1
|
Azargoonjahromi A. Serotonin enhances neurogenesis biomarkers, hippocampal volumes, and cognitive functions in Alzheimer's disease. Mol Brain 2024; 17:93. [PMID: 39696587 DOI: 10.1186/s13041-024-01169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics. Gray matter volume changes were analyzed using Voxel-Based Morphometry (VBM) with MRI. Statistical analyses employed Pearson correlation, bootstrap methods, and FDR-adjusted p-values (< 0.05 or < 0.01) via the Benjamini-Hochberg procedure, alongside nonparametric methods. The analysis found a positive correlation between serotonin levels and total brain (r = 0.229, p = 0.023) and hippocampal volumes (right: r = 0.186, p = 0.032; left: r = 0.210, p = 0.023), even after FDR adjustment. Higher serotonin levels were linked to better cognitive function (negative correlation with CDR-SB, r = -0.230, p = 0.024). Notably, serotonin levels were positively correlated with BMP-6 (r = 0.173, p = 0.047), CNTF (r = 0.216, p = 0.013), FGF-4 (r = 0.176, p = 0.043), and MMP-1 (r = 0.202, p = 0.019), suggesting a link between serotonin and neurogenesis and neuroplasticity. However, after adjusting for multiple comparisons and controlling for confounding factors such as age, gender, education, and APOE genotypes (APOE3 and APOE4), none of the correlations of biomarkers remained statistically significant. In conclusion, increased serotonin levels are associated with improved cognitive function and increased brain volume. However, associations with CNTF, FGF-4, BMP-6, and MMP-1 were not statistically significant after adjustments, highlighting the complexity of serotonin's role in AD and the need for further research.
Collapse
|
2
|
Liu J, Zhang Y, Zhang M, Wang Q, Pang Y, Xie J. 6‴-Feruloylspinosin alleviates Aβ-induced toxicity by modulating relevant neurotransmitter and the AMPK/mTOR signaling pathway. Free Radic Biol Med 2024; 227:434-445. [PMID: 39653128 DOI: 10.1016/j.freeradbiomed.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with a serious impact on patients' quality of life. However, single-targeted therapies are not currently effective, and there is a need to find pluripotent drugs with multiple properties. This study aimed to characterize the metabolism of neurotransmitters using a targeted metabolomics approach and to identify the major metabolic pathways mainly affected by 6‴-feruloylspinosin (6-FS). The mechanism of action of 6-FS in the treatment of AD was elucidated based on experimental validation. The metabolomics analysis revealed changes in 13 metabolic profiles by the LC-MS/MS, with significant changes in five amino acid-related neurotransmitters identified primarily. Based on the correlations, we found an effect of mTOR inhibition on the above neurotransmitter metabolism. Furthermore, pretreatment with 6-FS activated the AMPK/mTOR signaling pathway, promoting cellular autophagy, regulating oxidative stress homeostasis and inhibiting mitochondrial dysfunction. In short, these comprehensive analysis methods help clarify the preventive mechanism of 6-FS and potential targets in AD and provide the necessary support for developing natural products to prevent AD.
Collapse
Affiliation(s)
- Jinrui Liu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China.
| | - Mei Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Qing Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Yuxin Pang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Ahmed HS. The Impact of Prevotella on Neurobiology in Aging: Deciphering Dendritic Cell Activity and Inflammatory Dynamics. Mol Neurobiol 2024; 61:9240-9251. [PMID: 38613648 DOI: 10.1007/s12035-024-04156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Prevotella species, notably Prevotella copri, significantly populate the human gut. In particular, P. copri is prevalent among non-Western populations with diets high in fiber. These species show complex relationships with diverse health aspects, associating with beneficial outcomes, including reduced visceral fat and improved glucose tolerance. Studies implicate various Prevotella species in specific diseases. Prevotella nigrescens and Porphyromonas gingivalis were linked to periodontal disease, promoting immune responses and influencing T helper type 17 (Th17) cells. Prevotella bivia was associated with bacterial vaginosis and a specific increase in activated cells in the vaginal mucosa. In contrast, they have shown substantial potential for inducing connective tissue degradation and alveolar bone resorption. Prevotella's role in neuroinflammatory disorders and autoinflammatory conditions such as Alzheimer's disease and Parkinson's disease has also been noted. The complex relationship between Prevotella and age-related conditions further extends to neurobiological changes in aging, with varying associations with Alzheimer's, Parkinson's, and other inflammatory conditions. Studies have also identified Prevotella to be implicated in cognitive decline in middle aged and the elderly. Future directions in this research area are anticipated to explore Prevotella-associated inflammatory mechanisms and therapeutic interventions. Investigating specific drug targets and immunomodulatory measures could lead to novel therapeutic strategies. Understanding how Prevotella-induced inflammation interacts with aging diseases would offer promising insights for treatments and interventions. This review urges ongoing research to discover therapeutic targets and mechanisms for moderating Prevotella-associated inflammation to further enhance our understanding and improve health outcomes.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, K.R Road, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
4
|
Bhardwaj S, Grewal AK, Singh S, Dhankar V, Jindal A. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB. Inflammopharmacology 2024; 32:2943-2960. [PMID: 38951436 DOI: 10.1007/s10787-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-β (Aβ) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.
Collapse
Affiliation(s)
- Shaveta Bhardwaj
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anu Jindal
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| |
Collapse
|
5
|
González JF, Sánchez-Montero JM. How to address the complexity of multi-targeted drug discovery for Alzheimer's disease? Expert Opin Drug Discov 2024; 19:1149-1152. [PMID: 39075884 DOI: 10.1080/17460441.2024.2385576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Affiliation(s)
- Juan F González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - José M Sánchez-Montero
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Zheng D, Kashif MF, Piscopo L, Collard L, Ciracì C, De Vittorio M, Pisanello F. Tunable Nanoislands Decorated Tapered Optical Fibers Reveal Concurrent Contributions in Through-Fiber SERS Detection. ACS PHOTONICS 2024; 11:3774-3783. [PMID: 39310299 PMCID: PMC11413926 DOI: 10.1021/acsphotonics.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Creating plasmonic nanoparticles on a tapered optical fiber (TF) tip enables a remote surface-enhanced Raman scattering (SERS) sensing probe, ideal for challenging sampling scenarios like biological tissues, site-specific cells, on-site environmental monitoring, and deep brain structures. However, nanoparticle patterns fabricated from current bottom-up methods are mostly random, making geometry control difficult. Uneven statistical distribution, clustering, and multilayer deposition introduce uncertainty in correlating device performance with morphology. Ultimately, this limits the design of the best-performance remote SERS sensing probe. Here we employ a tunable solid-state dewetting method to create densely packed monolayer Au nanoislands with varied geometric parameters in direct contact with the silica TF surface. These patterns exhibit analyzable nanoparticle sizes, densities, and uniform distribution across the entire taper surface, enabling a systematic investigation of particle size, density, and analyte effects on the SERS performance of the through-fiber detection system. The study is focused on the SERS response of a widely employed benchmark molecule, rhodamine 6G (R6G), and serotonin, a highly relevant neurotransmitter for the neuroscience field. The numerical simulations and limit of detection (LOD) experiments on R6G show that the increase of the total near-field enhancement volume promotes the SERS sensitivity of the probe. However, we observed a different behavior for serotonin linked to its interaction with the nanoparticle's surface. The obtained LOD is as low as 10-7 M, a value not achieved so far in a through-fiber detection scheme. Therefore, our work offers a strategy to design nanoparticle-based remote SERS sensing probes and provides new clues to discover and understand intricate plasmonic-driven chemical reactions.
Collapse
Affiliation(s)
- Di Zheng
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- State
Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Fayyaz Kashif
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Linda Piscopo
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
| | - Liam Collard
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Cristian Ciracì
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
| | - Massimo De Vittorio
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- Dipartimento
di Ingegneria Dell’Innovazione, Università
del Salento, 73100 Lecce, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| | - Ferruccio Pisanello
- Center
for Biomolecular Nanotechnologies, Istituto
Italiano di Tecnologia, 73010 Arnesano, Italy
- RAISE
Ecosystem, 16122 Genova, Italy
| |
Collapse
|
7
|
Liu Z, Liu M, Xiong Y, Wang Y, Bu X. Crosstalk between bone and brain in Alzheimer's disease: Mechanisms, applications, and perspectives. Alzheimers Dement 2024; 20:5720-5739. [PMID: 38824621 PMCID: PMC11350061 DOI: 10.1002/alz.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that involves multiple systems in the body. Numerous recent studies have revealed bidirectional crosstalk between the brain and bone, but the interaction between bone and brain in AD remains unclear. In this review, we summarize human studies of the association between bone and brain and provide an overview of their interactions and the underlying mechanisms in AD. We review the effects of AD on bone from the aspects of AD pathogenic proteins, AD risk genes, neurohormones, neuropeptides, neurotransmitters, brain-derived extracellular vesicles (EVs), and the autonomic nervous system. Correspondingly, we elucidate the underlying mechanisms of the involvement of bone in the pathogenesis of AD, including bone-derived hormones, bone marrow-derived cells, bone-derived EVs, and inflammation. On the basis of the crosstalk between bone and the brain, we propose potential strategies for the management of AD with the hope of offering novel perspectives on its prevention and treatment. HIGHLIGHTS: The pathogenesis of AD, along with its consequent changes in the brain, may involve disturbing bone homeostasis. Degenerative bone disorders may influence the progression of AD through a series of pathophysiological mechanisms. Therefore, relevant bone intervention strategies may be beneficial for the comprehensive management of AD.
Collapse
Affiliation(s)
- Zhuo‐Ting Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
| | - Ming‐Han Liu
- Department of OrthopaedicsXinqiao Hospital, Third Military Medical UniversityChongqingChina
| | - Yan Xiong
- Department of OrthopaedicsDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Xian‐Le Bu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| |
Collapse
|
8
|
Aranda-Abreu GE, Rojas-Durán F, Hernández-Aguilar ME, Herrera-Covarrubias D, Chí-Castañeda LD, Toledo-Cárdenas MR, Suárez-Medellín JM. Alzheimer's Disease: Cellular and Pharmacological Aspects. Geriatrics (Basel) 2024; 9:86. [PMID: 39051250 PMCID: PMC11270425 DOI: 10.3390/geriatrics9040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease was described more than 100 years ago and despite the fact that several molecules are being tested for its treatment, which are in phase III trials, the disease continues to progress. The main problem is that these molecules function properly in healthy neurons, while neuronal pathology includes plasma membrane disruption, malfunction of various organelles, and hyperphosphorylation of Tau and amyloid plaques. The main objective of this article is the discussion of a neuronal restoration therapy, where molecules designed for the treatment of Alzheimer's disease would probably be more effective, and the quality of life of people would be better.
Collapse
Affiliation(s)
- Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91192, Mexico; (F.R.-D.); (M.E.H.-A.); (D.H.-C.); (L.D.C.-C.); (M.R.T.-C.); (J.M.S.-M.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Chen W, Zhang T, Zhang H. Genes related to neurotransmitter receptors as potential biomarkers for Alzheimer's disease. Neurosci Lett 2024; 832:137816. [PMID: 38729598 DOI: 10.1016/j.neulet.2024.137816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a leading cause of dementia and is rapidly emerging as one of the costliest and most burdensome diseases. Neurotransmitter receptors play a vital role in many neuronal processes, primarily regulating signal inhibition within the brain to facilitate cell communication. OBJECTIVES Our research aims to identify potential biomarkers associated with AD and how these biomarkers impact immune infiltration. METHODS We extracted mRNA expression data from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were employed to identify hub genes as biomarkers in AD. The Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Variation Analysis (GSVA) were used for functional enrichment. Furthermore, we examined 22 immune cell types infiltration using "CIBERSORT". RESULTS In this study, we identified 70 neurotransmitter receptor genes showing differential expression in AD: 22 were up-regulated, and 48 were down-regulated. Functional analyses indicated these genes were involved in essential biochemical pathways, including G protein-coupled receptors, neurotransmitter receptor activity, and ion channel interactions. WGCNA generated three co-expression modules, with one demonstrating the strongest association with AD. Five key NRGs (HTR3C, HTR3E, ADRA2A, HTR3A, and ADRA1D) were identified using a combination of differential genes. These genes have better diagnostic value by ROC analysis. Immune infiltration analysis showed that these genes were closely associated with the levels of resting mast cells, activated natural killer (NK) cells, and plasma cells in AD compared to controls. CONCLUSION Our study identified five NRGs (ADRA1D, ADRA2A, HTR3A, HTR3C, and HTR3E) with significant associations with AD. These findings may offer promising sights for further studies.
Collapse
Affiliation(s)
- Wei Chen
- Neurosurgery Department of Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi 710100, China
| | - Taoyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi' an 710032, China
| | - Hui Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Xi' an 710032, China.
| |
Collapse
|
10
|
Patel KS, Dharamsi A, Priya M, Jain S, Mandal V, Girme A, Modi SJ, Hingorani L. Saffron (Crocus sativus L.) extract attenuates chronic scopolamine-induced cognitive impairment, amyloid beta, and neurofibrillary tangles accumulation in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117898. [PMID: 38341114 DOI: 10.1016/j.jep.2024.117898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/14/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crocus sativus L. known as saffron, is a popular food condiment with a high aroma, deep colour, and long and thick threads (stigmas) cultivated in Iran, Morocco, Spain, Italy, China, Japan, France, Turkey, and India. In 'Ayurveda', saffron is acknowledged for its immunostimulant, aphrodisiac, cardiotonic, liver tonic, nervine tonic, carminative, diaphoretic, diuretic, emmenagogue, galactagogue, febrifuge, sedative, relaxant, and anxiolytic activities. The renowned Persian physician and philosopher, Avicenna, delineated saffron as an antidepressant, hypnotic, anti-inflammatory, hepatoprotective, bronchodilator, and aphrodisiac in his book, the Canon of Medicine. Within traditional Iranian Medicine (TIM), saffron is characterized as a mood elevator and a rejuvenator for the body and senses. Further, the ethnopharmacological evidence indicates that saffron has shown an effect against neurodegenerative disorders namely, dementia, Alzheimer's, and Parkinson's with its bioactive constituents i.e., carotenoids and apocarotenoids. AIM The present study aimed to investigate the potential of standardized (Kashmir Saffron, India) Crocus sativus extract (CSE) in chronic scopolamine-induced cognitive impairment, amyloid beta (Aβ) plaque, and neurofibrillary tangles (NFT) accumulation in rat brains by targeting AChE inhibition and scopolamine mechanistic effect. METHODS The experimental animals were divided into six groups: group 1: normal control, group 2: scopolamine, group 3,4 and 5 rivastigmine tartrate, CSE (p.o. 10 mg/kg, 15 mg/kg, and 20 mg/kg) respectively. Each treatment group received scopolamine after 20 min of dosing, till 4 weeks. The effects of different treatments on learning, acquisition, and reversal memory were performed using a Morris water maze test. In addition to behavioral assessments, biochemical parameters such as AChE, IL-6, and antioxidants were measured in isolated brains. Histological observations were also conducted to assess the presence of Aβ plaques and NFT. Furthermore, molecular docking was performed to explore the potential AChE inhibitory activity of the bioactive constituents of standardized CSE. RESULTS Scopolamine produces memory impairment, and its chronic administration forms Aβ plaque and NFT in rat brains. Supplementation with CSE in presence of scopolamine has shown remarkable effects on behavioural activity, special acquisition, and reversal memory. The CSE has also shown promising effects on AChE inhibition and antioxidant activity. The results of the docking study also indicate that trans-crocetin, i.e., a biologically active metabolite of Crocins, has strong AChE inhibitory activity, supported by an in vivo animal experiment. CONCLUSION Supplementation with CSE significantly attenuates the formation of Aβ plaque and NFT in the hippocampus at a dose of 20 mg/kg per day. In addition, CSE also counters scopolamine-induced neuroinflammation.
Collapse
Affiliation(s)
- Komal S Patel
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Abhay Dharamsi
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Madhu Priya
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Sanskar Jain
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Vishal Mandal
- Parul Institute of Pharmacy, Parul University, Vadodara, 391760, Gujarat, India.
| | - Aboli Girme
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| | | | - Lal Hingorani
- Pharmanza Herbal Pvt. Ltd., Anand, 388430, Gujarat, India.
| |
Collapse
|
11
|
Apa Z, Gilsoul J, Dideberg V, Collette F. Association between executive functions and COMT Val108/158Met polymorphism among healthy younger and older adults: A preliminary study. PLoS One 2024; 19:e0303343. [PMID: 38739620 PMCID: PMC11090336 DOI: 10.1371/journal.pone.0303343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Genetic variability in the dopaminergic system could contribute to age-related impairments in executive control. In this study, we examined whether genetic polymorphism for catechol-O-methyltransferase (COMT Val158Met) is related to performance on updating, shifting and inhibition tasks. METHODS We administered a battery of executive tasks assessing updating, shifting and inhibition functions to 45 older and 55 younger healthy participants, and created composite z-scores associated to each function. Six groups were created based on genetic alleles (Val/Val, Val/Met, Met/Met) derived from the COMT gene and age (younger, older). Age and genotype effects were assessed with t-test and ANOVA (p<0.05). RESULTS A lower performance was observed in the older group for the three executive processes, and more particularly for inhibition. Moreover, older participants homozygous for the Val allele have a lower performance on the inhibition composite in comparison to younger Val/Val. CONCLUSIONS These results confirm presence of executive performance decrease in healthy aging. With regard to genetic effect, older participants seem particularly disadvantaged when they have a lower baseline dopamine level (i.e., Val/Val homozygous) that is magnified by aging, and when the executive measure emphasize the need of stable representations (as in inhibition task requiring to maintain active the instruction to not perform an automated process).
Collapse
Affiliation(s)
- Zoltan Apa
- GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique
- Psychology and Neuroscience of Cognition Research Unit, Université de Liège, Liège, Belgique
| | - Jessica Gilsoul
- GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique
- Psychology and Neuroscience of Cognition Research Unit, Université de Liège, Liège, Belgique
| | | | - Fabienne Collette
- GIGA-CRC In Vivo Imaging, Université de Liège, Liège, Belgique
- Psychology and Neuroscience of Cognition Research Unit, Université de Liège, Liège, Belgique
| |
Collapse
|
12
|
Wang W. Protein-Based Tools for Studying Neuromodulation. ACS Chem Biol 2024; 19:788-797. [PMID: 38581649 PMCID: PMC11129172 DOI: 10.1021/acschembio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Reddy AP, Rawat P, Rohr N, Alvir R, Bisht J, Bushra MA, Luong J, Reddy AP. Role of Serotonylation and SERT Posttranslational Modifications in Alzheimer's Disease Pathogenesis. Aging Dis 2024:AD.2024.0328. [PMID: 39254383 DOI: 10.14336/ad.2024.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is implicated mainly in Alzheimer's disease (AD) and reported to be responsible for several processes and roles in the human body, such as regulating sleep, food intake, sexual behavior, anxiety, and drug abuse. It is synthesized from the amino acid tryptophan. Serotonin also functions as a signal between neurons to mature, survive, and differentiate. It plays a crucial role in neuronal plasticity, including cell migration and cell contact formation. Various psychiatric disorders, such as depression, schizophrenia, autism, and Alzheimer's disease, have been linked to an increase in serotonin-dependent signaling during the development of the nervous system. Recent studies have found 5-HT and other monoamines embedded in the nuclei of various cells, including immune cells, the peritoneal mast, and the adrenal medulla. Evidence suggests these monoamines to be involved in widespread intracellular regulation by posttranslational modifications (PTMs) of proteins. Serotonylation is the calcium-dependent process in which 5-HT forms a long-lasting covalent bond to small cytoplasmic G-proteins by endogenous transglutaminase 2 (TGM2). Serotonylation plays a role in various biological processes. The purpose of our article is to summarize historical developments and recent advances in serotonin research and serotonylation in depression, aging, AD, and other age-related neurological diseases. We also discussed several of the latest developments with Serotonin, including biological functions, pathophysiological implications and therapeutic strategies to treat patients with depression, dementia, and other age-related conditions.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Rohr
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Razelle Alvir
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jasbir Bisht
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mst Anika Bushra
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jennifer Luong
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Aananya P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
14
|
Kumar D, Sinha SN, Gouda B. Novel LC-MS/MS Method for Simultaneous Determination of Monoamine Neurotransmitters and Metabolites in Human Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:663-673. [PMID: 38447073 DOI: 10.1021/jasms.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
For the simultaneous determination of monoamine neurotransmitters (NTs) like dopamine, serotonin, noradrenaline, and epinephrine, and their metabolites (metanephrine, normetanephrine, 3-methoxytyramine, vanillylmandelic acid, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid), a robust liquid chromatography method coupled with tandem mass spectrometry (LC-MS/MS) was introduced as the analytical method. This analytical method proved to be accurate for the simultaneous measurement of the amounts of 11 NTs and their metabolites in biological samples. The method proved to be more efficient and better than the previously reported method in terms of precision, recovery, sample requirement, and extraction procedure. The reported method requires only 100 μL of blood and 200 μL of urine, and the extraction procedure requires acetonitrile precipitation, filtration, drying, and reconstitution in water. The separation of all analytes was performed on an C18 column (4.6 mm × 150 mm and 1.8 μm). A 10 min gradient elution program with a mobile phase consisting of phase A (0.2% formic acid in water) and phase B (methanol) was used. The positive ionization mode was used for the detection of all analytes in multiple reaction monitoring (MRM). The proposed method was validated with an internal standard and yielded lower limits of detection and quantification ranges of 0.0182-0.0797 ng/mL and 0.0553-0.2415 ng/mL, respectively, with a good linearity (R2) between 0.9959 and 0.9994. The recoveries ranged from 73.37% to 116.63% in blood and from 80.9% to 115.33% in urine. For the NTs and metabolites, the intra- and interday % CV were 0.24-9.36 and 0.85-9.67, respectively. The developed LC-MS/MS method was successfully used for the determination of trace amounts of endogenous compounds in human blood and urine samples.
Collapse
Affiliation(s)
- Dileshwar Kumar
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana 500007, India
- Department of Biochemistry Osmania University, Hyderabad, Telangana 500007, India
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana 500007, India
| | - Balaji Gouda
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad, Telangana 500007, India
| |
Collapse
|
15
|
Alam J, Kalash A, Hassan MI, Rahman SZ. Agents at the Peak of US FDA Approval for the Treatment of Alzheimer's Disease. Neurol Res 2024; 46:318-325. [PMID: 38197595 DOI: 10.1080/01616412.2024.2302271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Where Alzheimer's disease (AD) is becoming a global health issue, the present anti-AD medications have also been exposed to produce only symptomatic outcomes. The pathological factors, like neuronal transmission impairment, amyloidal-tau constituents, oxidative damage, neuro-inflammation, synaptic dysfunction, infectious agents, and impairment of gut microbiota and vitamins' levels; all favor the disease's progression and sustainability. The researchers have investigated several drugable molecules against these factors; however, no treatment could have been discovered yet to prevent the disease's progression rather than anti-amyloidal antibodies. After a comprehensive review of the literature and the clinical registry (clinicaltrials.gov), the authors of this manuscript have explored drug molecules that are under phase-3 of clinical trials and at the peak of getting approval for the management of AD. The inclusion and exclusion criteria for clinical trials were decided by considering the basis of a drug's approval. We included only the clinical trials were found in stages of Enrolling-by-Invitation, Recruiting, Not Recruiting (But active), and Not Recruiting (Not active) while excluding Completed, Terminated, Suspended, Withdrawn, or the trials of Unknown Status. We have found many potent drug molecules reached the clinical trials in phase-3 that could be futuristic anti-AD agents. This review article aims to provide an update on the prospective potential anti-AD medicines and to reveal the therapeutic targets of great significance for designing further a possible drug development strategy against AD pathology.
Collapse
Affiliation(s)
- Jahngeer Alam
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Anushka Kalash
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Syed Ziaur Rahman
- Department of Pharmacology, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
16
|
Zhang A, Song Z, Di A, Zhou Z, Zheng L, Zhuang L. Acupuncture for the Treatment of Neuropsychiatric Symptoms in Parkinson's Disease: A Systematic Review and Meta-Analysis. Complement Ther Med 2024; 80:103020. [PMID: 38185400 DOI: 10.1016/j.ctim.2024.103020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Neuropsychiatric symptoms (NPSs) of Parkinson's disease (PD) have received increasing attention, but effective treatment options remain limited. Acupuncture may have clinical benefits for NPSs in PD patients, but high-quality evidence supporting this possibility still needs to be discovered. Therefore, we conducted a meta-analysis to evaluate the effect of acupuncture treatment on NPSs in PD patients. METHODS Randomized controlled trials (RCTs) of acupuncture treatment for PD retrieved from the following electronic databases: PubMed, Embase, Cochrane Library, Web of Science, and Scopus, were used to evaluate NPSs of PD patients. The Cochrane Intervention System Evaluation Manual assessed the methodological quality. RESULTS A total of 13 RCTs involving 719 patients were included. The results showed that compared with medication alone or sham acupuncture, acupuncture improved sleep quality in PD patients, with Parkinson's Disease Sleep Scale (PDSS) [standardized mean difference (SMD)= 0.48, 95% confidence interval (CI)= 0.242 to 0.793, P = 0.001]. The I scores and total scores on Unified Parkinson's Disease Rating Scale (UPDRS) indicated acupuncture treatment was effective (SMD=-0.66, 95%CI=-0.66 to -0.18, P = 0.042; SMD=-0.77, 95%CI=-1.31 to -0.23, P = 0.005). Results of the Epworth Sleepiness Scale (ESS) and Parkinson's Disease Questionnaire-39 (PDQ-39) showed no statistically significant differences (SMD=-0.27, 95%CI=-0.08 to 0.62, P = 0.128; SMD=-0.20, 95%CI=-0.42 to 0.01, P = 0.554). Anxiety and depression research had no significant differences due to the excessive inter-study bias. CONCLUSION Acupuncture treatment can improve sleep quality, psychological and behavioral alterations, and the overall condition of PD patients. However, the study revealed no significant positive intervention effects on anxiety, depression, and quality of life, underscoring the necessity for continued research to elucidate these domains' intricacies and develop productive therapeutic approaches.
Collapse
Affiliation(s)
- Anxin Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zefeng Song
- Medical Department, Dalian University of Technology, Dalian 116024, China
| | - Anqi Di
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zelin Zhou
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Liang Zheng
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lixing Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
17
|
Zhan Q, Kong F, Shao S, Zhang B, Huang S. Pathogenesis of Depression in Alzheimer's Disease. Neurochem Res 2024; 49:548-556. [PMID: 38015411 DOI: 10.1007/s11064-023-04061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Depression is a prevalent occurrence among Alzheimer's disease (AD) patients, yet its underlying mechanism remains unclear. Recent investigations have revealed that several pathophysiological changes associated with Alzheimer's disease can lead to mood disorders. These alterations include irregularities in monoamine neurotransmitters, disruptions in glutamatergic synaptic transmission, neuro-inflammation, dysfunction within the hypothalamic-pituitary-adrenocortical (HPA) axis, diminished levels of brain-derived neurotrophic factor (BDNF), and hippocampal atrophy. This review consolidates research findings from pertinent fields to elucidate the mechanisms underlying depression in Alzheimer's disease, aiming to provide valuable insights for the study of its mechanisms and clinical treatment.
Collapse
Affiliation(s)
- Qingyang Zhan
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fanyi Kong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuai Shao
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Bo Zhang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| | - Shuming Huang
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
18
|
Saheli M, Moshrefi M, Baghalishahi M, Mohkami A, Firouzi Y, Suzuki K, Khoramipour K. Cognitive Fitness: Harnessing the Strength of Exerkines for Aging and Metabolic Challenges. Sports (Basel) 2024; 12:57. [PMID: 38393277 PMCID: PMC10891799 DOI: 10.3390/sports12020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Addressing cognitive impairment (CI) represents a significant global challenge in health and social care. Evidence suggests that aging and metabolic disorders increase the risk of CI, yet promisingly, physical exercise has been identified as a potential ameliorative factor. Specifically, there is a growing understanding that exercise-induced cognitive improvement may be mediated by molecules known as exerkines. This review delves into the potential impact of aging and metabolic disorders on CI, elucidating the mechanisms through which various exerkines may bolster cognitive function in this context. Additionally, the discussion extends to the role of exerkines in facilitating stem cell mobilization, offering a potential avenue for improving cognitive impairment.
Collapse
Affiliation(s)
- Mona Saheli
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Mandana Moshrefi
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Masoumeh Baghalishahi
- Department of Anatomical Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.S.); (M.B.)
| | - Amirhossein Mohkami
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Yaser Firouzi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Bahonar University, Kerman 7616913439, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| |
Collapse
|
19
|
Kazmi I, Afzal M, Imam F, Alzarea SI, Patil S, Mhaiskar A, Shah U, Almalki WH. Barbaloin's Chemical Intervention in Aluminum Chloride Induced Cognitive Deficits and Changes in Rats through Modulation of Oxidative Stress, Cytokines, and BDNF Expression. ACS OMEGA 2024; 9:6976-6985. [PMID: 38371830 PMCID: PMC10870395 DOI: 10.1021/acsomega.3c08791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease (AD) is a long-term neurodegenerative condition characterized by impaired cognitive functions, particularly in the domains of learning and memory. Finding promising options for AD can be successful with a medication repurposing strategy. The goal of the research was to examine the neuroprotective characteristics of barbaloin in aluminum chloride (AlCl3)-induced cognitive deficits and changes in rats through modulation of oxidative stress, cytokines, and brain-derived neurotrophic factor (BDNF) expression. Thirty male Wistar rats were subjected to AlCl3 at a dosage of 100 mg/kg via the per oral route (p.o.), which induced cognitive decline. Morris water maze (MWM) is used to assess behavioral metrics. Assays for catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), interleukins-1β (IL-1β), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukins-6 (IL-6), BDNF, and neurotransmitter levels [dopamine (DA), acetylcholine (Ach), and γ-aminobutyric acid (GABA)] were performed. Results: The transfer latency time was notably decreased, and substantial modifications in the concentrations of GSH, MDA, CAT, SOD, AChE, ChAT and observed modulations in the formation of interleukins-6 (IL-6), TNF-α, IL-1β, BDNF, and NF-κB were also evidenced after the treatment of rats with barbaloin in comparison to AlCl3-induced control groups. Significant alterations in neurotransmitter levels (DA, Ach, and GABA) were also seen in barbaloin-treated groups in comparison to AlCl3-induced groups. The current investigation has provided evidence that the administration of barbaloin yielded notable enhancements in cognitive function in rats through the inhibition of MDA, enhancing endogenous antioxidant enzymes, reduction of cytokine levels, and enhancement of neurotransmitter contents in the brain. These effects were observed in comparison to a control group treated with AlCl3 and can be attributable to barbaloin's strong anti-inflammatory and antioxidant properties, and metal chelating properties may contribute to its neuroprotective effects. Barbaloin may also promote neuronal survival and enhance learning and memory by upregulating the expression of BDNF.
Collapse
Affiliation(s)
- Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department
of Pharmaceutical Sciences, Pharmacy Program,
Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Faisal Imam
- Department
of Pharmacology and Toxicology, College
of Pharmacy, King Saud University, P.O.
Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Shaktipal Patil
- Department
of Pharmacology, H. R. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Amrapali Mhaiskar
- Department
of Pharmacology, R. C. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
| | - Ujashkumar Shah
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
20
|
Guiard BP, Gotti G. The High-Precision Liquid Chromatography with Electrochemical Detection (HPLC-ECD) for Monoamines Neurotransmitters and Their Metabolites: A Review. Molecules 2024; 29:496. [PMID: 38276574 PMCID: PMC10818480 DOI: 10.3390/molecules29020496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This review highlights the advantages of high-precision liquid chromatography with an electrochemical detector (HPLC-ECD) in detecting and quantifying biological samples obtained through intracerebral microdialysis, specifically the serotonergic and dopaminergic systems: Serotonin (5-HT), 5-hydroxyindolacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), dopamine (DA), 3-metoxytryptamin (3-MT) and homovanillic acid (HVA). Recognized for its speed and selectivity, HPLC enables direct analysis of intracerebral microdialysis samples without complex derivatization. Various chromatographic methods, including reverse phase (RP), are explored for neurotransmitters (NTs) and metabolites separation. Electrochemical detector (ECD), particularly with glassy carbon (GC) electrodes, is emphasized for its simplicity and sensitivity, aimed at enhancing reproducibility through optimization strategies such as modified electrode materials. This paper underscores the determination of limits of detection (LOD) and quantification (LOQ) and the linear range (L.R.) showcasing the potential for real-time monitoring of compounds concentrations. A non-exhaustive compilation of literature values for LOD, LOQ, and L.R. from recent publications is included.
Collapse
Affiliation(s)
- Bruno P. Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR5169, 31062 Toulouse, France;
- Centre de Biologie Intégrative (CBI), Faculté Sciences Ingénierie (FSI), Université de Toulouse III, 31062 Toulouse, France
| | - Guillaume Gotti
- Centre de Recherches sur la Cognition Animale (CRCA), CNRS UMR5169, 31062 Toulouse, France;
- Centre de Biologie Intégrative (CBI), Faculté Sciences Ingénierie (FSI), Université de Toulouse III, 31062 Toulouse, France
| |
Collapse
|
21
|
Ngo QC, McConnell N, Motin MA, Polus B, Bhattacharya A, Raghav S, Kumar DK. NeuroDiag: Software for Automated Diagnosis of Parkinson's Disease Using Handwriting. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:291-297. [PMID: 38410180 PMCID: PMC10896420 DOI: 10.1109/jtehm.2024.3355432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE A change in handwriting is an early sign of Parkinson's disease (PD). However, significant inter-person differences in handwriting make it difficult to identify pathological handwriting, especially in the early stages. This paper reports the testing of NeuroDiag, a software-based medical device, for the automated detection of PD using handwriting patterns. NeuroDiag is designed to direct the user to perform six drawing and writing tasks, and the recordings are then uploaded onto a server for analysis. Kinematic information and pen pressure of handwriting are extracted and used as baseline parameters. NeuroDiag was trained based on 26 PD patients in the early stage of the disease and 26 matching controls. METHODS Twenty-three people with PD (PPD) in their early stage of the disease, 25 age-matched healthy controls (AMC), and 7 young healthy controls were recruited for this study. Under the supervision of a consultant neurologist or their nurse, the participants used NeuroDiag. The reports were generated in real-time and tabulated by an independent observer. RESULTS The participants were able to use NeuroDiag without assistance. The handwriting data was successfully uploaded to the server where the report was automatically generated in real-time. There were significant differences in the writing speed between PPD and AMC (P<0.001). NeuroDiag showed 86.96% sensitivity and 76.92% specificity in differentiating PPD from those without PD. CONCLUSION In this work, we tested the reliability of NeuroDiag in differentiating between PPD and AMC for real-time applications. The results show that NeuroDiag has the potential to be used to assist neurologists and for telehealth applications. Clinical and Translational Impact Statement - This pre-clinical study shows the feasibility of developing a community-wide screening program for Parkinson's disease using automated handwriting analysis software, NeuroDiag.
Collapse
Affiliation(s)
- Quoc Cuong Ngo
- School of Engineering, STEM CollegeRMIT UniversityMelbourneVIC3000Australia
| | | | | | - Barbara Polus
- School of Engineering, STEM CollegeRMIT UniversityMelbourneVIC3000Australia
| | | | - Sanjay Raghav
- Monash Medical CentreDepartment of NeurosciencesClaytonVIC3168Australia
| | - Dinesh Kant Kumar
- School of Engineering, STEM CollegeRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
22
|
Vardarajan B, Kalia V, Reyes-Dumeyer D, Dubey S, Nandakumar R, Lee A, Lantigua R, Medrano M, Rivera D, Honig L, Mayeux R, Miller G. Lysophosphatidylcholines are associated with P-tau181 levels in early stages of Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-3346076. [PMID: 38260644 PMCID: PMC10802729 DOI: 10.21203/rs.3.rs-3346076/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background We profiled circulating plasma metabolites to identify systemic biochemical changes in clinical and biomarker-assisted diagnosis of Alzheimer's disease (AD). Methods We used an untargeted approach with liquid chromatography coupled to high-resolution mass spectrometry to measure small molecule plasma metabolites from 150 clinically diagnosed AD patients and 567 age-matched healthy elderly of Caribbean Hispanic ancestry. Plasma biomarkers of AD were measured including P-tau181, Aβ40, Aβ42, total-tau, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). Association of individual and co-abundant modules of metabolites were tested with clinical diagnosis of AD, as well as biologically-defined AD pathological process based on P-tau181 and other biomarker levels. Results Over 6000 metabolomic features were measured with high accuracy. First principal component (PC) of lysophosphatidylcholines (lysoPC) that bind to or interact with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AHA) was associated with decreased risk of AD (OR = 0.91 [0.89-0.96], p = 2e-04). Association was restricted to individuals without an APOE ε4 allele (OR = 0.89 [0.84-0.94], p = 8.7e-05). Among individuals carrying at least one APOE ε4 allele, PC4 of lysoPCs moderately increased risk of AD (OR = 1.37 [1.16-1.6], p = 1e-04). Essential amino acids including tyrosine metabolism pathways were enriched among metabolites associated with P-tau181 levels and heparan and keratan sulfate degradation pathways were associated with Aβ42/Aβ40 ratio. Conclusions Unbiased metabolic profiling can identify critical metabolites and pathways associated with β-amyloid and phosphotau pathology. We also observed an APOE-ε4 dependent association of lysoPCs with AD and biologically based diagnostic criteria may aid in the identification of unique pathogenic mechanisms.
Collapse
Affiliation(s)
| | - Vrinda Kalia
- Columbia University Mailman School of Public Health
| | | | | | | | - Annie Lee
- Center for Translational & Computational Neuroimmunology
| | | | | | | | | | | | | |
Collapse
|
23
|
Goal A, Raj K, Singh S, Arora R. Protective effects of Embelin in Benzo[α]pyrene induced cognitive and memory impairment in experimental model of mice. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100122. [PMID: 38616958 PMCID: PMC11015058 DOI: 10.1016/j.crneur.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 04/16/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects the neurons in the hippocampus, resulting in cognitive and memory impairment. The most prominent clinical characteristics of AD are the production of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuroinflammation in neurons. It has been proven that embelin (Emb) possesses antioxidant, anti-inflammatory, and neuroprotective properties. Therefore, we assessed the therapeutic potential of Emb in Benzo [α]pyrene (BaP)-induced cognitive impairment in experimental mice. BaP (5 mg/kg, i. p) was given to mice daily for 28 days, and Emb (2.5, 5, and 10 mg/kg, i. p) was given from 14 to 28 days of a protocol. In addition, locomotor activity was evaluated using open-field and spatial working, and non-spatial memory was evaluated using novel object recognition tasks (NORT), Morris water maze (MWM), and Y- maze. At the end of the study, the animal tissue homogenate was used to check biochemicals, neuroinflammation, and neurotransmitter changes. BaP-treated mice showed a significant decline in locomotor activity, learning and memory deficits and augmented oxidative stress (lipid peroxidation, nitrite, and GSH). Further, BaP promoted the release of inflammatory tissue markers, decreased acetylcholine, dopamine, GABA, serotonin, and norepinephrine, and increased glutamate concentration. However, treatment with Emb at dose-dependently prevented biochemical changes, improved antioxidant levels, reduced neuroinflammation, restored neurotransmitter concentration, and inhibited the NF-κB pathway. The current study's finding suggested that Emb improved cognitive functions through antioxidant, anti-inflammatory, and neuroprotective mechanisms and inhibition of acetylcholinesterase (AChE) enzyme activities and Aβ-42 accumulation.
Collapse
Affiliation(s)
- Akansh Goal
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Rimpi Arora
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001
| |
Collapse
|
24
|
Xie L, Raj Y, Varathan P, He B, Yu M, Nho K, Salama P, Saykin AJ, Yan J. Deep Trans-Omic Network Fusion for Molecular Mechanism of Alzheimer's Disease. J Alzheimers Dis 2024; 99:715-727. [PMID: 38728189 DOI: 10.3233/jad-240098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background There are various molecular hypotheses regarding Alzheimer's disease (AD) like amyloid deposition, tau propagation, neuroinflammation, and synaptic dysfunction. However, detailed molecular mechanism underlying AD remains elusive. In addition, genetic contribution of these molecular hypothesis is not yet established despite the high heritability of AD. Objective The study aims to enable the discovery of functionally connected multi-omic features through novel integration of multi-omic data and prior functional interactions. Methods We propose a new deep learning model MoFNet with improved interpretability to investigate the AD molecular mechanism and its upstream genetic contributors. MoFNet integrates multi-omic data with prior functional interactions between SNPs, genes, and proteins, and for the first time models the dynamic information flow from DNA to RNA and proteins. Results When evaluated using the ROS/MAP cohort, MoFNet outperformed other competing methods in prediction performance. It identified SNPs, genes, and proteins with significantly more prior functional interactions, resulting in three multi-omic subnetworks. SNP-gene pairs identified by MoFNet were mostly eQTLs specific to frontal cortex tissue where gene/protein data was collected. These molecular subnetworks are enriched in innate immune system, clearance of misfolded proteins, and neurotransmitter release respectively. We validated most findings in an independent dataset. One multi-omic subnetwork consists exclusively of core members of SNARE complex, a key mediator of synaptic vesicle fusion and neurotransmitter transportation. Conclusions Our results suggest that MoFNet is effective in improving classification accuracy and in identifying multi-omic markers for AD with improved interpretability. Multi-omic subnetworks identified by MoFNet provided insights of AD molecular mechanism with improved details.
Collapse
Affiliation(s)
- Linhui Xie
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Yash Raj
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Pradeep Varathan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Bing He
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Meichen Yu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Paul Salama
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Jingwen Yan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| |
Collapse
|
25
|
Kostenko A, Prezzavento O, de Leo G, D'Arco D, Gulino R, Caccamo A, Leanza G. Cognitive and Histopathological Alterations in Rat Models of Early- and Late-Phase Memory Dysfunction: Effects of Sigma-1 Receptor Activation. J Alzheimers Dis 2024; 101:797-811. [PMID: 39240642 DOI: 10.3233/jad-240618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background Sigma-1 receptors are highly expressed in brain areas related to cognitive function and are a promising target for anti-amnesic treatments. We previously showed that activation of sigma-1 receptors by the selective agonist compound methyl(1 R,2 S/1 S,2 R)-2-[4-hydroxy-4-phenylpiperidin-1-yl)methyl]-1-(4-methylphenyl) cyclopropane carboxylate [(±)-PPCC] promotes a remarkable recovery in rat models of memory loss associated to cholinergic dysfunction. Objective In this study, we sought to assess the role of (±)-PPCC on working memory deficits caused by noradrenergic depletion. Methods Animals with a mild or severe working memory deficits associated to varying degrees of noradrenergic neuronal depletion were treated with the sigma-1 agonist just prior to the beginning of each behavioral testing session. Results While (±)-PPCC alone at a dose of 1 mg/kg/day failed to affect working memory in lesioned animals, its association with the α2 adrenergic receptor agonist clonidine, completely blocked noradrenaline release, significantly improving rat performance. This effect, distinct from noradrenaline activity, is likely to result from a direct action of the (±)-PPCC compound onto sigma-1 receptors, as pre-treatment with the selective sigma-1 receptor antagonist BD-1047 reversed the improved working memory performance. Despite such clear functional effects, the treatment did not affect noradrenergic neuron survival or terminal fiber proliferation. Conclusions Future studies are thus necessary to address the effects of long-lasting (±)-PPCC treatment, with or without clonidine, on cognitive abilities and Alzheimer's disease-like histopathology. Considering the already established involvement of sigma-1 receptors in endogenous cell plasticity mechanisms, their activation by selective agonist compounds holds promises as possibly positive contributor to disease-modifying events in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Kostenko
- Department of Life Sciences, B.R.A.I.N. (Basic Research and Integrative Neuroscience), Laboratory for Neurogenesis and Repair, University of Trieste, Trieste, Italy
| | - Orazio Prezzavento
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Gioacchino de Leo
- Department of Life Sciences, B.R.A.I.N. (Basic Research and Integrative Neuroscience), Laboratory for Neurogenesis and Repair, University of Trieste, Trieste, Italy
- SISSA, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - David D'Arco
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Yuan J, Tan H, Cheng Y, Ma X, Jiang S, Hou X, Li S, Shi L, Li P, Xu H, Lv J, Han B. Air particulate pollution exposure associated with impaired cognition via microbiota gut-brain axis: an evidence from rural elderly female in northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6398-6410. [PMID: 38151560 DOI: 10.1007/s11356-023-31504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
This study aimed to reveal harm of exposure to indoor air pollution to cognitive function through "gut-brain-axis" among rural elderly residents. There were 120 participants recruited in rural villages of northwest China from December 2021 to February 2022. The cognitive level was assessed by eight-item ascertain dementia (AD) questionnaire, and indoor air pollution exposure was measured by air quality sensor. Inflammatory cytokines and oxidative stress-related index were detected in blood serum. Fecal samples were collected for gut microbiota analysis. The 120 participants were divided into impaired cognition (AD8) (81/67.5%) and cognition normal (NG) (39/32.5%). And there had more female in AD8 (FAD) (55/67.9%) than NG (FNG) (18/46.2%) (P = 0.003). Exposure of air pollution in FAD was higher than FNG (PM1, PM2.5, PM10, P < 0.001; NO2, P < 0.001; CO, P = 0.014; O3, P = 0.002). The risk of cognitive impairment increases 6.8%, 3.6%, 2.6%, 11%, and 2.4% in female for every 1 μg/m3 increased in exposure of PM1, PM2.5, PM10, NO2, and O3, separately. And GSH-Px and T-SOD in FAD were significantly lower than the FNG group (P = 0.011, P = 0.019). Gut microbiota in FAD is disordered with lower richness and diversity. Relative abundance of core bacteria Faecalibacterium (top 1 genus) in FAD was reduced (13.65% vs 19.81%, P = 0.0235), while Escherichia_Shigella and Akkermansia was increased. Correlation analysis showed Faecalibacterium was negatively correlated with age, and exposure of O3, PM1, PM2.5, and PM10; Akkermansia and Monoglobus were positively correlated with exposure of PM1, PM2.5 and PM10; Escherichia_Shigella was significantly positively correlated with NO2. Indoor air pollution exposure impaired cognitive function in elderly people, especially female, which may cause systemic inflammation, dysbiosis of the gut microbiota, and ultimately leading to early cognitive impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Jia Yuan
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hui Tan
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Xinxin Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Sijin Jiang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyao Hou
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Pu Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hongmei Xu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
| |
Collapse
|
27
|
Cao THM, Le APH, Tran TT, Huynh VK, Pham BH, Le TM, Nguyen QL, Tran TC, Tong TM, Than THN, Nguyen TTT, Ha HTT. Plasma cell-free RNA profiling of Vietnamese Alzheimer's patients reveals a linkage with chronic inflammation and apoptosis: a pilot study. Front Mol Neurosci 2023; 16:1308610. [PMID: 38178908 PMCID: PMC10764507 DOI: 10.3389/fnmol.2023.1308610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Circulating cell-free RNA (cfRNA) is a potential hallmark for early diagnosis of Alzheimer's Disease (AD) as it construes the genetic expression level, giving insights into the pathological progress from the outset. Profiles of cfRNA in Caucasian AD patients have been investigated thoroughly, yet there was no report exploring cfRNAs in the ASEAN groups. This study examined the gap, expecting to support the development of point-of-care AD diagnosis. Methods cfRNA profiles were characterized from 20 Vietnamese plasma samples (10 probable AD and 10 age-matched controls). RNA reads were subjected to differential expression (DE) analysis. Weighted gene correlation network analysis (WGCNA) was performed to identify gene modules that were significantly co-expressed. These modules' expression profiles were then correlated with AD status to identify relevant modules. Genes with the highest intramodular connectivity (module membership) were selected as hub genes. Transcript counts of differentially expressed genes were correlated with key AD measures-MMSE and MTA scores-to identify potential biomarkers. Results 136 genes were identified as significant AD hallmarks (p < 0.05), with 52 downregulated and 84 upregulated in the AD cohort. 45.6% of these genes are highly expressed in the hippocampus, cerebellum, and cerebral cortex. Notably, all markers related to chronic inflammation were upregulated, and there was a significant shift in all apoptotic markers. Three co-expressed modules were found to be significantly correlated with Alzheimer's status (p < 0.05; R2> 0.5). Functional enrichment analysis on these modules reveals an association with focal adhesion, nucleocytoplasmic transport, and metal ion response leading to apoptosis, suggesting the potential participation of these pathways in AD pathology. 47 significant hub genes were found to be differentially expressed genes with the highest connectivity. Six significant hub genes (CREB1, YTHDC1, IL1RL1, PHACTR2, ANKRD36B, RNF213) were found to be significantly correlated with MTA and MMSE scores. Other significant transcripts (XRN1, UBB, CHP1, THBS1, S100A9) were found to be involved in inflammation and neuronal death. Overall, we have identified candidate transcripts in plasma cf-RNA that are differentially expressed and are implicated in inflammation and apoptosis, which can jumpstart further investigations into applying cf-RNA as an AD biomarker in Vietnam and ASEAN countries.
Collapse
Affiliation(s)
- Thien Hoang Minh Cao
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Anh Phuc Hoang Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tai Tien Tran
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vy Kim Huynh
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Bao Hoai Pham
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thao Mai Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Quang Lam Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thang Cong Tran
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Trang Mai Tong
- Department of Neurology, University Medical Center, Ho Chi Minh City, Vietnam
| | - The Ha Ngoc Than
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Geriatrics and Palliative Care, University Medical Center, Ho Chi Minh City, Vietnam
| | - Tran Tran To Nguyen
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huong Thi Thanh Ha
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Zaręba P, Łątka K, Mazur G, Gryzło B, Pasieka A, Godyń J, Panek D, Skrzypczak-Wiercioch A, Höfner GC, Latacz G, Maj M, Espargaró A, Sabaté R, Jóźwiak K, Wanner KT, Sałat K, Malawska B, Kulig K, Bajda M. Discovery of novel multifunctional ligands targeting GABA transporters, butyrylcholinesterase, β-secretase, and amyloid β aggregation as potential treatment of Alzheimer's disease. Eur J Med Chem 2023; 261:115832. [PMID: 37837674 DOI: 10.1016/j.ejmech.2023.115832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), β-secretase (BACE1), amyloid β aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 μM, mGAT4 IC50 = 12 μM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aβ40 aggregation inhibitory activity (IC50 = 1.57 μM and 99 % at 10 μM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 μM), Aβ aggregation (79 % at 10 μM) and mGATs (mGAT1 IC50 = 30 μM, mGAT4 IC50 = 25 μM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.
Collapse
Affiliation(s)
- Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Kamil Łątka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Gabriela Mazur
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Beata Gryzło
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Pasieka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Anna Skrzypczak-Wiercioch
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, Mickiewicz 24/28 St., 30-059, Kraków, Poland
| | - Georg C Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Av Joan XXIII 27-31, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Av Joan XXIII, S/N, 08028, Barcelona, Spain
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, W. Chodzki 4a St., 20-093, Lublin, Poland
| | - Klaus T Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr., 5-13, 81377, Munich, Germany
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| |
Collapse
|
29
|
Chen C, Khanthiyong B, Thaweetee-Sukjai B, Charoenlappanit S, Roytrakul S, Thanoi S, Reynolds GP, Nudmamud-Thanoi S. Proteomic association with age-dependent sex differences in Wisconsin Card Sorting Test performance in healthy Thai subjects. Sci Rep 2023; 13:20238. [PMID: 37981639 PMCID: PMC10658079 DOI: 10.1038/s41598-023-46750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023] Open
Abstract
Sex differences in cognitive function exist, but they are not stable and undergo dynamic change during the lifespan. However, our understanding of how sex-related neural information transmission evolves with age is still in its infancy. This study utilized the Wisconsin Card Sorting Test (WCST) and the label-free proteomics method with bioinformatic analysis to investigate the molecular mechanisms underlying age-related sex differences in cognitive performance in 199 healthy Thai subjects (aged 20-70 years), as well as explore the sex-dependent protein complexes for predicting cognitive aging. The results showed that males outperformed females in two of the five WCST sub-scores: %Corrects and %Errors. Sex differences in these scores were related to aging, becoming noticeable in those over 60. At the molecular level, differently expressed individual proteins and protein complexes between both sexes are associated with the potential N-methyl-D-aspartate type glutamate receptor (NMDAR)-mediated excitotoxicity, with the NMDAR complex being enriched exclusively in elderly female samples. These findings provided a preliminary indication that healthy Thai females might be more susceptible to such neurotoxicity, as evidenced by their cognitive performance. NMDAR protein complex enrichment in serum could be proposed as a potential indication for predicting cognitive aging in healthy Thai females.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | | | - Sawanya Charoenlappanit
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao, Thailand.
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
30
|
Khan AF, Adewale Q, Lin SJ, Baumeister TR, Zeighami Y, Carbonell F, Palomero-Gallagher N, Iturria-Medina Y. Patient-specific models link neurotransmitter receptor mechanisms with motor and visuospatial axes of Parkinson's disease. Nat Commun 2023; 14:6009. [PMID: 37752107 PMCID: PMC10522603 DOI: 10.1038/s41467-023-41677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease involves multiple neurotransmitter systems beyond the classical dopaminergic circuit, but their influence on structural and functional alterations is not well understood. Here, we use patient-specific causal brain modeling to identify latent neurotransmitter receptor-mediated mechanisms contributing to Parkinson's disease progression. Combining the spatial distribution of 15 receptors from post-mortem autoradiography with 6 neuroimaging-derived pathological factors, we detect a diverse set of receptors influencing gray matter atrophy, functional activity dysregulation, microstructural degeneration, and dendrite and dopaminergic transporter loss. Inter-individual variability in receptor mechanisms correlates with symptom severity along two distinct axes, representing motor and psychomotor symptoms with large GABAergic and glutamatergic contributions, and cholinergically-dominant visuospatial, psychiatric and memory dysfunction. Our work demonstrates that receptor architecture helps explain multi-factorial brain re-organization, and suggests that distinct, co-existing receptor-mediated processes underlie Parkinson's disease.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Sue-Jin Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Tobias R Baumeister
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada
| | - Yashar Zeighami
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, QC, Canada.
| |
Collapse
|
31
|
Kalia V, Reyes-Dumeyer D, Dubey S, Nandakumar R, Lee AJ, Lantigua R, Medrano M, Rivera D, Honig LS, Mayeux R, Miller GW, Vardarajan BN. Lysophosphatidylcholines are associated with P-tau181 levels in early stages of Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.24.23294581. [PMID: 37662203 PMCID: PMC10473810 DOI: 10.1101/2023.08.24.23294581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background We investigated systemic biochemical changes in Alzheimer's disease (AD) by investigating the relationship between circulating plasma metabolites and both clinical and biomarker-assisted diagnosis of AD. Methods We used an untargeted approach with liquid chromatography coupled to high-resolution mass spectrometry to measure exogenous and endogenous small molecule metabolites in plasma from 150 individuals clinically diagnosed with AD and 567 age-matched elderly without dementia of Caribbean Hispanic ancestry. Plasma biomarkers of AD were also measured including P-tau181, Aβ40, Aβ42, total tau, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). Association of individual and co-expressed modules of metabolites were tested with the clinical diagnosis of AD, as well as biologically-defined AD pathological process based on P-tau181 and other biomarker levels. Results Over 4000 metabolomic features were measured with high accuracy. First principal component (PC) of lysophosphatidylcholines (lysoPC) that bind to or interact with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AHA) was associated with decreased risk of AD (OR=0.91 [0.89-0.96], p=2e-04). Restricted to individuals without an APOE ε4 allele (OR=0.89 [0.84-0.94], p= 8.7e-05), the association remained. Among individuals carrying at least one APOE ε4 allele, PC4 of lysoPCs moderately increased risk of AD (OR=1.37 [1.16-1.6], p=1e-04). Essential amino acids including tyrosine metabolism pathways were enriched among metabolites associated with P-tau181 levels and heparan and keratan sulfate degradation pathways were associated with Aβ42/Aβ40 ratio reflecting different pathways enriched in early and middle stages of disease. Conclusions Our findings indicate that unbiased metabolic profiling can identify critical metabolites and pathways associated with β-amyloid and phosphotau pathology. We also observed an APOE ε4 dependent association of lysoPCs with AD and that biologically-based diagnostic criteria may aid in the identification of unique pathogenic mechanisms.
Collapse
Affiliation(s)
- Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. 722 West 168 Street, New York, NY 10032
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
| | - Saurabh Dubey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. 722 West 168 Street, New York, NY 10032
| | - Renu Nandakumar
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. 722 West 168 Street, New York, NY 10032
| | - Annie J. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
| | - Rafael Lantigua
- Department of Medicine, College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital. 630 West 168 Street, New York, NY 10032
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Católica Madre y Maestra, Santiago, Dominican Republic
| | - Diones Rivera
- Department of Neurosurgery, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital. 710 West 168 Street, New York, NY 10032
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital. 710 West 168 Street, New York, NY 10032
- Department of Epidemiology, Mailman School of Public Health, Columbia University. 722 West 168 Street, New York, NY 10032
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University. 722 West 168 Street, New York, NY 10032
- Department of Epidemiology, Mailman School of Public Health, Columbia University. 722 West 168 Street, New York, NY 10032
| | - Badri N. Vardarajan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University. 630 West 168 Street, New York, NY 10032
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital. 710 West 168 Street, New York, NY 10032
| |
Collapse
|
32
|
Mockevičius A, Šveistytė K, Griškova-Bulanova I. Individual/Peak Gamma Frequency: What Do We Know? Brain Sci 2023; 13:792. [PMID: 37239264 PMCID: PMC10216206 DOI: 10.3390/brainsci13050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, the concept of individualized measures of electroencephalographic (EEG) activity has emerged. Gamma-band activity plays an important role in many sensory and cognitive processes. Thus, peak frequency in the gamma range has received considerable attention. However, peak or individual gamma frequency (IGF) is rarely used as a primary measure of interest; consequently, little is known about its nature and functional significance. With this review, we attempt to comprehensively overview available information on the functional properties of peak gamma frequency, addressing its relationship with certain processes and/or modulation by various factors. Here, we show that IGFs seem to be related to various endogenous and exogenous factors. Broad functional aspects that are related to IGF might point to the differences in underlying mechanisms. Therefore, research utilizing different types of stimulation for IGF estimation and covering several functional aspects in the same population is required. Moreover, IGFs span a wide range of frequencies (30-100 Hz). This could be partly due to the variability of methods used to extract the measures of IGF. In order to overcome this issue, further studies aiming at the optimization of IGF extraction would be greatly beneficial.
Collapse
Affiliation(s)
| | | | - Inga Griškova-Bulanova
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
33
|
Park JH, Eom YS, Kim TH. Recent Advances in Aptamer-Based Sensors for Sensitive Detection of Neurotransmitters. BIOSENSORS 2023; 13:bios13040413. [PMID: 37185488 PMCID: PMC10136356 DOI: 10.3390/bios13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
In recent years, there has been an increased demand for highly sensitive and selective biosensors for neurotransmitters, owing to advancements in science and technology. Real-time sensing is crucial for effective prevention of neurological and cardiovascular diseases. In this review, we summarise the latest progress in aptamer-based biosensor technology, which offers the aforementioned advantages. Our focus is on various biomaterials utilised to ensure the optimal performance and high selectivity of aptamer-based biosensors. Overall, this review aims to further aptamer-based biosensor technology.
Collapse
Affiliation(s)
- Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Sik Eom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
34
|
The influence of bismuth participation on the morphological and electrochemical characteristics of gallium oxide for the detection of adrenaline. Anal Bioanal Chem 2023:10.1007/s00216-023-04617-7. [PMID: 36884077 DOI: 10.1007/s00216-023-04617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
In this work, we investigated the morphological and electrochemical properties of gallium/bismuth mixed oxide. The bismuth concentration was varied from 0 to 100%. The correct ratio was determined with inductively coupled plasma-optical emission spectroscopy (ICP-OES), while surface characteristics were determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurement. Electrochemical characteristics were studied using electrochemical impedance spectroscopy (EIS) in the Fe2+/3+ couple. The obtained materials were tested for adrenaline detection. After square wave voltammetry (SWV) optimization, the best electrode showed a wide linear working range from 7 to 100 µM at pH 6 of the Britton-Robinson buffer solution (BRBS) supporting electrolyte. The limit of detection (LOD) for the proposed method was calculated as 1.9 µM, with a limit of quantification (LOQ) of 5.8 µM. The excellent selectivity of the proposed method, with good repeatability and reproducibility, strongly suggests the possible application of the procedure for the determination of adrenaline in artificially prepared real samples. The practical applicability with good recovery values indicates that the morphology of the materials is closely connected with other parameters, which further suggests that the developed approach can offer a low-cost, rapid, selective, and sensitive method for adrenaline monitoring.
Collapse
|
35
|
The significance of micrographia as a clinical feature of Parkinson's disease and underlying pathophysiology. Neurol Sci 2023; 44:1791-1793. [PMID: 36593420 DOI: 10.1007/s10072-022-06590-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
|
36
|
Successful Treatment of Inappropriate Sexual Behavior and Disinhibition in Dementia With Paroxetine. J Clin Psychopharmacol 2023; 43:78-79. [PMID: 36584258 DOI: 10.1097/jcp.0000000000001644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
A high performance liquid chromatography tandem mass spectrometry protocol for detection of neurotransmitters in the rat brain tissue. MethodsX 2023; 10:102083. [PMID: 36875344 PMCID: PMC9978030 DOI: 10.1016/j.mex.2023.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The detection of neurotransmitters has extensively been applied to the study of the pathogenesis, diagnosis, and therapeutic effect of drugs on many neuropsychiatric diseases. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been employed to determine neurotransmitters levels due to its distinct advantages. However, neurotransmitter detection still presents some challenges. A rapid and sensitive HPLC-MS/MS protocol has been established in our lab, which can simultaneously detect 5 neurotransmitters with an easy pretreatment procedure. The protocol provides demanded reference value for the lab using an Agilent HPLC-MS/MS system with a triple quadrupole analyzer.
Collapse
|
38
|
Gasmi A, Nasreen A, Menzel A, Gasmi Benahmed A, Pivina L, Noor S, Peana M, Chirumbolo S, Bjørklund G. Neurotransmitters Regulation and Food Intake: The Role of Dietary Sources in Neurotransmission. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010210. [PMID: 36615404 PMCID: PMC9822089 DOI: 10.3390/molecules28010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Neurotransmitters (NTs) are biologically active chemicals, which mediate the electrochemical transmission between neurons. NTs control numerous organic functions particularly crucial for life, including movement, emotional responses, and the physical ability to feel pleasure and pain. These molecules are synthesized from simple, very common precursors. Many types of NTs have both excitatory and inhibitory effects. Neurotransmitters' imbalance can cause many diseases and disorders, such as Parkinson's disease, depression, insomnia, increased anxiety, memory loss, etc. Natural food sources containing NTs and/or their precursors would be a potential option to help maintain the balance of NTs to prevent brain and psychiatric disorders. The level of NTs could be influenced, therefore, by targeting dietary habits and nutritional regimens. The progressive implementation of nutritional approaches in clinical practice has made it necessary to infer more about some of the nutritional NTs in neuropsychiatry. However, the importance of the intake of nutritional NTs requires further understanding, since there are no prior significant studies about their bioavailability, clinical significance, and effects on nerve cells. Interventional strategies supported by evidence should be encouraged.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | - Aniqa Nasreen
- Department of Physiology, King Edward Medical University, Lahore 54000, Pakistan
| | - Alain Menzel
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg
| | - Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Lyudmila Pivina
- Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan
| | - Sàdaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway
- Correspondence:
| |
Collapse
|
39
|
The effect of combination pretreatment of donepezil and environmental enrichment on memory deficits in amyloid-beta-induced Alzheimer-like rat model. Biochem Biophys Rep 2022; 32:101392. [DOI: 10.1016/j.bbrep.2022.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
|
40
|
Adverse maternal environment affects hippocampal HTR2c variant expression and epigenetic characteristics in mouse offspring. Pediatr Res 2022; 92:1299-1308. [PMID: 35121849 DOI: 10.1038/s41390-022-01962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND An adverse maternal environment (AME) predisposes progeny towards cognitive impairment in humans and mice. Cognitive impairment associates with hippocampal dysfunction. An important regulator of hippocampal function is the hippocampal serotonergic system. Dysregulation of hippocampal serotonin receptor 2c (HTR2c) expression is linked with cognitive impairment. HTR2c contains multiple mRNA variants and isoforms that are epigenetically regulated including DNA methylation, histone modifications, and small nucleolar RNA MBII-52. We tested the hypotheses that AME increases HTR2c variant expression and alters epigenetic modifications along the HTR2c gene locus. METHODS We create an AME through maternal Western diet and prenatal environmental stress in the mouse. We analyzed hippocampal HTR2c and variants' expression, DNA methylation and histone modifications along the gene locus, and MBII-52 levels in postnatal day 21 offspring. RESULTS AME significantly increased the expressions of total HTR2c and full-length variants (V201 and V202) concurrently with an altered epigenetic profile along the HTR2c gene locus in male offspring hippocampi. Moreover, increased full-length variants' expression in AME males was in line with increased MBII-52 levels. CONCLUSIONS AME affects male offspring hippocampal expression of HTR2c and full-length variants via epigenetic mechanisms. Altered hippocampal HTR2c expression may contribute to cognitive impairment seen in adult males in this model. IMPACT The key message of our article is that an adverse maternal environment increases expression of total HTR2c mRNA and protein, alters proportions of HTR2c mRNA variants, and impacts HTR2c epigenetic modifications in male offspring hippocampi relative to controls. Our findings add to the literature by providing the first report of altered HTR2c mRNA variant expression in association with altered epigenetic modifications in the hippocampus of offspring mice exposed to an adverse maternal environment. Our findings suggest that an adverse maternal environment affects the expression of genes previously determined to regulate cognitive function through an epigenetic mechanism in a sex-specific manner.
Collapse
|
41
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
42
|
Ma W, Li M, Wu J, Zhang Z, Jia F, Zhang M, Bergman H, Li X, Ling Z, Xu X. Multiple step saccades in simply reactive saccades could serve as a complementary biomarker for the early diagnosis of Parkinson’s disease. Front Aging Neurosci 2022; 14:912967. [PMID: 35966789 PMCID: PMC9363762 DOI: 10.3389/fnagi.2022.912967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective It has been argued that the incidence of multiple step saccades (MSS) in voluntary saccades could serve as a complementary biomarker for diagnosing Parkinson’s disease (PD). However, voluntary saccadic tasks are usually difficult for elderly subjects to complete. Therefore, task difficulties restrict the application of MSS measurements for the diagnosis of PD. The primary objective of the present study is to assess whether the incidence of MSS in simply reactive saccades could serve as a complementary biomarker for the early diagnosis of PD. Materials and methods There were four groups of human subjects: PD patients, mild cognitive impairment (MCI) patients, elderly healthy controls (EHCs), and young healthy controls (YHCs). There were four monkeys with subclinical hemi-PD induced by injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) through the unilateral internal carotid artery and three healthy control monkeys. The behavioral task was a visually guided reactive saccade. Results In a human study, the incidence of MSS was significantly higher in PD than in YHC, EHC, and MCI groups. In addition, receiver operating characteristic (ROC) analysis could discriminate PD from the EHC and MCI groups, with areas under the ROC curve (AUCs) of 0.76 and 0.69, respectively. In a monkey study, while typical PD symptoms were absent, subclinical hemi-PD monkeys showed a significantly higher incidence of MSS than control monkeys when the dose of MPTP was greater than 0.4 mg/kg. Conclusion The incidence of MSS in simply reactive saccades could be a complementary biomarker for the early diagnosis of PD.
Collapse
Affiliation(s)
- Wenbo Ma
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Min Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Junru Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Zhihao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Fangfang Jia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Division of Psychology, Beijing Normal University, Beijing, China
| | - Hagai Bergman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuemei Li
- Department of Cadre Medical Service, The First Clinical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xuemei Li,
| | - Zhipei Ling
- Senior Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Zhipei Ling,
| | - Xin Xu
- Senior Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Xin Xu,
| |
Collapse
|
43
|
Han J, Yoon J, Shin J, Nam E, Qian T, Li Y, Park K, Lee SH, Lim MH. Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β. Nat Chem 2022; 14:1021-1030. [PMID: 35817963 DOI: 10.1038/s41557-022-00984-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
The progression of neurodegenerative disorders can lead to impaired neurotransmission; however, the role of pathogenic factors associated with these diseases and their impact on the structures and functions of neurotransmitters have not been clearly established. Here we report the discovery that conformational and functional changes of a native neuropeptide, somatostatin (SST), occur in the presence of copper ions, metal-free amyloid-β (Aβ) and metal-bound Aβ (metal-Aβ) found as pathological factors in the brains of patients with Alzheimer's disease. These pathological elements induce the self-assembly of SST and, consequently, prevent it from binding to the receptor. In the reverse direction, SST notably modifies the aggregation profiles of Aβ species in the presence of metal ions, attenuating their cytotoxicity and interactions with cell membranes. Our work demonstrates a loss of normal function of SST as a neurotransmitter and a gain of its modulative function against metal-Aβ under pathological conditions.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiwon Yoon
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Jeongcheol Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tongrui Qian
- State Key Laboratory Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
44
|
Schulkens JEM, Deckers K, Jenniskens M, Blokland A, Verhey FRJ, Sobczak S. The effects of selective serotonin reuptake inhibitors on memory functioning in older adults: A systematic literature review. J Psychopharmacol 2022; 36:578-593. [PMID: 35486412 PMCID: PMC9112622 DOI: 10.1177/02698811221080462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed to older adults. In contrast to young subjects, it is unclear whether older adults may be vulnerable to cognitive side effects. Serotonin is involved in cognitive functions (e.g. memory). It is of great importance to examine the effects of SSRIs on memory functioning in older adults. OBJECTIVES The objective of this systematic literature review is to summarize studies in which the effects of SSRI treatment on all aspects of memory functioning in older adults are investigated. METHODS PubMed, PsycINFO, CINAHL, and Embase were searched for all studies published until 18th of October 2021. Articles were included if they fulfilled the inclusion criteria as follows: (1) study design is (randomized) controlled trial, cross-sectional, or prospective cohort study; (2) study population consists of older adults (mean age ⩾65 years), or results for this age-group are reported separately; (3) intervention is use of an SSRI; and (4) effects on performance of any memory domain are measured and clearly described. RESULTS The search yielded 1888 articles, of which 136 were included for the full-text review. Eventually, 40 articles were included. Most studies reported no association between SSRI use and memory functioning. The studies that found a positive association mainly investigated older adults with mental or neurological disorders (e.g. depression or stroke). A few studies found a negative association in the following subgroups: non-responders (depression), patients with frontal brain disease, and women. CONCLUSION Overall, no consistent negative effects of SSRIs on memory functioning in older adults were found after SSRI treatment. Most studies reported no change in memory functioning after SSRI use. Some studies even showed an improvement in memory performance. Positive effects of SSRIs on memory functioning were especially found in older adults with mental or neurological disorders, such as subjects with depression or stroke.
Collapse
Affiliation(s)
- Julie EM Schulkens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Alzheimer Centre Limburg (ACL), Maastricht University, Maastricht, The Netherlands,Department of Old Age Psychiatry, Mondriaan Hospital, Heerlen, The Netherlands,Julie EM Schulkens, Department of Old Age Psychiatry, Mondriaan Hospital, Kloosterkensweg 10, 6419 PJ Heerlen, The Netherlands.
| | - Kay Deckers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Alzheimer Centre Limburg (ACL), Maastricht University, Maastricht, The Netherlands
| | - Maud Jenniskens
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Alzheimer Centre Limburg (ACL), Maastricht University, Maastricht, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Frans RJ Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Alzheimer Centre Limburg (ACL), Maastricht University, Maastricht, The Netherlands
| | - Sjacko Sobczak
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Alzheimer Centre Limburg (ACL), Maastricht University, Maastricht, The Netherlands,Department of Old Age Psychiatry, Mondriaan Hospital, Heerlen, The Netherlands
| |
Collapse
|
45
|
Cell models for Alzheimer’s and Parkinson’s disease: At the interface of biology and drug discovery. Biomed Pharmacother 2022; 149:112924. [PMID: 36068783 DOI: 10.1016/j.biopha.2022.112924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
46
|
Abstract
Cognitive impairment affects up to 80% of patients with Parkinson's disease (PD) and is associated with poor quality of life. PD cognitive dysfunction includes poor working memory, impairments in executive function and difficulty in set-shifting. The pathophysiology underlying cognitive impairment in PD is still poorly understood, but there is evidence to support involvements of the cholinergic, dopaminergic, and noradrenergic systems. Only rivastigmine, an acetyl- and butyrylcholinesterase inhibitor, is efficacious for the treatment of PD dementia, which limits management of cognitive impairment in PD. Whereas the role of the serotonergic system in PD cognition is less understood, through its interactions with other neurotransmitters systems, namely, the cholinergic system, it may be implicated in cognitive processes. In this chapter, we provide an overview of the pharmacological, clinical and pathological evidence that implicates the serotonergic system in mediating cognition in PD.
Collapse
|
47
|
Ozkat GY, Yildiz I. In Silico Studies to Develop New GSK3β Inhibitors Effective in Alzheimer's Disease. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220210100813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Alzheimer's disease affects a large part of the world population by prolonging the human life span and becoming an economic burden in the health system. Therefore, its treatment becomes more and more important every day. With the insufficiency of existing drug molecules, new drug targets started to be emphasized. The most important of these is the Glycogen Synthase Kinase 3β enzyme, thought to be of key importance in Tau hyperphosphorylation and Amyloid β accumulation mechanisms.
Objective:
In this research, computational studies were conducted to develop a new GSK3β enzyme inhibitor.
Method:
Leading compounds suitable for pharmacophore models obtained by the 3D QSAR method were scanned in databases. In silico ADME/Tox analyses were performed on the obtained molecules.
Results:
Although the three molecules (ENA99104, CNR13756, TIM405938) had strong Dock Scores (42.869, 53.344, and 41.119, respectively) in molecular docking calculations, only the CNR13756 molecule was found successful according to molecular dynamics simulations.
Conclusion:
All computational studies have revealed that the CNR13756 molecule can exhibit a therapeutic scaffold property, thus obtaining a selective GSK3β inhibitor with minimal side effects.
Collapse
Affiliation(s)
- Gozde Yalcin Ozkat
- Biotechnology Institute, Ankara University, Ankara 06135 Turkey
- Bioengineering Department, Faculty of Engineering and Architecture, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ilkay Yildiz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06110, Turkey
| |
Collapse
|
48
|
Orso B, Arnaldi D, Peira E, Famá F, Giorgetti L, Girtler N, Brugnolo A, Mattioli P, Biassoni E, Donniaquio A, Massa F, Bauckneht M, Miceli A, Morbelli S, Nobili F, Pardini M. The Role of Monoaminergic Tones and Brain Metabolism in Cognition in De Novo Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1945-1955. [PMID: 35811536 DOI: 10.3233/jpd-223308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cognitive impairment is frequent in Parkinson's disease (PD) and several neurotransmitter changes have been reported since the time of diagnosis, although seldom investigated altogether in the same patient cohort. OBJECTIVE Our aim was to evaluate the association between neurotransmitter impairment, brain metabolism, and cognition in a cohort of de novo, drug-naïve PD patients. METHODS We retrospectively selected 95 consecutive drug-naïve PD patients (mean age 71.89±7.53) undergoing at the time of diagnosis a brain [18F]FDG-PET as a marker of brain glucose metabolism and proxy measure of neurodegeneration, [123I]FP-CIT-SPECT as a marker and dopaminergic deafferentation in the striatum and frontal cortex, as well as a marker of serotonergic deafferentation in the thalamus, and quantitative electroencephalography (qEEG) as an indirect measure of cholinergic deafferentation. Patients also underwent a complete neuropsychological battery. RESULTS Positive correlations were observed between (i) executive functions and left cerebellar cortex metabolism, (ii) prefrontal dopaminergic tone and working memory (r = 0.304, p = 0.003), (iii) qEEG slowing in the posterior leads and both memory (r = 0.299, p = 0.004) and visuo-spatial functions (r = 0.357, p < 0.001). CONCLUSIONS In subjects with PD, the impact of regional metabolism and diffuse projection systems degeneration differs across cognitive domains. These findings suggest possible tailored approaches to the treatment of cognitive deficits in PD.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Enrico Peira
- Istituto nazionale di Fisica Nucleare (IN FN), Genoa section, Genoa, Italy
| | - Francesco Famá
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | | | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Erica Biassoni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Andrea Donniaquio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Alberto Miceli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
49
|
Hashemi-Firouzi N, Shahidi S, Soleimani Asl S. Chronic stimulation of the serotonergic 5-HT4 receptor modulates amyloid-beta-related impairments in synaptic plasticity and memory deficits in male rats. Brain Res 2021; 1773:147701. [PMID: 34695393 DOI: 10.1016/j.brainres.2021.147701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory decline and impaired hippocampal synaptic plasticity. The serotonin 5-HT4 receptor is involved in learning and memory processes. This study explored the effects of chronic stimulation of 5-HT4R on cognition, memory, long-term potentiation (LTP), paired-pulse ratio (PPR), and neuronal apoptosis in a rat model of amyloid-beta (Aβ)-induced AD. Thirty-five male Wistar rats were randomly divided into three groups as follows: the sham, Aβ, and Aβ + BIMU8 groups. Aβ (6 µg/µl) was administrated by intracerebroventricular (icv) injection. The animals were treated with BIMU8 (1 μg/μL, ICV) as a 5-HT4R agonist for 30 days. Memory and behavioral changes were assessed by the passive avoidance learning, novel object recognition, open field, and elevated plus maze tests. Hippocampal synaptic plasticity was evaluated in the dentate gyrus (DG) in response to the stimulation applied to the perforant pathway. Furthermore, neuronal apoptosis was measured in the hippocampus. Data were analyzed by SPSS version 19 using one-way ANOVA, followed by Tukey's post hoc test. Aβ induced memory deficits and neuronal loss and inhibited LTP induction. Aβ also increased the normalized PPR. BIMU8 enhanced the slope of the field excitatory postsynaptic potential in LTP and improved cognition behavior. Paired-pulse inhibition or facilitation was not affected by LTP induction in Aβ animals receiving the BIMU8. It can be concluded that the stimulation of the 5-HT4 receptor modulated the Aβ-induced cognition and memory deficits, probably via a decrease in the hippocampal apoptotic neurons and an improvement in the hippocampal synaptic functions without involving its inhibitory interneurons.
Collapse
Affiliation(s)
- Nasrin Hashemi-Firouzi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
50
|
Cheng L, Zhu X, Liu Y, Zhu K, Lin K, Li F. ACSL4 contributes to sevoflurane-induced ferroptotic neuronal death in SH-SY5Y cells via the 5' AMP-activated protein kinase/mammalian target of rapamycin pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1454. [PMID: 34734006 PMCID: PMC8506733 DOI: 10.21037/atm-21-4249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
Background Acyl-CoA synthetase long chain family member 4 (ACSL4) has been reported to serve as a major player in the progress of ferroptosis in various diseases. Nevertheless, the functional role and mechanism of ACSL4 in sevoflurane (sev)-induced neuronal death has never been elucidated. Methods Cell viability was assessed using Cell Counting Kit-8 (CCK-8). Iron levels, reactive oxygen species (ROS) production, and malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and glutathione (GSH) content were determined to assess ferroptosis level. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot were undertaken for the measurement of gene expression. Results Sev hindered the viability of SH-SY5Y cells and suppression of ferroptosis by ferrostatin-1 (Fer-1) mitigated sev-induced inhibition of SH-SY5Y cell viability. Sev treatment increases the Fe2+ level and decreases the mRNA levels of SLC7A11 and GPX4 in SH-SY5Y cells. Sev increased the expression of ACSL4. Moreover, silencing of ACSL4 could abrogate sev-induced cell damage, as evidenced by increases in cell viability, GPX4 protein levels, and decreases in iron levels, ROS production, and MDA and 4-HNE content. Remarkably, sev hindered the activation of the 5' AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling, which was diminished by knockdown of ACSL4. Moreover, inhibition of the AMPK/mTOR signaling by compound C could mitigate the protective effect of ACSL4 silencing against sev-induced ferroptotic cell death. Conclusions Downregulation of ACSL4 restrained sev-induced ferroptotic cell death via AMPK/mTOR signaling, providing the basis for an approach to alleviate sev-induced postoperative cognitive dysfunction (POCD).
Collapse
Affiliation(s)
- Lei Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaodan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhu
- Computed Tomography Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kang Lin
- Department of Anesthesiology, The First People's Hospital of Wenling, Taizhou, China
| | - Fujun Li
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|