1
|
Yang S, Usami N, Lu SL, Oda W, Maegawa H, Niwa H, Kudo C. Hormonal mechanisms in the paraventricular nuclei associated with hyperalgesia in Parkinson's disease model rats. Biochem Biophys Res Commun 2025; 744:151178. [PMID: 39706053 DOI: 10.1016/j.bbrc.2024.151178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Pain is a major non-motor symptom of Parkinson's disease (PD). The relationship between hyperalgesia and neuropeptides originating from paraventricular nucleus (PVN) in 6-hydroxydopamine (6-OHDA) rats has already been investigated for oxytocin (OXT), but not yet for arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH). The present study aimed to investigate the alterations in these neuropeptides following nociceptive stimulation in PD model rats and to examine the mechanisms of hyperalgesia. Dopaminergic nigrostriatal lesions were induced by injecting 6-OHDA into the medial forebrain bundle. Subcutaneous formalin injection into the vibrissa pad was performed in rats as a nociceptive stimulus in the orofacial region. Dopamine depletion's effect on nociception was assessed by counting the p-ERK-immunoreactive (-IR) cells in the trigeminal spinal subnucleus caudalis (Vc). The PD model rats induced by 6-OHDA injection (6-OHDA rats) showed a significantly higher number of p-ERK-IR cells in the Vc than the sham rats, confirming hyperalgesia in 6-OHDA rats. Then, we investigated the immunohistochemical responses to OXT, AVP, and CRH cells in the PVN and examined the changes in blood levels of these neuropeptides. As a result, formalin injection increased neuronal activity and blood levels of OXT and CRH in sham rats, but these were suppressed in the 6-OHDA rats. Contrarily, neuronal activity and blood level of AVP were unaffected by nociceptive stimuli and were significantly lower in 6-OHDA rats than in sham rats. Our findings suggest that OXT and CRH suppression is linked to hyperalgesia in PD, whereas AVP does not directly influence the observed hyperalgesia.
Collapse
Affiliation(s)
- Shengsen Yang
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Nayuka Usami
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shiou Ling Lu
- Department of Oral Cellular Biology, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Wakana Oda
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroharu Maegawa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Chiho Kudo
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Chuang CF, Phan TN, Fan CH, Vo Le TT, Yeh CK. Advancements in ultrasound-mediated drug delivery for central nervous system disorders. Expert Opin Drug Deliv 2025; 22:15-30. [PMID: 39625732 DOI: 10.1080/17425247.2024.2438188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Central nervous system (CNS) disorders present major therapeutic challenges due to the presence of the blood - brain barrier (BBB) and disease heterogeneity. The BBB impedes most therapeutic agents, which restricts conventional treatments. Focused ultrasound (FUS) -assisted delivery offers a novel solution by temporarily disrupting the BBB and thereby enhancing drug delivery to the CNS. AREAS COVERED This review outlines the fundamental principles of FUS-assisted drug delivery technology, with an emphasis on its role in enhancing the spatial precision of therapeutic interventions and its molecular effects on the cellular composition of the BBB. Recent promising clinical studies are surveyed, and a comparative analysis of current US-assisted delivery system is provided. Additionally, the latest advancements and challenges of this technology are discussed. EXPERT OPINION FUS-mediated drug delivery shows promise, but the clinical translation of research findings is challenging. Key issues include safety, dosage optimization, and balancing efficacy with the risk of tissue damage. Continued research is crucial to address these challenges and bridge the gap between preclinical and clinical applications, and could transform treatments of CNS disorders.
Collapse
Affiliation(s)
- Chi-Fen Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Thanh-Thuy Vo Le
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Zhao J, Wang J, Zhao K, Zhang Y, Hu W. Protopanaxadiols Eliminate Behavioral Impairments and Mitochondrial Dysfunction in Parkinson's Disease Mice Model. Neurochem Res 2024; 49:1751-1761. [PMID: 38551796 PMCID: PMC11144128 DOI: 10.1007/s11064-024-04132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 06/02/2024]
Abstract
Currently, there are no effective therapies to cure Parkinson's disease (PD), which is the second most common neurodegenerative disease primarily characterized by motor dysfunction and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Protopanaxadiols (PPDs), including 20 (R)- protopanaxadiol (R-PPD) and 20 (S)- protopanaxadiol (S-PPD), are main metabolites of ginsenosides. The role of ginsenosides in neurodegenerative diseases has been thoroughly studied, however, it is unknown whether PPDs can attenuate behavioral deficits and dopaminergic neuron injury in PD model mice to date. Here, we administered PPDs to MPTP-induced PD model mice and monitored the effects on behavior and dopaminergic neurons to investigate the effects of R-PPD and S-PPD against PD. Our results showed that R-PPD and S-PPD (at a dose of 20 mg/kg, i.g.) treatment alleviated MPTP (30 mg/kg, i.p.) induced behavioral deficits. Besides, R-PPD and S-PPD protected MPP+-induced neuron injury and mitochondrial dysfunction, and reduced the abnormal expression of Cyt C, Bax, caspase-3 and Bcl-2. These findings demonstrate that R-PPD and S-PPD were potentially useful to ameliorate PD.
Collapse
Affiliation(s)
- Jindong Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, People's Republic of China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Ji Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, People's Republic of China
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Kunying Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, People's Republic of China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Yuxiao Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, People's Republic of China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, People's Republic of China.
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
4
|
Currim F, Tanwar R, Brown-Leung JM, Paranjape N, Liu J, Sanders LH, Doorn JA, Cannon JR. Selective dopaminergic neurotoxicity modulated by inherent cell-type specific neurobiology. Neurotoxicology 2024; 103:266-287. [PMID: 38964509 PMCID: PMC11288778 DOI: 10.1016/j.neuro.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease affecting millions of individuals worldwide. Hallmark features of PD pathology are the formation of Lewy bodies in neuromelanin-containing dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc), and the subsequent irreversible death of these neurons. Although genetic risk factors have been identified, around 90 % of PD cases are sporadic and likely caused by environmental exposures and gene-environment interaction. Mechanistic studies have identified a variety of chemical PD risk factors. PD neuropathology occurs throughout the brain and peripheral nervous system, but it is the loss of DAergic neurons in the SNpc that produce many of the cardinal motor symptoms. Toxicology studies have found specifically the DAergic neuron population of the SNpc exhibit heightened sensitivity to highly variable chemical insults (both in terms of chemical structure and mechanism of neurotoxic action). Thus, it has become clear that the inherent neurobiology of nigral DAergic neurons likely underlies much of this neurotoxic response to broad insults. This review focuses on inherent neurobiology of nigral DAergic neurons and how such neurobiology impacts the primary mechanism of neurotoxicity. While interactions with a variety of other cell types are important in disease pathogenesis, understanding how inherent DAergic biology contributes to selective sensitivity and primary mechanisms of neurotoxicity is critical to advancing the field. Specifically, key biological features of DAergic neurons that increase neurotoxicant susceptibility.
Collapse
Affiliation(s)
- Fatema Currim
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Reeya Tanwar
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA
| | - Neha Paranjape
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Liu
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurie H Sanders
- Departments of Neurology and Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jonathan A Doorn
- Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47901, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47901, USA.
| |
Collapse
|
5
|
Naoi M, Maruyama W, Shamoto-Nagai M, Riederer P. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of Parkinson's disease. J Neural Transm (Vienna) 2024; 131:639-661. [PMID: 38196001 DOI: 10.1007/s00702-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Parkinson's disease is characterized by its distinct pathological features; loss of dopamine neurons in the substantia nigra pars compacta and accumulation of Lewy bodies and Lewy neurites containing modified α-synuclein. Beneficial effects of L-DOPA and dopamine replacement therapy indicate dopamine deficit as one of the main pathogenic factors. Dopamine and its oxidation products are proposed to induce selective vulnerability in dopamine neurons. However, Parkinson's disease is now considered as a generalized disease with dysfunction of several neurotransmitter systems caused by multiple genetic and environmental factors. The pathogenic factors include oxidative stress, mitochondrial dysfunction, α-synuclein accumulation, programmed cell death, impaired proteolytic systems, neuroinflammation, and decline of neurotrophic factors. This paper presents interactions among dopamine, α-synuclein, monoamine oxidase, its inhibitors, and related genes in mitochondria. α-Synuclein inhibits dopamine synthesis and function. Vice versa, dopamine oxidation by monoamine oxidase produces toxic aldehydes, reactive oxygen species, and quinones, which modify α-synuclein, and promote its fibril production and accumulation in mitochondria. Excessive dopamine in experimental models modifies proteins in the mitochondrial electron transport chain and inhibits the function. α-Synuclein and familiar Parkinson's disease-related gene products modify the expression and activity of monoamine oxidase. Type A monoamine oxidase is associated with neuroprotection by an unspecific dose of inhibitors of type B monoamine oxidase, rasagiline and selegiline. Rasagiline and selegiline prevent α-synuclein fibrillization, modulate this toxic collaboration, and exert neuroprotection in experimental studies. Complex interactions between these pathogenic factors play a decisive role in neurodegeneration in PD and should be further defined to develop new therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Peter Riederer
- Clinical Neurochemistry, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Fornstedt Wallin B. Oxidation of dopamine and related catechols in dopaminergic brain regions in Parkinson's disease and during ageing in non-Parkinsonian subjects. J Neural Transm (Vienna) 2024; 131:213-228. [PMID: 38238531 DOI: 10.1007/s00702-023-02718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/28/2023] [Indexed: 02/18/2024]
Abstract
The present study was performed to examine if catechol oxidation is higher in brains from patients with Parkinson's disease compared to age-matched controls, and if catechol oxidation increases with age. Brain tissue from Parkinson patients and age-matched controls was examined for oxidation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylalanine (DOPA) to corresponding quinones, by measurement of 5-S-cysteinyl-dopamine, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA. The cysteinyl catechols are assumed to be biomarkers for DA, DOPAC and DOPA autoxidation and part of the biosynthetic pathway of neuromelanin. The concentrations of the 5-S-cysteinyl catechols were lower, whereas the 5-S-cysteinyl-DA/DA and 5-S-cysteinyl-DOPAC/DOPAC ratios tended to be higher in the Parkinson group compared to controls, which was interpreted as a higher degree of oxidation. High 5-S-cysteinyl-DA/DA ratios were found in the substantia nigra of a sub-population of the Parkinson group. Based on 5-S-cysteinyl-DA/DA ratios, dopamine oxidation was found to increase statistically significantly with age in the caudate nucleus, and non-significantly in the substantia nigra. In conclusion, the occurrence of 5-S-cysteinyl-DA, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA was demonstrated in dopaminergic brain areas of humans, a tendency for higher oxidation of DA in the Parkinson group compared to controls was observed as well as a statistically significant increase in DA oxidation with age. Possibly, autoxidation of DA and other catechols are involved in both normal and pathological ageing of the brain. This study confirms one earlier but small study, as well as complements one study on non-PD cases and one study on both PD cases and controls on NM bound or integrated markers or catechols.
Collapse
Affiliation(s)
- Bodil Fornstedt Wallin
- Department of Pharmacology, University of Göteborg (at the time of the study), Göteborg, Sweden.
| |
Collapse
|
7
|
Banerjee C, Barman R, Darshani P, Pillai M, Ahuja S, Mondal R, Pragadheesh VS, Chakraborty J, Kumar D. α-Viniferin, a dietary phytochemical, inhibits Monoamine oxidase and alleviates Parkinson's disease associated behavioral deficits in a mice model. Neurochem Int 2024; 174:105698. [PMID: 38364939 DOI: 10.1016/j.neuint.2024.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent age-related neurodegenerative disorders. Behavioral complexities worsen over time due to progressive dopaminergic (DArgic) neuronal loss at substantia nigra region of brain. Available treatments typically aim to increase dopamine (DA) levels at striatum. DA is degraded by Monoamine oxidase (MAO), thus dietary phytochemicals with MAO inhibitory properties can contribute to elevate DA levels and reduce the ailment. Characterization of naturally occurring dietary MAO inhibitors is inadequate. Based on available knowledge, we selected different classes of molecules and conducted a screening process to assess their potential as MAO inhibitors. The compounds mostly derived from food sources, broadly belonging to triterpenoids (ursane, oleanane and hopane), alkaloid, polyphenolics, monoterpenoids, alkylbenzene, phenylpropanoid and aromatic alcohol classes. Among all the molecules, highest level of MAO inhibition is offered by α-viniferin, a resveratrol trimer. Cell viability, mitochondrial morphology and reactive oxygen species (ROS) generation remained unaltered by 50 μM α-viniferin treatment in-vitro. Toxicity studies in Drosophila showed unchanged gross neuronal morphology, ROS level, motor activity or long-term survival. α-Viniferin inhibited MAO in mice brain and elevated striatal DA levels. PD-related akinesia and cataleptic behavior were attenuated by α-viniferin due to increase in striatal DA. Our study implies that α-viniferin can be used as an adjunct phytotherapeutic agent for mitigating PD-related behavioral deterioration.
Collapse
Affiliation(s)
- Chayan Banerjee
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Raju Barman
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Priya Darshani
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Meghana Pillai
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Sanchi Ahuja
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India
| | - Rupsha Mondal
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - V S Pragadheesh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru- 560065, India
| | - Joy Chakraborty
- Cell Biology and Physiology Division, CSIR- Indian Institute of Chemical Biology, Kolkata- 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Deepak Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata- 700032, India.
| |
Collapse
|
8
|
Briñez-Gallego P, da Costa Silva DG, Horn AP, Hort MA. Effects of curcumin to counteract levodopa-induced toxicity in zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:950-964. [PMID: 37767720 DOI: 10.1080/15287394.2023.2261120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor dysfunction due to the death of dopaminergic neurons in the substantia nigra pars compacta. Currently, treatment of PD has focused on increasing dopamine levels, using a dopamine precursor, levodopa (L-DOPA) or stimulation of dopaminergic receptors. Prolonged use of L-DOPA is associated with the occurrence of motor complications and dyskinesia, attributed to neurotoxic effects of this drug. The aim of this study was to investigate the effects of curcumin (CUR), a lipophilic polyphenol, to counteract L-DOPA induced toxicity. Zebrafish larvae were pre-treated with CUR (0.05 µM) or vehicle dimethyl sulfoxide (DMSO) for 24 hr and subsequently exposed to L-DOPA (1 mM) or vehicle. Immediately and 24 hr after L-DOPA exposure, spontaneous swimming and dark/light behavioral tests were performed. In addition, levels of reactive oxygen species (ROS) and lipid peroxidation products were determined at the end of treatment. CUR significantly improved the motor impairment induced by 24 hr L-DOPA treatment, and reduced levels of ROS and lipoperoxidation products in zebrafish larvae. In conclusion, our results suggest that CUR acts as a neuroprotector against toxicity initiated by L-DOPA. Evidence suggests the observed effects of CUR are associated with its antioxidant properties.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brasil
| |
Collapse
|
9
|
Azevedo MD, Prince N, Humbert-Claude M, Mesa-Infante V, Jeanneret C, Golzne V, De Matos K, Jamot BB, Magara F, Gonzalez-Hernandez T, Tenenbaum L. Oxidative stress induced by sustained supraphysiological intrastriatal GDNF delivery is prevented by dose regulation. Mol Ther Methods Clin Dev 2023; 31:101106. [PMID: 37766790 PMCID: PMC10520444 DOI: 10.1016/j.omtm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Despite its established neuroprotective effect on dopaminergic neurons and encouraging phase I results, intraputaminal GDNF administration failed to demonstrate significant clinical benefits in Parkinson's disease patients. Different human GDNF doses were delivered in the striatum of rats with a progressive 6-hydroxydopamine lesion using a sensitive doxycycline-regulated AAV vector. GDNF treatment was applied either continuously or intermittently (2 weeks on/2 weeks off) during 17 weeks. Stable reduction of motor impairments as well as increased number of dopaminergic neurons and striatal innervation were obtained with a GDNF dose equivalent to 3- and 10-fold the rat endogenous level. In contrast, a 20-fold increased GDNF level only temporarily provided motor benefits and neurons were not spared. Strikingly, oxidized DNA in the substantia nigra increased by 50% with 20-fold, but not 3-fold GDNF treatment. In addition, only low-dose GDNF allowed to preserve dopaminergic neuron cell size. Finally, aberrant dopaminergic fiber sprouting was observed with 20-fold GDNF but not at lower doses. Intermittent 20-fold GDNF treatment allowed to avoid toxicity and spare dopaminergic neurons but did not restore their cell size. Our data suggest that maintaining GDNF concentration under a threshold generating oxidative stress is a pre-requisite to obtain significant symptomatic relief and neuroprotection.
Collapse
Affiliation(s)
- Marcelo Duarte Azevedo
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Naika Prince
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Marie Humbert-Claude
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Cheryl Jeanneret
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Valentine Golzne
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Kevin De Matos
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Benjamin Boury Jamot
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Fulvio Magara
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| |
Collapse
|
10
|
Ait Lhaj Z, Ibork H, El Idrissi S, Ait Lhaj F, Sobeh M, Mohamed WMY, Alamy M, Taghzouti K, Abboussi O. Bioactive strawberry fruit ( Arbutus unedo L.) extract remedies paraquat-induced neurotoxicity in the offspring prenatally exposed rats. Front Neurosci 2023; 17:1244603. [PMID: 37901424 PMCID: PMC10600521 DOI: 10.3389/fnins.2023.1244603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Background Paraquat (1,1'-dimethyl-4-4'-bipyridinium dichloride) exposure is well-established as a neurotoxic agent capable of causing neurological deficits in offspring. This study aimed to investigate therapeutic effects of Arbutus unedo L. aqueous extract (AU) against paraquat (PQ) exposure. Methods For that the phytoconstituents of AU was determined by LC/MS, and then its antioxidant potential was assessed by DPPH and ABTS assays. The assessment included its impact on cell viability and mitochondrial metabolism using N27 dopaminergic cells. Additionally, we evaluated the effects of prenatal PQ exposure on motor coordination, dopamine levels, trace element levels, and total antioxidant capacity (TAC) in rat progeny. Results The phytochemical profile of AU extract revealed the presence of 35 compounds, primarily phenolic and organic acids, and flavonoids. This accounted for its strong in vitro antioxidant activities against DPPH and ABTS radicals, surpassing the activities of vitamin C. Our findings demonstrated that AU effectively inhibited PQ-induced loss of N27 rat dopaminergic neural cells and significantly enhanced their mitochondrial respiration. Furthermore, daily post-treatment with AU during the 21 days of the rat's pregnancy alleviated PQ-induced motor deficits and akinesia in rat progeny. These effects inhibited dopamine depletion and reduced iron levels in the striatal tissues. The observed outcomes appeared to be mediated by the robust antioxidant activity of AU, effectively counteracting the PQ-induced decrease in TAC in the blood plasma of rat progeny. These effects could be attributed to the bioactive compounds present in AU, including phenolic acids such as gallic acid and flavonoids such as quercetin, rutin, apigenin, glucuronide, and kaempferol, all known for their potent antioxidant capacity. Discussion In conclusion, this preclinical study provided the first evidence of the therapeutic potential of AU extract against PQ-induced neurotoxicity. These findings emphasize the need for further exploration of the clinical applicability of AU in mitigating neurotoxin-induced brain damage.
Collapse
Affiliation(s)
- Zakaria Ait Lhaj
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Sara El Idrissi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Farida Ait Lhaj
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Faculty of Sciences, Center of Materials, Mohammed V University, Rabat, Morocco
| | - Mansour Sobeh
- AgroBiosciences Research Division, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Wael M. Y. Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Meryem Alamy
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University, Rabat, Morocco
| |
Collapse
|
11
|
Brzezicki MA, Conway N, Sotirakis C, FitzGerald JJ, Antoniades CA. Antiparkinsonian medication masks motor signal progression in de novo patients. Heliyon 2023; 9:e16415. [PMID: 37265609 PMCID: PMC10230196 DOI: 10.1016/j.heliyon.2023.e16415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Patients not yet receiving medication provide insight to drug-naïve early physiology of Parkinson's Disease (PD). Wearable sensors can measure changes in motor features before and after introduction of antiparkinsonian medication. We aimed to identify features of upper limb bradykinesia, postural stability, and gait that measurably progress in de novo PD patients prior to the start of medication, and determine whether these features remain sensitive to progression in the period after commencement of antiparkinsonian medication. Upper limb motion was measured using an inertial sensor worn on a finger, while postural stability and gait were recorded using an array of six wearable sensors. Patients were tested over nine visits at three monthly intervals. The timepoint of start of medication was noted. Three upper limb bradykinetic features (finger tapping speed, pronation supination speed, and pronation supination amplitude) and three gait features (gait speed, arm range of motion, duration of stance phase) were found to progress in unmedicated early-stage PD patients. In all features, progression was masked after the start of medication. Commencing antiparkinsonian medication is known to lead to masking of progression signals in clinical measures in de novo PD patients. In this study, we show that this effect is also observed with digital measures of bradykinetic and gait motor features.
Collapse
Affiliation(s)
- Maksymilian A. Brzezicki
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Niall Conway
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Charalampos Sotirakis
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - James J. FitzGerald
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Chrystalina A. Antoniades
- Neurometrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| |
Collapse
|
12
|
Riederer P, Nagatsu T, Youdim MBH, Wulf M, Dijkstra JM, Sian-Huelsmann J. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson's disease. J Neural Transm (Vienna) 2023; 130:627-646. [PMID: 37062012 PMCID: PMC10121516 DOI: 10.1007/s00702-023-02630-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Since the description of some peculiar symptoms by James Parkinson in 1817, attempts have been made to define its cause or at least to enlighten the pathology of "Parkinson's disease (PD)." The vast majority of PD subtypes and most cases of sporadic PD share Lewy bodies (LBs) as a characteristic pathological hallmark. However, the processes underlying LBs generation and its causal triggers are still unknown. ɑ-Synuclein (ɑ-syn, encoded by the SNCA gene) is a major component of LBs, and SNCA missense mutations or duplications/triplications are causal for rare hereditary forms of PD. Thus, it is imperative to study ɑ-syn protein and its pathology, including oligomerization, fibril formation, aggregation, and spreading mechanisms. Furthermore, there are synergistic effects in the underlying pathogenic mechanisms of PD, and multiple factors-contributing with different ratios-appear to be causal pathological triggers and progression factors. For example, oxidative stress, reduced antioxidative capacity, mitochondrial dysfunction, and proteasomal disturbances have each been suggested to be causal for ɑ-syn fibril formation and aggregation and to contribute to neuroinflammation and neural cell death. Aging is also a major risk factor for PD. Iron, as well as neuromelanin (NM), show age-dependent increases, and iron is significantly increased in the Parkinsonian substantia nigra (SN). Iron-induced pathological mechanisms include changes of the molecular structure of ɑ-syn. However, more recent PD research demonstrates that (i) LBs are detected not only in dopaminergic neurons and glia but in various neurotransmitter systems, (ii) sympathetic nerve fibres degenerate first, and (iii) at least in "brain-first" cases dopaminergic deficiency is evident before pathology induced by iron and NM. These recent findings support that the ɑ-syn/LBs pathology as well as iron- and NM-induced pathology in "brain-first" cases are important facts of PD pathology and via their interaction potentiate the disease process in the SN. As such, multifactorial toxic processes posted on a personal genetic risk are assumed to be causal for the neurodegenerative processes underlying PD. Differences in ratios of multiple factors and their spatiotemporal development, and the fact that common triggers of PD are hard to identify, imply the existence of several phenotypical subtypes, which is supported by arguments from both the "bottom-up/dual-hit" and "brain-first" models. Therapeutic strategies are necessary to avoid single initiation triggers leading to PD.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000, Odense, Denmark.
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | | | - Max Wulf
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801, Bochum, Germany
| | | | | |
Collapse
|
13
|
Lee SJ, Maeda S, Gao J, Nichols CG. Oxidation Driven Reversal of PIP 2-dependent Gating in GIRK2 Channels. FUNCTION 2023; 4:zqad016. [PMID: 37168492 PMCID: PMC10165546 DOI: 10.1093/function/zqad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Physiological activity of G protein gated inward rectifier K+ (GIRK, Kir3) channel, dynamically regulated by three key ligands, phosphoinositol-4,5-bisphosphate (PIP2), Gβγ, and Na+, underlies cellular electrical response to multiple hormones and neurotransmitters in myocytes and neurons. In a reducing environment, matching that inside cells, purified GIRK2 (Kir3.2) channels demonstrate low basal activity, and expected sensitivity to the above ligands. However, under oxidizing conditions, anomalous behavior emerges, including rapid loss of PIP2 and Na+-dependent activation and a high basal activity in the absence of any agonists, that is now paradoxically inhibited by PIP2. Mutagenesis identifies two cysteine residues (C65 and C190) as being responsible for the loss of PIP2 and Na+-dependent activity and the elevated basal activity, respectively. The results explain anomalous findings from earlier studies and illustrate the potential pathophysiologic consequences of oxidation on GIRK channel function, as well as providing insight to reversed ligand-dependence of Kir and KirBac channels.
Collapse
Affiliation(s)
- Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shoji Maeda
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jian Gao
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
15
|
Wilson L, Lee CA, Mason CF, Khodjaniyazova S, Flores KB, Muddiman DC, Sombers LA. Simultaneous Measurement of Striatal Dopamine and Hydrogen Peroxide Transients Associated with L-DOPA Induced Rotation in Hemiparkinsonian Rats. ACS MEASUREMENT SCIENCE AU 2022; 2:120-131. [PMID: 36785724 PMCID: PMC9838821 DOI: 10.1021/acsmeasuresciau.1c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder commonly treated with levodopa (L-DOPA), which eventually induces abnormal involuntary movements (AIMs). The neurochemical contributors to these dyskinesias are unknown; however, several lines of evidence indicate an interplay of dopamine (DA) and oxidative stress. Here, DA and hydrogen peroxide (H2O2) were simultaneously monitored at discrete recording sites in the dorsal striata of hemiparkinsonian rats using fast-scan cyclic voltammetry. Mass spectrometry imaging validated the lesions. Hemiparkinsonian rats exhibited classic L-DOPA-induced AIMs and rotations as well as increased DA and H2O2 tone over saline controls after 1 week of treatment. By week 3, DA tone remained elevated beyond that of controls, but H2O2 tone was largely normalized. At this time point, rapid chemical transients were time-locked with spontaneous bouts of rotation. Striatal H2O2 rapidly increased with the initiation of contraversive rotational behaviors in lesioned L-DOPA animals, in both hemispheres. DA signals simultaneously decreased with rotation onset. The results support a role for these striatal neuromodulators in the adaptive changes that occur with L-DOPA treatment in PD and reveal a precise interplay between DA and H2O2 in the initiation of involuntary locomotion.
Collapse
Affiliation(s)
- Leslie
R. Wilson
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Christie A. Lee
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Catherine F. Mason
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Sitora Khodjaniyazova
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Kevin B. Flores
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - David C. Muddiman
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Muddapu VRJ, Vijayakumar K, Ramakrishnan K, Chakravarthy VS. A Multi-Scale Computational Model of Levodopa-Induced Toxicity in Parkinson's Disease. Front Neurosci 2022; 16:797127. [PMID: 35516806 PMCID: PMC9063169 DOI: 10.3389/fnins.2022.797127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/15/2022] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is caused by the progressive loss of dopaminergic cells in substantia nigra pars compacta (SNc). The root cause of this cell loss in PD is still not decisively elucidated. A recent line of thinking has traced the cause of PD neurodegeneration to metabolic deficiency. Levodopa (L-DOPA), a precursor of dopamine, used as a symptom-relieving treatment for PD, leads to positive and negative outcomes. Several researchers inferred that L-DOPA might be harmful to SNc cells due to oxidative stress. The role of L-DOPA in the course of the PD pathogenesis is still debatable. We hypothesize that energy deficiency can lead to L-DOPA-induced toxicity in two ways: by promoting dopamine-induced oxidative stress and by exacerbating excitotoxicity in SNc. We present a systems-level computational model of SNc-striatum, which will help us understand the mechanism behind neurodegeneration postulated above and provide insights into developing disease-modifying therapeutics. It was observed that SNc terminals are more vulnerable to energy deficiency than SNc somas. During L-DOPA therapy, it was observed that higher L-DOPA dosage results in increased loss of terminals in SNc. It was also observed that co-administration of L-DOPA and glutathione (antioxidant) evades L-DOPA-induced toxicity in SNc neurons. Our proposed model of the SNc-striatum system is the first of its kind, where SNc neurons were modeled at a biophysical level, and striatal neurons were modeled at a spiking level. We show that our proposed model was able to capture L-DOPA-induced toxicity in SNc, caused by energy deficiency.
Collapse
Affiliation(s)
| | - Karthik Vijayakumar
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | | | - V. Srinivasa Chakravarthy
- Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- *Correspondence: V. Srinivasa Chakravarthy
| |
Collapse
|
17
|
Guatteo E, Berretta N, Monda V, Ledonne A, Mercuri NB. Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23094508. [PMID: 35562898 PMCID: PMC9102081 DOI: 10.3390/ijms23094508] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
The degeneration of nigral dopaminergic neurons is considered the hallmark of Parkinson’s disease (PD), and it is triggered by different factors, including mitochondrial dysfunction, Lewy body accumulation, neuroinflammation, excitotoxicity and metal accumulation. Despite the extensive literature devoted to unravelling the signalling pathways involved in neuronal degeneration, little is known about the functional impairments occurring in these cells during illness progression. Of course, it is not possible to obtain direct information on the properties of the dopaminergic cells in patients. However, several data are available in the literature reporting changes in the function of these cells in PD animal models. In the present manuscript, we focus on dopaminergic neuron functional properties and summarize shared or peculiar features of neuronal dysfunction in different PD animal models at different stages of the disease in an attempt to design a picture of the functional modifications occurring in nigral dopaminergic neurons during disease progression preceding their eventual death.
Collapse
Affiliation(s)
- Ezia Guatteo
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Nicola Berretta
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Vincenzo Monda
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
| | - Ada Ledonne
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Correspondence: (A.L.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00143 Rome, Italy
- Correspondence: (A.L.); (N.B.M.)
| |
Collapse
|
18
|
Alhassen S, Senel M, Alachkar A. Surface Plasmon Resonance Identifies High-Affinity Binding of l-DOPA to Siderocalin/Lipocalin-2 through Iron-Siderophore Action: Implications for Parkinson's Disease Treatment. ACS Chem Neurosci 2022; 13:158-165. [PMID: 34939797 DOI: 10.1021/acschemneuro.1c00693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
l-3,4-Dihydroxyphenylalanine (l-DOPA), the dopamine precursor, remains the frontline treatment for Parkinson's disease (PD). With the treatment progress, l-DOPA efficacy decreases, necessitating higher and more frequent doses, with higher risks of dyskinesia. l-DOPA chelates iron through its catechol group, forming the l-DOPA:Fe complex; however, the fate of this complex is unknown. Catechol siderophore-like compounds are known to bind siderocalin (Scn)/lipocalin-2 to form stable siderophore:Fe:Scn complexes. Scn is upregulated in PD patients' substantia nigra and may play a role in PD pathophysiology. Therefore, in this study, we used the surface plasmon resonance (SPR) technique to examine the binding properties of l-DOPA to Scn. We found that l-DOPA formed a stable complex with Scn in the presence of Fe3+. Our analysis of the binding properties of l-DOPA precursors and metabolites indicates that the catechol group is necessary but not sufficient to form a stable complex with Scn. Finally, the affinity constant (Kd) of DOPA:Fe3+ binding with Scn (0.8 μM) was lower than l-DOPA plasma peak concentrations in l-DOPA preparations in the past six decades. Our results speculate a significant role for the l-DOPA-Scn complex in the decreased bioavailability of l-DOPA with the progress of PD.
Collapse
Affiliation(s)
- Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California─Irvine, Irvine, California 92697, United States
| | - Mehmet Senel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California─Irvine, Irvine, California 92697, United States
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California─Irvine, Irvine, California 92697, United States
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California─Irvine, Irvine, California 92697, United States
- UC Irvine Center for the Neurobiology of Learning and Memory, University of California─Irvine, Irvine, California 92697, United States
| |
Collapse
|
19
|
Nair SS, Muddapu VR, Chakravarthy VS. A Multiscale, Systems-Level, Neuropharmacological Model of Cortico-Basal Ganglia System for Arm Reaching Under Normal, Parkinsonian, and Levodopa Medication Conditions. Front Comput Neurosci 2022; 15:756881. [PMID: 35046787 PMCID: PMC8762321 DOI: 10.3389/fncom.2021.756881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
In order to understand the link between substantia nigra pars compacta (SNc) cell loss and Parkinson's disease (PD) symptoms, we developed a multiscale computational model that can replicate the symptoms at the behavioural level by incorporating the key cellular and molecular mechanisms underlying PD pathology. There is a modelling tradition that links dopamine to reward and uses reinforcement learning (RL) concepts to model the basal ganglia. In our model, we replace the abstract representations of reward with the realistic variable of extracellular DA released by a network of SNc cells and incorporate it in the RL-based behavioural model, which simulates the arm reaching task. Our results successfully replicated the impact of SNc cell loss and levodopa (L-DOPA) medication on reaching performance. It also shows the side effects of medication, such as wearing off and peak dosage dyskinesias. The model demonstrates how differential dopaminergic axonal degeneration in basal ganglia results in various cardinal symptoms of PD. It was able to predict the optimum L-DOPA medication dosage for varying degrees of cell loss. The proposed model has a potential clinical application where drug dosage can be optimised as per patient characteristics.
Collapse
Affiliation(s)
- Sandeep Sathyanandan Nair
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Vignayanandam Ravindernath Muddapu
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - V. Srinivasa Chakravarthy
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Center for Complex Systems and Dynamics, Indian Institute of Technology Madras, Chennai, India
- *Correspondence: V. Srinivasa Chakravarthy
| |
Collapse
|
20
|
Mercuri NB, Federici M, Rizzo FR, Maugeri L, D'Addario SL, Ventura R, Berretta N. Long-Term Depression of Striatal DA Release Induced by mGluRs via Sustained Hyperactivity of Local Cholinergic Interneurons. Front Cell Neurosci 2021; 15:798464. [PMID: 34924961 PMCID: PMC8674918 DOI: 10.3389/fncel.2021.798464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The cellular mechanisms regulating dopamine (DA) release in the striatum have attracted much interest in recent years. By in vitro amperometric recordings in mouse striatal slices, we show that a brief (5 min) exposure to the metabotropic glutamate receptor agonist DHPG (50 μM) induces a profound depression of synaptic DA release, lasting over 1 h from DHPG washout. This long-term depression is sensitive to glycine, which preferentially inhibits local cholinergic interneurons, as well as to drugs acting on nicotinic acetylcholine receptors and to the pharmacological depletion of released acetylcholine. The same DHPG treatment induces a parallel long-lasting enhancement in the tonic firing of presumed striatal cholinergic interneurons, measured with multi-electrode array recordings. When DHPG is bilaterally infused in vivo in the mouse striatum, treated mice display an anxiety-like behavior. Our results demonstrate that metabotropic glutamate receptors stimulation gives rise to a prolonged depression of the striatal dopaminergic transmission, through a sustained enhancement of released acetylcholine, due to the parallel long-lasting potentiation of striatal cholinergic interneurons firing. This plastic interplay between dopamine, acetylcholine, and glutamate in the dorsal striatum may be involved in anxiety-like behavior typical of several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nicola B Mercuri
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy.,Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Mauro Federici
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy
| | | | - Lorenzo Maugeri
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy
| | - Sebastian L D'Addario
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy.,Department of Psychology and Center Daniel Bovet, Sapienza University, Rome, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy.,Department of Psychology and Center Daniel Bovet, Sapienza University, Rome, Italy
| | - Nicola Berretta
- IRCCS Fondazione Santa Lucia, Laboratory of Experimental Neurology, Rome, Italy
| |
Collapse
|
21
|
Leong YQ, Lee SWH, Ng KY. Cancer risk in Parkinson disease: An updated systematic review and meta-analysis. Eur J Neurol 2021; 28:4219-4237. [PMID: 34403556 DOI: 10.1111/ene.15069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE Increasing evidence suggests significant associations between Parkinson disease (PD) and cancer risks. We conducted an updated review of studies that examined the risks of various cancer among PD patients and how this differed when cancer preceded PD diagnosis or PD diagnosis preceded cancer. METHODS Four databases were searched for studies that examined the association between PD and incidence of cancer from database inception to 4 June 2021. Three independent reviewers screened the articles for eligibility and extracted study data. Pooled relative risk with 95% confidence intervals were calculated using a random effects model. RESULTS Forty studies involving 11 case-control studies, two nested case-control studies, 22 cohort studies, and five cross-sectional studies were included. Compared to controls, PD patients had lower risks of lung, genitourinary, gastrointestinal, and haematological cancers. Conversely, higher risks of melanoma and brain cancer were noted among PD patients. No association was found between PD and risk of female cancers. Subgroup analysis found negative associations between PD patients and risks of colon cancer, rectal cancer, and non-Hodgkin lymphoma. CONCLUSIONS Findings from our meta-analysis suggest PD patients had lower risks of lung, genitourinary, gastrointestinal, and haematological cancers and increased risks of melanoma and brain cancer. Future research to investigate the underlying mechanisms between PD and cancers is warranted.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.,School of Pharmacy, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
22
|
Xie J, Chen S, Bopassa JC, Banerjee S. Drosophila tubulin polymerization promoting protein mutants reveal pathological correlates relevant to human Parkinson's disease. Sci Rep 2021; 11:13614. [PMID: 34193896 PMCID: PMC8245532 DOI: 10.1038/s41598-021-92738-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with no known cure. PD is characterized by locomotion deficits, nigrostriatal dopaminergic neuronal loss, mitochondrial dysfunctions and formation of α-Synuclein aggregates. A well-conserved and less understood family of Tubulin Polymerization Promoting Proteins (TPPP) is also implicated in PD and related disorders, where TPPP exists in pathological aggregates in neurons in patient brains. However, there are no in vivo studies on mammalian TPPP to understand the genetics and neuropathology linking TPPP aggregation or neurotoxicity to PD. Recently, we discovered the only Drosophila homolog of human TPPP named Ringmaker (Ringer). Here, we report that adult ringer mutants display progressive locomotor disabilities, reduced lifespan and neurodegeneration. Importantly, our findings reveal that Ringer is associated with mitochondria and ringer mutants have mitochondrial structural damage and dysfunctions. Adult ringer mutants also display progressive loss of dopaminergic neurons. Together, these phenotypes of ringer mutants recapitulate some of the salient features of human PD patients, thus allowing us to utilize ringer mutants as a fly model relevant to PD, and further explore its genetic and molecular underpinnings to gain insights into the role of human TPPP in PD.
Collapse
Affiliation(s)
- Jing Xie
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Shuting Chen
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Swati Banerjee
- Department of Cellular and Integrative Physiology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
23
|
Steele JR, Strange N, Rodgers KJ, Padula MP. A Novel Method for Creating a Synthetic L-DOPA Proteome and In Vitro Evidence of Incorporation. Proteomes 2021; 9:24. [PMID: 34073856 PMCID: PMC8162537 DOI: 10.3390/proteomes9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Proteinopathies are protein misfolding diseases that have an underlying factor that affects the conformation of proteoforms. A factor hypothesised to play a role in these diseases is the incorporation of non-protein amino acids into proteins, with a key example being the therapeutic drug levodopa. The presence of levodopa as a protein constituent has been explored in several studies, but it has not been examined in a global proteomic manner. This paper provides a proof-of-concept method for enzymatically creating levodopa-containing proteins using the enzyme tyrosinase and provides spectral evidence of in vitro incorporation in addition to the induction of the unfolded protein response due to levodopa.
Collapse
Affiliation(s)
- Joel Ricky Steele
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Natalie Strange
- School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Kenneth J. Rodgers
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| |
Collapse
|
24
|
Muddapu VR, Chakravarthy VS. Influence of energy deficiency on the subcellular processes of Substantia Nigra Pars Compacta cell for understanding Parkinsonian neurodegeneration. Sci Rep 2021; 11:1754. [PMID: 33462293 PMCID: PMC7814067 DOI: 10.1038/s41598-021-81185-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023] Open
Abstract
Parkinson's disease (PD) is the second most prominent neurodegenerative disease around the world. Although it is known that PD is caused by the loss of dopaminergic cells in substantia nigra pars compacta (SNc), the decisive cause of this inexorable cell loss is not clearly elucidated. We hypothesize that "Energy deficiency at a sub-cellular/cellular/systems level can be a common underlying cause for SNc cell loss in PD." Here, we propose a comprehensive computational model of SNc cell, which helps us to understand the pathophysiology of neurodegeneration at the subcellular level in PD. The aim of the study is to see how deficits in the supply of energy substrates (glucose and oxygen) lead to a deficit in adenosine triphosphate (ATP). The study also aims to show that deficits in ATP are the common factor underlying the molecular-level pathological changes, including alpha-synuclein aggregation, reactive oxygen species formation, calcium elevation, and dopamine dysfunction. The model suggests that hypoglycemia plays a more crucial role in leading to ATP deficits than hypoxia. We believe that the proposed model provides an integrated modeling framework to understand the neurodegenerative processes underlying PD.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- grid.417969.40000 0001 2315 1926Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036 Tamil Nadu India
| | - V. Srinivasa Chakravarthy
- grid.417969.40000 0001 2315 1926Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Sardar Patel Road, Chennai, 600036 Tamil Nadu India
| |
Collapse
|
25
|
Chen P, Wang Y, Chen L, Song N, Xie J. Apelin-13 Protects Dopaminergic Neurons against Rotenone-Induced Neurotoxicity through the AMPK/mTOR/ULK-1 Mediated Autophagy Activation. Int J Mol Sci 2020; 21:ijms21218376. [PMID: 33171641 PMCID: PMC7664695 DOI: 10.3390/ijms21218376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Several brain–gut peptides are able to exert neuroprotective effects on the nigrostriatal dopaminergic system. Apelin-13 is a neuropeptide, conveying potential neuroprotective activities. However, whether, and how, apelin-13 could antagonize rotenone-induced neurotoxicity has not yet been elucidated. In the present study, rotenone-treated SH-SY5Y cells and rats were used to clarify whether apelin-13 has protective effects on dopaminergic neurons, both in vivo and in vitro. The results showed that apelin-13 could protect SH-SY5Y cells from rotenone-induced injury and apoptosis. Apelin-13 was able to activate autophagy, and restore rotenone induced autophagy impairment in SH-SY5Y cells, which could be blocked by the autophagy inhibitor 3-Methyladenine. Apelin-13 activated AMPK/mTOR/ULK-1 signaling, AMPKα inhibitor compound C, as well as apelin receptor blockage via siRNA, which could block apelin-13-induced signaling activation, autophagy activation, and protective effects, in rotenone-treated SH-SY5Y cells. These results indicated that apelin-13 exerted neuroprotective properties against rotenone by stimulating AMPK/mTOR/ULK-1 signaling-mediated autophagy via the apelin receptor. We also observed that intracerebroventricular injection of apelin-13 could alleviate nigrostriatal dopaminergic neuron degeneration in rotenone-treated rats. Our findings provide new insights into the mechanism by which apelin-13 might attenuate neurotoxicity in PD.
Collapse
Affiliation(s)
- Peng Chen
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China; (P.C.); (Y.W.); (L.C.)
- Department of Physiology, College of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Youcui Wang
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China; (P.C.); (Y.W.); (L.C.)
| | - Leilei Chen
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China; (P.C.); (Y.W.); (L.C.)
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China; (P.C.); (Y.W.); (L.C.)
- Correspondence: (N.S.); or (J.X.)
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China; (P.C.); (Y.W.); (L.C.)
- Correspondence: (N.S.); or (J.X.)
| |
Collapse
|
26
|
Lecours C, St-Pierre MK, Picard K, Bordeleau M, Bourque M, Awogbindin IO, Benadjal A, Ibanez FG, Gagnon D, Cantin L, Parent M, Di Paolo T, Tremblay ME. Levodopa partially rescues microglial numerical, morphological, and phagolysosomal alterations in a monkey model of Parkinson's disease. Brain Behav Immun 2020; 90:81-96. [PMID: 32755645 DOI: 10.1016/j.bbi.2020.07.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative motor disorder. The mechanisms underlying the onset and progression of Levodopa (L-Dopa)-induced dyskinesia (LID) during PD treatment remain elusive. Emerging evidence implicates functional modification of microglia in the development of LID. Thus, understanding the link between microglia and the development of LID may provide the knowledge required to preserve or promote beneficial microglial functions, even during a prolonged L-Dopa treatment. To provide novel insights into microglial functional alterations in PD pathophysiology, we characterized their density, morphology, ultrastructure, and degradation activity in the sensorimotor functional territory of the putamen, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) cynomolgus monkeys. A subset of MPTP monkeys was treated orally with L-Dopa and developed LID similar to PD patients. Using a combination of light, confocal and transmission electron microscopy, our quantitative analyses revealed alterations of microglial density, morphology and phagolysosomal activity following MPTP intoxication that were partially normalized with L-Dopa treatment. In particular, microglial density, cell body and arborization areas were increased in the MPTP monkeys, whereas L-Dopa-treated MPTP animals presented a microglial phenotype similar to the control animals. At the ultrastructural level, microglia did not differ between groups in their markers of cellular stress or aging. Nevertheless, microglia from the MPTP monkeys displayed reduced numbers of endosomes, compared with control animals, that remained lower after L-Dopa treatment. Microglia from MPTP monkeys treated with L-Dopa also had increased numbers of primary lysosomes compared with non-treated MPTP animals, while secondary and tertiary lysosomes remained unchanged. Moreover, a decrease microglial immunoreactivity for CD68, considered a marker of phagocytosis and lysosomal activity, was measured in the MPTP monkeys treated with L-Dopa, compared with non-treated MPTP animals. Taken together, these findings revealed significant changes in microglia during PD pathophysiology that were partially rescued by L-Dopa treatment. Albeit, this L-Dopa treatment conferred phagolysosomal insufficiency on microglia in the dyskinetic Parkinsonian monkeys.
Collapse
Affiliation(s)
- Cynthia Lecours
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Maude Bordeleau
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program of Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Melanie Bourque
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Ifeoluwa Oluleke Awogbindin
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Amin Benadjal
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Biologie Intégrative et Physiologie, Sorbonne Université, Paris VI, France
| | | | - Dave Gagnon
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada; CERVO Brain Research Center, Québec, QC, Canada
| | - Leo Cantin
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Martin Parent
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada; CERVO Brain Research Center, Québec, QC, Canada
| | - Therese Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
27
|
Muddapu VR, Chakravarthy VS. A Multi-Scale Computational Model of Excitotoxic Loss of Dopaminergic Cells in Parkinson's Disease. Front Neuroinform 2020; 14:34. [PMID: 33101001 PMCID: PMC7555610 DOI: 10.3389/fninf.2020.00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/14/2020] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by loss of dopaminergic neurons in substantia nigra pars compacta (SNc). Although the exact cause of cell death is not clear, the hypothesis that metabolic deficiency is a key factor has been gaining attention in recent years. In the present study, we investigated this hypothesis using a multi-scale computational model of the subsystem of the basal ganglia comprising the subthalamic nucleus (STN), globus pallidus externa (GPe), and SNc. The proposed model is a multiscale model in that interaction among the three nuclei are simulated using more abstract Izhikevich neuron models, while the molecular pathways involved in cell death of SNc neurons are simulated in terms of detailed chemical kinetics. Simulation results obtained from the proposed model showed that energy deficiencies occurring at cellular and network levels could precipitate the excitotoxic loss of SNc neurons in PD. At the subcellular level, the models show how calcium elevation leads to apoptosis of SNc neurons. The therapeutic effects of several neuroprotective interventions are also simulated in the model. From neuroprotective studies, it was clear that glutamate inhibition and apoptotic signal blocker therapies were able to halt the progression of SNc cell loss when compared to other therapeutic interventions, which only slowed down the progression of SNc cell loss.
Collapse
Affiliation(s)
- Vignayanandam Ravindernath Muddapu
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - V Srinivasa Chakravarthy
- Laboratory for Computational Neuroscience, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
28
|
Orrillo SJ, de Dios N, Asad AS, De Fino F, Imsen M, Romero AC, Zárate S, Ferraris J, Pisera D. Anterior pituitary gland synthesises dopamine from l-3,4-dihydroxyphenylalanine (l-dopa). J Neuroendocrinol 2020; 32:e12885. [PMID: 32671919 DOI: 10.1111/jne.12885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Prolactin (PRL) is a hormone principally secreted by lactotrophs of the anterior pituitary gland. Although the synthesis and exocytosis of this hormone are mainly under the regulation of hypothalamic dopamine (DA), the possibility that the anterior pituitary synthesises this catecholamine remains unclear. The present study aimed to determine if the anterior pituitary produces DA from the precursor l-3,4-dihydroxyphenylalanine (l-dopa). Accordingly, we investigated the expression of aromatic l-amino acid decarboxylase (AADC) enzyme and the transporter vesicular monoamine transporter 2 (VMAT2) in the anterior pituitary, AtT20 and GH3 cells by immunofluorescence and western blotting. Moreover, we investigated the production of DA from l-dopa and its release in vitro. Then, we explored the effects of l-dopa with respect to the secretion of PRL from anterior pituitary fragments. We observed that the anterior pituitary, AtT20 and GH3 cells express both AADC and VMAT2. Next, we detected an increase in DA content after anterior pituitary fragments were incubated with l-dopa. Also, the presence of l-dopa increased DA levels in incubation media and reduced PRL secretion. Likewise, the content of cellular DA increased after AtT20 cells were incubated with l-dopa. In addition, l-dopa reduced corticotrophin-releasing hormone-stimulated adrenocorticotrophic hormone release from these cells after AADC activity was inhibited by NSD-1015. Moreover, DA formation from l-dopa increased apoptosis and decreased proliferation. However, in the presence of NSD-1015, l-dopa decreased apoptosis and increased proliferation rates. These results suggest that the anterior pituitary synthesises DA from l-dopa by AADC and this catecholamine can be released from this gland contributing to the control of PRL secretion. In addition, our results suggest that l-dopa exerts direct actions independently from its metabolisation to DA.
Collapse
Affiliation(s)
- Santiago Jordi Orrillo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nataly de Dios
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Sofía Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernanda De Fino
- Instituto de Investigaciones Farmacológicas (ININFA, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Clara Romero
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
29
|
Khalili A, Peimani AR, Safarian N, Youssef K, Zoidl G, Rezai P. Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation. Integr Biol (Camb) 2020; 11:373-383. [PMID: 31851358 DOI: 10.1093/intbio/zyz031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Behavioral responses of zebrafish larvae to environmental cues are important functional readouts that should be evoked on-demand and studied phenotypically in behavioral, genetical and developmental investigations. Very recently, it was shown that zebrafish larvae execute a voluntary and oriented movement toward the positive electrode of an electric field along a microchannel. Phenotypic characterization of this response was not feasible due to larva's rapid movement along the channel. To overcome this challenge, a microfluidic device was introduced to partially immobilize the larva's head while leaving its mid-body and tail unrestrained in a chamber to image motor behaviors in response to electric stimulation, hence achieving quantitative phenotyping of the electrically evoked movement in zebrafish larvae. The effect of electric current on the tail-beat frequency and response duration of 5-7 days postfertilization zebrafish larvae was studied. Investigations were also performed on zebrafish exposed to neurotoxin 6-hydroxydopamine and larvae carrying a pannexin1a (panx1a) gene knockout, as a proof of principle applications to demonstrate on-demand movement behavior screening in chemical and mutant assays. We demonstrated for the first time that 6-hydroxydopamine leads to electric response impairment, levodopa treatment rescues the response and panx1a is involved in the electrically evoked movement of zebrafish larvae. We envision that our technique is broadly applicable as a screening tool to quantitatively examine zebrafish larvae's movements in response to physical and chemical stimulations in investigations of Parkinson's and other neurodegenerative diseases, and as a tool to combine recent advances in genome engineering of model organisms to uncover the biology of electric response.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Amir Reza Peimani
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
30
|
Moreira Vasconcelos CF, da Cunha Ferreira NM, Hardy Lima Pontes N, de Sousa Dos Reis TD, Basto Souza R, Aragão Catunda Junior FE, Vasconcelos Aguiar LM, Maranguape Silva da Cunha R. Eugenol and its association with levodopa in 6-hydroxydopamine-induced hemiparkinsonian rats: Behavioural and neurochemical alterations. Basic Clin Pharmacol Toxicol 2020; 127:287-302. [PMID: 32353201 DOI: 10.1111/bcpt.13425] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder that affects the central nervous system and is mainly characterized by the loss of dopaminergic neurons and pro-oxidant mechanisms. Eugenol has been widely studied due to its anti-inflammatory and antioxidant activities, making it a promising neuroprotective agent. This study aimed to investigate the effects of eugenol and its combined action with levodopa in the 6-hydroxydopamine-induced Parkinson's disease model. Wistar rats were subjected to intrastriatal injection of 6-hydroxydopamine (21 μg) and then treated with eugenol (0.1, 1, or 10 mg/kg), levodopa (25 mg/kg) or their combination (eugenol 10 mg/kg + levodopa 12.5 mg/kg) orally for 14 days. On the 14th day, the animals were subjected to behavioural tests, and after euthanization and dissection of the brain areas, neurochemical analyses were performed. The results showed that eugenol reduced the oxidative stress and behavioural disturbances induced by 6-hydroxydopamine. The eugenol and levodopa combination was more effective in some behavioural parameters and body-weight gain in addition to promoting an increase in reduced glutathione levels compared to levodopa alone. Thus, the neuroprotective activity of eugenol was observed against motor and neurochemical disorders. Additionally, the eugenol and levodopa combination was promising when compared to conventional treatment.
Collapse
Affiliation(s)
- Carlos Franciney Moreira Vasconcelos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Biotechnology Core of Sobral, State University of Acaraú Valley, Sobral, Brazil
| | | | | | | | - Ricardo Basto Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | |
Collapse
|
31
|
Mazumder MK, Borah A, Choudhury S. Inhibitory potential of plant secondary metabolites on anti-Parkinsonian drug targets: Relevance to pathophysiology, and motor and non-motor behavioural abnormalities. Med Hypotheses 2020; 137:109544. [PMID: 31954292 DOI: 10.1016/j.mehy.2019.109544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/29/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative motor disorder, is caused due to the loss of dopaminergic neurons in the substantia nigra pars compacta region of mid-brain and the resultant depletion of the levels of the neurotransmitter dopamine. Although the pathophysiology of the disease is least understood, studies in animal models revealed oxidative stress, mitochondrial dysfunction and inflammation to be the major contributors. Dopamine replenishment therapy by oral administration of L-DOPA, the precursor of dopamine remains to be the therapeutic gold-standard for symptomatic treatment of PD. In addition, use of inhibitors of dopamine metabolizing enzymes (viz. monoamine oxidase-B: MAO-B; and catechol-O-methyltransferase: COMT) are the other strategies for amelioration of the motor abnormalities. Further, PD is associated with non-motor behavioural abnormalities as well, including cognitive impairment and mood disorders, which are caused due to cholinergic neurodegeneration, and thus inhibition of Acetylcholinesterase (AChE) is suggested. However, the currently used drugs against the three crucial enzymes (MAO-B, COMT and AChE) elicit several side effects, and thus the search for novel compounds continues, and plant-based compounds have promising potential in this regard. In the present study, we have used computational modeling to determine the efficiency of 40 plant-based natural products in inhibiting the three anti-Parkinsonian drug targets. Further, statistical analysis was performed to identify the properties of the compounds which are crucial for inhibition of the enzymes. While all the phytochemicals showed potential in inhibiting the enzymes, Rutin, Demethoxycurcumin and Acteoside were found to be most effective inhibitors of MAO-B, COMT and AChE respectively. Since most of the compounds are established anti-oxidant and anti-inflammatory molecules, they are surmised to confer neuroprotection in PD, and prevent progression of the disease.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Central Instrumentation Laboratory, Assam University, Silchar 788011, Assam, India; Department of Zoology, Dhemaji College, Dhemaji 787057, Assam, India.
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Shuvasish Choudhury
- Central Instrumentation Laboratory, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
32
|
Kovalchuke L, Mosharov EV, Levy OA, Greene LA. Stress-induced phospho-ubiquitin formation causes parkin degradation. Sci Rep 2019; 9:11682. [PMID: 31406131 PMCID: PMC6690910 DOI: 10.1038/s41598-019-47952-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in the E3 ubiquitin ligase parkin are the most common known cause of autosomal recessive Parkinson’s disease (PD), and parkin depletion may play a role in sporadic PD. Here, we sought to elucidate the mechanisms by which stress decreases parkin protein levels using cultured neuronal cells and the PD-relevant stressor, L-DOPA. We find that L-DOPA causes parkin loss through both oxidative stress-independent and oxidative stress-dependent pathways. Characterization of the latter reveals that it requires both the kinase PINK1 and parkin’s interaction with phosphorylated ubiquitin (phospho-Ub) and is mediated by proteasomal degradation. Surprisingly, autoubiquitination and mitophagy do not appear to be required for such loss. In response to stress induced by hydrogen peroxide or CCCP, parkin degradation also requires its association with phospho-Ub, indicating that this mechanism is broadly generalizable. As oxidative stress, metabolic dysfunction and phospho-Ub levels are all elevated in PD, we suggest that these changes may contribute to a loss of parkin expression.
Collapse
Affiliation(s)
| | - Eugene V Mosharov
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Oren A Levy
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
33
|
Luo Z, Ahlers-Dannen KE, Spicer MM, Yang J, Alberico S, Stevens HE, Narayanan NS, Fisher RA. Age-dependent nigral dopaminergic neurodegeneration and α-synuclein accumulation in RGS6-deficient mice. JCI Insight 2019; 5:126769. [PMID: 31120439 DOI: 10.1172/jci.insight.126769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson's is primarily a non-familial, age-related disorder caused by α-synuclein accumulation and the progressive loss of dopamine neurons in the substantia nigra pars compacta (SNc). G protein-coupled receptor (GPCR)-cAMP signaling has been linked to a reduction in human Parkinson's incidence and α-synuclein expression. Neuronal cAMP levels are controlled by GPCRs coupled to Gs or Gi/o, which increase or decrease cAMP, respectively. Regulator of G protein signaling 6 (RGS6) powerfully inhibits Gi/o signaling. Therefore, we hypothesized that RGS6 suppresses D2 autoreceptor- Gi/o signaling in SNc dopamine neurons promoting neuronal survival and reducing α-synuclein expression. Here we provide novel evidence that RGS6 critically suppresses late-age-onset SNc dopamine neuron loss and α-synuclein accumulation. RGS6 is restrictively expressed in human SNc dopamine neurons and, despite their loss in Parkinson's, all surviving neurons express RGS6. RGS6-/- mice exhibit hyperactive D2 autoreceptors with reduced cAMP signaling in SNc dopamine neurons. Importantly, RGS6-/- mice recapitulate key sporadic Parkinson's hallmarks, including: SNc dopamine neuron loss, reduced nigrostriatal dopamine, motor deficits, and α-synuclein accumulation. To our knowledge, Rgs6 is the only gene whose loss phenocopies these features of human Parkinson's. Therefore, RGS6 is a key regulator of D2R-Gi/o signaling in SNc dopamine neurons, protecting against Parkinson's neurodegeneration and α-synuclein accumulation.
Collapse
Affiliation(s)
- Zili Luo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katelin E Ahlers-Dannen
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mackenzie M Spicer
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program of Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jianqi Yang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
34
|
Mazumder MK, Choudhury S, Borah A. An in silico investigation on the inhibitory potential of the constituents of Pomegranate juice on antioxidant defense mechanism: Relevance to neurodegenerative diseases. IBRO Rep 2019; 6:153-159. [PMID: 31193374 PMCID: PMC6527820 DOI: 10.1016/j.ibror.2019.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Elevation in the levels of reactive oxygen and nitrogen species (RONS), and downregulation of cellular antixoidants, have ubiquitously been reported from studies in animal models of neurodegenerative diseases, including Parkinson’s disease (PD) and Alzheimer’s disease (AD). Thus, plant-derived compounds are widely being investigated for their beneficial effects in these models. However, while studies have reported antioxidant potentials of several phytochemicals, a large number of studies have demonstrated different phytochemicals to be rather pro-oxidant and exaggerate oxidative stress (OS). One such study aimed to investigate possible ameliorative effect of Pomegranate juice (PJ) in rat model of toxin-induced parkinsonism revealed that PJ exacerbates OS, inflammation and promotes neurodegeneration. Thus, it remains to be investigated whether different constituents and metabolites of PJ are pro-oxidant or anti-oxidant. Using computational modeling, we investigated possible inhibitory potential of different constituents of PJ and their metabolites viz. delphinidin-3-glucoside, dimethylellagic acid-glucuronide, ellagic acid, ellagitannin, gallic acid, gallotannin 23, pelargonidin, punicalagin, urolithin A, urolithin A-glucuronide and urolithin B, on anti-oxidant defense system of the brain. The results indicate that the constituents of PJ have the potential to inhibit five key enzymes of the neuronal antioxidant defense system, viz. catalase, superoxide dismutase, glutathione peroxidase 4, glutathione reductase and glutathione-S-transferase. Thus, it is surmised that the constituents of PJ may contribute to OS and neurodegeneration by way of affecting antioxidant defense mechanism. This may particularly be more pronounced in neurodegenerative diseases, since neurons are known to be more vulnerable to OS. Thus, the present findings caution the use of PJ in patients prone to OS, especially those suffering from neurodegenerative diseases, and warrant further experimental studies to unveil the effects of individual components and metabolites of PJ on antioxidant defense system of brain.
Collapse
Affiliation(s)
- Muhammed Khairujjaman Mazumder
- Central Instrumentation Laboratory, Assam University, Silchar, 788011, Assam, India.,Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Shuvasish Choudhury
- Central Instrumentation Laboratory, Assam University, Silchar, 788011, Assam, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| |
Collapse
|
35
|
Bizzarri B, Botta L, Aversa D, Mercuri NB, Poli G, Barbieri A, Berretta N, Saladino R. L-DOPA-quinone Mediated Recovery from GIRK Channel Firing Inhibition in Dopaminergic Neurons. ACS Med Chem Lett 2019; 10:431-436. [PMID: 30996775 PMCID: PMC6466524 DOI: 10.1021/acsmedchemlett.8b00477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 01/07/2023] Open
Abstract
The oxidative degeneration of dopamine-releasing (DAergic) neurons in the substantia nigra pars compacta (SNc) has attracted much interest in preclinical research, due to its involvement in Parkinson's disease manifestations. Evidence exists on the participation of quinone derivatives in mitochondrial dysfunction, alpha synuclein protein aggregation, and protein degradation. With the aim to investigate the role of L-DOPA-quinone in DAergic neuron functions, we synthesized L-DOPA-quinone by use of 2-iodoxybenzoic acid and measured its activity in recovery from dopamine-mediated firing inhibition of SNc neurons. Noteworthy, L-DOPA-quinone counteracts firing inhibition in SNc DAergic neurons caused by GIRK opening. A possible mechanism to explain the effect of L-DOPA-quinone on GIRK channel has been proposed by computational models. Overall, the study showed the possibility that L-DOPA-quinone stabilizes GIRK in a preopen conformation through formation of a covalent adduct with cysteine-65 on the GIRK2 subunit of the protein.
Collapse
Affiliation(s)
- Bruno
M. Bizzarri
- Dipartimento
di Scienze Ecologiche e Biologiche, Università
della Tuscia, Via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Lorenzo Botta
- Dipartimento
di Scienze Ecologiche e Biologiche, Università
della Tuscia, Via S. C. De Lellis 44, 01100 Viterbo, Italy
| | - Daniela Aversa
- IRCCS
Fondazione Santa Lucia, Via Ardeatina, 306/354, 00142 Rome, Italy
| | - Nicola B. Mercuri
- IRCCS
Fondazione Santa Lucia, Via Ardeatina, 306/354, 00142 Rome, Italy
- Dipartimento
di Medicina dei Sistemi, Università
di Roma Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | - Giulio Poli
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
degli studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Alessandro Barbieri
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
degli studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Nicola Berretta
- IRCCS
Fondazione Santa Lucia, Via Ardeatina, 306/354, 00142 Rome, Italy
| | - Raffaele Saladino
- Dipartimento
di Scienze Ecologiche e Biologiche, Università
della Tuscia, Via S. C. De Lellis 44, 01100 Viterbo, Italy
| |
Collapse
|
36
|
Billings JL, Gordon SL, Rawling T, Doble PA, Bush AI, Adlard PA, Finkelstein DI, Hare DJ. l
‐3,4‐dihydroxyphenylalanine (
l
‐DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha‐synuclein mouse models of Parkinson's disease. J Neurochem 2019; 150:88-106. [DOI: 10.1111/jnc.14676] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/15/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica L. Billings
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Sarah L. Gordon
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Broadway New South Wales Australia
| | - Philip A. Doble
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway New South Wales Australia
| | - Ashley I. Bush
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Paul A. Adlard
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - David I. Finkelstein
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Dominic J. Hare
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway New South Wales Australia
- Department of Clinical Pathology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
37
|
Park HJ, Kang JK, Lee MK. 1- O-Hexyl-2,3,5-Trimethylhydroquinone Ameliorates l-DOPA-Induced Cytotoxicity in PC12 Cells. Molecules 2019; 24:molecules24050867. [PMID: 30823626 PMCID: PMC6429301 DOI: 10.3390/molecules24050867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| | - Jong Koo Kang
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju 28644, Korea.
| | - Myung Koo Lee
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| |
Collapse
|
38
|
Zhang S, Wang R, Wang G. Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration. ACS Chem Neurosci 2019; 10:945-953. [PMID: 30592597 DOI: 10.1021/acschemneuro.8b00454] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The characteristic feature of PD is the progressive degeneration of the dopaminergic (DAergic) neurons in the substantia nigra (SN). DAergic neurons in the SN accumulate black and insoluble membrane structures known as neuromelanin during aging. The oxidation of dopamine (DA) to form neuromelanin generates many o-quinones, including DA o-quinones, aminochrome, and 5,6-indolequinone. The focus of this review is to discuss the role of DA oxidation in association with PD. The oxidation of DA produces oxidative products, inducing mitochondrial dysfunction, impaired protein degradation, α-synuclein aggregation into neurotoxic oligomers, and oxidative stress, in vitro. Recent studies have demonstrated that the DA content is critical for both DJ-1 knockout and A53T α-synuclein transgenic mice to develop PD pathological features, providing evidence for DA action in PD pathogenesis in vivo. The effects of L-DOPA, as the most effective anti-PD drug, are also briefly discussed.
Collapse
Affiliation(s)
- Shun Zhang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
39
|
Acute sensitivity of astrocytes in the Substantia Nigra to oxygen and glucose deprivation (OGD) compared with hippocampal astrocytes in brain slices. Neurosci Lett 2018; 685:137-143. [PMID: 30153493 DOI: 10.1016/j.neulet.2018.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022]
Abstract
The Substantia Nigra is a brainstem nucleus critical for movement control. Although its dopamine-producing neurons degenerate in Parkinsons disease, little is known of the acute effects of ischemia in this region. We recently reported that oxygen and glucose deprivation (OGD) in brain slices, an in vitro ischemia model, evokes a profound depolarization and swelling of GABAergic neurons in the Substantia Nigra pars reticulata (SNr), but not dopaminergic neurons in the Substantia Nigra pars compacta (SNc). The current study characterised the effects of OGD on nigral astrocytes, and compared these with the established responses of astrocytes in the CA1 hippocampal region. Intracellular recordings were made from astrocytes at the border between SNc and SNr subregions, in midbrain slices from postnatal day 21-23 rats. Immunoreactivity for astrocyte-specific proteins was also assessed. OGD evoked a slow, then fast depolarization of nigral astrocytes. The fast phase developed during the anoxic depolarization (indicated by a fast negative shift of extracellular DC potential and increase in light transmittance) and rapid increase in extracellular K+ concentration in the SNr. This biphasic response resembled the OGD-evoked depolarization of hippocampal astrocytes. However, unlike the partial repolarization seen in hippocampal cells after reperfusion with O2 and glucose, nigral astrocytes remained depolarized near 0 mV. In addition, immunoreactivity for glial fibrillary acidic protein-positive astrocytes markedly decreased in the Substantia Nigra after OGD, while in the hippocampus remained unchanged. These data indicate an acute post-ischemic withdrawal of astrocytic support in the Substantia Nigra, but not in the hippocampus.
Collapse
|
40
|
El-Esawy R, Balaha M, Kandeel S, Hadya S, El-Rahman MNA. Filgrastim (G-CSF) ameliorates Parkinsonism l -dopa therapy’s drawbacks in mice. BASAL GANGLIA 2018; 13:17-26. [DOI: 10.1016/j.baga.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
41
|
Mazumder MK, Paul R, Phukan BC, Dutta A, Chakrabarty J, Bhattacharya P, Borah A. Garcinol, an effective monoamine oxidase-B inhibitor for the treatment of Parkinson's disease. Med Hypotheses 2018; 117:54-58. [DOI: 10.1016/j.mehy.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/07/2018] [Indexed: 02/04/2023]
|
42
|
Aversa D, Martini A, Guatteo E, Pisani A, Mercuri NB, Berretta N. Reversal of dopamine-mediated firing inhibition through activation of the dopamine transporter in substantia nigra pars compacta neurons. Br J Pharmacol 2018; 175:3534-3547. [PMID: 29933497 DOI: 10.1111/bph.14422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE One of the hallmarks of ventral midbrain dopamine-releasing neurons is membrane hyperpolarization in response to stimulation of somato-dendritic D2 receptors. At early postnatal age, under sustained dopamine, this inhibitory response is followed by a slow recovery, resulting in dopamine inhibition reversal (DIR). In the present investigation, we aimed to get a better insight into the cellular mechanisms underlying DIR. EXPERIMENTAL APPROACH We performed single-unit extracellular recordings with a multi-electrode array device and conventional patch-clamp recordings on midbrain mouse slices. KEY RESULTS While continuous dopamine (100 μM) perfusion gave rise to firing inhibition that recovered in 10 to 15 min, the same effect was not obtained with the D2 receptor agonist quinpirole (100 nM). Moreover, firing inhibition caused by the GABAB receptor agonist baclofen (300 nM) was reversed by dopamine (100 μM), albeit D2 receptors had been blocked by sulpiride (10 μM). Conversely, the block of the dopamine transporter (DAT) with cocaine (30 μM) prevented firing recovery by dopamine under GABAB receptor stimulation. Accordingly, in whole-cell recordings from single cells, the baclofen-induced outward current was counteracted by dopamine (100 μM) in the presence of sulpiride (10 μM), and this effect was prevented by the DAT antagonists cocaine (30 μM) and GBR12909 (2 μM). CONCLUSIONS AND IMPLICATIONS Our results indicate that the DAT plays a major role in DIR, mediating it under conditions of sustained dopamine exposure, and point to DAT as an important target for pharmacological therapies leading to prolonged enhancement of the dopaminergic signal.
Collapse
Affiliation(s)
- Daniela Aversa
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Rome, Italy
| | - Alessandro Martini
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Rome, Italy
| | - Ezia Guatteo
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università 'Parthenope', Naples, Italy
| | - Antonio Pisani
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Dipartimento di Medicina dei Sistemi, Università di Roma Tor Vergata, Rome, Italy
| | | |
Collapse
|
43
|
Balas M, Dumitrache F, Badea MA, Fleaca C, Badoi A, Tanasa E, Dinischiotu A. Coating Dependent In Vitro Biocompatibility of New Fe-Si Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E495. [PMID: 29976868 PMCID: PMC6070796 DOI: 10.3390/nano8070495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022]
Abstract
Magnetic nanoparticles offer multiple utilization possibilities in biomedicine. In this context, the interaction with cellular structures and their biological effects need to be understood and controlled for clinical safety. New magnetic nanoparticles containing metallic/carbidic iron and elemental silicon phases were synthesized by laser pyrolysis using Fe(CO)₅ vapors and SiH₄ gas as Fe and Si precursors, then passivated and coated with biocompatible agents, such as l-3,4-dihydroxyphenylalanine (l-DOPA) and sodium carboxymethyl cellulose (CMC-Na). The resulting magnetic nanoparticles were characterized by XRD, EDS, and TEM techniques. To evaluate their biocompatibility, doses ranging from 0⁻200 µg/mL hybrid Fe-Si nanoparticles were exposed to Caco2 cells for 24 and 72 h. Doses below 50 μg/mL of both l-DOPA and CMC-Na-coated Fe-Si nanoparticles induced no significant changes of cellular viability or membrane integrity. The cellular internalization of nanoparticles was dependent on their dispersion in culture medium and caused some changes of F-actin filaments organization after 72 h. However, reactive oxygen species were generated after exposure to 25 and 50 μg/mL of both Fe-Si nanoparticles types, inducing the increase of intracellular glutathione level and activation of transcription factor Nrf2. At nanoparticles doses below 50 μg/mL, Caco2 cells were able to counteract the oxidative stress by activating the cellular protection mechanisms. We concluded that in vitro biological responses to coated hybrid Fe-Si nanoparticles depended on particle synthesis conditions, surface coating, doses and incubation time.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91⁻95 Splaiul Independenţei, 050095 Bucharest, sector 5, Romania.
| | - Florian Dumitrache
- National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, 077125 Magurele, Romania.
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91⁻95 Splaiul Independenţei, 050095 Bucharest, sector 5, Romania.
| | - Claudiu Fleaca
- National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, 077125 Magurele, Romania.
| | - Anca Badoi
- National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, 077125 Magurele, Romania.
| | - Eugenia Tanasa
- Department of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 11061 Bucharest, sector 1, Romania.
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91⁻95 Splaiul Independenţei, 050095 Bucharest, sector 5, Romania.
| |
Collapse
|
44
|
Giguère N, Burke Nanni S, Trudeau LE. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Front Neurol 2018; 9:455. [PMID: 29971039 PMCID: PMC6018545 DOI: 10.3389/fneur.2018.00455] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Significant advances have been made uncovering the factors that render neurons vulnerable in Parkinson's disease (PD). However, the critical pathogenic events leading to cell loss remain poorly understood, complicating the development of disease-modifying interventions. Given that the cardinal motor symptoms and pathology of PD involve the loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc), a majority of the work in the PD field has focused on this specific neuronal population. PD however, is not a disease of DA neurons exclusively: pathology, most notably in the form of Lewy bodies and neurites, has been reported in multiple regions of the central and peripheral nervous system, including for example the locus coeruleus, the dorsal raphe nucleus and the dorsal motor nucleus of the vagus. Cell and/or terminal loss of these additional nuclei is likely to contribute to some of the other symptoms of PD and, most notably to the non-motor features. However, exactly which regions show actual, well-documented, cell loss is presently unclear. In this review we will first examine the strength of the evidence describing the regions of cell loss in idiopathic PD, as well as the order in which this loss occurs. Secondly, we will discuss the neurochemical, morphological and physiological characteristics that render SNc DA neurons vulnerable, and will examine the evidence for these characteristics being shared across PD-affected neuronal populations. The insights raised by focusing on the underpinnings of the selective vulnerability of neurons in PD might be helpful to facilitate the development of new disease-modifying strategies and improve animal models of the disease.
Collapse
Affiliation(s)
- Nicolas Giguère
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Samuel Burke Nanni
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
45
|
Lu DS, Chen C, Zheng YX, Li DD, Wang GQ, Liu J, Shi J, Zhang F. Combination Treatment of Icariin and L-DOPA Against 6-OHDA-Lesioned Dopamine Neurotoxicity. Front Mol Neurosci 2018; 11:155. [PMID: 29867347 PMCID: PMC5964195 DOI: 10.3389/fnmol.2018.00155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022] Open
Abstract
Until now, the dopamine (DA) precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), remains the gold standard effective drug therapy for Parkinson’s disease (PD) patients. Nevertheless, long-term chronic L-DOPA administration leads to the drug efficacy loss and severe adverse effects, such as L-DOPA-induced dyskinesia (LID). Icariin (ICA), a flavonoid that is extracted from Epimedium, has been proved to evoke neuroprotection against DA neuronal loss in PD animal models. Here, the present study detected the effects of ICA combined with L-DOPA on 6-hydroxydopamine (6-OHDA)-elicited DA neurotoxicity and L-DOPA-induced motor dysfunction as well. PC12 cells were applied to investigate the combination treatment of ICA and L-DOPA against 6-OHDA-lesioned neurotoxicity. In addition, rat substantia nigral stereotaxic injection of 6-OHDA-induced DA neuronal injury was performed to explore the neuroprotective effects mediated by ICA combined with L-DOPA. The pathological movement triggered by L-DOPA was determined by the abnormal involuntary movements (AIM) scores analysis. In PC12 cells, ICA combined with L-DOPA produced better neuroprotection from 6-OHDA-induced neurotoxicity than ICA or L-DOPA alone treatment. In parkinsonian 6-OHDA lesioned rats, ICA conferred DA neuroprotection as monotherapy and an enhancement benefit of L-DOPA treatment after daily administration of L-DOPA and ICA for 21 days. Moreover, ICA ameliorated the development of LID as evidenced by the lowered AIM scores without affecting L-DOPA-mediated efficacy. Furtherly, ICA attenuated neuroinflammation in 6-OHDA-induced DA neuronal loss and the development of LID in vivo. In conclusion, these findings suggest ICA might be a potential promising adjuvant to enhance L-DOPA efficacy and attenuate L-DOPA-produced adverse effects in PD.
Collapse
Affiliation(s)
- Di-Sheng Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ce Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Ya-Xin Zheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Dai-Di Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guo-Qing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
46
|
Pisanu A, Boi L, Mulas G, Spiga S, Fenu S, Carta AR. Neuroinflammation in L-DOPA-induced dyskinesia: beyond the immune function. J Neural Transm (Vienna) 2018. [PMID: 29541852 DOI: 10.1007/s00702-018-1874-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a main component of Parkinson's disease (PD) neuropathology, where unremitting reactive microglia and microglia-secreted soluble molecules such as cytokines, contribute to the neurodegenerative process as part of an aberrant immune reaction. Besides, pro-inflammatory cytokines, predominantly TNF-α, play an important neuromodulatory role in the healthy and diseased brain, being involved in neurotransmitter metabolism, synaptic scaling and brain plasticity. Recent preclinical studies have evidenced an exacerbated neuroinflammatory reaction in the striatum of parkinsonian rats that developed dyskinetic responses following L-DOPA administration. These findings prompted investigation of non-neuronal mechanisms of L-DOPA-induced dyskinesia (LID) involving glial cells and glial-secreted soluble molecules. Hence, besides the classical mechanisms of LID that include abnormal corticostriatal neurotransmission and maladaptive changes in striatal medium spiny neurons (MSNs), here we review studies supporting a role of striatal neuroinflammation in the development of LID, with a focus on microglia and the pro-inflammatory cytokine TNF-α. Moreover, we discuss several mechanisms that have been involved in the development of LID, which are directly or indirectly under the control of TNF-α, and might be abnormally affected by its chronic overproduction and release by microglia in PD. It is proposed that TNF-α may contribute to the altered neuronal responses occurring in LID by targeting receptor trafficking and function in MSNs, but also dopamine synthesis in preserved dopaminergic terminals and serotonin metabolism in serotonergic neurons. Therapeutic approaches specifically targeting glial-secreted cytokines may represent a novel target for preventing or treating LID.
Collapse
Affiliation(s)
- Augusta Pisanu
- Institute of Neuroscience, National Research Council, SS 554 km 4.500, Monserrato, 09042, Cagliari, Italy
| | - Laura Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy
| | - Giovanna Mulas
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, Cagliari, Italy
| | - Saturnino Spiga
- Department of Life and Environmental Sciences, University of Cagliari, Via Fiorelli 1, Cagliari, Italy
| | - Sandro Fenu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. N. 8, Monserrato, 09042, Cagliari, Italy.
| |
Collapse
|
47
|
Colamartino M, Duranti G, Ceci R, Sabatini S, Testa A, Cozzi R. A multi-biomarker analysis of the antioxidant efficacy of Parkinson's disease therapy. Toxicol In Vitro 2018; 47:1-7. [DOI: 10.1016/j.tiv.2017.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/07/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022]
|
48
|
Carta AR, Mulas G, Bortolanza M, Duarte T, Pillai E, Fisone G, Vozari RR, Del-Bel E. l-DOPA-induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role? Eur J Neurosci 2016; 45:73-91. [DOI: 10.1111/ejn.13482] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anna R. Carta
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Mariza Bortolanza
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Terence Duarte
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Elisabetta Pillai
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Gilberto Fisone
- Department of Neuroscience; Karolinska Institutet; Retzius väg 8 17177 Stockholm Sweden
| | - Rita Raisman Vozari
- INSERM U 1127; CNRS UMR 7225; UPMC Univ Paris 06; UMR S 1127; Institut Du Cerveau et de La Moelle Epiniére; ICM; Paris France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
| |
Collapse
|
49
|
Karunasinghe RN, Grey AC, Telang R, Vlajkovic SM, Lipski J. Differential spread of anoxic depolarization contributes to the pattern of neuronal injury after oxygen and glucose deprivation (OGD) in the Substantia Nigra in rat brain slices. Neuroscience 2016; 340:359-372. [PMID: 27826106 DOI: 10.1016/j.neuroscience.2016.10.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/14/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022]
Abstract
Anoxic depolarization (AD) is an acute event evoked by brain ischemia, involving a profound loss of cell membrane potential and swelling that spreads over susceptible parts of the gray matter. Its occurrence is a strong predictor of the severity of neuronal injury. Little is known about this event in the Substantia Nigra, a midbrain nucleus critical for motor control. We tested the effects of oxygen and glucose deprivation (OGD), an in vitro model of brain ischemia, in rat midbrain slices. AD developed within 4min from OGD onset and spread in the Substantia Nigra pars reticulata (SNr), but not through the Substantia Nigra pars compacta (SNc). This differential effect involved a contrasting pattern of changes in membrane potential between dopamine-producing SNc and non-dopaminergic SNr neurons. A fast depolarization in SNr neurons was not followed by repolarization after the end of OGD, and was associated with swollen somata and beaded dendrites. In contrast, slowly developing depolarization of SNc neurons led to repolarization after OGD ended, and no changes in neuronal morphology were observed. The AD-resistance of the SNc involved smaller dysregulations of K+ and Ca2+ ions, and a slower loss of energy metabolites. Our results show that acute ischemia profoundly impairs the function and morphology of SNr neurons but not adjacent SNc neurons, and that the surprising higher tolerance of SNc neurons correlates with the resistance of the SNc region to AD. This differential response may affect the pattern of early neuronal injury that develops in the brainstem after acute ischemic insults.
Collapse
Affiliation(s)
- Rashika N Karunasinghe
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Angus C Grey
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Ravindra Telang
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Janusz Lipski
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
50
|
Ye R, Shen T, Jiang Y, Xu L, Si X, Zhang B. The Relationship between Parkinson Disease and Brain Tumor: A Meta-Analysis. PLoS One 2016; 11:e0164388. [PMID: 27764145 PMCID: PMC5072611 DOI: 10.1371/journal.pone.0164388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023] Open
Abstract
Objective Epidemiological studies have investigated the association between Parkinson disease (PD) occurrence and the risk of brain tumors, while the results remain controversial. We performed a meta-analysis to clarify the exact relationship between PD and brain tumors. Methods A systematic literature search was conducted using PubMed, Embase, ScienceDirect and CBM (China Biology Medicine Disc) before February 2016. Eligible studies were those that reported risk estimates of brain tumors among patients with PD or vice versa. A random-effects model was used to calculate the pooled odds ratio (OR) of the outcomes. Subgroup analyses and sensitivity analysis were conducted to explore the potential sources of heterogeneity. Results In total, eight studies involving 329,276 participants met our inclusion criteria. The pooled OR was 1.51 (95%CI 1.21–1.89), indicating that PD carried a higher risk of brain tumor. Analyses by temporal relationship found that the occurrence of brain tumor was significantly higher after the diagnosis of PD (OR 1.55, 95% CI 1.18–2.05), but not statistically significant before PD diagnosis (OR 1.21, 95%CI 0.93–1.58). Subgroup analysis showed that gender differences, ethnicity differences and the characteristic of the tumor (benign or malignant) did not make much change in the association between brain tumor and PD. Conclusions Our meta-analysis collecting epidemiological studies suggested a positive association of PD with brain tumors, while the influence of anti-parkinson drugs and ascertainment bias could not be excluded. Further studies with larger sample size and more strict inclusion criteria should be conducted in the future.
Collapse
Affiliation(s)
- Rong Ye
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ting Shen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yasi Jiang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lingjia Xu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoli Si
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: ,
| |
Collapse
|