1
|
Wang M, Guo C, Yang J, Li J, Hu J, Peng Z, Guo M, Zhang L, Li F, Yang Q, Zi W, Wang P. The effectiveness and safety of human urinary kallidinogenase in acute ischemic stroke patients undergoing endovascular therapy. J Cereb Blood Flow Metab 2024; 44:1565-1576. [PMID: 38459953 PMCID: PMC11418712 DOI: 10.1177/0271678x241238033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 03/11/2024]
Abstract
The effectiveness and safety of human urinary kallidinogenase (HUK) in acute ischemic stroke (AIS) patients undergoing endovascular therapy (EVT) due to large vessel occlusion (LVO) was unclear. A pooled analysis was performed using individual data from the DEVT and RESCUE BT trials. Patients were divided into two groups based on HUK treatment. The primary outcome was the 90-day modified Rankin Scale (mRS) score. Safety outcomes included 90-day mortality and symptomatic intracranial hemorrhage (sICH) within 48 hours. A total of 1174 patients were included in the study. Of these, 150 (12.8%) patients received HUK. The adjusted common odds ratio (OR) of the mRS score was 1.458 (95% confidence interval [CI] = 1.072-1.983; p = 0.016) favoring HUK. The incidence of sICH (2.0% vs. 8.6%; adjusted OR: 0.198; 95% CI: 0.061-0.638; p = 0.007) and mortality (11.3% vs.18.5%; adjusted OR: 0.496; 95% CI: 0.286-0.862; p = 0.013) was lower in HUK group than non-HUK group. This association was consistent with propensity score-matching and the inverse probability of treatment weighting analysis. In conclusion, HUK was safe and associated with a preferable prognosis in AIS patients due to LVO in the anterior circulation.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, China
- Clinical College, Weifang Medical University, Weifang, China
| | - Changwei Guo
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Yang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, China
- Clinical College, Weifang Medical University, Weifang, China
| | - Jinrong Hu
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhouzhou Peng
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Guo
- The Thirteenth People’s Hospital of Chongqing, Chongqing, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyu Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, China
- Clinical College, Weifang Medical University, Weifang, China
| | - Fengli Li
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenjie Zi
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pengfei Wang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, China
| |
Collapse
|
2
|
Haupeltshofer S, Mencl S, Szepanowski RD, Hansmann C, Casas AI, Abberger H, Hansen W, Blusch A, Deuschl C, Forsting M, Hermann DM, Langhauser F, Kleinschnitz C. Delayed plasma kallikrein inhibition fosters post-stroke recovery by reducing thrombo-inflammation. J Neuroinflammation 2024; 21:155. [PMID: 38872149 PMCID: PMC11177352 DOI: 10.1186/s12974-024-03149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Activation of the kallikrein-kinin system promotes vascular leakage, inflammation, and neurodegeneration in ischemic stroke. Inhibition of plasma kallikrein (PK) - a key component of the KKS - in the acute phase of ischemic stroke has been reported to reduce thrombosis, inflammation, and damage to the blood-brain barrier. However, the role of PK during the recovery phase after cerebral ischemia is unknown. To this end, we evaluated the effect of subacute PK inhibition starting from day 3 on the recovery process after transient middle artery occlusion (tMCAO). Our study demonstrated a protective effect of PK inhibition by reducing infarct volume and improving functional outcome at day 7 after tMCAO. In addition, we observed reduced thrombus formation in cerebral microvessels, fewer infiltrated immune cells, and an improvement in blood-brain barrier integrity. This protective effect was facilitated by promoting tight junction reintegration, reducing detrimental matrix metalloproteinases, and upregulating regenerative angiogenic markers. Our findings suggest that PK inhibition in the subacute phase might be a promising approach to accelerate the post-stroke recovery process.
Collapse
Affiliation(s)
- Steffen Haupeltshofer
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany.
| | - Stine Mencl
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Rebecca D Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Christina Hansmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Ana I Casas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
- Department of Pharmacology & Personalized Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| | - Hanna Abberger
- Institute of Medical Microbiology, University Hospital Essen, Virchowstr. 179, D-45147, Essen, Germany
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, Virchowstr. 179, D-45147, Essen, Germany
| | - Alina Blusch
- Department of Neurology, Center for Huntington's Disease NRW, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr. 56, D-44791, Bochum, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
- Chair of Vascular Neurology, Dementia and Ageing, Department of Neurology, Medical Research Centre, University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, D-45147, Essen, Germany
| |
Collapse
|
3
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Xu G, Dong F, Su L, Tan ZX, Lei M, Li L, Wen D, Zhang F. The role and therapeutic potential of nuclear factor κB (NF-κB) in ischemic stroke. Biomed Pharmacother 2024; 171:116140. [PMID: 38211425 DOI: 10.1016/j.biopha.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Stroke is a prevalent cerebrovascular condition with a global impact, causing significant rates of illness and death. Despite extensive research, the available treatment options for stroke remain restricted. Hence, it is crucial to gain a deeper understanding of the molecular mechanisms associated with the onset and advancement of stroke in order to establish a theoretical foundation for novel preventive and therapeutic approaches. NF-κB, also known as nuclear factor κB, is a transcription factor responsible for controlling the expression of numerous genes and plays a crucial role in diverse physiological processes. NF-κB is triggered and regulates neuroinflammation and other processes after stroke, promoting the generation of cytokine storms and contributing to the advancement of ischemic stroke (IS). Therefore, NF-κB could potentially play a vital role in stroke by regulating diverse pathophysiological processes. This review provides an overview of the functions of NF-κB in stroke and its governing mechanisms. In addition, our attention is directed towards various potential therapies that aim to inhibit the NF-κB signaling pathway in order to offer valuable insights for the advancement of innovative treatment approaches for stroke.
Collapse
Affiliation(s)
- Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
5
|
Au NPB, Wu T, Kumar G, Jin Y, Li YYT, Chan SL, Lai JHC, Chan KWY, Yu KN, Wang X, Ma CHE. Low-dose ionizing radiation promotes motor recovery and brain rewiring by resolving inflammatory response after brain injury and stroke. Brain Behav Immun 2024; 115:43-63. [PMID: 37774892 DOI: 10.1016/j.bbi.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.
Collapse
Affiliation(s)
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Yuting Jin
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | | | - Shun Lam Chan
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Joseph Ho Chi Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
6
|
Wang LW, Chio CC, Chao CM, Chao PY, Lin MT, Chang CP, Lin HJ. Mesenchymal stem cells reduce long-term cognitive deficits and attenuate myelin disintegration and microglia activation following repetitive traumatic brain injury. Sci Prog 2024; 107:368504241231154. [PMID: 38425276 PMCID: PMC10908245 DOI: 10.1177/00368504241231154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The underlying mechanisms for the beneficial effects exerted by bone marrow-mesenchymal stem cells (BM-MSCs) in treating repetitive traumatic brain injury (rTBI)-induced long-term sensorimotor/cognitive impairments are not fully elucidated. Herein, we aimed to explore whether BM-MSCs therapy protects against rTBI-induced long-term neurobehavioral disorders in rats via normalizing white matter integrity and gray matter microglial response. Rats were subjected to repeated mild lateral fluid percussion on day 0 and day 3. On the fourth day post-surgery, MSCs groups received MSCs (4 × 106 cells/ml/kg, intravenously) and were assessed by the radial maze, Y maze, passive avoidance tests, and modified neurological severity scores. Hematoxylin & eosin, and Luxol fast blue stainings were used to examine the histopathology and white matter thickness. At the same time, immunofluorescence staining was used to investigate the numbers of tumor necrosis factor-alpha (TNF-α)-containing microglia in gray matter. Three to nine months after neurotrauma, rats displayed sensorimotor and cognitive impairments, reduced thickness in white matter, and over-accumulation of TNF-α-containing microglia and cellular damage in gray matter. Therapy with BM-MSCs significantly attenuated the rTBI-induced sensorimotor and cognitive impairments and all their complications. Mesenchymal stem cell therapy might accelerate the recovery of sensorimotor and cognitive impairments in rats with rTBI via normalizing myelin integrity and microglia response.
Collapse
Affiliation(s)
- Lan-Wan Wang
- Department of Pediatrics, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Chung-Ching Chio
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
- Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, 73657, Taiwan
| | - Pi-Yu Chao
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
7
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Turnic TN, Popadic V, Klasnja S, Sekulic A, Nikolic N, Zivkovic V, Jeremic N, Andjic M, Draginic N, Srejovic I, Jeremic J, Zdravkovic M, Jakovljevic V. Bradykinin and Galectin-3 in Survived and Deceased Patients with COVID-19 Pneumonia: An Increasingly Promising Biochemical Target. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7920915. [PMID: 36338343 PMCID: PMC9633192 DOI: 10.1155/2022/7920915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/13/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
Introduction There are still no definite curative or preventive strategies for COVID-19 disease. It is crucial to fully comprehend the pathogenesis of COVID-19 infection so that we can develop expedient pharmacological protocols. While the impact of cytokine storm on COVID-19 severity has been one of the most tested hypotheses, the role of bradykinin and various other oxidative stress markers has been relatively under-researched. Their levels can be determined immediately after a hospital admission so they could be used as early predictors of the further development of the disease. Aim The study aims at evaluating the possibility of using bradykinin and galectin-3 levels as early predictors that COVID-19 disease will progress into a severe case. Material and methods. The study was conducted as a prospective cross-sectional study. It included 47 consecutive adult patients with confirmed SARS-CoV-2 infection and COVID-19 pneumonia. All study subjects were admitted for a hospital treatment to the tertiary Clinical Hospital Center Bezanijska kosa, Belgrade, Serbia on June 2021. The blood samples were collected at the patients' admission. The analyses of demographic, radiological, and clinical data were later conducted for both groups (the deceased patients and those who survived). In addition, we analyzed the potential relations between the outcome and the levels of bradykinin and galectin-3 measured immediately after the patients were admitted to the hospital. Results The patients who passed away were predominantly older men with comorbidities. We recorded higher CT scores in the deceased patients and the significantly higher levels of urea, creatinine, CK, troponine, CRP, and other laboratory markers. They stayed at the ICU unit longer and required mechanical ventilation more frequently than the patients who survived. On the other hand, no differences were recorded in the time periods passing from the onset of the systems to the hospital admissions. Finally, we can highlight several independent predictors of mortality in patients with COVID-19 pneumonia, including the following: (1) patients who are 50 or more years old, (2) with in-hospital stays are longer that 4 days, (3) bradykinin levels surpass 220000 pg/ml, (4) D-dimer, creatinine, and CRP are elevated, and (5) comorbidities were present (such as hypertension and diabetes). Conclusion The present study strongly supports the bradykinin storm hypothesis. Since elevated bradykinin levels have been found in most COVID-19 cases with fatal outcomes, the future therapeutical strategies for COVID-19 have to be focused on reducing bradykinin serum concentrations.
Collapse
Affiliation(s)
- Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
- N.A.Semashko Public Health and Healthcare Department, F.F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Viseslav Popadic
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
| | - Slobodan Klasnja
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
| | - Ana Sekulic
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
| | - Novica Nikolic
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Department of Pharmacology, 1st Moscow State Medical, University IM Sechenov, Trubetskaya street 8, str. 2, 119991 Moscow, Russia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
- I.M. Shechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya st., Moscow, Russia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Ivan Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Department of Pharmacology, 1st Moscow State Medical, University IM Sechenov, Trubetskaya street 8, str. 2, 119991 Moscow, Russia
| | - Jovana Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Marija Zdravkovic
- University Clinical Hospital Center Bežanijska kosa, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Trubetskaya street 8, str. 2, 119991 Moscow, Russia
| |
Collapse
|
9
|
Rex DAB, Vaid N, Deepak K, Dagamajalu S, Prasad TSK. A comprehensive review on current understanding of bradykinin in COVID-19 and inflammatory diseases. Mol Biol Rep 2022; 49:9915-9927. [PMID: 35596055 PMCID: PMC9122735 DOI: 10.1007/s11033-022-07539-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/28/2022] [Indexed: 12/28/2022]
Abstract
Bradykinin, a member of the kallikrein–kinin system (KKS), is a potent, short-lived vasoactive peptide that acts as a vasodilator and an inflammatory mediator in a number of signaling mechanisms. Bradykinin induced signaling is mediated through kinin B1 (BDKRB1) and B2 (BDKRB2) transmembrane receptors coupled with different subunits of G proteins (Gαi/Gα0, Gαq and Gβ1γ2). The bradykinin-mediated signaling mechanism activates excessive pro-inflammatory cytokines, including IL-6, IL-1β, IL-8 and IL-2. Upregulation of these cytokines has implications in a wide range of clinical conditions such as inflammation leading to fibrosis, cardiovascular diseases, and most recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In SARS-CoV-2 infection, bradykinin is found to be at raised levels and is reported to trigger a diverse array of symptoms. All of this brings bradykinin to the core point as a molecule of immense therapeutic value. Our understanding of its involvement in various pathways has expanded with time. Therefore, there is a need to look at the overall picture that emerges from the developments made by deciphering the bradykinin mediated signaling mechanisms involved in the pathological conditions. It will help devise strategies for developing better treatment modalities in the implicated diseases. This review summarizes the current state of knowledge on bradykinin mediated signaling in the diverse conditions described above, with a marked emphasis on the therapeutic potential of targeting the bradykinin receptor.
Collapse
Affiliation(s)
- Devasahayam Arokiar Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Neelanchal Vaid
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - K Deepak
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| |
Collapse
|
10
|
Zhang Z, Shen C, Fang M, Han Y, Long C, Liu W, Yang M, Liu M, Zhang D, Cao Q, Chen X, Fang Y, Lu Q, Hou Z, Li Y, Liu Z, Lei X, Ni H, Lai R. Novel contact-kinin inhibitor sylvestin targets thromboinflammation and ameliorates ischemic stroke. Cell Mol Life Sci 2022; 79:240. [PMID: 35416530 PMCID: PMC11071929 DOI: 10.1007/s00018-022-04257-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Increasing evidence indicates that ischemic stroke is a thromboinflammatory disease in which the contact-kinin pathway has a central role by activating pro-coagulant and pro-inflammatory processes. The blocking of distinct members of the contact-kinin pathway is a promising strategy to control ischemic stroke. Here, a plasma kallikrein and active FXII (FXIIa) inhibitor (sylvestin, contained 43 amino acids, with a molecular weight of 4790.4 Da) was first identified from forest leeches (Haemadipsa sylvestris). Testing revealed that sylvestin prolonged activated partial thromboplastin time without affecting prothrombin time. Thromboelastography and clot retraction assays further showed that it extended clotting time in whole blood and inhibited clot retraction in platelet-rich plasma. In addition, sylvestin prevented thrombosis in vivo in FeCl3-induced arterial and carrageenan-induced tail thrombosis models. The potential role of sylvestin in ischemic stroke was evaluated by transient and permanent middle cerebral artery occlusion models. Sylvestin administration profoundly protected mice from ischemic stroke by counteracting intracerebral thrombosis and inflammation. Importantly, sylvestin showed no signs of bleeding tendency. The present study identifies sylvestin is a promising contact-kinin pathway inhibitor that can proffer profound protection from ischemic stroke without increased risk of bleeding.
Collapse
Affiliation(s)
- Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yajun Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chengbo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Weihui Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Min Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dengdeng Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiqi Cao
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xue Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yaqun Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Zongliu Hou
- Central Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Zhenze Liu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, 430074, Hubei, China.
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, China.
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
11
|
Peng K, Koduri S, Ye F, Yang J, Keep RF, Xi G, Hua Y. A timeline of oligodendrocyte death and proliferation following experimental subarachnoid hemorrhage. CNS Neurosci Ther 2022; 28:842-850. [PMID: 35150055 PMCID: PMC9062564 DOI: 10.1111/cns.13812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS White matter (WM) injury is a critical factor associated with worse outcomes following subarachnoid hemorrhage (SAH). However, the detailed pathological changes are not completely understood. This study investigates temporal changes in the corpus callosum (CC), including WM edema and oligodendrocyte death after SAH, and the role of lipocalin-2 (LCN2) in those changes. METHODS Subarachnoid hemorrhage was induced in adult wild-type or LCN2 knockout mice via endovascular perforation. Magnetic resonance imaging was performed 4 hours, 1 day, and 8 days after SAH, and T2 hyperintensity changes within the CC were quantified to represent WM edema. Immunofluorescence staining was performed to evaluate oligodendrocyte death and proliferation. RESULTS Subarachnoid hemorrhage induced significant CC T2 hyperintensity at 4 hours and 1 day that diminished significantly by 8 days post-procedure. Comparing changes between the 4 hours and 1 day, each individual mouse had an increase in CC T2 hyperintensity volume. Oligodendrocyte death was observed at 4 hours, 1 day, and 8 days after SAH induction, and there was progressive loss of mature oligodendrocytes, while immature oligodendrocytes/oligodendrocyte precursor cells (OPCs) proliferated back to baseline by Day 8 after SAH. Moreover, LCN2 knockout attenuated WM edema and oligodendrocyte death at 24 hours after SAH. CONCLUSIONS Subarachnoid hemorrhage leads to T2 hyperintensity change within the CC, which indicates WM edema. Oligodendrocyte death was observed in the CC within 1 day of SAH, with a partial recovery by Day 8. SAH-induced WM injury was alleviated in an LCN2 knockout mouse model.
Collapse
Affiliation(s)
- Kang Peng
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA,Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Sravanthi Koduri
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Fenghui Ye
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Jinting Yang
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Richard F. Keep
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Guohua Xi
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Ya Hua
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
12
|
Anti-HK antibody reveals critical roles of a 20-residue HK region for Aβ-induced plasma contact system activation. Blood Adv 2022; 6:3090-3101. [PMID: 35147669 PMCID: PMC9131899 DOI: 10.1182/bloodadvances.2021006612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the leading cause of dementia. Vascular abnormalities and neuroinflammation play roles in AD pathogenesis. Plasma contact activation, which leads to fibrin clot formation and bradykinin release, is elevated in many AD patients, likely due to the ability of AD's pathogenic peptide β-amyloid (Aβ) to induce its activation. Since overactivation of this system may be deleterious to AD patients, the development of inhibitors could be beneficial. Here, we show that 3E8, an antibody against a 20-amino acid region of high molecular weight kininogen's (HK) domain 6, inhibits Aβ-induced intrinsic coagulation. Mechanistically, 3E8 inhibits contact system activation by blocking the binding of prekallikrein (PK) and factor XI (FXI) to HK, thereby preventing their activation and the continued activation of factor XII (FXII). The 3E8 antibody can also disassemble HK/PK and HK/FXI complexes in normal human plasma in the absence of a contact system activator due to its strong binding affinity for HK, indicating its prophylactic ability. Furthermore, the binding of Aβ to both FXII and HK is critical for Aβ-mediated contact system activation. These results suggest that a 20-amino acid region of HK's domain 6 plays a critical role in Aβ-induced contact system activation, and this region may provide an effective strategy to inhibit or prevent contact system activation in related disorders.
Collapse
|
13
|
Inactivation of mouse transmembrane prolyl 4-hydroxylase increases blood brain barrier permeability and ischemia-induced cerebral neuroinflammation. J Biol Chem 2022; 298:101721. [PMID: 35151685 PMCID: PMC8914383 DOI: 10.1016/j.jbc.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm−/− mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm−/− cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm−/− mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.
Collapse
|
14
|
Mossanen Parsi M, Duval C, Ariëns RAS. Vascular Dementia and Crosstalk Between the Complement and Coagulation Systems. Front Cardiovasc Med 2021; 8:803169. [PMID: 35004913 PMCID: PMC8733168 DOI: 10.3389/fcvm.2021.803169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular Dementia (VaD) is a neurocognitive disorder caused by reduced blood flow to the brain tissue, resulting in infarction, and is the second most common type of dementia. The complement and coagulation systems are evolutionary host defence mechanisms activated by acute tissue injury to induce inflammation, clot formation and lysis; recent studies have revealed that these systems are closely interlinked. Overactivation of these systems has been recognised to play a key role in the pathogenesis of neurological disorders such as Alzheimer's disease and multiple sclerosis, however their role in VaD has not yet been extensively reviewed. This review aims to bridge the gap in knowledge by collating current understanding of VaD to enable identification of complement and coagulation components involved in the pathogenesis of this disorder that may have their effects amplified or supressed by crosstalk. Exploration of these mechanisms may unveil novel therapeutic targets or biomarkers that would improve current treatment strategies for VaD.
Collapse
Affiliation(s)
| | | | - Robert A. S. Ariëns
- Discovery and Translational Science Department, School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Othman R, Cagnone G, Joyal JS, Vaucher E, Couture R. Kinins and Their Receptors as Potential Therapeutic Targets in Retinal Pathologies. Cells 2021; 10:1913. [PMID: 34440682 PMCID: PMC8391508 DOI: 10.3390/cells10081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
The kallikrein-kinin system (KKS) contributes to retinal inflammation and neovascularization, notably in diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Bradykinin type 1 (B1R) and type 2 (B2R) receptors are G-protein-coupled receptors that sense and mediate the effects of kinins. While B2R is constitutively expressed and regulates a plethora of physiological processes, B1R is almost undetectable under physiological conditions and contributes to pathological inflammation. Several KKS components (kininogens, tissue and plasma kallikreins, and kinin receptors) are overexpressed in human and animal models of retinal diseases, and their inhibition, particularly B1R, reduces inflammation and pathological neovascularization. In this review, we provide an overview of the KKS with emphasis on kinin receptors in the healthy retina and their detrimental roles in DR and AMD. We highlight the crosstalk between the KKS and the renin-angiotensin system (RAS), which is known to be detrimental in ocular pathologies. Targeting the KKS, particularly the B1R, is a promising therapy in retinal diseases, and B1R may represent an effector of the detrimental effects of RAS (Ang II-AT1R).
Collapse
Affiliation(s)
- Rahmeh Othman
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Gael Cagnone
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Jean-Sébastien Joyal
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
16
|
Gao Y, Liu Y, Yang X, Zhang T, Hou Y, Wang P, Liu Y, Yuan L, Zhang H, Wu C, Yang J. Pseudoginsenoside-F11 ameliorates thromboembolic stroke injury in rats by reducing thromboinflammation. Neurochem Int 2021; 149:105108. [PMID: 34175350 DOI: 10.1016/j.neuint.2021.105108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been reported to exert neuroprotective effects on ischemic stroke induced by permanent and transient middle cerebral artery occlusion in experimental animals. The aim of the present study was to investigate the effect of PF11 on thromboembolic stroke in rats and its possible mechanisms on thromboinflammation. PF11 (4, 12, 36 mg/kg) was injected intravenously (i.v.) once a day for 3 consecutive days to male Wistar rats followed by embolic middle cerebral artery occlusion (eMCAO). The results showed that PF11 significantly reduced the cerebral infarction volume, brain edema and neurological deficits induced by eMCAO. Meanwhile, the thromboinflammation in the ischemic hemisphere was observed at 24 h after eMCAO, as indicated by the increased number of microvascular thrombus and inflammatory response. Moreover, eMCAO resulted in the up-regulation of platelet glycoprotein Ibα (GPIbα) and VI (GPVI), as well as the activation of contact-kinin pathway. Notably, PF11 significantly reversed all these changes. Furthermore, PF11 prevented the eMCAO-induced loss of tight junction proteins and up-regulation of matrix metalloproteinase-9 (MMP-9), thus leading to the alleviation of blood-brain barrier (BBB) damage. In conclusion, the present study revealed that thromboinflammation was induced in the ischemic hemisphere of rats after eMCAO and PF11 exerted marked protective effects against thromboembolic stroke by attenuating thromboinflammation and preventing BBB damage. This research further identifies the potential therapeutic role of PF11 for ischemic stroke.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China; Institute of Pharmacology, Shandong First Medical University, Shandong Academy of Medical Science, Tan'an, PR China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xue Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Tianyu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ying Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Pengwei Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Yinglu Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Linlin Yuan
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, PR China.
| |
Collapse
|
17
|
Adrar NS, Madani K, Adrar S. Polyphenol-bradykinin interaction: Role in pain sensation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Weiland J, Beez A, Westermaier T, Kunze E, Sirén AL, Lilla N. Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2021; 22:5442. [PMID: 34064048 PMCID: PMC8196706 DOI: 10.3390/ijms22115442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.
Collapse
Affiliation(s)
- Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Alexandra Beez
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, Helios-Amper Klinikum Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Ekkehard Kunze
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
19
|
Stetter C, Lopez-Caperuchipi S, Hopp-Krämer S, Bieber M, Kleinschnitz C, Sirén AL, Albert-Weißenberger C. Amelioration of Cognitive and Behavioral Deficits after Traumatic Brain Injury in Coagulation Factor XII Deficient Mice. Int J Mol Sci 2021; 22:4855. [PMID: 34063730 PMCID: PMC8124758 DOI: 10.3390/ijms22094855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022] Open
Abstract
Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII-/- mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII-/- mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII-/- mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII-/- mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII-/- mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery.
Collapse
Affiliation(s)
- Christian Stetter
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
| | - Simon Lopez-Caperuchipi
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
| | - Sarah Hopp-Krämer
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (M.B.); (C.K.)
| | - Michael Bieber
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (M.B.); (C.K.)
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (M.B.); (C.K.)
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), University Hospital of Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
| | - Christiane Albert-Weißenberger
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (C.S.); (S.L.-C.); (S.H.-K.); (C.A.-W.)
- Institute for Physiology, Department for Neurophysiology, Julius-Maximilians-University Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| |
Collapse
|
20
|
Karamyan VT. Between two storms, vasoactive peptides or bradykinin underlie severity of COVID-19? Physiol Rep 2021; 9:e14796. [PMID: 33687143 PMCID: PMC7941673 DOI: 10.14814/phy2.14796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to be a world-wide pandemic with overwhelming socioeconomic impact. Since inflammation is one of the major causes of COVID-19 complications, the associated molecular mechanisms have been the focus of many studies to better understand this disease and develop improved treatments for patients contracting SARS-CoV-2. Among these, strong emphasis has been placed on pro-inflammatory cytokines, associating severity of COVID-19 with so-called "cytokine storm." More recently, peptide bradykinin, its dysregulated signaling or "bradykinin storm," has emerged as a primary mechanism to explain COVID-19-related complications. Unfortunately, this important development may not fully capture the main molecular players that underlie the disease severity. To this end, in this focused review, several lines of evidence are provided to suggest that in addition to bradykinin, two closely related vasoactive peptides, substance P and neurotensin, are also likely to drive microvascular permeability and inflammation, and be responsible for development of COVID-19 pathology. Furthermore, based on published experimental observations, it is postulated that in addition to ACE and neprilysin, peptidase neurolysin (Nln) is also likely to contribute to accumulation of bradykinin, substance P and neurotensin, and progression of the disease. In conclusion, it is proposed that "vasoactive peptide storm" may underlie severity of COVID-19 and that simultaneous inhibition of all three peptidergic systems could be therapeutically more advantageous rather than modulation of any single mechanism alone.
Collapse
Affiliation(s)
- Vardan T. Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier ResearchSchool of PharmacyTTUHSCAmarilloTXUSA
| |
Collapse
|
21
|
Al-Ahmad AJ, Pervaiz I, Karamyan VT. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J Neuroendocrinol 2021; 33:e12931. [PMID: 33506602 PMCID: PMC8166215 DOI: 10.1111/jne.12931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
Increased brain microvascular permeability and disruption of blood-brain barrier (BBB) function are among hallmarks of several acute neurodegenerative disorders, including stroke. Numerous studies suggest the involvement of bradykinin (BK), neurotensin (NT) and substance P (SP) in BBB impairment and oedema formation after stroke; however, there is paucity of data in regard to the direct effects of these peptides on the brain microvascular endothelial cells (BMECs) and BBB. The present study aimed to evaluate the direct effects of BK, NT and SP on the permeability of BBB in an in vitro model based on human induced pluripotent stem cell (iPSC)-derived BMECs. Our data indicate that all three peptides increase BBB permeability in a concentration-dependent manner in an in vitro model formed from two different iPSC lines (CTR90F and CTR65M) and widely used hCMEC/D3 human BMECs. The combination of BK, NT and SP at a sub-effective concentration also resulted in increased BBB permeability in the iPSC-derived model indicating potentiation of their action. Furthermore, we observed abrogation of BK, NT and SP effects with pretreatment of pharmacological blockers targeting their specific receptors. Additional mechanistic studies indicate that the short-term effects of these peptides are not mediated through alteration of tight-junction proteins claudin-5 and occludin, but likely involve redistribution of F-actin and secretion of vascular endothelial growth factor. This is the first experimental study to document the increased permeability of the BBB in response to direct action of NT in an in vitro model. In addition, our study confirms the expected but not well-documented, direct effect of SP on BBB permeability and adds to the well-recognised actions of BK on BBB. Lastly, we demonstrate that peptidase neurolysin can neutralise the effects of these peptides on BBB, suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Iqra Pervaiz
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
22
|
Abstract
Current experimental stroke research has evolved to focus on detailed understanding of the brain’s self-protective and restorative mechanisms, and harness this knowledge for development of new therapies. In this context, the role of peptidases and neuropeptides is of growing interest. In this focused review, peptidase neurolysin (Nln) and its extracellular peptide substrates are briefly discussed in relation to pathophysiology of ischemic stroke. Upregulation of Nln following stroke is viewed as a compensatory cerebroprotective mechanism in the acute phase of stroke, because the main neuropeptides inactivated by Nln are neuro/cerebrotoxic (bradykinin, substance P, neurotensin, angiotensin II, hemopressin), whereas the peptides generated by Nln are neuro/cerebroprotective (angiotensin-(1–7), Leu-/Met-enkephalins). This notion is confirmed by experimental studies documenting aggravation of stroke outcomes in mice after inhibition of Nln following stroke, and dramatic improvement of stroke outcomes in mice overexpressing Nln in the brain. The role of Nln in the (sub)chronic phase of stroke is less clear and it is likely, that this peptidase does not have a major role in neural repair mechanisms. This is because, the substrates of Nln are less uniform in modulating neurorestorative mechanisms in one direction, some appearing to have neural repair enhancing/stimulating potential, whereas others doing the opposite. Future studies focusing on the role of Nln in pathophysiology of stroke should determine its potential as a cerebroprotective target for stroke therapy, because its unique ability to modulate multiple neuropeptide systems critically involved in brain injury mechanisms is likely advantageous over modulation of one pathogenic pathway for stroke pharmacotherapy.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
23
|
Schreiber R, Hollands R, Blokland A. A Mechanistic Rationale for PDE-4 Inhibitors to Treat Residual Cognitive Deficits in Acquired Brain Injury. Curr Neuropharmacol 2020; 18:188-201. [PMID: 31660837 PMCID: PMC7327948 DOI: 10.2174/1570159x17666191010103044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Patients with acquired brain injury (ABI) suffer from cognitive deficits that interfere significantly with their daily lives. These deficits are long-lasting and no treatment options are available. A better understanding of the mechanistic basis for these cognitive deficits is needed to develop novel treatments. Intracellular cyclic adenosine monophosphate (cAMP) levels are decreased in ABI. Herein, we focus on augmentation of cAMP by PDE4 inhibitors and the potentially synergistic mechanisms in traumatic brain injury. A major acute pathophysiological event in ABI is the breakdown of the blood-brain-barrier (BBB). Intracellular cAMP pathways are involved in the subsequent emergence of edema, inflammation and hyperexcitability. We propose that PDE4 inhibitors such as roflumilast can improve cognition by modulation of the activity in the cAMP-Phosphokinase A-Ras-related C3 botulinum toxin substrate (RAC1) inflammation pathway. In addition, PDE4 inhibitors can also directly enhance network plasticity and attenuate degenerative processes and cognitive dysfunction by increasing activity of the canonical cAMP/phosphokinase-A/cAMP Responsive Element Binding protein (cAMP/PKA/CREB) plasticity pathway. Doublecourtin and microtubule-associated protein 2 are generated following activation of the cAMP/PKA/CREB pathway and are decreased or even absent after injury. Both proteins are involved in neuronal plasticity and may consist of viable markers to track these processes. It is concluded that PDE4 inhibitors may consist of a novel class of drugs for the treatment of residual symptoms in ABI attenuating the pathophysiological consequences of a BBB breakdown by their anti-inflammatory actions via the cAMP/PKA/RAC1 pathway and by increasing synaptic plasticity via the cAMP/PKA/CREB pathway. Roflumilast improves cognition in young and elderly humans and would be an excellent candidate for a proof of concept study in ABI patients.
Collapse
Affiliation(s)
- Rudy Schreiber
- Faculty of Psychology and Neuroscience, Section Neuropsychology and Psychopharmacology, Maastricht University, PO BOX 616, 6200 MD Maastricht, Netherlands
| | - Romain Hollands
- Faculty of Psychology and Neuroscience, Section Neuropsychology and Psychopharmacology, Maastricht University, PO BOX 616, 6200 MD Maastricht, Netherlands
| | - Arjan Blokland
- Faculty of Psychology and Neuroscience, Section Neuropsychology and Psychopharmacology, Maastricht University, PO BOX 616, 6200 MD Maastricht, Netherlands
| |
Collapse
|
24
|
Neurotensins and their therapeutic potential: research field study. Future Med Chem 2020; 12:1779-1803. [PMID: 33032465 DOI: 10.4155/fmc-2020-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The natural tridecapeptide neurotensin has been emerged as a promising therapeutic scaffold for the treatment of neurological diseases and cancer. In this work, we aimed to identify the top 100 most cited original research papers as well as recent key studies related to neurotensins. The Web of Science Core Collection database was searched and the retrieved research articles were analyzed by using the VOSviewer software. The most cited original articles were published between 1973 and 2013. The top-cited article was by Carraway and Leeman reporting the discovery of neurotensin in 1973. The highly cited terms were associated with hypotension and angiotensin-converting-enzyme. The conducted analysis reveals the therapeutic potentials of neurotensin, and further impactful research toward its clinical development is warrantied.
Collapse
|
25
|
Chen J, Jiang TT, Yi WJ, Jiao JL, Liu CM, Tu HH, Hu YT, Shi LY, Huang H, Li ZB, Gan L, Li ZJ, Li JC. A group of serum proteins as potential diagnostic biomarkers for Yin-deficiency-heat syndrome. Anat Rec (Hoboken) 2020; 303:2086-2094. [PMID: 31922655 DOI: 10.1002/ar.24351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
Yin-deficiency-heat (YDH) syndrome is a very common subhealth status in Traditional Chinese Medicine. However, currently, there is no unified standard for diagnosing YDH syndrome. We applied the iTRAQ-2D LC-MS/MS method to explore the potential of serum protein profiles as biomarker for YDH syndrome. A total of 120 differentially expressed proteins (79 downregulated and 41 upregulated) were identified by the proteomic profiling. The results of KEGG pathway analysis showed that the functions of the differentially expressed proteins were mainly involved in complement and coagulation cascades. The clinical data showed that YDH syndrome was closely related to inflammation and coagulation, compared with the healthy controls. The ELISA validation results indicated that the expression levels of ALB, CFI, and KLKB1 were downregulated in the YDH syndrome group (p < .05). Moreover, we established a decision tree model based on the combination of these three proteins and achieved a sensitivity of 87.5%, a specificity of 84.4%, and AUC of 0.891. The results indicated that the combination of ALB, CFI, and KLKB1 may serve as potential biomarkers for diagnosing YDH syndrome. Our study can provide a new method for YDH syndrome diagnosis, and may also provide an experimental basis to understand the molecular mechanism of YDH syndrome.
Collapse
Affiliation(s)
- Jing Chen
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting-Ting Jiang
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen-Jing Yi
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Jin-Ling Jiao
- Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chang-Ming Liu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui-Hui Tu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Ting Hu
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Huai Huang
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Zhi-Bin Li
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Gan
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhong-Jie Li
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ji-Cheng Li
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China.,Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| |
Collapse
|
26
|
Huang JJ, Qiu SZ, Zheng GR, Chen B, Shen J, Yin HM, Mao W. Determination of serum tissue kallikrein levels after traumatic brain injury. Clin Chim Acta 2019; 499:93-97. [DOI: 10.1016/j.cca.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 01/22/2023]
|
27
|
Jing H, Liu L, Jia Y, Yao H, Ma F. Overexpression of the long non-coding RNA Oprm1 alleviates apoptosis from cerebral ischemia-reperfusion injury through the Oprm1/miR-155/GATA3 axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2431-2439. [PMID: 31187646 DOI: 10.1080/21691401.2019.1626408] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Numerous differentially expressed long non-coding RNAs (lncRNAs) have been identified in cerebral ischemia-reperfusion (I/R) injury using RNA-Seq analysis. However, little is known about whether and how lncRNAs are involved in cerebral I/R injury. In this study, we investigated the function of the lncRNA Oprm1 in cerebral I/R injury and explored the underlying mechanism. An oxygen-glucose deprivation model in N2a cells was utilized to mimic cerebral I/R injury in vitro. Trypan blue staining, terminal deoxytransferase-mediated dUTP-biotin nick end labelling and caspase-3 were measured to evaluate apoptosis. Middle cerebral artery occlusion was performed in mice to evaluate the function of lncRNA Oprm1 in vivo. Real-time PCR and western blotting were used to measure the expression levels of lncRNA Opmr1, caspase-3, miR-155, GATA binding protein 3 (GATA3) and nuclear factor (NF)-κB. lncRNA Oprm1 was mainly located in the cytoplasm. Overexpression of lncRNA Oprm1 alleviated the apoptosis induced by oxygen-glucose deprivation and significantly reduced cleaved caspase-3 levels. Infarct size was distinctly decreased in the lncRNA Oprm1-overexpression group. The neurological score was also improved. Our findings showed that the lncRNA Oprm1/miR-155/GATA3 axis plays an important role in cerebral I/R injury. lncRNA Oprm1 may attenuate cerebral injury through the NF-κB pathway. lncRNA Oprm1 may serve as a potential target for new therapeutic interventions in patients with ischemic stroke.
Collapse
Affiliation(s)
- Hongyu Jing
- a Department of Respiratory Medicine, First Hospital of Jilin University , Changchun , China
| | - Lingyun Liu
- b Department of Andrology, First Hospital of Jilin University , Changchun , China
| | - Ye Jia
- c Department of Nephrology, First Hospital of Jilin University , Changchun , China
| | - Hanxin Yao
- d Department of Clinical Laboratory, First Hospital of Jilin University , Changchun , China
| | - Fuzhe Ma
- c Department of Nephrology, First Hospital of Jilin University , Changchun , China
| |
Collapse
|
28
|
Jayaraman S, Al Shoyaib A, Kocot J, Villalba H, Alamri FF, Rashid M, Wangler NJ, Chowdhury EA, German N, Arumugam TV, Abbruscato TJ, Karamyan VT. Peptidase neurolysin functions to preserve the brain after ischemic stroke in male mice. J Neurochem 2019; 153:120-137. [PMID: 31486527 DOI: 10.1111/jnc.14864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
Previous studies documented up-regulation of peptidase neurolysin (Nln) after brain ischemia, however, the significance of Nln function in the post-stroke brain remained unknown. The aim of this study was to assess the functional role of Nln in the brain after ischemic stroke. Administration of a specific Nln inhibitor Agaricoglyceride A (AgaA) to mice after stroke in a middle cerebral artery occlusion model, dose-dependently aggravated injury measured by increased infarct and edema volumes, blood-brain barrier disruption, increased levels of interleukin 6 and monocyte chemoattractant protein-1, neurological and motor deficit 24 h after stroke. In this setting, AgaA resulted in inhibition of Nln in the ischemic hemisphere leading to increased levels of Nln substrates bradykinin, neurotensin, and substance P. AgaA lacked effects on several physiological parameters and appeared non-toxic to mice. In a reverse approach, we developed an adeno-associated viral vector (AAV2/5-CAG-Nln) to overexpress Nln in the mouse brain. Applicability of AAV2/5-CAG-Nln to transduce catalytically active Nln was confirmed in primary neurons and in vivo. Over-expression of Nln in the mouse brain was also accompanied by decreased levels of its substrates. Two weeks after in vivo transduction of Nln using the AAV vector, mice were subjected to middle cerebral artery occlusion and the same outcome measures were evaluated 72 h later. These experiments revealed that abundance of Nln in the brain protects animals from stroke. This study is the first to document functional significance of Nln in pathophysiology of stroke and provide evidence that Nln is an endogenous mechanism functioning to preserve the brain from ischemic injury.
Collapse
Affiliation(s)
- Srinidhi Jayaraman
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Joanna Kocot
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Faisal F Alamri
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Mamoon Rashid
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Naomi J Wangler
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Ekram A Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Nadezhda German
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, TTUHSC, Amarillo, Texas, USA.,Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, Texas, USA
| |
Collapse
|
29
|
Yang M, Zhou N, Zhang H, Kang G, Cao B, Kang Q, Li R, Zhu X, Rao W, Yu Q. Kininogen-1 as a protein biomarker for schizophrenia through mass spectrometry and genetic association analyses. PeerJ 2019; 7:e7327. [PMID: 31346501 PMCID: PMC6642793 DOI: 10.7717/peerj.7327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/19/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a complex and severe mental illness. There is a lack of effective biomarkers for SCZ diagnosis. The aim of this study was to explore the possibility of using serum peptides for the diagnosis of SCZ as well as analyze the association of variants in genes coding for these peptides and SCZ. METHODS After bead-based fractionation, the matrix-assisted laser desorption ionization/time-of-flight mass spectrometry technique was used to identify peptides that showed different expressions between 166 SCZ patients and 201 healthy controls. Differentially expressed peptides were verified in a second set of samples (81 SCZ patients and 103 healthy controls). The association of SCZ and three tagSNPs selected in genes coding for differentially expressed peptides was performed in 1,126 SCZ patients and 1,168 controls. RESULTS The expression level of peptides with m/z 1,945.07 was significant lower in SCZ patients than in healthy controls (P < 0.000001). The peptide with m/z 1,945.07 was confirmed to be a fragment of Kininogen-1. In the verification tests, Kininogen-1 had a sensitivity of 95.1% and a specificity of 97.1% in SCZ prediction. Among the three tagSNPs (rs13037490, rs2983639, rs2983640) selected in the Cystatin 9 gene (CST9) which encodes peptides including Kininogen-1, tagSNP rs2983640 had its genotype distributions significantly different between SCZ patients and controls under different genetic models (P < 0.05). Haplotypes CG (rs2983639-rs2983640) and TCG (rs13037490-rs2983639-rs2983640) were significantly associated with SCZ (CG: OR = 1.21, 95% CI [1.02-1.44], P = 0.032; TCG: OR = 24.85, 95% CI [5.98-103.17], P < 0.0001). CONCLUSIONS The present study demonstrated that SCZ patients had decreased expression of Kininogen-1 and genetic variants in Kininogen-1 coding gene CST9 were significantly associated with SCZ. The findings from both protein and genetic association studies suggest that Kininogen-1 could be a biomarker of SCZ.
Collapse
Affiliation(s)
- Mingjia Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Na Zhou
- Department of Pharmacy, Hospital of Stomatology, Jilin University, Changchun, Jilin Province, China
| | - Huiping Zhang
- Department of Psychiatry and Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Guojun Kang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Bonan Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Qi Kang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rixin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Xiaojing Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Wenwang Rao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
- Unit of Psychiatry, Faculty of Health Sciences, University of Macau, Macao, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
30
|
Karamyan VT. Peptidase neurolysin is an endogenous cerebroprotective mechanism in acute neurodegenerative disorders. Med Hypotheses 2019; 131:109309. [PMID: 31443781 DOI: 10.1016/j.mehy.2019.109309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022]
Abstract
Stroke and traumatic brain injury (TBI) are significant clinical problems characterized by high rate of mortality and long-lasting disabilities, and an unmet need for new treatments. Current experimental stroke and TBI research are evolving to focus more on understanding the brain's self-protective mechanisms to meet the critical need of developing new therapies for these disorders. In this hypothesis-based manuscript, I provide several lines of evidence that peptidase neurolysin (Nln) is one of the brain's potent, self-protective mechanisms promoting preservation and recovery of the brain after acute injury. Based on published experimental observations and ongoing studies in our laboratory, I posit that Nln is a compensatory and cerebroprotective mechanism in the post-stroke/TBI brain that functions to process a diverse group of extracellular neuropeptides and by that to reduce excitotoxicity, oxidative stress, edema formation, blood brain barrier hyper-permeability, and neuroinflammation. If this hypothesis is correct, Nln could potentially serve as a single therapeutic target to modulate the function of multiple targets, the involved neuropeptide systems, critically involved in various mechanisms of brain injury and cerebroprotection/restoration. Such multi-pathway target would be highly desired for pharmacotherapy of stroke and TBI, because targeting one pathophysiological pathway has proven to be ineffective for such complex disorders.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, United States.
| |
Collapse
|
31
|
High Level of Serum Tissue Kallikrein Is Associated with Favorable Outcome in Acute Ischemic Stroke Patients. DISEASE MARKERS 2019; 2019:5289715. [PMID: 31275448 PMCID: PMC6589205 DOI: 10.1155/2019/5289715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Background/Objectives We sought to assess the association between a serum tissue kallikrein (TK) level and a 90-day outcome in acute ischemic stroke (AIS) patients who received acute reperfusion therapy. Methods Consecutive AIS patients within 6 hours after stroke onset between December 2015 and August 2017 were prospectively recruited. Blood samples were collected before acute reperfusion therapy for serum TK measurement. Outcome was modified Rankin scale (mRS) score at 90 days after stroke onset. Binary logistic regression was performed to analyze the association between the baseline TK level and the clinical outcome. Results Between December 2015 and August 2017, 75 patients (age range from 33 to 91 years, 72.0% male) were recruited in this study. Higher baseline TK was independently associated with a favorable functional outcome (mRS 0-2) (odds ratio 1.01, 95% confidence interval (CI) 1.00-1.02, p = 0.047) and low mortality rate (odds ratio 0.98, 95% CI 0.96-1.00, p = 0.049) at 90 days. Increased TK level was associated with 90 d mRS (0-2) with area under the curve of 0.719 (95% CI 0.596-0.842; p = 0.002). Conclusions Serum TK can be a promising predictor of clinical outcome in AIS patients who received acute reperfusion therapy.
Collapse
|
32
|
Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, Barreto GE. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Mol Neurobiol 2019; 56:6902-6927. [PMID: 30941733 DOI: 10.1007/s12035-019-1570-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Biviana Barrera-Bailón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, 4080871, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
33
|
Plasma kallikrein modulates immune cell trafficking during neuroinflammation via PAR2 and bradykinin release. Proc Natl Acad Sci U S A 2018; 116:271-276. [PMID: 30559188 DOI: 10.1073/pnas.1810020116] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Blood-brain barrier (BBB) disruption and transendothelial trafficking of immune cells into the central nervous system (CNS) are pathophysiological hallmarks of neuroinflammatory disorders like multiple sclerosis (MS). Recent evidence suggests that the kallikrein-kinin and coagulation system might participate in this process. Here, we identify plasma kallikrein (KK) as a specific direct modulator of BBB integrity. Levels of plasma prekallikrein (PK), the precursor of KK, were markedly enhanced in active CNS lesions of MS patients. Deficiency or pharmacologic blockade of PK renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by a remarkable reduction of BBB disruption and CNS inflammation. In vitro analysis revealed that KK modulates endothelial cell function in a protease-activated receptor-2-dependent manner, leading to an up-regulation of the cellular adhesion molecules Intercellular Adhesion Molecule 1 and Vascular Cell Adhesion Molecule 1, thereby amplifying leukocyte trafficking. Our study demonstrates that PK is an important direct regulator of BBB integrity as a result of its protease function. Therefore, KK inhibition can decrease BBB damage and cell invasion during neuroinflammation and may offer a strategy for the treatment of MS.
Collapse
|
34
|
Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018; 13:2029-2037. [PMID: 30323116 PMCID: PMC6199924 DOI: 10.4103/1673-5374.241427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.
Collapse
Affiliation(s)
- M. Grant Liska
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Marci G. Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Julian P. Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
35
|
Albert-Weissenberger C, Hopp S, Nieswandt B, Sirén AL, Kleinschnitz C, Stetter C. How is the formation of microthrombi after traumatic brain injury linked to inflammation? J Neuroimmunol 2018; 326:9-13. [PMID: 30445364 DOI: 10.1016/j.jneuroim.2018.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/20/2018] [Accepted: 10/24/2018] [Indexed: 02/01/2023]
Abstract
Traumatic brain injury (TBI) is characterized by mechanical disruption of brain tissue due to an external force and by subsequent secondary injury. Secondary brain injury events include inflammatory responses and the activation of coagulation resulting in microthrombi formation in the brain vasculature. Recent research suggests that these mechanisms do not work independently. There is strong evidence that FXII and platelet activation connects both, inflammation and the formation of microthrombi. This review summarizes the current knowledge on posttraumatic microthrombus formation and its link to inflammation.
Collapse
Affiliation(s)
- Christiane Albert-Weissenberger
- Institute of Physiology, Department of Neurophysiology, Julius Maximilian University, Würzburg, Germany; Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Sarah Hopp
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| | - Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Julius Maximilian University, Würzburg, Germany.
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany; Department of Neurology, University Duisburg-Essen, Essen, Germany.
| | - Christian Stetter
- Department of Neurosurgery, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
36
|
Yiran C, Hongwei W, Mengting L, Haijiao Q, Xin L, Hongjun Y. Effect of Ginkgo biloba leaf extract on cerebral cortex amino acid levels in cerebral ischemia model rats. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Controlled cortical impact-induced neurodegeneration decreases after administration of the novel calpain-inhibitor Gabadur. Brain Res Bull 2018; 142:368-373. [DOI: 10.1016/j.brainresbull.2018.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/08/2018] [Accepted: 08/22/2018] [Indexed: 01/14/2023]
|
38
|
Neurolysin: From Initial Detection to Latest Advances. Neurochem Res 2018; 43:2017-2024. [DOI: 10.1007/s11064-018-2624-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/20/2023]
|
39
|
Activation of bradykinin B2 receptor induced the inflammatory responses of cytosolic phospholipase A 2 after the early traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2957-2971. [PMID: 29894755 DOI: 10.1016/j.bbadis.2018.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Phospholipase A2 is a known aggravator of inflammation and deteriorates neurological outcomes after traumatic brain injury (TBI), however the exact inflammatory mechanisms remain unknown. This study investigated the role of bradykinin and its receptor, which are known initial mediators within inflammation activation, as well as the mechanisms of the cytosolic phospholipase A2 (cPLA2)-related inflammatory responses after TBI. We found that cPLA2 and bradykinin B2 receptor were upregulated after a TBI. Rats treated with the bradykinin B2 receptor inhibitor LF 16-0687 exhibited significantly less cPLA2 expression and related inflammatory responses in the brain cortex after sustaining a controlled cortical impact (CCI) injury. Both the cPLA2 inhibitor and the LF16-0687 improved CCI rat outcomes by decreasing neuron death and reducing brain edema. The following TBI model utilized both primary astrocytes and primary neurons in order to gain further understanding of the inflammation mechanisms of the B2 bradykinin receptor and the cPLA2 in the central nervous system. There was a stronger reaction from the astrocytes as well as a protective effect of LF16-0687 after the stretch injury and bradykinin treatment. The protein kinase C pathway was thought to be involved in the B2 bradykinin receptor as well as the cPLA2-related inflammatory responses. Rottlerin, a Protein Kinase C (PKC) δ inhibitor, decreased the activity of the cPLA2 activity post-injury, and LF16-0687 suppressed both the PKC pathway and the cPLA2 activity within the astrocytes. These results indicated that the bradykinin B2 receptor-mediated pathway is involved in the cPLA2-related inflammatory response from the PKC pathway.
Collapse
|
40
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
41
|
Liang D, He X, Wang Z, Li C, Gao B, Wu J, Bai Y. Remote limb ischemic postconditioning promotes motor function recovery in a rat model of ischemic stroke via the up-regulation of endogenous tissue kallikrein. CNS Neurosci Ther 2018; 24:519-527. [PMID: 29399973 PMCID: PMC6489769 DOI: 10.1111/cns.12813] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/16/2023] Open
Abstract
AIMS Remote ischemic conditionings, such as pre- and per-conditioning, are known to provide cardioprotection in animal models of ischemia. However, little is known about the neuroprotection effect of postconditioning after cerebral ischemia. In this study, we aim to evaluate the motor function rescuing effect of remote limb ischemic postconditioning (RIPostC) in a rat model of acute cerebral stroke. METHODS Left middle cerebral artery occlusion (MCAO) was performed to generate the rat model of ischemic stroke, followed by daily RIPostC treatment for maximum 21 days. The motor function after RIPostC was assessed with foot fault test and balance beam test. Local infarct volume was measured through MRI scanning. Neuronal status was evaluated with Nissl's, HE, and MAP2 immunostaining. Lectin immunostaining was performed to evaluate the microvessel density and area. RESULTS Daily RIPostC for more than 21 days promoted motor function recovery and provided long-lasting neuroprotection after MCAO. Reduced infarct volume, rescued neuronal loss, and enhanced microvessel density and size in the injured areas were observed. In addition, the RIPostC effect was associated with the up-regulation of endogenous tissue kallikrein (TK) level in circulating blood and local ischemic brain regions. A TK receptor antagonist HOE-140 partially reversed RIPostC-induced improvements, indicating the specificity of endogenous TK mediating the neuroprotection effect of RIPostC. CONCLUSION Our study demonstrates RIPostC treatment as an effective rehabilitation therapy to provide motor function recovery and alleviate brain impairment in a rat model of acute cerebral ischemia. We also for the first time provide evidence showing that the up-regulation of endogenous TK from remote conditioning regions underlies the observed effects of RIPostC.
Collapse
Affiliation(s)
- Dan Liang
- Department of Rehabilitation MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Xi‐Biao He
- Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Zheng Wang
- Department of NeurologyHuashan HospitalState Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Ce Li
- Department of Rehabilitation MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Bei‐Yao Gao
- Department of Rehabilitation MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Jun‐Fa Wu
- Department of Rehabilitation MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Yu‐Long Bai
- Department of Rehabilitation MedicineHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
42
|
Role of selective blocking of bradykinin B1 receptor in attenuating immune liver injury in trichloroethylene-sensitized mice. Cytokine 2018; 108:71-81. [PMID: 29579546 DOI: 10.1016/j.cyto.2018.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
Trichloroethylene (TCE) is able to induce trichloroethylene hypersensitivity syndrome (THS) with multi-system immune injuries. In our previous study, we found kallikrein-kinin system (KKS) activation, including the bradykinin B1 receptor (B1R), which contributed to immune organ injury in TCE sensitized mice. However, the mechanism of B1R mediating immune dysfunction is not clarified. The present study initiates to investigate the potential mechanism of B1R on liver injury. We establish a TCE sensitized BALB/c mouse model to explore the mechanism with or without a B1R inhibitor R715. We found B1R expression was increased in TCE sensitization-positive mice. As expect, hepatocyte intracellular organelles and mitochondria disappeared, glycogen particles reduced significantly as well in TCE sensitization-positive mice via the transmission electron microscopic examination, meanwhile, R715 alleviated the deteriorate above. The blockade of B1R resulted in a significant decreased p-ERK1/2 and increased p-AKT expression. The expression of CD68 kupffer cell and its relative cytokine, including IL-6 and TNF-α, increased in TCE sensitization-positive mice and decreased in R715 pretreatment TCE sensitization-positive mice. Together, the results demonstrate B1R plays a key role in ERK/MAPK and PI3K/AKT signal pathway activation and inflammation cytokine expression in immune liver injury induced by TCE. B1R exerts a pivotal role in the development of TCE induced liver injury.
Collapse
|
43
|
Alawieh A, Zhao J, Feng W. Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury. Behav Brain Res 2018; 340:94-101. [PMID: 27531500 PMCID: PMC5305670 DOI: 10.1016/j.bbr.2016.08.029] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/27/2016] [Accepted: 08/12/2016] [Indexed: 02/05/2023]
Abstract
Neurological disorders are a major cause of chronic disability globally among which stroke is a leading cause of chronic disability. The advances in the medical management of stroke patients over the past decade have significantly reduced mortality, but at the same time increased numbers of disabled survivors. Unfortunately, this reduction in mortality was not paralleled by satisfactory therapeutics and rehabilitation strategies that can improve functional recovery of patients. Motor recovery after brain injury is a complex, dynamic, and multifactorial process in which an interplay among genetic, pathophysiologic, sociodemographic and therapeutic factors determines the overall recovery trajectory. Although stroke recovery is the most well-studied form of post-injury neuronal recovery, a thorough understanding of the pathophysiology and determinants affecting stroke recovery is still lacking. Understanding the different variables affecting brain recovery after stroke will not only provide an opportunity to develop therapeutic interventions but also allow for developing personalized platforms for patient stratification and prognosis. We aim to provide a narrative review of major determinants for post-stroke recovery and their implications in other forms of brain injury.
Collapse
Affiliation(s)
- Ali Alawieh
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jing Zhao
- Minhang District Central Hospital, Fudan University, Shanghai, 201199, China
| | - Wuwei Feng
- Department of Neurology, MUSC Stroke Center, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Health Science and Research, The Center of Rehabilitation Science in Neurological Conditions, College of Health Professions, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
44
|
Song J, Lyu Y, Wang M, Zhang J, Gao L, Tong X. Treatment of Human Urinary Kallidinogenase Combined with Maixuekang Capsule Promotes Good Functional Outcome in Ischemic Stroke. Front Physiol 2018; 9:84. [PMID: 29487537 PMCID: PMC5816573 DOI: 10.3389/fphys.2018.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022] Open
Abstract
Aims: To evaluate the clinical efficacy of Human Urinary Kallidinogenase (HUK) and Maixuekang capsule in the treatment of acute ischemic stroke (AIS) patients. Methods: In this study, from January 2016 to July 2016, 60 patients with acute ischemic stroke were enrolled and 56 patients with complete information of whom 21 patients received HUK+ basic treatment (HUK group), 16 patients received HUK+ Maixuekang capsule + basic treatment (HUK+ Maixuekang group), 19 patients received basic treatment (control group). 0.15 PNA unit of HUK injection plus 100 ml saline in intravenous infusion was performed in the HUK group and HUK+ Maixuekang group, with once a day for 14 consecutive days. 0.75 g Maixuekang capsules were taken in HUK+ Maixuekang group, with three times a day for 14 consecutive days. The National Institutes of Health Stroke Scale (NIHSS) scores in three groups were analyzed 7 days after treatment. The modified Rankin Scale (mRS) scores in three groups were analyzed 12 month after the treatment. Results: No difference was found in the NIHSS scores, age, gender, and comorbidities between three groups before treatment (p > 0.05). Seven days after treatment, the NIHSS scores in the HUK group and HUK+ Maixuekang group were significantly decreased than before (p HUK = 0.001, p HUK+Maixuekang < 0.001), and lower than that in the control group (p HUK = 0.032; p HUK+Maixuekang < 0.001). Twelve months after treatment, good functional outcome rate (12 month mRS score ≤ 2) in the HUK group and HUK+ Maixuekang group was significantly higher than that in the control group (p HUK = 0.049, p HUK+Maixuekang = 0.032). Conclusion: The treatment of HUK or HUK combined with Maixuekang capsule can effectively improve the neurological function and promote long-term recovery for AIS patients.
Collapse
Affiliation(s)
- Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yi Lyu
- Department of Medical Affairs, Techpool Biopharma Co., Ltd., Guangzhou, China
| | - Miaomiao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
45
|
Ou Z, Tao MX, Gao Q, Zhang XL, Yang Y, Zhou JS, Zhang YD. Up-regulation of angiotensin-converting enzyme in response to acute ischemic stroke via ERK/NF-κB pathway in spontaneously hypertensive rats. Oncotarget 2017; 8:97041-97051. [PMID: 29228591 PMCID: PMC5722543 DOI: 10.18632/oncotarget.21156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/08/2017] [Indexed: 12/02/2022] Open
Abstract
Cerebral ischemic stroke is usually caused by a temporary or permanent decrease in blood supply to the brain. Despite general progress in diagnosis and treatment, the prognosis of stroke is still unsatisfactory, and more detailed potential mechanisms are needed to investigate underlying the pathological process. Here, we showed that serum angiotensin-converting enzyme (ACE) concentration was positively correlated with infarct volume after acute ischemic stroke (AIS). Moreover, using a permanent middle cerebral artery occlusion rat model, we indicated for the first time that increased ACE expression in response to AIS was regulated by the ERK/NF-κB pathway in peri-infarct regions. More importantly, we disclosed that angiotensin II type 1 receptors were implicated in up-regulation of ACE expression in peri-infarct regions. These findings offer insight into ACE expression and activity in response to stroke, and further our understanding of ACE mechanisms.
Collapse
Affiliation(s)
- Zhou Ou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meng-Xing Tao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing Gao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xue-Ling Zhang
- Department of Neurology, Suqian City People's Hospital, Suqian, People's Republic of China
| | - Yang Yang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jun-Shan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
46
|
Neuroprotection of bradykinin/bradykinin B2 receptor system in cerebral ischemia. Biomed Pharmacother 2017; 94:1057-1063. [DOI: 10.1016/j.biopha.2017.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
|
47
|
Desposito D, Zadigue G, Taveau C, Adam C, Alhenc-Gelas F, Bouby N, Roussel R. Neuroprotective effect of kinin B1 receptor activation in acute cerebral ischemia in diabetic mice. Sci Rep 2017; 7:9410. [PMID: 28842604 PMCID: PMC5572700 DOI: 10.1038/s41598-017-09721-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
Activation of the kallikrein-kinin system enhances cardiac and renal tolerance to ischemia. Here we investigated the effects of selective agonists of kinin B1 or B2 receptor (R) in brain ischemia-reperfusion in diabetic and non-diabetic mice. The role of endogenous kinins was assessed in tissue kallikrein deficient mice (TK−/−). Mice underwent 60min-middle cerebral artery occlusion (MCAO), eight weeks after type 1-diabetes induction. Treatment with B1R-, B2R-agonist or saline was started at reperfusion. Neurological deficit (ND), infarct size (IS), brain water content (BWC) were measured at day 0, 1 and 2 after injury. MCAO induced exaggerated ND, mortality and IS in diabetic mice. B2R-agonist increased ND and mortality to 60% and 80% in non-diabetic and diabetic mice respectively, by mechanisms involving hemodynamic failure and renal insufficiency. TK−/− mice displayed reduced ND and IS compared to wild-type littermate, consistent with suppression of B2R activity. B1R mRNA level increased in ischemic brain but B1R-agonist had no effect on ND, mortality or IS in non-diabetic mice. In contrast, in diabetic mice, B1R-agonist tested at two doses significantly reduced ND by 42–52% and IS by 66–71%, without effect on BWC or renal function. This suggests potential therapeutic interest of B1R agonism for cerebral protection in diabetes.
Collapse
Affiliation(s)
- Dorinne Desposito
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | | | - Christopher Taveau
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | - Clovis Adam
- Anatomopathology Department, Kremlin-Bicêtre Hospital, Paris, France
| | - François Alhenc-Gelas
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | - Nadine Bouby
- INSERM U 1138, Cordeliers Research Center, Paris, France. .,Paris Descartes University, Paris, France. .,Pierre et Marie Curie University, Paris, France.
| | - Ronan Roussel
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Denis Diderot University, Paris, France.,Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Bichat Hospital, AP-HP, Paris, France
| |
Collapse
|
48
|
Yang J, Su J, Wan F, Yang N, Jiang H, Fang M, Xiao H, Wang J, Tang J. Tissue kallikrein protects against ischemic stroke by suppressing TLR4/NF-κB and activating Nrf2 signaling pathway in rats. Exp Ther Med 2017; 14:1163-1170. [PMID: 28810574 DOI: 10.3892/etm.2017.4614] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/24/2017] [Indexed: 01/04/2023] Open
Abstract
Brain damage following cerebral ischemia-reperfusion (I/R) is a complicated pathophysiological course, in which inflammation and oxidative stress have been suggested to serve an important role. Toll-like receptor 4 (TLR4) has been suggested to be involved in secondary inflammatory process in cerebral ischemia. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important regulator of the antioxidant host defense, maintains the cellular redox homeostasis. Tissue kallikrein (TK) has been proven to elicit a variety of biological effects in ischemic stroke through its anti-inflammatory and anti-oxidant properties. However, the mechanisms underlying its beneficial effects remain poorly defined. The present study examined the hypothesis that TK attenuates ischemic cerebral injury via the TLR4/nuclear factor-κB (NF-κB) and Nrf2 signaling pathways. Using a transient rat middle cerebral artery occlusion (MCAO) model, the effects of immediate and delayed TK treatment subsequent to reperfusion were investigated. The neurological deficits, infarct size, and the expression of TLR4/NF-κB and Nrf2 pathway in ischemic brain tissues were measured at 24 following MCAO. The results indicated that TK immediate treatment significantly improved neurological deficits and reduced the infarct size, accompanied by the inhibition of TLR4 and NF-κB levels, and the activation of Nrf2 pathway. Furthermore, TK delayed treatment also exerted neuroprotection against I/R injury. However, the neuroprotective effect of TK immediate treatment was better compared with that of TK delayed treatment. In conclusion, the results indicated that TK protected the brain against ischemic injury in rats after MCAO through its anti-oxidative and anti-inflammatory effects. Suppression of TLR4/NF-κB and activation of the Nrf2 pathway contributed to the neuroprotective effects induced by TK in cerebral ischemia. Therefore, TK may provide an effective intervention with a wider therapeutic window for ischemic stroke.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianhua Su
- Department of Neurology, The Affiliated Jintan Hospital of Medical College of Jiangsu University, Jintan, Jiangsu 213200, P.R. China
| | - Fen Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Yang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Haibo Jiang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingming Fang
- Department of Neurology, Jiangsu Hospital of Chinese Traditional and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Hang Xiao
- Department of Neurotoxicology, Nanjing Medical University, Nanjing, Jiangsu 211199, P.R. China
| | - Jun Wang
- Department of Neurotoxicology, Nanjing Medical University, Nanjing, Jiangsu 211199, P.R. China
| | - Jinrong Tang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
49
|
Tang M, Liu P, Li X, Wang JW, Zhu XC, He FP. Protective action of B1R antagonist against cerebral ischemia-reperfusion injury through suppressing miR-200c expression of Microglia-derived microvesicles. Neurol Res 2017; 39:612-620. [PMID: 28398146 DOI: 10.1080/01616412.2016.1275096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Min Tang
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Liu
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Li
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-wen Wang
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiong-chao Zhu
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fang-ping He
- Department of Neurology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Hopp S, Nolte MW, Stetter C, Kleinschnitz C, Sirén AL, Albert-Weissenberger C. Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa. J Neuroinflammation 2017; 14:39. [PMID: 28219400 PMCID: PMC5319055 DOI: 10.1186/s12974-017-0815-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/08/2017] [Indexed: 11/15/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a devastating neurological condition and a frequent cause of permanent disability. Posttraumatic inflammation and brain edema formation, two pathological key events contributing to secondary brain injury, are mediated by the contact-kinin system. Activation of this pathway in the plasma is triggered by activated factor XII. Hence, we set out to study in detail the influence of activated factor XII on the abovementioned pathophysiological features of TBI. Methods Using a cortical cryogenic lesion model in mice, we investigated the impact of genetic deficiency of factor XII and inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused Infestin-4 on the release of bradykinin, the brain lesion size, and contact-kinin system-dependent pathological events. We determined protein levels of bradykinin, intracellular adhesion molecule-1, CC-chemokine ligand 2, and interleukin-1β by enzyme-linked immunosorbent assays and mRNA levels of genes related to inflammation by quantitative real-time PCR. Brain lesion size was determined by tetrazolium chloride staining. Furthermore, protein levels of the tight junction protein occludin, integrity of the blood-brain barrier, and brain water content were assessed by Western blot analysis, extravasated Evans Blue dye, and the wet weight-dry weight method, respectively. Infiltration of neutrophils and microglia/activated macrophages into the injured brain lesions was quantified by immunohistological stainings. Results We show that both genetic deficiency of factor XII and inhibition of activated factor XII in mice diminish brain injury-induced bradykinin release by the contact-kinin system and minimize brain lesion size, blood-brain barrier leakage, brain edema formation, and inflammation in our brain injury model. Conclusions Stimulation of bradykinin release by activated factor XII probably plays a prominent role in expanding secondary brain damage by promoting brain edema formation and inflammation. Pharmacological blocking of activated factor XII could be a useful therapeutic principle in the treatment of TBI-associated pathologic processes by alleviating posttraumatic inflammation and brain edema formation.
Collapse
Affiliation(s)
- Sarah Hopp
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Strasse 11, Würzburg, Germany
| | | | - Christian Stetter
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Strasse 11, Würzburg, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, University Duisburg-Essen, Essen, Germany
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Strasse 11, Würzburg, Germany
| | | |
Collapse
|