develops. Here, we discuss cocaine-evoked synaptic plasticity of glutamatergic transmission onto dopamine (DA) neurons of the ventral tegmental area (VTA) as one of the earliest traces after a first injection of cocaine. We review the literature that has examined the induction requirements, as well as the expression mechanism of this form of plasticity, and ask the question about its functional significance.
Collapse
|
25
|
Kolcheva M, Kortus S, Krausova BH, Barackova P, Misiachna A, Danacikova S, Kaniakova M, Hemelikova K, Hotovec M, Rehakova K, Horak M. Specific pathogenic mutations in the M3 domain of the GluN1 subunit regulate the surface delivery and pharmacological sensitivity of NMDA receptors. Neuropharmacology 2021; 189:108528. [PMID: 33773999 DOI: 10.1016/j.neuropharm.2021.108528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) play an essential role in regulating glutamatergic neurotransmission. Recently, pathogenic missense mutations were identified in genes encoding NMDAR subunits; however, their effect on NMDAR activity is often poorly understood. Here, we examined whether three previously identified pathogenic mutations (M641I, A645S, and Y647S) in the M3 domain of the GluN1 subunit affect the receptor's surface delivery, agonist sensitivity, Mg2+ block, and/or inhibition by the FDA-approved NMDAR blocker memantine. When expressed in HEK293 cells, we found reduced surface expression of GluN1-M641I/GluN2A, GluN1-Y647S/GluN2A, and GluN1-Y647S/GluN2B receptors; other mutation-bearing NMDAR combinations, including GluN1/GluN3A receptors, were expressed at normal surface levels. When expressed in rat hippocampal neurons, we consistently found reduced surface expression of the GluN1-M641I and GluN1-Y647S subunits when compared with wild-type GluN1 subunit. At the functional level, we found that GluN1-M641I/GluN2 and GluN1-A645S/GluN2 receptors expressed in HEK293 cells have wild-type EC50 values for both glutamate and glycine; in contrast, GluN1-Y647S/GluN2 receptors do not produce glutamate-induced currents. In the presence of a physiological concentration of Mg2+, we found that GluN1-M641I/GluN2 receptors have a lower memantine IC50 and slower offset kinetics, whereas GluN1-A645S/GluN2 receptors have a higher memantine IC50 and faster offset kinetics when compared to wild-type receptors. Finally, we found that memantine was the most neuroprotective in hippocampal neurons expressing GluN1-M641I subunits, followed by neurons expressing wild-type GluN1 and then GluN1-A645S subunits in an NMDA-induced excitotoxicity assay. These results indicate that specific pathogenic mutations in the M3 domain of the GluN1 subunit differentially affect the trafficking and functional properties of NMDARs.
Collapse
Affiliation(s)
- Marharyta Kolcheva
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, 12843, Prague 2, Czech Republic; Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Stepan Kortus
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Barbora Hrcka Krausova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Petra Barackova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Anna Misiachna
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Sarka Danacikova
- Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Martina Kaniakova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Katarina Hemelikova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Matej Hotovec
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Kristyna Rehakova
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Martin Horak
- Department of Neurochemistry, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
26
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
27
|
Pfisterer U, Petukhov V, Demharter S, Meichsner J, Thompson JJ, Batiuk MY, Asenjo-Martinez A, Vasistha NA, Thakur A, Mikkelsen J, Adorjan I, Pinborg LH, Pers TH, von Engelhardt J, Kharchenko PV, Khodosevich K. Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat Commun 2020; 11:5038. [PMID: 33028830 PMCID: PMC7541486 DOI: 10.1038/s41467-020-18752-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/08/2020] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, yet its pathophysiology is poorly understood due to the high complexity of affected neuronal circuits. To identify dysfunctional neuronal subtypes underlying seizure activity in the human brain, we have performed single-nucleus transcriptomics analysis of >110,000 neuronal transcriptomes derived from temporal cortex samples of multiple temporal lobe epilepsy and non-epileptic subjects. We found that the largest transcriptomic changes occur in distinct neuronal subtypes from several families of principal neurons (L5-6_Fezf2 and L2-3_Cux2) and GABAergic interneurons (Sst and Pvalb), whereas other subtypes in the same families were less affected. Furthermore, the subtypes with the largest epilepsy-related transcriptomic changes may belong to the same circuit, since we observed coordinated transcriptomic shifts across these subtypes. Glutamate signaling exhibited one of the strongest dysregulations in epilepsy, highlighted by layer-wise transcriptional changes in multiple glutamate receptor genes and strong upregulation of genes coding for AMPA receptor auxiliary subunits. Overall, our data reveal a neuronal subtype-specific molecular phenotype of epilepsy. The pathophysiology of epilepsy is unclear. Here, the authors present single-nuclei transcriptomic profiling of human temporal lobe epilepsy from patients. They identified epilepsy-associated neuronal subtypes, and a panel of dysregulated genes, predicting neuronal circuits contributing to epilepsy.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Viktor Petukhov
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel Demharter
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Johanna Meichsner
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonatan J Thompson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mykhailo Y Batiuk
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ashish Thakur
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jens Mikkelsen
- Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Istvan Adorjan
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Lars H Pinborg
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, 2200, Copenhagen, Denmark.,Epilepsy Clinic, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2200, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
28
|
Ahmed H, Haider A, Ametamey SM. N-Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present). Expert Opin Ther Pat 2020; 30:743-767. [PMID: 32926646 DOI: 10.1080/13543776.2020.1811234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION - The NMDA receptor is implicated in various diseases including neurodegenerative, neurodevelopmental and mood disorders. However, only a limited number of clinically approved NMDA receptor modulators are available. Today, apparent NMDA receptor drug development strategies entail 1) exploring the unknown chemical space to identify novel scaffolds; 2) using the clinically available NMDA receptor modulators to expand the therapeutic indication space; 3) and to trace physiological functions of the NMDA receptor. AREAS COVERED - The current review reflects on the functional and pharmacological facets of NMDA receptors and the current clinical status quo of NMDA receptor modulators. Patent literature covering 2015 till April 2020 is discussed with emphasis on new indications. EXPERT OPINION - Supporting evidence shows that subtype-selective NMDA receptor antagonists show an improved safety profile compared to broad-spectrum channel blockers. Although GluN2B-selective antagonists are by far the most extensively investigated subtype-selective modulators, they have shown only modest clinical efficacy so far. To overcome the limitations that have hampered the clinical development of previous subtype-selective NMDA receptor antagonists, future studies with improved animal models that better reflect human NMDA receptor pathophysiology are warranted. The increased availability of subtype-selective probes will allow target engagement studies and proper dose finding in future clinical trials.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich , Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich , Schlieren, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
29
|
Schrank S, Barrington N, Stutzmann GE. Calcium-Handling Defects and Neurodegenerative Disease. Cold Spring Harb Perspect Biol 2020; 12:a035212. [PMID: 31427373 PMCID: PMC7328457 DOI: 10.1101/cshperspect.a035212] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcium signaling is critical to neuronal function and regulates highly diverse processes such as gene transcription, energy production, protein handling, and synaptic structure and function. Because there are many common underlying calcium-mediated pathological features observed across several neurological conditions, it has been proposed that neurodegenerative diseases have an upstream underlying calcium basis in their pathogenesis. With certain diseases such as Alzheimer's, Parkinson's, and Huntington's, specific sources of calcium dysregulation originating from distinct neuronal compartments or channels have been shown to have defined roles in initiating or sustaining disease mechanisms. Herein, we will review the major hallmarks of these diseases, and how they relate to calcium dysregulation. We will then discuss neuronal calcium handling throughout the neuron, with special emphasis on channels involved in neurodegeneration.
Collapse
Affiliation(s)
- Sean Schrank
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, Illinois 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Nikki Barrington
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, Illinois 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, Illinois 60064
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, Illinois 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, Illinois 60064
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
30
|
Zhu Z, Yi F, Epplin MP, Liu D, Summer SL, Mizu R, Shaulsky G, XiangWei W, Tang W, Burger PB, Menaldino DS, Myers SJ, Liotta DC, Hansen KB, Yuan H, Traynelis SF. Negative allosteric modulation of GluN1/GluN3 NMDA receptors. Neuropharmacology 2020; 176:108117. [PMID: 32389749 DOI: 10.1016/j.neuropharm.2020.108117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission. Most native NMDA receptors are tetrameric assemblies of two glycine-binding GluN1 and two glutamate-binding GluN2 subunits. Co-assembly of the glycine-binding GluN1 with glycine-binding GluN3 subunits (GluN3A-B) creates glycine activated receptors that possess strikingly different functional and pharmacological properties compared to GluN1/GluN2 NMDA receptors. The role of GluN1/GluN3 receptors in neuronal function remains unknown, in part due to lack of pharmacological tools with which to explore their physiological roles. We have identified the negative allosteric modulator EU1180-438, which is selective for GluN1/GluN3 receptors over GluN1/GluN2 NMDA receptors, AMPA, and kainate receptors. EU1180-438 is also inactive at GABA, glycine, and P2X receptors, but displays inhibition of some nicotinic acetylcholine receptors. Furthermore, we demonstrate that EU1180-438 produces robust inhibition of glycine-activated current responses mediated by native GluN1/GluN3A receptors in hippocampal CA1 pyramidal neurons. EU1180-438 is a non-competitive antagonist with activity that is independent of membrane potential (i.e. voltage-independent), glycine concentration, and extracellular pH. Non-stationary fluctuation analysis of neuronal current responses provided an estimated weighted mean unitary conductance of 6.1 pS for GluN1/GluN3A channels, and showed that EU1180-438 has no effect on conductance. Site-directed mutagenesis suggests that structural determinants of EU1180-438 activity reside near a short pre-M1 helix that lies parallel to the plane of the membrane below the agonist binding domain. These findings demonstrate that structural differences between GluN3 and other glutamate receptor subunits can be exploited to generate subunit-selective ligands with utility in exploring the roles GluN3 in neuronal function.
Collapse
Affiliation(s)
- Zongjian Zhu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi, China
| | - Feng Yi
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Matthew P Epplin
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Ding Liu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Ruth Mizu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gil Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Pieter B Burger
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dennis C Liotta
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
31
|
Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res 2020; 217:60-70. [PMID: 30979669 PMCID: PMC7258307 DOI: 10.1016/j.schres.2019.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental disorder with cognitive deficits manifesting during early stages of the disease. Evidence suggests that genetic factors in combination with environmental insults lead to complex changes to glutamatergic, GABAergic, and dopaminergic systems. In particular, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, is implicated in both the disease progression and symptoms of SZ. NMDARs are critical for synaptic plasticity and cortical maturation, as well as learning and memory processes. In fact, any deviation from normal NMDAR expression and function can have devastating consequences. Surprisingly, there is little evidence from human patients that direct mutations of NMDAR genes contribute to SZ. One intriguing hypothesis is that epigenetic changes, which could result from early insults, alter protein expression and contribute to the NMDAR hypofunction found in SZ. Epigenetics is referred to as modifications that alter gene transcription without changing the DNA sequence itself. In this review, we first discuss how epigenetic changes to NMDAR genes could contribute to NMDAR hypofunction. We then explore how NMDAR hypofunction may contribute to epigenetic changes in other proteins or genes that lead to synaptic dysfunction and symptoms in SZ. We argue that NMDAR hypofunction occurs in early stage of the disease, and it may consequentially initiate GABA and dopamine deficits. Therefore, targeting NMDAR dysfunction during the early stages would be a promising avenue for prevention and therapeutic intervention of cognitive and social deficits that remain untreatable. Finally, we discuss potential questions regarding the epigenetic of SZ and future directions for research.
Collapse
Affiliation(s)
- Melissa A. Snyder
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, K1H 8M5,Correspondence: Wen-Jun Gao, M.D., Ph.D., Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, Phone: (215) 991-8907, Fax: (215) 843-9802, ; Melissa A. Snyder, Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
32
|
Kohlmeier KA, Polli FS. Plasticity in the Brainstem: Prenatal and Postnatal Experience Can Alter Laterodorsal Tegmental (LDT) Structure and Function. Front Synaptic Neurosci 2020; 12:3. [PMID: 32116639 PMCID: PMC7019863 DOI: 10.3389/fnsyn.2020.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
The brainstem has traditionally been considered an area of the brain with autonomous control of mostly homeostatic functions such as heart rate, respiration, and the sleep and wakefulness state, which would preclude the necessity to exhibit the high degree of synaptic or cellular mechanisms of plasticity typical of regions of the brain responsible for flexible, executive control, such as the medial prefrontal cortex or the hippocampus. The perception that the brainstem does not share the same degree of flexibility to alter synaptic strength and/or wiring within local circuits makes intuitive sense, as it is not easy to understand how "soft wiring" would be an advantage when considering the importance of faithful and consistent performance of the homeostatic, autonomic functions that are controlled by the brainstem. However, many of the molecular and cellular requirements which underlie strengthening of synapses seen in brain regions involved in higher-level processing are present in brainstem nuclei, and recent research suggest that the view of the brainstem as "hard wired," with rigid and static connectivity and with unchanging synaptic strength, is outdated. In fact, information from studies within the last decades, including work conducted in our group, leads us to propose that the brainstem can dynamically alter synaptic proteins, and change synaptic connections in response to prenatal or postnatal stimuli, and this would likely alter functionality and output. This article reviews recent research that has provided information resulting in our revision of the view of the brainstem as static and non-changing by using as example recent information gleaned from a brainstem pontine nucleus, the laterodorsal tegmentum (LDT). The LDT has demonstrated mechanisms underlying synaptic plasticity, and plasticity has been exhibited in the postnatal LDT following exposure to drugs of abuse. Further, exposure of the brain during gestation to drugs of abuse results in alterations in development of signaling pathways in the LDT. As the LDT provides a high degree of innervation of mesoaccumbal and mesocortical circuits involved in salience, as well as thalamocortical circuits involved in control of arousal and orientation, changes in synaptic strength would be expected to alter output, which would significantly impact behavioral state, motivated behavior and directed attention. Further, alterations in developmental trajectory within the LDT following prenatal exposure to drugs of abuse would be expected to impact on later life expression of motivation and arousal.
Collapse
Affiliation(s)
- Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
33
|
Polli FS, Kohlmeier KA. Alterations in NMDAR-mediated signaling within the laterodorsal tegmental nucleus are associated with prenatal nicotine exposure. Neuropharmacology 2019; 158:107744. [DOI: 10.1016/j.neuropharm.2019.107744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022]
|
34
|
Abarzúa S, Ampuero E, Zundert B. Superoxide generation via the NR2B‐NMDAR/RasGRF1/NOX2 pathway promotes dendritogenesis. J Cell Physiol 2019; 234:22985-22995. [DOI: 10.1002/jcp.28859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sebastian Abarzúa
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de la Ciencias de la Vida Universidad Andres Bello Santiago Chile
- Centro de Envejecimiento y Regeneración CARE Chile UC Santiago Chile
| | - Estibaliz Ampuero
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de la Ciencias de la Vida Universidad Andres Bello Santiago Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Autónoma de Chile Santiago Chile
| | - Brigitte Zundert
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de la Ciencias de la Vida Universidad Andres Bello Santiago Chile
- Centro de Envejecimiento y Regeneración CARE Chile UC Santiago Chile
| |
Collapse
|
35
|
Hemelikova K, Kolcheva M, Skrenkova K, Kaniakova M, Horak M. Lectins modulate the functional properties of GluN1/GluN3-containing NMDA receptors. Neuropharmacology 2019; 157:107671. [PMID: 31202607 DOI: 10.1016/j.neuropharm.2019.107671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/16/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) play an essential role in excitatory neurotransmission within the mammalian central nervous system (CNS). NMDARs are heteromultimers containing GluN1, GluN2, and/or GluN3 subunits, thus giving rise to a wide variety of subunit combinations, each with unique functional and pharmacological properties. Importantly, GluN1/GluN3A and GluN1/GluN3B receptors form glycine-gated receptors. Here, we combined electrophysiology with rapid solution exchange in order to determine whether the presence of specific N-glycans and/or interactions with specific lectins regulates the functional properties of GluN1/GluN3A and GluN1/GluN3B receptors expressed in human embryonic kidney 293 (HEK293) cells. We found that removing putative N-glycosylation sites alters the functional properties of GluN1/GluN3B receptors, but has no effect on GluN1/GluN3A receptors. Moreover, we found that the functional properties of both GluN1/GluN3A and GluN1/GluN3B receptors are modulated by a variety of lectins, including Concanavalin A (ConA), Wheat Germ Agglutinin (WGA), and Aleuria Aurantia Lectin (AAL), and this effect is likely mediated by a reduction in GluN1 subunit-mediated desensitization. We also found that AAL has the most profound effect on GluN1/GluN3 receptors, and this effect is mediated partly by a single N-glycosylation site on the GluN3 subunit (specifically, N565 on GluN3A and N465 on GluN3B). Finally, we found that lectins mediate their effect only when applied to non-activated receptors and have no effect when applied in the continuous presence of glycine. These findings provide further evidence to distinguish GluN1/GluN3 receptors from the canonical GluN1/GluN2 receptors and offer insight into how GluN1/GluN3 receptors may be regulated in the mammalian CNS.
Collapse
Affiliation(s)
- Katarina Hemelikova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, 12843, Prague 2, Czech Republic
| | - Kristyna Skrenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Martina Kaniakova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
36
|
Luna VM, Anacker C, Burghardt NS, Khandaker H, Andreu V, Millette A, Leary P, Ravenelle R, Jimenez JC, Mastrodonato A, Denny CA, Fenton AA, Scharfman HE, Hen R. Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science 2019; 364:578-583. [PMID: 31073064 PMCID: PMC6800071 DOI: 10.1126/science.aat8789] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Young adult-born granule cells (abGCs) in the dentate gyrus (DG) have a profound impact on cognition and mood. However, it remains unclear how abGCs distinctively contribute to local DG information processing. We found that the actions of abGCs in the DG depend on the origin of incoming afferents. In response to lateral entorhinal cortex (LEC) inputs, abGCs exert monosynaptic inhibition of mature granule cells (mGCs) through group II metabotropic glutamate receptors. By contrast, in response to medial entorhinal cortex (MEC) inputs, abGCs directly excite mGCs through N-methyl-d-aspartate receptors. Thus, a critical function of abGCs may be to regulate the relative synaptic strengths of LEC-driven contextual information versus MEC-driven spatial information to shape distinct neural representations in the DG.
Collapse
Affiliation(s)
- Victor M Luna
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - Christoph Anacker
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, USA
- Sackler Institute for Developmental Psychobiology, New York, NY 10065, USA
| | - Nesha S Burghardt
- Department of Psychology, Hunter College, The City University of New York, New York, NY 10021, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Hameda Khandaker
- Department of Psychology, Hunter College, The City University of New York, New York, NY 10021, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Valentine Andreu
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Amira Millette
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Paige Leary
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry and the Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Rebecca Ravenelle
- Department of Psychology, Hunter College, The City University of New York, New York, NY 10021, USA
- Department of Biology, The Graduate Center, The City University of New York, New York, NY 10021, USA
| | - Jessica C Jimenez
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Alessia Mastrodonato
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Christine A Denny
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Andre A Fenton
- Center for Neural Science, New York University, New York, NY 10003, USA
- State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Helen E Scharfman
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology, and Psychiatry and the Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Rene Hen
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
37
|
Su T, Lu Y, Geng Y, Lu W, Chen Y. How could N-Methyl-D-Aspartate Receptor Antagonists Lead to Excitation Instead of Inhibition? BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2018.2018.9050009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a family of ionotropic glutamate receptors mainly known to mediate excitatory synaptic transmission and plasticity. Interestingly, low-dose NMDAR antagonists lead to increased, instead of decreased, functional connectivity; and they could cause schizophrenia- and/or antidepressant-like behavior in both humans and rodents. In addition, human genetic evidences indicate that NMDAR loss of function mutations underlie certain forms of epilepsy, a disease featured with abnormal brain hyperactivity. Together, they all suggest that under certain conditions, NMDAR activation actually lead to inhibition, but not excitation, of the global neuronal network. Apparently, these phenomena are rather counterintuitive to the receptor's basic role in mediating excitatory synaptic transmission. How could it happen? Recently, this has become a crucial question in order to fully understand the complexity of NMDAR function, particularly in disease. Over the past decades, different theories have been proposed to address this question. These include theories of “NMDARs on inhibitory neurons are more sensitive to antagonism”, or “basal NMDAR activity actually inhibits excitatory synapse”, etc. Our review summarizes these efforts, and also provides an introduction of NMDARs, inhibitory neurons, and their relationships with the related diseases. Advances in the development of novel NMDAR pharmacological tools, particularly positive allosteric modulators, are also included to provide insights into potential intervention strategies.
Collapse
Affiliation(s)
- Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Veruki ML, Zhou Y, Castilho Á, Morgans CW, Hartveit E. Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling. J Neurosci 2019; 39:627-650. [PMID: 30459218 PMCID: PMC6343648 DOI: 10.1523/jneurosci.2267-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
In the rod pathway of the mammalian retina, axon terminals of glutamatergic rod bipolar cells are presynaptic to AII and A17 amacrine cells in the inner plexiform layer. Recent evidence suggests that both amacrines express NMDA receptors, raising questions concerning molecular composition, localization, activation, and function of these receptors. Using dual patch-clamp recording from synaptically connected rod bipolar and AII or A17 amacrine cells in retinal slices from female rats, we found no evidence that NMDA receptors contribute to postsynaptic currents evoked in either amacrine. Instead, NMDA receptors on both amacrine cells were activated by ambient glutamate, and blocking glutamate uptake increased their level of activation. NMDA receptor activation also increased the frequency of GABAergic postsynaptic currents in rod bipolar cells, suggesting that NMDA receptors can drive release of GABA from A17 amacrines. A striking dichotomy was revealed by pharmacological and immunolabeling experiments, which found GluN2B-containing NMDA receptors on AII amacrines and GluN2A-containing NMDA receptors on A17 amacrines. Immunolabeling also revealed a clustered organization of NMDA receptors on both amacrines and a close spatial association between GluN2B subunits and connexin 36 on AII amacrines, suggesting that NMDA receptor modulation of gap junction coupling between these cells involves the GluN2B subunit. Using multiphoton Ca2+ imaging, we verified that activation of NMDA receptors evoked an increase of intracellular Ca2+ in dendrites of both amacrines. Our results suggest that AII and A17 amacrines express clustered, extrasynaptic NMDA receptors, with different and complementary subunits that are likely to contribute differentially to signal processing and plasticity.SIGNIFICANCE STATEMENT Glutamate is the most important excitatory neurotransmitter in the CNS, but not all glutamate receptors transmit fast excitatory signals at synapses. NMDA-type glutamate receptors act as voltage- and ligand-gated ion channels, with functional properties determined by their specific subunit composition. These receptors can be found at both synaptic and extrasynaptic sites on neurons, but the role of extrasynaptic NMDA receptors is unclear. Here, we demonstrate that retinal AII and A17 amacrine cells, postsynaptic partners at rod bipolar dyad synapses, express extrasynaptic (but not synaptic) NMDA receptors, with different and complementary GluN2 subunits. The localization of GluN2A-containing receptors to A17s and GluN2B-containing receptors to AIIs suggests a mechanism for differential modulation of excitability and signaling in this retinal microcircuit.
Collapse
Affiliation(s)
- Margaret L Veruki
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Yifan Zhou
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Áurea Castilho
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| | - Catherine W Morgans
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| | - Espen Hartveit
- University of Bergen, Department of Biomedicine, N-5009 Bergen, Norway, and
| |
Collapse
|
40
|
Skowrońska K, Obara-Michlewska M, Zielińska M, Albrecht J. NMDA Receptors in Astrocytes: In Search for Roles in Neurotransmission and Astrocytic Homeostasis. Int J Mol Sci 2019; 20:ijms20020309. [PMID: 30646531 PMCID: PMC6358855 DOI: 10.3390/ijms20020309] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Studies of the last two decades have demonstrated the presence in astrocytic cell membranes of N-methyl-d-aspartate (NMDA) receptors (NMDARs), albeit their apparently low abundance makes demonstration of their presence and function more difficult than of other glutamate (Glu) receptor classes residing in astrocytes. Activation of astrocytic NMDARs directly in brain slices and in acutely isolated or cultured astrocytes evokes intracellular calcium increase, by mutually unexclusive ionotropic and metabotropic mechanisms. However, other than one report on the contribution of astrocyte-located NMDARs to astrocyte-dependent modulation of presynaptic strength in the hippocampus, there is no sound evidence for the significant role of astrocytic NMDARs in astrocytic-neuronal interaction in neurotransmission, as yet. Durable exposure of astrocytic and neuronal co-cultures to NMDA has been reported to upregulate astrocytic synthesis of glutathione, and in this way to increase the antioxidative capacity of neurons. On the other hand, overexposure to NMDA decreases, by an as yet unknown mechanism, the ability of cultured astrocytes to express glutamine synthetase (GS), aquaporin-4 (AQP4), and the inward rectifying potassium channel Kir4.1, the three astroglia-specific proteins critical for homeostatic function of astrocytes. The beneficial or detrimental effects of astrocytic NMDAR stimulation revealed in the in vitro studies remain to be proven in the in vivo setting.
Collapse
Affiliation(s)
- Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| | - Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.
| |
Collapse
|
41
|
Abstract
GluN3A and GluN3B are glycine-binding subunits belonging to the NMDA receptor (NMDAR) family that can assemble with the GluN1 subunit to form unconventional receptors activated by glycine alone. Functional characterization of GluN1/GluN3 NMDARs has been difficult. Here, we uncover two modalities that have transformative properties on GluN1/GluN3A receptors. First, we identify a compound, CGP-78608, which greatly enhances GluN1/GluN3A responses, converting small and rapidly desensitizing currents into large and stable responses. Second, we show that an endogenous GluN3A disulfide bond endows GluN1/GluN3A receptors with distinct redox modulation, profoundly affecting agonist sensitivity and gating kinetics. Under reducing conditions, ambient glycine is sufficient to generate tonic receptor activation. Finally, using CGP-78608 on P8-P12 mouse hippocampal slices, we demonstrate that excitatory glycine GluN1/GluN3A NMDARs are functionally expressed in native neurons, at least in the juvenile brain. Our work opens new perspectives on the exploration of excitatory glycine receptors in brain function and development. Excitatory glycine GluN1/GluN3A receptors are atypical NMDARs that have been difficult to study. Here the authors identify new properties of these receptors, including potentiation by the GluN1 antagonist CGP-78608 that allows detection of functional GluN1/GluN3A receptors in the juvenile brain.
Collapse
|
42
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
43
|
Kaniakova M, Kleteckova L, Lichnerova K, Holubova K, Skrenkova K, Korinek M, Krusek J, Smejkalova T, Korabecny J, Vales K, Soukup O, Horak M. 7-Methoxyderivative of tacrine is a ‘foot-in-the-door’ open-channel blocker of GluN1/GluN2 and GluN1/GluN3 NMDA receptors with neuroprotective activity in vivo. Neuropharmacology 2018; 140:217-232. [DOI: 10.1016/j.neuropharm.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
|
44
|
Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150:1081-1105. [PMID: 30037851 PMCID: PMC6080888 DOI: 10.1085/jgp.201812032] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hansen et al. review recent structural data that have provided insight into the function and allosteric modulation of NMDA receptors. NMDA-type glutamate receptors are ligand-gated ion channels that mediate a Ca2+-permeable component of excitatory neurotransmission in the central nervous system (CNS). They are expressed throughout the CNS and play key physiological roles in synaptic function, such as synaptic plasticity, learning, and memory. NMDA receptors are also implicated in the pathophysiology of several CNS disorders and more recently have been identified as a locus for disease-associated genomic variation. NMDA receptors exist as a diverse array of subtypes formed by variation in assembly of seven subunits (GluN1, GluN2A-D, and GluN3A-B) into tetrameric receptor complexes. These NMDA receptor subtypes show unique structural features that account for their distinct functional and pharmacological properties allowing precise tuning of their physiological roles. Here, we review the relationship between NMDA receptor structure and function with an emphasis on emerging atomic resolution structures, which begin to explain unique features of this receptor.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Riley E Perszyk
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Hiro Furukawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Lonnie P Wollmuth
- Departments of Neurobiology & Behavior and Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
45
|
Altunrende ME, Gezen-Ak D, Atasoy İL, Candaş E, Dursun E. The Role of Astaxanthin on Transcriptional Regulation of NMDA Receptors Voltage Sensitive Calcium Channels and Calcium Binding Proteins in Primary Cortical Neurons. ACTA ACUST UNITED AC 2018; 55:295-300. [PMID: 30622383 DOI: 10.29399/npa.23259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
Abstract
Introduction Calcium (Ca) is the phenomenon intracellular molecule that regulate many cellular process in neurons physiologically. Calcium dysregulation may occur in neurons due to excessive synaptic release of glutamate or other reasons related with neurodegeneration. Astaxanthin is a carotenoid that has antioxidant effect in cell. The purpose of this study was to investigate whether astaxanthin affects NMDA subunits, calcium binding proteins and L Type voltage sensitive Ca-channels (LVSCC) in primary cortical neuron cultures in order to see its role in calcium metabolism. Methods Primary cortical neurons were prepared from embryonic day 16-Sprague Dawley rat embryos. The cultures were treated with 10 nM and 20 nM astaxanthin on day 7. NMDA subunits, LVSCC-A1C and LVSCC-A1D, calbindinD28k and parvalbumin mRNA expression levels was determined by qRT-PCR at 4, 24 and 48 hours. Results Our findings indicate that astaxanthin could have direct or indirect outcome on calcium homeostasis by regulating mRNA expression levels of NMDA subunits, LVSCC-A1C and LVSCC-A1D, calbindinD28k and parvalbumin by a dose and time dependent manner. Conclusion Neuroprotective effects of astaxanthin as a Ca homeostasis regulator should be noted throughout neurodegenerative disorders, and neurosurgery applications.
Collapse
Affiliation(s)
- Muhittin Emre Altunrende
- Department of Neurosurgery, Gaziosmanpaşa Taksim Training and Research Hospital, İstanbul, Turkey
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - İrem L Atasoy
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Esin Candaş
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
46
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
47
|
Saavedra A, García-Díaz Barriga G, Pérez-Navarro E, Alberch J. Huntington's disease: novel therapeutic perspectives hanging in the balance. Expert Opin Ther Targets 2018; 22:385-399. [PMID: 29671352 DOI: 10.1080/14728222.2018.1465930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Huntington's disease (HD), an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin gene, has long been characterized by the presence of motor symptoms due to the loss of striatal projection neurons. Cognitive dysfunction and neuropsychiatric symptoms are also present and they occur in the absence of cell death in most mouse models, pointing to neuronal dysfunction and abnormal synaptic plasticity as causative mechanisms. Areas covered: Here, we focus on those common mechanisms altered by the presence of mutant huntingtin affecting corticostriatal and hippocampal function as therapeutic targets that could prove beneficial to ameliorate both cognitive and motor function in HD. Specifically, we discuss the importance of reestablishing the balance in (1) synaptic/extrasynaptic N-methyl-D-aspartate receptor signaling, (2) mitochondrial dynamics/trafficking, (3) TrkB/p75NTR signaling, and (4) transcriptional activity. Expert opinion: Mutant huntingtin has a broad impact on multiple cellular processes, which makes it very challenging to design a curative therapeutic strategy. As we point out here, novel therapeutic interventions should look for multi-purpose drugs targeting common and early affected processes leading to corticostriatal and hippocampal dysfunction that additionally operate in a feedforward vicious cycle downstream the activation of extrasynaptic N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Ana Saavedra
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Gerardo García-Díaz Barriga
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Esther Pérez-Navarro
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| | - Jordi Alberch
- a Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències , Universitat de Barcelona , Barcelona , Spain.,b Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Spain
| |
Collapse
|
48
|
Lee JH, Zhang JY, Wei ZZ, Yu SP. Impaired social behaviors and minimized oxytocin signaling of the adult mice deficient in the N-methyl-d-aspartate receptor GluN3A subunit. Exp Neurol 2018; 305:1-12. [PMID: 29554474 DOI: 10.1016/j.expneurol.2018.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/05/2018] [Accepted: 02/26/2018] [Indexed: 12/14/2022]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of neurological diseases, such as schizophrenia, autism spectrum disorders (ASD), and Alzheimer's disease (AD), whose unique clinical hallmark is a constellation of impaired social and/or cognitive behaviors. GluN3A (NR3A) is a unique inhibitory subunit in the NMDAR complex. The role of GluN3A in social behavioral activities is obscure. In this study, we sought to evaluate altered social activities in adult GluN3A knockout (KO) mice. GluN3A KO mice spent less time in reciprocal social interaction in the social interaction test compared to wild-type (WT) mice. A social approach test using a three-chamber system confirmed that mice lacking GluN3A had lower sociability and did not exhibit a preference for social novelty. GluN3A KO mice displayed abnormal food preference in the social transmission of food preference task and low social interaction activity in the five-trial social memory test, but without social memory deficits. Using a home cage monitoring system, we observed reduced social grooming behavior in GluN3A KO mice. Signaling genes that might mediate the altered social behaviors were examined in the prefrontal cortex, hippocampus, and thalamus. Among nine genes examined, the expression of the oxytocin receptor was significantly lower in the prefrontal cortex of GluN3A KO mice than that in WT mice. Oxytocin treatment rescued social activity deficits in GluN3A KO mice. These findings support a novel idea that a chronic state of moderate increases in NMDAR activities may lead to downregulation of the oxytocin signaling and impaired behavioral activities that are seen in psychiatric/neurodegenerative disorders.
Collapse
Affiliation(s)
- Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Ya Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, VA Medical Center, Atlanta, GA 30033, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, VA Medical Center, Atlanta, GA 30033, USA.
| |
Collapse
|
49
|
Circuit and Synaptic Plasticity Mechanisms of Drug Relapse. J Neurosci 2017; 37:10867-10876. [PMID: 29118216 DOI: 10.1523/jneurosci.1821-17.2017] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023] Open
Abstract
High rates of relapse to drug use during abstinence is a defining feature of human drug addiction. This clinical scenario has been studied at the preclinical level using different animal models in which relapse to drug seeking is assessed after cessation of operant drug self-administration in rodents and monkeys. In our Society for Neuroscience (SFN) session entitled "Circuit and Synaptic Plasticity Mechanisms of Drug Relapse," we will discuss new developments of our understanding of circuits and synaptic plasticity mechanisms of drug relapse from studies combining established and novel animal models with state-of-the-art cellular, electrophysiology, anatomical, chemogenetic, and optogenetic methods. We will also discuss the translational implications of these new developments. In the mini-review that introduces our SFN session, we summarize results from our laboratories on behavioral, cellular, and circuit mechanisms of drug relapse within the context of our session.
Collapse
|
50
|
Ding J, Zhou HH, Ma QR, He ZY, Ma JB, Liu YM, Zhang YW, He YQ, Liu J. Expression of NR1 and apoptosis levels in the hippocampal cells of mice treated with MK‑801. Mol Med Rep 2017; 16:8359-8364. [PMID: 28990059 DOI: 10.3892/mmr.2017.7674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 09/09/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the characteristics of N‑methyl‑D‑aspartate receptor R1 (NR1) expression and apoptosis in the nerve cells of the hippocampus in schizophrenia‑like mice. C57BL/6 mice were randomly allocated to the following groups: i) Blank group; ii) MK‑801 group; iii) MK‑801+NMDA group, according to body weight. The NMDAR antagonist, MK‑801 (0.6 mg/kg/d) was intraperitoneally injected daily for 14 days to induce a schizophrenia‑like phenotype mouse model, and the effect of the NMDA injection via the lateral ventricle was observed. The results demonstrated that the number of NR1 positive cells in the MK‑801 group increased in the CA1 and DG regions, indicating that NMDA may reverse this change. The level of damage decreased in the MK‑801 treated group when compared with the blank group in the CA3 region. The protein expression of NR1 increased however, at the mRNA expression level, NR1 was lower in the MK‑801 treated group when compared to the blank group; NMDA also reversed this change. In addition, early and total apoptosis detected in the hippocampal nerve cells was significantly increased in the MK‑801 group when compared with the blank group, which was reversible following treatment with NMDA. These results indicated that NMDA may regulate the expression of NR1 and suppress apoptosis in hippocampal nerve cells in schizophrenia‑like mice. Thus, NR1 may be a promising therapeutic target for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Juan Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hui-Hui Zhou
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Quan-Rui Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhong-Yi He
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiang-Bo Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yin-Ming Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yi-Wei Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yu-Qing He
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|