1
|
Mürner-Lavanchy I, Kao HT, Sele S, Koenig J, Kaess M. Prefrontal oxygenation during experimental pain in adolescents engaging in non-suicidal self-injury. J Affect Disord 2025; 370:100-108. [PMID: 39447965 DOI: 10.1016/j.jad.2024.10.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND The intricate role of pain in non-suicidal self-injury (NSSI) makes the investigation of alterations in brain function during pain processing a critical yet underexplored topic. The aim of this study was to investigate fNIRS correlates of experimental pain and how these differed between adolescent patients engaging in NSSI and healthy controls. METHODS 154 adolescent patients with NSSI and 48 healthy controls underwent a heat pain stimulation with linearly increasing temperature from 32 °C to max. 50 °C, during which fNIRS activity was recorded. Associations between fNIRS activity and pain perception (i.e. pain threshold, pain tolerance and pain intensity) were examined using linear mixed models and linear regression analyses. RESULTS Across groups, we found a decrease in prefrontal oxygenation during increasing pain stimulation: Oxygenated hemoglobin was higher during baseline than during pain threshold (b = -0.36, p < .001) and higher during pain threshold than during pain tolerance (b = -0.10, p < .001). We did not find differential patterns of prefrontal oxygenation across the pain assessment between patients and healthy controls. Also, no association between pain intensity and fNIRS activity was found. LIMITATIONS fNIRS was only recorded in prefrontal regions and our design did not include a non-painful stimulation as a control condition. CONCLUSION While our study adds to the understanding of prefrontal hemodynamic changes associated with pain processing, it did not contribute further evidence to the few existing findings regarding altered neural processing of pain in adolescents engaging in NSSI.
Collapse
Affiliation(s)
- Ines Mürner-Lavanchy
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Han-Tin Kao
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Silvano Sele
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Senthilnathan S, Nallusamy G, Varadaraj P, Reddy KSS, Kumar L. Unveiling the Role of Nerve Conduction Studies (NCS) in Detecting Subclinical Peripheral Neuropathy in Autoimmune Disorders: A Cross-Sectional Study. Cureus 2024; 16:e70649. [PMID: 39483557 PMCID: PMC11527393 DOI: 10.7759/cureus.70649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
INTRODUCTION Peripheral neuropathy, characterized by nerve damage, often presents with symptoms like pain, tingling, and muscle weakness. However, in its subclinical form, these symptoms may be subtle or absent, making early detection challenging. This is particularly concerning in patients with autoimmune connective tissue disorders (ACTDs), where the immune system attacks the body's tissues, potentially leading to nerve damage. Early identification and management are crucial to prevent the progression from subclinical to clinical neuropathy, which can significantly impair quality of life. MATERIALS AND METHODS This prospective cross-sectional study involved 100 patients with ACTDs of three or more years' duration, conducted at Saveetha Medical College over 15 months. Nerve conduction studies (NCS) were performed on bilateral ulnar, radial, sural, peroneal, and tibial nerves. RESULTS Peripheral neuropathy was present in 18 (18%) of the study participants. Carpal tunnel syndrome was the most prevalent type, affecting 10 (55.56%) of those with neuropathy. Significant differences were found in the left peroneal motor nerve (p = 0.003) and right tibial nerve (p = 0.03) conduction times. Additionally, significant associations were observed between rheumatoid factor positivity (p = 0.011), anti-cyclic citrullinated peptide (anti-CCP) antibody status (p = 0.032), and the presence of peripheral neuropathy. CONCLUSION This study underscores the importance of early detection and intervention for peripheral neuropathy in patients with ACTDs. The study's findings align with existing literature, suggesting that a substantial proportion of patients with ACTDs are at risk for peripheral neuropathy, particularly in older patients and those with specific autoimmune markers. Regular NCS assessments are recommended to identify at-risk individuals, potentially mitigating the progression of neuropathy and improving patient outcomes. Future research should include larger, more diverse populations and longitudinal studies to further validate these findings.
Collapse
Affiliation(s)
- Subbiah Senthilnathan
- Internal Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Gunasekaran Nallusamy
- Internal Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Priyadarshini Varadaraj
- Internal Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Keesari Sai Sandeep Reddy
- Internal Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Lokesh Kumar
- General Medicine, Adyar Cancer Institute, Chennai, IND
| |
Collapse
|
3
|
Medina S, O'Daly O, Howard MA, Feliu-Soler A, Luciano JV. Does practice make perfect? Functional connectivity of the salience network and somatosensory network predicts response to mind-body treatments for fibromyalgia. FRONTIERS IN PAIN RESEARCH 2024; 5:1245235. [PMID: 39328273 PMCID: PMC11425596 DOI: 10.3389/fpain.2024.1245235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2024] [Indexed: 09/28/2024] Open
Abstract
Background Mind-body treatments can improve coping mechanisms to deal with pain, improve the quality of life of patients with fibromyalgia syndrome (FMS), and reduce perceived pain in some cases. However, responses to these treatments are highly variable, the mechanisms underpinning them remain unclear, and reliable predictors of treatment response are lacking. We employed resting-state blood oxygen level-dependent (rsBOLD) functional magnetic resonance imaging (fMRI) to examine changes in brain functional connectivity (FC) following mind-body treatment that may relate to and predict pain relief. Methods We recruited patients with FMS who underwent either mindfulness-based stress reduction (MBSR; n = 18) or a psychoeducational program (FibroQoL; n = 22) and a treatment-as-usual FMS group (TAU; n = 18). We collected rsBOLD data, alongside subjective pain, anxiety, depression, and catastrophizing measures prior to and following treatments. We examined behavioral changes and FC changes in the salience network (SN) and sensorimotor network (SMN) and performed regression analyses to identify predictors for treatment response. Results The MBSR and FibroQoL groups experienced significant reductions in pain catastrophizing. After treatment, the FC of the sensorimotor cortex with the rest of the SMN became significantly reduced in the MBSR group compared to the TAU group. The FC between the SN and the SMN at baseline was negatively correlated with pain reductions following MBSR but positively correlated with pain reductions in the FibroQoL group. These results yielded large to very large effect sizes. Following MBSR, only for those patients with lower baseline SMN-SN FC, minutes of mindfulness practice were positively associated with clinical improvement (small to medium effect size). Conclusions Different mind-body treatments are underpinned by discrete brain networks. Measures of the functional interplay between SN and SMN have the potential as predictors of mind-body treatment response in patients with FMS.
Collapse
Affiliation(s)
- Sonia Medina
- Department of Neuroimaging, King's College London, London, United Kingdom
- Department of Health and Biomedical Sciences, University of Exeter, Exeter, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Matthew A Howard
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Albert Feliu-Soler
- Department of Clinical & Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Juan V Luciano
- Department of Clinical & Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Teaching, Research & Innovation Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| |
Collapse
|
4
|
Ashina S, Robertson CE, Srikiatkhachorn A, Di Stefano G, Donnet A, Hodaie M, Obermann M, Romero-Reyes M, Park YS, Cruccu G, Bendtsen L. Trigeminal neuralgia. Nat Rev Dis Primers 2024; 10:39. [PMID: 38816415 DOI: 10.1038/s41572-024-00523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Trigeminal neuralgia (TN) is a facial pain disorder characterized by intense and paroxysmal pain that profoundly affects quality of life and presents complex challenges in diagnosis and treatment. TN can be categorized as classical, secondary and idiopathic. Epidemiological studies show variable incidence rates and an increased prevalence in women and in the elderly, with familial cases suggesting genetic factors. The pathophysiology of TN is multifactorial and involves genetic predisposition, anatomical changes, and neurophysiological factors, leading to hyperexcitable neuronal states, central sensitization and widespread neural plasticity changes. Neurovascular compression of the trigeminal root, which undergoes major morphological changes, and focal demyelination of primary trigeminal afferents are key aetiological factors in TN. Structural and functional brain imaging studies in patients with TN demonstrated abnormalities in brain regions responsible for pain modulation and emotional processing of pain. Treatment of TN involves a multifaceted approach that considers patient-specific factors, including the type of TN, with initial pharmacotherapy followed by surgical options if necessary. First-line pharmacological treatments include carbamazepine and oxcarbazepine. Surgical interventions, including microvascular decompression and percutaneous neuroablative procedures, can be considered at an early stage if pharmacotherapy is not sufficient for pain control or has intolerable adverse effects or contraindications.
Collapse
Affiliation(s)
- Sait Ashina
- BIDMC Comprehensive Headache Center, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- BIDMC Comprehensive Headache Center, Department of Anaesthesia, Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Anan Srikiatkhachorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Giulia Di Stefano
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Anne Donnet
- Department of Evaluation and Treatment of Pain, FHU INOVPAIN, Centre Hospitalier Universitaire de Marseille, Hopital de la Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - Mojgan Hodaie
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Ontairo, Canada
| | - Mark Obermann
- Department of Neurology, Hospital Weser-Egge, Hoexter, Germany
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Marcela Romero-Reyes
- Department of Pain and Neural Sciences, Brotman Facial Pain Clinic, University of Maryland, School of Dentistry, Baltimore, MD, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, Gamma Knife Icon Center, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Lars Bendtsen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, University of Copenhagen, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Copenhagen, Denmark
| |
Collapse
|
5
|
Li CN, Keay KA, Henderson LA, Mychasiuk R. Re-examining the Mysterious Role of the Cerebellum in Pain. J Neurosci 2024; 44:e1538232024. [PMID: 38658164 PMCID: PMC11044115 DOI: 10.1523/jneurosci.1538-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.
Collapse
Affiliation(s)
- Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience) and Brain and Mind Centre, University of Sydney, NSW 2006, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
6
|
Leibovitz SE, Sevinc G, Greenberg J, Hölzel B, Gard T, Calahan T, Vangel M, Orr SP, Milad MR, Lazar SW. Mindfulness training and exercise differentially impact fear extinction neurocircuitry. Psychol Med 2024; 54:835-846. [PMID: 37655520 DOI: 10.1017/s0033291723002593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
BACKGROUND The ability to extinguish a maladaptive conditioned fear response is crucial for healthy emotional processing and resiliency to aversive experiences. Therefore, enhancing fear extinction learning has immense potential emotional and health benefits. Mindfulness training enhances both fear conditioning and recall of extinguished fear; however, its effects on fear extinction learning are unknown. Here we investigated the impact of mindfulness training on brain mechanisms associated with fear-extinction learning, compared to an exercise-based program. METHODS We investigated BOLD activations in response to a previously learned fear-inducing cue during an extinction paradigm, before and after an 8-week mindfulness-based stress reduction program (MBSR, n = 49) or exercise-based stress management education program (n = 27). RESULTS The groups exhibited similar reductions in stress, but the MBSR group was uniquely associated with enhanced activation of salience network nodes and increased hippocampal engagement. CONCLUSIONS Our results suggest that mindfulness training increases attention to anticipatory aversive stimuli, which in turn facilitates decreased aversive subjective responses and enhanced reappraisal of the memory.
Collapse
Affiliation(s)
- Shaked E Leibovitz
- College of Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Gunes Sevinc
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan Greenberg
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Britta Hölzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany
| | - Tim Gard
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas Calahan
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark Vangel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Scott P Orr
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mohammed R Milad
- Psychiatry Department, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara W Lazar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
7
|
Inderyas M, Thapaliya K, Marshall-Gradisnik S, Barth M, Barnden L. Subcortical and default mode network connectivity is impaired in myalgic encephalomyelitis/chronic fatigue syndrome. Front Neurosci 2024; 17:1318094. [PMID: 38347875 PMCID: PMC10859529 DOI: 10.3389/fnins.2023.1318094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/27/2023] [Indexed: 02/15/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic condition with core symptoms of fatigue and cognitive dysfunction, suggesting a key role for the central nervous system in the pathophysiology of this disease. Several studies have reported altered functional connectivity (FC) related to motor and cognitive deficits in ME/CFS patients. In this study, we compared functional connectivity differences between 31 ME/CFS and 15 healthy controls (HCs) using 7 Tesla MRI. Functional scans were acquired during a cognitive Stroop color-word task, and blood oxygen level-dependent (BOLD) time series were computed for 27 regions of interest (ROIs) in the cerebellum, brainstem, and salience and default mode networks. A region-based comparison detected reduced FC between the pontine nucleus and cerebellum vermis IX (p = 0.027) for ME/CFS patients compared to HCs. Our ROI-to-voxel analysis found significant impairment of FC within the ponto-cerebellar regions in ME/CFS. Correlation analyses of connectivity with clinical scores in ME/CFS patients detected associations between FC and 'duration of illness' and 'memory scores' in salience network hubs and cerebellum vermis and between FC and 'respiratory rate' within the medulla and the default mode network FC. This novel investigation is the first to report the extensive involvement of aberrant ponto-cerebellar connections consistent with ME/CFS symptomatology. This highlights the involvement of the brainstem and the cerebellum in the pathomechanism of ME/CFS.
Collapse
Affiliation(s)
- Maira Inderyas
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Markus Barth
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Leighton Barnden
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| |
Collapse
|
8
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
9
|
Tu Y, Li Z, Zhang L, Zhang H, Bi Y, Yue L, Hu L. Pain-preferential thalamocortical neural dynamics across species. Nat Hum Behav 2024; 8:149-163. [PMID: 37813996 DOI: 10.1038/s41562-023-01714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Abstract
Searching for pain-preferential neural activity is essential for understanding and managing pain. Here, we investigated the preferential role of thalamocortical neural dynamics in encoding pain using human neuroimaging and rat electrophysiology across three studies. In study 1, we found that painful stimuli preferentially activated the medial-dorsal (MD) thalamic nucleus and its functional connectivity with the dorsal anterior cingulate cortex (dACC) and insula in two human functional magnetic resonance imaging (fMRI) datasets (n = 399 and n = 25). In study 2, human fMRI and electroencephalography fusion analyses (n = 220) revealed that pain-preferential MD responses were identified 89-295 ms after painful stimuli. In study 3, rat electrophysiology further showed that painful stimuli preferentially activated MD neurons and MD-ACC connectivity. These converging cross-species findings provided evidence for pain-preferential thalamocortical neural dynamics, which could guide future pain evaluation and management strategies.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Xiang S, Jia T, Xie C, Zhu Z, Cheng W, Schumann G, Robbins TW, Feng J. Fractionation of neural reward processing into independent components by novel decoding principle. Neuroimage 2023; 284:120463. [PMID: 37989457 DOI: 10.1016/j.neuroimage.2023.120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
How to retrieve latent neurobehavioural processes from complex neurobiological signals is an important yet unresolved challenge. Here, we develop a novel approach, orthogonal-Decoding multi-Cognitive Processes (DeCoP), to reveal underlying latent neurobehavioural processing and show that its performance is superior to traditional non-orthogonal decoding in terms of both false inference and robustness. Processing value and salience information are two fundamental but mutually confounded pathways of reward reinforcement essential for decision making. During reward/punishment anticipation, we applied DeCoP to decode brain-wide responses into spatially overlapping, yet functionally independent, evaluation and readiness processes, which are modulated differentially by meso‑limbic vs nigro-striatal dopamine systems. Using DeCoP, we further demonstrated that most brain regions only encoded abstract information but not the exact input, except for dorsal anterior cingulate cortex and insula. Furthermore, we anticipate our novel analytical principle to be applied generally in decoding multiple latent neurobehavioral processes and thus advance both the design and hypothesis testing for cognitive tasks.
Collapse
Affiliation(s)
- Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), China; Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, SE5 8AF, United Kingdom; Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), China
| | - Zhichao Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), China
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Department of Psychiatry and Psychotherapy, Centre for Population Neuroscience and Precision Medicine (PONS), CCM, Charite Universitaetsmedizin, Berlin, Germany
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), China; Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), China; Department of Computer Science, University of Warwick, Coventry, United Kingdom; School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Weiss T, Koehler H, Croy I. Pain and Reorganization after Amputation: Is Interoceptive Prediction a Key? Neuroscientist 2023; 29:665-675. [PMID: 35950521 PMCID: PMC10623598 DOI: 10.1177/10738584221112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an ongoing discussion on the relevance of brain reorganization following amputation for phantom limb pain. Recent attempts to provide explanations for seemingly controversial findings-specifically, maladaptive plasticity versus persistent functional representation as a complementary process-acknowledged that reorganization in the primary somatosensory cortex is not sufficient to explain phantom limb pain satisfactorily. Here we provide theoretical considerations that might help integrate the data reviewed and suppose a possible additional driver of the development of phantom limb pain-namely, an error in interoceptive predictions to somatosensory sensations and movements of the missing limb. Finally, we derive empirically testable consequences based on our considerations to guide future research.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Hanna Koehler
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
12
|
Karacaoglu M, Peerdeman KJ, Numans ME, Stolk MR, Meijer S, Klinger R, Veldhuijzen DS, van Middendorp H, Evers AWM. Nocebo Hyperalgesia in Patients With Fibromyalgia and Healthy Controls: An Experimental Investigation of Conditioning and Extinction Processes at Baseline and 1-Month Follow-up. THE JOURNAL OF PAIN 2023; 24:1696-1711. [PMID: 37196928 DOI: 10.1016/j.jpain.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Nocebo effects are adverse treatment outcomes that are not ascribed to active treatment components. Potentially, their magnitude might be higher in patients with chronic pain compared to healthy controls since patients likely experience treatment failure more frequently. The current study investigated group differences in the induction and extinction of nocebo effects on pressure pain at baseline (N = 69) and 1-month follow-up (N = 56) in female patients with fibromyalgia and matched healthy controls. Nocebo effects were first experimentally induced via classical conditioning combined with instructions on the pain-increasing function of a sham transcutaneous electrical nerve stimulation device, then decreased via extinction. One month later, the same procedures were repeated to explore their stability. Results suggest that nocebo effects were induced in the healthy control group during baseline and follow-up. In the patient group, nocebo effects were only induced during follow-up, without clear group differences. Extinction was only observed during baseline in the healthy control group. Further comparisons of nocebo effects and extinction indicated no significant changes across sessions, possibly suggesting their overall magnitudes were stable over time and across groups. In conclusion, contrary to our expectations, patients with fibromyalgia did not have stronger nocebo hyperalgesia; instead, they might be less responsive to nocebo manipulations than healthy controls. PERSPECTIVE: The current study is the first to investigate group differences in experimentally manipulated nocebo hyperalgesia between chronic pain and healthy populations at baseline and 1-month follow-up. Since nocebo effects are common in clinical settings, their investigation in different populations is essential to explain and minimize their adverse effects during treatment.
Collapse
Affiliation(s)
- Merve Karacaoglu
- Health, Medical and Neuropsychology unit, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | - Kaya J Peerdeman
- Health, Medical and Neuropsychology unit, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | - Mattijs E Numans
- Public Health and Primary Care Department/LUMC-Campus Den Haag, Leiden University Medical Center, The Hague, The Netherlands
| | - Martha R Stolk
- Health, Medical and Neuropsychology unit, Leiden University, Leiden, The Netherlands
| | - Simone Meijer
- Health, Medical and Neuropsychology unit, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | - Regine Klinger
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieuwke S Veldhuijzen
- Health, Medical and Neuropsychology unit, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | - Henriët van Middendorp
- Health, Medical and Neuropsychology unit, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | - Andrea W M Evers
- Health, Medical and Neuropsychology unit, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Medical Delta, Erasmus University Rotterdam, Leiden University & Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
13
|
Scheuren PS, Bösch S, Rosner J, Allmendinger F, Kramer JLK, Curt A, Hubli M. Priming of the autonomic nervous system after an experimental human pain model. J Neurophysiol 2023; 130:436-446. [PMID: 37405990 PMCID: PMC10625835 DOI: 10.1152/jn.00064.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023] Open
Abstract
Modulated autonomic responses to noxious stimulation have been reported in experimental and clinical pain. These effects are likely mediated by nociceptive sensitization, but may also, more simply reflect increased stimulus-associated arousal. To disentangle between sensitization- and arousal-mediated effects on autonomic responses to noxious input, we recorded sympathetic skin responses (SSRs) in response to 10 pinprick and heat stimuli before (PRE) and after (POST) an experimental heat pain model to induce secondary hyperalgesia (EXP) and a control model (CTRL) in 20 healthy females. Pinprick and heat stimuli were individually adapted for pain perception (4/10) across all assessments. Heart rate, heart rate variability, and skin conductance level (SCL) were assessed before, during, and after the experimental heat pain model. Both pinprick- and heat-induced SSRs habituated from PRE to POST in CTRL, but not EXP (P = 0.033). Background SCL (during stimuli application) was heightened in EXP compared with CTRL condition during pinprick and heat stimuli (P = 0.009). Our findings indicate that enhanced SSRs after an experimental pain model are neither fully related to subjective pain, as SSRs dissociated from perceptual responses, nor to nociceptive sensitization, as SSRs were enhanced for both modalities. Our findings can, however, be explained by priming of the autonomic nervous system during the experimental pain model, which makes the autonomic nervous system more susceptible to noxious input. Taken together, autonomic readouts have the potential to objectively assess not only nociceptive sensitization but also priming of the autonomic nervous system, which may be involved in the generation of distinct clinical pain phenotypes.NEW & NOTEWORTHY The facilitation of pain-induced sympathetic skin responses observed after experimentally induced central sensitization is unspecific to the stimulation modality and thereby unlikely solely driven by nociceptive sensitization. In addition, these enhanced pain-induced autonomic responses are also not related to higher stimulus-associated arousal, but rather a general priming of the autonomic nervous system. Hence, autonomic readouts may be able to detect generalized hyperexcitability in chronic pain, beyond the nociceptive system, which may contribute to clinical pain phenotypes.
Collapse
Affiliation(s)
- Paulina Simonne Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Sofia Bösch
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Florin Allmendinger
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - John Lawrence Kipling Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Cucinello-Ragland JA, Alrashed NH, Lee S, Davis EC, Edwards KN, Edwards S. Sex-specific biobehavioral regulation of persistent inflammatory pain by alcohol. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1283-1296. [PMID: 37208939 PMCID: PMC10422981 DOI: 10.1111/acer.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Although a large percentage of chronic pain patients consume alcohol to manage their pain, there is a significant gap in knowledge regarding the mechanisms underlying the antinociceptive effects of alcohol. METHODS To determine the longitudinal analgesic effects of alcohol, we utilized the complete Freund's adjuvant (CFA) model of inflammatory pain in adult female and male Wistar rats. Both somatic and negative motivational aspects of pain were measured using the electronic von Frey (mechanical nociception) system, thermal probe test (thermal nociception), and mechanical conflict avoidance task (pain avoidance-like behavior). Tests were conducted at baseline and 1 and 3 weeks following intraplantar CFA or saline administration. At both time points post-CFA, animals were treated with each of three doses of alcohol (intraperitoneal; 0, 0.5, and 1.0 g/kg) over separate days in a Latin square design. RESULTS Alcohol produced dose-dependent mechanical analgesia and antihyperalgesia in females but only antihyperalgesia in males. Although alcohol continued to attenuate CFA-induced decreases in both thermal and mechanical nociceptive thresholds between 1 and 3 weeks post-CFA, it appeared less effective at increasing thresholds 3 weeks after CFA induction. CONCLUSIONS These data suggest that individuals may develop tolerance to alcohol's ability to alleviate both somatic and negative motivational symptoms of chronic pain over time. We also discovered sex-specific neuroadaptations in protein kinase A-dependent phosphorylation of GluR1 subunits and extracellular signal-regulated kinase (ERK 1/2) phosphorylation in nociceptive brain centers of animals receiving an alcohol challenge 1 week post-CFA. Together, these findings illustrate a sex-specific regulation of behavioral and neurobiological indices of persistent pain by alcohol.
Collapse
Affiliation(s)
- Jessica A. Cucinello-Ragland
- Department of Physiology, LSU Health-New Orleans
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans
| | | | - Sumin Lee
- Department of Physiology, LSU Health-New Orleans
| | | | | | - Scott Edwards
- Department of Physiology, LSU Health-New Orleans
- Alcohol & Drug Abuse Center of Excellence, LSU Health-New Orleans
- Neuroscience Center of Excellence, LSU Health-New Orleans
- Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health-New Orleans
| |
Collapse
|
15
|
Kalivas PW, Gourley SL, Paulus MP. Intrusive thinking: Circuit and synaptic mechanisms of a transdiagnostic psychiatric symptom. Neurosci Biobehav Rev 2023; 150:105196. [PMID: 37094741 PMCID: PMC10249786 DOI: 10.1016/j.neubiorev.2023.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Spontaneous thought is an adaptive cognitive process that can produce novel and insightful thought sequences useful in guiding future behavior. In many psychiatric disorders, spontaneous thinking becomes intrusive and uncontrolled, and can trigger symptoms such as craving, repetitive negative thinking and trauma-related memories. We link studies using clinical imaging and rodent modeling towards understanding the neurocircuitry and neuroplasticity of intrusive thinking. We propose a framework in which drugs or stress change the homeostatic set point of brain reward circuitry, which then impacts subsequent plasticity induced by drug/stress conditioned cues (metaplastic allostasis). We further argue for the importance of examining not only the canonical pre- and postsynapse, but also the adjacent astroglial protrusions and extracellular matrix that together form the tetrapartite synapse and that plasticity throughout the tetrapartite synapse is necessary for cue-induced drug or stress behaviors. This analysis reveals that drug use or trauma cause long-lasting allostatic brain plasticity that sets the stage for subsequent drug/trauma-associated cues to induce transient plasticity that can lead to intrusive thinking.
Collapse
Affiliation(s)
- Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
16
|
Labrenz F, Merz CJ, Icenhour A. Connecting dots in disorders of gut-brain interaction: the interplay of stress and sex hormones in shaping visceral pain. Front Psychiatry 2023; 14:1204136. [PMID: 37275987 PMCID: PMC10235543 DOI: 10.3389/fpsyt.2023.1204136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Visceral pain and stress are tightly intertwined bodily and emotional phenomena, which enable a flexible adaptation to environmental challenges by activating a response repertoire to restore homeostasis along the gut-brain axis. However, visceral pain and stress can persist widely independent of the initial cause, acquiring independent disease values and posing major health burdens as predominant features in disorders of gut-brain interaction (DGBI). Epidemiological data consistently documents an increased prevalence for women to suffer from chronic visceral pain, possibly shaped by sex hormones and modulated by stress and its biological and psychosocial correlates. Yet, mechanisms underlying the complex interactions between altered visceroception, stress and sex remain widely elusive, especially in clinical populations with DGBI. We herein selectively review mechanisms of interactions between stress and sex in the complex pathophysiology of DGBI. A particular emphasis is laid on visceral pain, in which stress constitutes a major risk factor as well as mediator, and sex-related differences are particularly pronounced. Building on the neurobiology of stress and mechanisms of gut-brain interactions, we highlight putative target mechanisms via which visceral pain and stress may converge with sex effects into a triad. Accommodating a global demographic shift, we propose a lifespan perspective in future research, which may enable a more fine-tuned evaluation of this complex interplay exerting distinct challenges during vulnerable developmental phases. This viewpoint may advance our understanding of pathophysiological processes and can ultimately inspire novel tailored prevention strategies and therapeutic approaches in the treatment of chronic visceral pain and DGBI across the lifespan.
Collapse
Affiliation(s)
- Franziska Labrenz
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Christian J. Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Adriane Icenhour
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Koning E, Powers JM, Ioachim G, Stroman PW. A Comparison of Functional Connectivity in the Human Brainstem and Spinal Cord Associated with Noxious and Innocuous Thermal Stimulation Identified by Means of Functional MRI. Brain Sci 2023; 13:brainsci13050777. [PMID: 37239249 DOI: 10.3390/brainsci13050777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The somatosensory system is multidimensional and processes important information for survival, including the experience of pain. The brainstem and spinal cord serve pivotal roles in both transmitting and modulating pain signals from the periphery; although, they are studied less frequently with neuroimaging when compared to the brain. In addition, imaging studies of pain often lack a sensory control condition, failing to differentiate the neural processes associated with pain versus innocuous sensations. The purpose of this study was to investigate neural connectivity between key regions involved in descending modulation of pain in response to a hot, noxious stimulus as compared to a warm, innocuous stimulus. This was achieved with functional magnetic resonance imaging (fMRI) of the brainstem and spinal cord in 20 healthy men and women. Functional connectivity was observed to vary between specific regions across painful and innocuous conditions. However, the same variations were not observed in the period of anticipation prior to the onset of stimulation. Specific connections varied with individual pain scores only during the noxious stimulation condition, indicating a significant role of individual differences in the experience of pain which are distinct from that of innocuous sensation. The results also illustrate significant differences in descending modulation before and during stimulation in both conditions. These findings contribute to a deeper understanding of the mechanisms underlying pain processing at the level of the brainstem and spinal cord, and how pain is modulated.
Collapse
Affiliation(s)
- Elena Koning
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jocelyn M Powers
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Physics, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
18
|
Sciruicchio V, D'Agnano D, Clemente L, Rutigliano A, Laporta A, de Tommaso M. Clinical Correlates of Osmophobia in Primary Headaches: An Observational Study in Child Cohorts. J Clin Med 2023; 12:jcm12082939. [PMID: 37109275 PMCID: PMC10144088 DOI: 10.3390/jcm12082939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Primary headaches, especially migraines, have a significant impact on physical and mental health, as well as on the scholarly performance and quality of life of children and adolescents. Osmophobia could be a potential diagnostic marker of migraine diagnosis and disability. This multicenter observational cross-sectional study included 645 children, aged 8-15, with a diagnosis of primary headaches. We took into consideration the duration, intensity and frequency of headaches, pericranial tenderness, allodynia and osmophobia. In a subgroup of migraine children, we evaluated the migraine-related disability, Psychiatric Self-Administration Scales for Youths and Adolescents, and the Child Version of the Pain Catastrophizing Scale. Osmophobia was found to be present in 28.8% of individuals with primary headaches, with children suffering from migraines having the highest prevalence (35%). Migraine patients with osmophobia also showed a more severe clinical picture, with enhanced disability, anxiety, depression, pain catastrophizing, and allodynia symptoms (F Roy square 10.47 p < 0.001). The presence of osmophobia could help in identifying a clinical migraine phenotype coherent with an abnormal bio-behavioral allostatic model that is worthy of prospective observations and careful therapeutic management.
Collapse
Affiliation(s)
| | - Daniela D'Agnano
- Children Epilepsy and EEG Center, San Paolo Hospital, 70132 Bari, Italy
| | - Livio Clemente
- Neurophysiopathology Unit, DiBrain Department, Bari Aldo Moro University, 70121 Bari, Italy
| | | | - Anna Laporta
- Neurophysiopathology Unit, DiBrain Department, Bari Aldo Moro University, 70121 Bari, Italy
| | - Marina de Tommaso
- Neurophysiopathology Unit, DiBrain Department, Bari Aldo Moro University, 70121 Bari, Italy
| |
Collapse
|
19
|
Guerra-Armas J, Flores-Cortes M, Pineda-Galan C, Luque-Suarez A, La Touche R. Role of Immersive Virtual Reality in Motor Behaviour Decision-Making in Chronic Pain Patients. Brain Sci 2023; 13:617. [PMID: 37190582 PMCID: PMC10136729 DOI: 10.3390/brainsci13040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Primary chronic pain is a major contributor to disability worldwide, with an estimated prevalence of 20-33% of the world's population. The high socio-economic impact of musculoskeletal pain justifies seeking an appropriate therapeutic strategy. Immersive virtual reality (VR) has been proposed as a first-line intervention for chronic musculoskeletal pain. However, the growing literature has not been accompanied by substantial progress in understanding how VR exerts its impact on the pain experience and what neurophysiological mechanisms might be involved in the clinical effectiveness of virtual reality interventions in chronic pain patients. The aim of this review is: (i) to establish the state of the art on the effects of VR on patients with chronic pain; (ii) to identify neuroplastic changes associated with chronic pain that may be targeted by VR intervention; and (iii) to propose a hypothesis on how immersive virtual reality could modify motor behavioral decision-making through an interactive experience in patients with chronic pain.
Collapse
Affiliation(s)
- Javier Guerra-Armas
- Faculty of Health Sciences, Universidad Las Palmas de Gran Canaria (ULPGC), 35016 Las Palmas, Spain
| | - Mar Flores-Cortes
- Faculty of Health Sciences, Universidad de Malaga, 29071 Malaga, Spain
| | | | - Alejandro Luque-Suarez
- Faculty of Health Sciences, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de la Investigacion Biomedica de Malaga (IBIMA), 29071 Malaga, Spain
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), 28008 Madrid, Spain
| |
Collapse
|
20
|
Schimmelpfennig J, Topczewski J, Zajkowski W, Jankowiak-Siuda K. The role of the salience network in cognitive and affective deficits. Front Hum Neurosci 2023; 17:1133367. [PMID: 37020493 PMCID: PMC10067884 DOI: 10.3389/fnhum.2023.1133367] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Analysis and interpretation of studies on cognitive and affective dysregulation often draw upon the network paradigm, especially the Triple Network Model, which consists of the default mode network (DMN), the frontoparietal network (FPN), and the salience network (SN). DMN activity is primarily dominant during cognitive leisure and self-monitoring processes. The FPN peaks during task involvement and cognitive exertion. Meanwhile, the SN serves as a dynamic "switch" between the DMN and FPN, in line with salience and cognitive demand. In the cognitive and affective domains, dysfunctions involving SN activity are connected to a broad spectrum of deficits and maladaptive behavioral patterns in a variety of clinical disorders, such as depression, insomnia, narcissism, PTSD (in the case of SN hyperactivity), chronic pain, and anxiety, high degrees of neuroticism, schizophrenia, epilepsy, autism, and neurodegenerative illnesses, bipolar disorder (in the case of SN hypoactivity). We discuss behavioral and neurological data from various research domains and present an integrated perspective indicating that these conditions can be associated with a widespread disruption in predictive coding at multiple hierarchical levels. We delineate the fundamental ideas of the brain network paradigm and contrast them with the conventional modular method in the first section of this article. Following this, we outline the interaction model of the key functional brain networks and highlight recent studies coupling SN-related dysfunctions with cognitive and affective impairments.
Collapse
Affiliation(s)
- Jakub Schimmelpfennig
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | - Jan Topczewski
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | | | | |
Collapse
|
21
|
Delgado-Gallén S, Soler MD, Cabello-Toscano M, Abellaneda-Pérez K, Solana-Sánchez J, España-Irla G, Roca-Ventura A, Bartrés-Faz D, Tormos JM, Pascual-Leone A, Cattaneo G. Brain system segregation and pain catastrophizing in chronic pain progression. Front Neurosci 2023; 17:1148176. [PMID: 37008229 PMCID: PMC10060861 DOI: 10.3389/fnins.2023.1148176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Pain processing involves emotional and cognitive factors that can modify pain perception. Increasing evidence suggests that pain catastrophizing (PC) is implicated, through pain-related self-thoughts, in the maladaptive plastic changes related to the maintenance of chronic pain (CP). Functional magnetic resonance imaging (fMRI) studies have shown an association between CP and two main networks: default mode (DMN) and dorsoattentional (DAN). Brain system segregation degree (SyS), an fMRI framework used to quantify the extent to which functional networks are segregated from each other, is associated with cognitive abilities in both healthy individuals and neurological patients. We hypothesized that individuals suffering from CP would show worst health-related status compared to healthy individuals and that, within CP individuals, longitudinal changes in pain experience (pain intensity and affective interference), could be predicted by SyS and PC subdomains (rumination, magnification, and helplessness). To assess the longitudinal progression of CP, two pain surveys were taken before and after an in-person assessment (physical evaluation and fMRI). We first compared the sociodemographic, health-related, and SyS data in the whole sample (no pain and pain groups). Secondly, we ran linear regression and a moderation model only in the pain group, to see the predictive and moderator values of PC and SyS in pain progression. From our sample of 347 individuals (mean age = 53.84, 55.2% women), 133 responded to having CP, and 214 denied having CP. When comparing groups, results showed significant differences in health-related questionnaires, but no differences in SyS. Within the pain group, helplessness (β = 0.325; p = 0.003), higher DMN (β = 0.193; p = 0.037), and lower DAN segregation (β = 0.215; p = 0.014) were strongly associated with a worsening in pain experience over time. Moreover, helplessness moderated the association between DMN segregation and pain experience progression (p = 0.003). Our findings indicate that the efficient functioning of these networks and catastrophizing could be used as predictors of pain progression, bringing new light to the influence of the interplay between psychological aspects and brain networks. Consequently, approaches focusing on these factors could minimize the impact on daily life activities.
Collapse
Affiliation(s)
- Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- *Correspondence: Selma Delgado-Gallén,
| | - MD Soler
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - María Cabello-Toscano
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Goretti España-Irla
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciéncies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Josep M. Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Centro de Investigación Traslacional San Alberto Magno, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina, Universitat Autónoma de Barcelona, Bellaterra, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| |
Collapse
|
22
|
Bajaj A, Han D, Elman I, Thanos PK, Dennen CA, Badgaiyan RD, Bowirrat A, Barh D, Blum K. Positive Clinical Outcomes for Severe Reported Pain Using Robust Non-Addictive Home Electrotherapy-A Case-Series. J Pers Med 2023; 13:336. [PMID: 36836570 PMCID: PMC9965228 DOI: 10.3390/jpm13020336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The North American opioid epidemic has resulted in over 800,000 related premature overdose fatalities since 2000, with the United States leading the world in highest opioid deaths per capita. Despite increased federal funding in recent years, intended to address this crisis, opioid overdose mortality has continued to increase. Legally prescribed opioids also chronically induce a problematic reduction in affect. While an ideal analgesic has yet to be developed, some effective multimodal non-opioid pharmacological regimens for acute pain management are being more widely utilized. Some investigators have suggested that a safer and more scientifically sound approach might be to induce "dopamine homeostasis" through non-pharmacological approaches, since opioid use even for acute pain of short duration is now being strongly questioned. There is also increasing evidence suggesting that some more robust forms of electrotherapy could be applied as an effective adjunct to avoid the problems associated with opioids. This 4-patient case-series presents such an approach to treatment of severe pain. All 4 of these chiropractic treatment cases involved a component of knee osteoarthritis, in addition to other reported areas of pain. Each patient engaged in a home recovery strategy using H-Wave® device stimulation (HWDS) to address residual extremity issues following treatment of spinal subluxation and other standard treatments. A simple statistical analysis was conducted to determine the change in pain scores (Visual Analogue Scale) of pre and post electrotherapy treatments, resulting in significant reductions in self-reported pain (p-value = 0.0002). Three of the four patients continued using the home therapy device long-term as determined by a post-analysis questionnaire. This small case-series demonstrated notably positive outcomes, suggesting consideration of home use of HWDS for safe, non-pharmacological and non-addictive treatment of severe pain.
Collapse
Affiliation(s)
- Anish Bajaj
- School of Chiropractic, Cleveland University Health Sciences, Overland Park, KS 66210, USA
- Bajaj Chiropractic, New York, NY 10010, USA
| | - David Han
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19114, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur 721172, India
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Center for Behavioral Health & Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA 91766, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Kazinczy u. 23-27, 1075 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
23
|
Naeser MA, Martin PI, Ho MD, Krengel MH, Bogdanova Y, Knight JA, Hamblin MR, Fedoruk AE, Poole LG, Cheng C, Koo B. Transcranial Photobiomodulation Treatment: Significant Improvements in Four Ex-Football Players with Possible Chronic Traumatic Encephalopathy. J Alzheimers Dis Rep 2023; 7:77-105. [PMID: 36777329 PMCID: PMC9912826 DOI: 10.3233/adr-220022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/19/2022] [Indexed: 12/28/2022] Open
Abstract
Background Chronic traumatic encephalopathy, diagnosed postmortem (hyperphosphorylated tau), is preceded by traumatic encephalopathy syndrome with worsening cognition and behavior/mood disturbances, over years. Transcranial photobiomodulation (tPBM) may promote improvements by increasing ATP in compromised/stressed cells and increasing local blood, lymphatic vessel vasodilation. Objective Aim 1: Examine cognition, behavior/mood changes Post-tPBM. Aim 2: MRI changes - resting-state functional-connectivity MRI: salience, central executive, default mode networks (SN, CEN, DMN); magnetic resonance spectroscopy, cingulate cortex. Methods Four ex-players with traumatic encephalopathy syndrome/possible chronic traumatic encephalopathy, playing 11- 16 years, received In-office, red/near-infrared tPBM to scalp, 3x/week for 6 weeks. Two had cavum septum pellucidum. Results The three younger cases (ages 55, 57, 65) improved 2 SD (p < 0.05) on three to six neuropsychological tests/subtests at 1 week or 1 month Post-tPBM, compared to Pre-Treatment, while the older case (age 74) improved by 1.5 SD on three tests. There was significant improvement at 1 month on post-traumatic stress disorder (PTSD), depression, pain, and sleep. One case discontinued narcotic pain medications and had reduced tinnitus. The possible placebo effect is unknown. At 2 months Post-tPBM, two cases regressed. Then, home tPBM was applied to only cortical nodes, DMN (12 weeks); again, significant improvements were seen. Significant correlations for increased SN functional connectivity (FC) over time, with executive function, attention, PTSD, pain, and sleep; and CEN FC, with verbal learning/memory, depression. Increased n-acetyl-aspartate (NAA) (oxygen consumption, mitochondria) was present in anterior cingulate cortex (ACC), parallel to less pain and PTSD. Conclusion After tPBM, these ex-football players improved. Significant correlations of increased SN FC and CEN FC with specific cognitive tests and behavior/mood ratings, plus increased NAA in ACC support beneficial effects from tPBM.
Collapse
Affiliation(s)
- Margaret A. Naeser
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA,Correspondence to: Margaret A. Naeser, PhD, VA Boston Healthcare System (12A), Jamaica Plain Campus, 150 So. Huntington Ave., Boston, MA 02130 USA. E-mail:
| | - Paula I. Martin
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael D. Ho
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA
| | - Maxine H. Krengel
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yelena Bogdanova
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Jeffrey A. Knight
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA,National Center for PTSD - Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, USA
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Luke G. Poole
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA
| | - ChiaHsin Cheng
- Department of Anatomy & Neurobiology, Bio-imaging Informatics Lab, Boston University School of Medicine, Boston, MA, USA
| | - BangBon Koo
- Department of Anatomy & Neurobiology, Bio-imaging Informatics Lab, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Mestre-Bach G, Granero R, Fernández-Aranda F, Jiménez-Murcia S, Potenza MN. Independent component analysis for internet gaming disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2023; 25:14-23. [PMID: 36817972 PMCID: PMC9930851 DOI: 10.1080/19585969.2023.2168135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 02/10/2023]
Abstract
Introduction: There is a growing interest in the study of the neurobiological correlates of internet gaming disorder (IGD), and new techniques are beginning to be implemented for this purpose, such as independent component analysis (ICA). Aims: The present narrative review aimed to explore the studies that had used ICA for the study of the different brain networks possibly associated with IGD. Methods: We specifically focussed on three of the main networks: default-mode network, executive-control and salience networks. Results: Most studies have identified alterations in these three brain networks in individuals with IGD, which may be involved in the development and maintenance of this disorder. Conclusion: More studies are needed to deepen an understanding of the specific role of each in the symptomatology and treatment of IGD.
Collapse
Affiliation(s)
- Gemma Mestre-Bach
- Facultad de Ciencias de la Salud, Universidad Internacional de la Rioja, La Rioja, Spain
- Institute for Culture and Society (ICS), University of Navarra, Pamplona, Spain
| | - Roser Granero
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Fernando Fernández-Aranda
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Behavioral Addictions Unit, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Susana Jiménez-Murcia
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Behavioral Addictions Unit, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Sullivan MD, Sturgeon JA, Lumley MA, Ballantyne JC. Reconsidering Fordyce's classic article, "Pain and suffering: what is the unit?" to help make our model of chronic pain truly biopsychosocial. Pain 2023; 164:271-279. [PMID: 35972469 PMCID: PMC9840653 DOI: 10.1097/j.pain.0000000000002748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT The biopsychosocial model (BPS) of chronic pain aspires to be comprehensive, incorporating psychological and social factors omitted from biomedical models. Although psychosocial factors are viewed as highly influential in understanding behavioral and psychological responses to pain, these factors are usually viewed as modifiers of biological causes of the experience of pain itself, rather than as equal contributors to pain. To further advance the BPS model, we re-examine a classic 1994 article by Wilbert "Bill" Fordyce, "Pain and suffering: what is the unit?" In this article, Fordyce suggested that pain-related disability and suffering should be viewed as "transdermal," as having causes both inside and outside the body. We consider Fordyce's article theoretically important because this concept allows us to more fully break free of the medical model of chronic pain than customary formulations of the BPS model. It makes it possible to place psychological and social factors on an equal footing with biological ones in explaining pain itself and to remove distinctions between pain mechanisms and pain meanings. The brain's salience network now offers a platform on which diverse influences on pain experience-from nociception to multisensory indicators of safety or danger-can be integrated, bridging the gap between impersonal nociceptive mechanisms and personal meanings. We also argue that Fordyce's article is practically important because this concept expands the BPS model beyond the bounds of the clinical encounter, opening the door to the full range of social, psychological, and biological interventions, empowering patients and nonmedical providers to tackle chronic pain.
Collapse
|
26
|
Takeuchi N. Pain control based on oscillatory brain activity using transcranial alternating current stimulation: An integrative review. Front Hum Neurosci 2023; 17:941979. [PMID: 36742359 PMCID: PMC9892942 DOI: 10.3389/fnhum.2023.941979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Developing effective tools and strategies to relieve chronic pain is a high-priority scientific and clinical goal. In particular, the brain regions related to pain processing have been investigated as potential targets to relieve pain by non-invasive brain stimulation (NIBS). In addition to elucidating the relationship between pain and oscillatory brain activity, transcranial alternating current stimulation (tACS), which can non-invasively entrain oscillatory brain activity and modulate oscillatory brain communication, has attracted scientific attention as a possible technique to control pain. This review focuses on the use of tACS to relieve pain through the manipulation of oscillatory brain activity and its potential clinical applications. Several studies have reported that tACS on a single brain reduces pain by normalizing abnormal oscillatory brain activity in patients with chronic pain. Interpersonal tACS approaches based on inter-brain synchrony to manipulate inter-brain communication may result in pain relief via prosocial effects. Pain is encoded by the spatiotemporal neural communication that represents the integration of cognitive, emotional-affective, and sensorimotor aspects of pain. Therefore, future studies should seek to identify the pathological oscillatory brain communication in chronic pain as a therapeutic target for tACS. In conclusion, tACS could be effective for re-establishing oscillatory brain activity and assisting social interaction, and it might help develop novel approaches for pain control.
Collapse
|
27
|
Chen H, Jann K, Li Y, Huang J, Chen Y, Kang Y, Gong Z, Huang Y, Wang H, Zhan S, Tan W. A true response of the brain network during electroacupuncture stimulation at scalp acupoints: An fMRI with simultaneous EAS study. Brain Behav 2023; 13:e2829. [PMID: 36427258 PMCID: PMC9847615 DOI: 10.1002/brb3.2829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The aim of this study was to explore simultaneous brain network responses to electroacupuncture stimulation (EAS) at scalp acupoints by accounting for placebo effects. MATERIALS AND METHODS Sixty healthy subjects were recruited and randomly divided into two groups: Group 1 and Group 2. Functional magnetic resonance imaging (fMRI) was performed in Group 1 with sham acupuncture stimulation at acupoints Shenting (GV24) and Touwei (ST8) without EAS. Group 2 underwent verum EAS at the same acupoints during fMRI. Independent component analysis was used to analyze the fMRI data. Full-factor statistical analysis was used to compare the differences in fMRI data between the two groups and evaluate the changes in functional connectivity in brain networks after verum electrical stimulation (Group 1 [after sham electrical current stimulation - before sham electrical current stimulation] - Group 2 [after verum electrical current stimulation - before verum electrical current stimulation]) (p <.001, extent threshold k = 20 voxels). RESULTS Six brain networks were identified. Significant increased functional connectivity was observed in the right and left executive control networks, sensorimotor network, and attention network, while decreased functional connectivity was mainly found in the default mode network. There were no statistically significant differences in the salience network. CONCLUSIONS fMRI with simultaneous EAS provides a method to explore brain network responses due to EAS at scalp acupoints. The networks responsible for cognition are differentially activated by EAS in a coordinated manner.
Collapse
Affiliation(s)
- Hui Chen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute Keck School of Medicine University of Southern California, Los Angeles, California, USA
| | - Yijing Li
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jiling Huang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yilei Chen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yingjie Kang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Zhigang Gong
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yanwen Huang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Hui Wang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wenli Tan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
28
|
Adaptive changes in sensorimotor processing in patients with acute low back pain. Sci Rep 2022; 12:21741. [PMID: 36526879 PMCID: PMC9758154 DOI: 10.1038/s41598-022-26174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In low back pain (LBP), primary care and secondary prevention of recurrent and persistent LBP are not always successful. Enhanced understanding of neural mechanisms of sensorimotor processing and pain modulation in patients with acute LBP is mandatory. This explorative fMRI study investigated sensorimotor processing due to mechanosensory stimulation of the lumbar spine. We studied 19 adult patients with acute LBP (< 4 weeks of an acute episode) and 23 healthy controls. On a numeric rating scale, patients reported moderate mean pain intensity of 4.5 out of 10, while LBP-associated disability indicated mild mean disability. The event-related fMRI analysis yielded no between-group differences. However, the computation of functional connectivity resulted in adaptive changes in networks involved in sensorimotor processing in the patient group: Connectivity strength was decreased in the salience and cerebellar networks but increased in the limbic and parahippocampal networks. Timewise, these results indicate that early connectivity changes might reflect adaptive physiological processes in an episode of acute LBP. These findings raise intriguing questions regarding their role in pain persistence and recurrences of LBP, particularly concerning the multiple consequences of acute LBP pain. Advanced understanding of neural mechanisms of processing non-painful mechanosensations in LBP may also improve therapeutic approaches.
Collapse
|
29
|
Karateev AE, Nesterenko VA, Makarov MA, Lila AM. Chronic post-traumatic pain: rheumatological and orthopedic aspects. RHEUMATOLOGY SCIENCE AND PRACTICE 2022. [DOI: 10.47360/1995-4484-2022-526-537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Trauma causes a complex local and systemic reaction of the macroorganism, the consequences of which can be various functional, neurological and psychoemotional disorders. One of the most painful complications of injuries of the musculoskeletal system is chronic post-traumatic pain (CPTP), which occurs, depending on the severity of the damage, in 10–50% of cases. The pathogenesis of this syndrome is multifactorial and includes the development of chronic inflammation, degenerative changes (fibrosis, angiogenesis, heterotopic ossification), pathology of the muscular and nervous systems, neuroplastic changes leading to the development of central sensitization, as well as depression, anxiety and catastrophization. Risk factors for CPTP should be considered the severity of injury, comorbid diseases and conditions (in particular, obesity), stress and serious trauma-related experiences (within the framework of post-traumatic stress disorder), the development of post-traumatic osteoarthritis and chronic tendopathy, genetic predisposition, deficiencies in treatment and rehabilitation in the early period after injury. To date, there is no clear system of prevention and treatment of CPTP. Considering the pathogenesis of this suffering, adequate anesthesia after injury, active anti–inflammatory therapy (including local injections of glucocorticoids), the use of hyaluronic acid, slow-acting symptomatic agents and autologous cellular preparations – platelet-riched plasma, mesenchymal stem cells, etc. are of fundamental importance. However, therapeutic and surgical methods of CPTP control require further study
Collapse
Affiliation(s)
| | | | | | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
30
|
Yang J, Shao Y, Li B, Yu QY, Ge QM, Li B, Pan YC, Liang RB, Wu SN, Li QY, He YL. Altered regional homogeneity of spontaneous brain activity in patients with toothache: A resting-state functional magnetic resonance imaging study. Front Neurosci 2022; 16:1019989. [PMID: 36248652 PMCID: PMC9554534 DOI: 10.3389/fnins.2022.1019989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Toothache (TA) is a common and severe pain, but its effects on the brain are somewhat unclear. In this study, functional magnetic resonance imaging (fMRI) was used to compare regional homogeneity (ReHo) between TA patients and a normal control group and to explore the brain activity changes during TA, establishing the theoretical basis for the mechanism of neuropathic pain. In total, 20 TA patients and 20 healthy controls (HCs) were recruited and underwent assessment of pain, and then resting-state fMRI (rs-fMRI). The ReHo method was used to analyze the original whole-brain images. Pearson’s correlation analysis was used to assess the relationship between mean ReHo values in each brain region and clinical symptoms, and the receiver operating characteristic (ROC) curve was used to conduct correlation analysis on the brain regions studied. The ReHo values of the right lingual gyrus (RLG), right superior occipital gyrus (RSOG), left middle occipital gyrus (LMOG) and right postcentral gyrus (RPG) in the TA group were significantly higher than in HCs. The mean ReHo values in the RLG were positively correlated with the anxiety score (AS) (r = 0.723, p < 0.001), depression score (DS) (r = 0.850, p < 0.001) and visual analogue score (VAS) (r = 0.837, p < 0.001). The mean ReHo values of RSOG were also positively correlated with AS (r = 0.687, p = 0.001), DS (r = 0.661, p = 0.002) and VAS (r = 0.712, p < 0.001). The areas under the ROC curve of specific brain area ReHo values were as follows: RLG, 0.975; RSOG, 0.959; LMOG, 0.975; RPG, 1.000. Various degrees of brain activity changes reflected by ReHo values in different areas of the brain indicate the impact of TA on brain function. These findings may reveal related neural mechanisms underlying TA.
Collapse
Affiliation(s)
- Jun Yang
- The Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiu-Yue Yu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Cong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shi-Nan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Lin He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yu-Lin He,
| |
Collapse
|
31
|
Crawford L, Mills E, Meylakh N, Macey PM, Macefield VG, Henderson LA. Brain activity changes associated with pain perception variability. Cereb Cortex 2022; 33:4145-4155. [PMID: 36069972 DOI: 10.1093/cercor/bhac332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pain perception can be modulated by several factors. Phenomena like temporal summation leads to increased perceived pain, whereas behavioral conditioning can result in analgesic responses. Furthermore, during repeated, identical noxious stimuli, pain intensity can vary greatly in some individuals. Understanding these variations is important, given the increase in investigations that assume stable baseline pain for accurate response profiles, such as studies of analgesic mechanisms. We utilized functional magnetic resonance imaging to examine the differences in neural circuitry between individuals displaying consistent pain ratings and those who experienced variable pain during a series of identical noxious stimuli. We investigated 63 healthy participants: 31 were assigned to a "consistent" group, and 32 were assigned to a "variable" group dependent on pain rating variability. Variable pain ratings were associated with reduced signal intensity in the dorsolateral prefrontal cortex (dlPFC). Furthermore, the dlPFC connectivity with the primary somatosensory cortex and temperoparietal junction was significantly reduced in variable participants. Our results suggest that investigators should consider variability of baseline pain when investigating pain modulatory paradigms. Additionally, individuals with consistent and variable pain ratings differ in their dlPFC activity and connectivity with pain-sensitive regions during noxious stimulation, possibly reflecting the differences in attentional processing and catastrophizing during pain.
Collapse
Affiliation(s)
- L Crawford
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| | - E Mills
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| | - N Meylakh
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| | - P M Macey
- UCLA School of Nursing, University of California, Los Angeles, California 90095, United States
| | - V G Macefield
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Anatomy & Physiology, University of Melbourne, Melbourne, Victoria, 3052, Australia
| | - L A Henderson
- Department of Anatomy and Histology, School of Medical Sciences, Brain and Mind Centre, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
32
|
Fanton S, Altawil R, Ellerbrock I, Lampa J, Kosek E, Fransson P, Thompson WH. Multiple spatial scale mapping of time-resolved brain network reconfiguration during evoked pain in patients with rheumatoid arthritis. Front Neurosci 2022; 16:942136. [PMID: 36017179 PMCID: PMC9397124 DOI: 10.3389/fnins.2022.942136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Functional brain networks and the perception of pain can fluctuate over time. However, how the time-dependent reconfiguration of functional brain networks contributes to chronic pain remains largely unexplained. Here, we explored time-varying changes in brain network integration and segregation during pain over a disease-affected area (joint) compared to a neutral site (thumbnail) in 28 patients with rheumatoid arthritis (RA) in comparison with 22 healthy controls (HC). During functional magnetic resonance imaging, all subjects received individually calibrated pain pressures corresponding to visual analog scale 50 mm at joint and thumbnail. We implemented a novel approach to track changes of task-based network connectivity over time. Within this framework, we quantified measures of integration (participation coefficient, PC) and segregation (within-module degree z-score). Using these network measures at multiple spatial scales, both at the level of single nodes (brain regions) and communities (clusters of nodes), we found that PC at the community level was generally higher in RA patients compared to HC during and after painful pressure over the inflamed joint and corresponding site in HC. This shows that all brain communities integrate more in RA patients than in HC for time points following painful stimulation to a disease-relevant body site. However, the elevated community-related integration seen in patients appeared to not pertain uniquely to painful stimulation at the inflamed joint, but also at the neutral thumbnail, as integration and segregation at the community level did not differ across body sites in patients. Moreover, there was no specific nodal contribution to brain network integration or segregation. Altogether, our findings indicate widespread and persistent changes in network interaction in RA patients compared to HC in response to painful stimulation.
Collapse
Affiliation(s)
- Silvia Fanton
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Reem Altawil
- Rheumatology Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Peter Fransson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - William H. Thompson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Cognition and Communication, Department of Applied IT, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Hung PSP, Zhang JY, Noorani A, Walker MR, Huang M, Zhang JW, Laperriere N, Rudzicz F, Hodaie M. Differential expression of a brain aging biomarker across discrete chronic pain disorders. Pain 2022; 163:1468-1478. [PMID: 35202044 DOI: 10.1097/j.pain.0000000000002613] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain has widespread, detrimental effects on the human nervous system and its prevalence and burden increase with age. Machine learning techniques have been applied on brain images to produce statistical models of brain aging. Specifically, the Gaussian process regression is particularly effective at predicting chronological age from neuroimaging data which permits the calculation of a brain age gap estimate (brain-AGE). Pathological biological processes such as chronic pain can influence brain-AGE. Because chronic pain disorders can differ in etiology, severity, pain frequency, and sex-linked prevalence, we hypothesize that the expression of brain-AGE may be pain specific and differ between discrete chronic pain disorders. We built a machine learning model using T1-weighted anatomical MRI from 812 healthy controls to extract brain-AGE for 45 trigeminal neuralgia (TN), 52 osteoarthritis (OA), and 50 chronic low back pain (BP) subjects. False discovery rate corrected Welch t tests were conducted to detect significant differences in brain-AGE between each discrete pain cohort and age-matched and sex-matched controls. Trigeminal neuralgia and OA, but not BP subjects, have significantly larger brain-AGE. Across all 3 pain groups, we observed female-driven elevation in brain-AGE. Furthermore, in TN, a significantly larger brain-AGE is associated with response to Gamma Knife radiosurgery for TN pain and is inversely correlated with the age at diagnosis. As brain-AGE expression differs across distinct pain disorders with a pronounced sex effect for female subjects. Younger women with TN may therefore represent a vulnerable subpopulation requiring expedited chronic pain intervention. To this end, brain-AGE holds promise as an effective biomarker of pain treatment response.
Collapse
Affiliation(s)
- Peter Shih-Ping Hung
- Division of Brain, Imaging & Behaviour Systems Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jia Y Zhang
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Alborz Noorani
- Institute of Medical Science, University of Toronto, Toronto, Canada
- MD Program, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Matthew R Walker
- Division of Brain, Imaging & Behaviour Systems Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Canada
| | - Megan Huang
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Jason W Zhang
- Human Biology Program, University of Toronto, Toronto, Canada
| | - Normand Laperriere
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Frank Rudzicz
- Department of Computer Science, University of Toronto, Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Li Ka Shing Knowledge Institute, St Michaels Hospital, Toronto, Canada
| | - Mojgan Hodaie
- Division of Brain, Imaging & Behaviour Systems Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
34
|
Abstract
Chronic pain affects 20% of adults and is one of the leading causes of disability worldwide. Women and girls are disproportionally affected by chronic pain. About half of chronic pain conditions are more common in women, with only 20% having a higher prevalence in men. There are also sex and gender differences in acute pain sensitivity. Pain is a subjective experience made up of sensory, cognitive, and emotional components. Consequently, there are multiple dimensions through which sex and gender can influence the pain experience. Historically, most preclinical pain research was conducted exclusively in male animals. However, recent studies that included females have revealed significant sex differences in the physiological mechanisms underlying pain, including sex specific involvement of different genes and proteins as well as distinct interactions between hormones and the immune system that influence the transmission of pain signals. Human neuroimaging has revealed sex and gender differences in the neural circuitry associated with pain, including sex specific brain alterations in chronic pain conditions. Clinical pain research suggests that gender can affect how an individual contextualizes and copes with pain. Gender may also influence the susceptibility to develop chronic pain. Sex and gender biases can impact how pain is perceived and treated clinically. Furthermore, the efficacy and side effects associated with different pain treatments can vary according to sex and gender. Therefore, preclinical and clinical research must include sex and gender analyses to understand basic mechanisms of pain and its relief, and to develop personalized pain treatment.
Collapse
Affiliation(s)
- Natalie R Osborne
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen D Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
35
|
Li Z, Zhao L, Ji J, Ma B, Zhao Z, Wu M, Zheng W, Zhang Z. Temporal Grading Index of Functional Network Topology Predicts Pain Perception of Patients With Chronic Back Pain. Front Neurol 2022; 13:899254. [PMID: 35756935 PMCID: PMC9226296 DOI: 10.3389/fneur.2022.899254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic back pain (CBP) is a maladaptive health problem affecting the brain function and behavior of the patient. Accumulating evidence has shown that CBP may alter the organization of functional brain networks; however, whether the severity of CBP is associated with changes in dynamics of functional network topology remains unclear. Here, we generated dynamic functional networks based on resting-state functional magnetic resonance imaging (rs-fMRI) of 34 patients with CBP and 34 age-matched healthy controls (HC) in the OpenPain database via a sliding window approach, and extracted nodal degree, clustering coefficient (CC), and participation coefficient (PC) of all windows as features to characterize changes of network topology at temporal scale. A novel feature, named temporal grading index (TGI), was proposed to quantify the temporal deviation of each network property of a patient with CBP to the normal oscillation of the HCs. The TGI of the three features achieved outstanding performance in predicting pain intensity on three commonly used regression models (i.e., SVR, Lasso, and elastic net) through a 5-fold cross-validation strategy, with the minimum mean square error of 0.25 ± 0.05; and the TGI was not related to depression symptoms of the patients. Furthermore, compared to the HCs, brain regions that contributed most to prediction showed significantly higher CC and lower PC across time windows in the CBP cohort. These results highlighted spatiotemporal changes in functional network topology in patients with CBP, which might serve as a valuable biomarker for assessing the sensation of pain in the brain and may facilitate the development of CBP management/therapy approaches.
Collapse
Affiliation(s)
- Zhonghua Li
- Department of Rehabilitation Medicine, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Leilei Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Jing Ji
- Department of Rehabilitation Medicine, Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Ben Ma
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Miao Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, China.,School of Physics, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
36
|
Ballantyne JC, Sullivan MD. Is Chronic Pain a Disease? THE JOURNAL OF PAIN 2022; 23:1651-1665. [PMID: 35577236 DOI: 10.1016/j.jpain.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/24/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
It was not until the twentieth century that pain was considered a disease. Before that it was managed medically as a symptom. The motivations for declaring chronic pain a disease, whether of the body or of the brain, include increasing its legitimacy as clinical problem and research focus worthy of attention from healthcare and research organizations alike. But 1 problem with disease concepts is that having a disease favors medical solutions and tends to reduce patient participation. We argue that chronic pain, particularly chronic primary pain (recently designated a first tier pain diagnosis in International Diagnostic Codes 11), is a learned state that is not intransigent even if it has biological correlates. Chronic pain is sometimes a symptom, and may sometimes be its own disease. But here we question the value of a disease focus for much of chronic pain for which patient involvement is essential, and which may need a much broader societal approach than is suggested by the disease designation. PERSPECTIVE: This article examines whether designating chronic pain a disease of the body or brain is helpful or harmful to patients. Can the disease designation help advance treatment, and is it needed to achieve future therapeutic breakthrough? Or does it make patients over-reliant on medical intervention and reduce their engagement in the process of recovery?
Collapse
Affiliation(s)
- Jane C Ballantyne
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington.
| | - Mark D Sullivan
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
37
|
Moreira BO, Vilar VLS, de Almeida RNS, Morbeck LLB, Andrade BS, Barros RGM, Neves BM, de Carvalho AL, Cruz MP, Yatsuda R, David JM. New dimer and trimer of chalcone derivatives from anti-inflammatory and antinociceptive extracts of Schinopsis brasiliensis roots. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115089. [PMID: 35143935 DOI: 10.1016/j.jep.2022.115089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Schinopsis brasiliensis Engl. is an endemic tree of the Brazilian semi-arid regions belonging to the Anacardiaceae family. It is the main representative of the genus Schinopsis, mostly native to Brazil and popularly known as "braúna" or "baraúna". Different parts of this plant are employed in Brazilian folk medicines to treat inflammation in general, sexual impotence, cough, and influenza. AIM OF THE STUDY This work describes the antinociceptive (acetic acid-induced writhing and formalin-induced nociception) and anti-inflammatory (paw edema and neutrophil migration) activities of the extract of the root of S. brasiliensis. Besides, the evaluation of total phenolic compounds and antioxidant, antimicrobial (including MRSA bacteria), and acetylcholinesterase inhibition activities were also determined. MATERIAL AND METHODS The pure compounds were isolated by different chromatographic techniques and their chemical structures have been unambiguously elucidated based on extensive spectroscopic methods, including 1D (1H, 13C, DEPT, and NOEdiff) and 2D (HSQC, HMBC, and NOESY) NMR experiments, MS data, and comparison with the literature data of similar compounds. The antinociceptive and anti-inflammatory activities were evaluated by acid acetic writhing test, formalin paw edema, and by the investigation of neutrophil migration to the peritoneal cavities of mice. For antimicrobial evaluation were determined MIC and MBC, antioxidant activities were obtained by TPC and DPPH tests, and AChE inhibition by Elmann's methodology. RESULTS The extracts showed antinociceptive and anti-inflammatory activities and two unusual new compounds, a cyclobutanyl chalcone trimer (schinopsone A) and a cyclohexene-containing chalcone dimer (schinopsone B), with six known compounds were isolated from the active extracts. Additionally, the acetylcholinesterase inhibitory activity for isolated compounds was reported for the first time in this study. Molecular docking studies indicated that the isolated compounds are responsible for the interaction with anti-inflammatory targets (COX 1 and 2 and LOX) with variable binding affinities, indicating a possible mechanism of action of these compounds. CONCLUSIONS These findings indicate for the first time the correlation between the anti-inflammatory activity different enriched polyphenol-organic soluble fractions of S. brasiliensis, and it contributes to the understanding of the anti-inflammatory potential of S. brasiliensis.
Collapse
Affiliation(s)
- Bruno Oliveira Moreira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Vanessa Lima Souza Vilar
- Instituto Federal Catarinense - Campus Concórdia, 89703-720, Concórdia, SC, Brazil; Instituto de Química, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil
| | | | - Lorena Lôbo Brito Morbeck
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Bruno Silva Andrade
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Jequié, 45200-000, BA, Brazil
| | - Rafael Gomes Moreno Barros
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Breno Magalhães Neves
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Anaildes Lago de Carvalho
- Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, 45083-900, Vitória da Conquista, BA, Brazil
| | - Mariluze Peixoto Cruz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Regiane Yatsuda
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, 45029-094, Vitória da Conquista, BA, Brazil
| | - Jorge Mauricio David
- Instituto de Química, Universidade Federal da Bahia, 40170-115, Salvador, BA, Brazil.
| |
Collapse
|
38
|
Assessing the specificity of the relationship between brain alpha oscillations and tonic pain. Neuroimage 2022; 255:119143. [PMID: 35378288 DOI: 10.1016/j.neuroimage.2022.119143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Recent research proposed that the slowing of individual alpha frequency (IAF) could be an objective marker of pain. However, it is unclear whether this research can fully address the requirements of specificity and sensitivity of IAF to the pain experience. Here, we sought to develop a robust methodology for assessing the specificity of the relationship between alpha oscillations and acute tonic pain in healthy individuals. We recorded electroencephalography (EEG) of 36 volunteers during consecutive 5-minute sessions of painful hot water immersion, innocuous warm water immersion and aversive, non-painful auditory stimulus, matched by unpleasantness to the painful condition. Participants rated stimulus unpleasantness throughout each condition. We isolated two regions of the scalp displaying peak alpha activity across participants: centro-parietal (CP) and parieto-occipital (PO) ROI. In line with previous research our findings revealed decreased IAF during hot compared with warm stimulation, however the effect was not specific for pain as we found no difference between hot and sound in the CP ROI (compared to baseline). In contrast, the PO ROI reported the same pattern of differences, but their direction was opposite to the CP in that this ROI revealed faster frequency during hot condition than controls. Finally, we show that IAF in both ROIs did not mediate the relationship between the experimental manipulation and the affective experience. Altogether, these findings emphasize the importance of a robust methodological and analytical design to disclose the functional role of alpha oscillations during affective processing. Likewise, they suggest the absence of a causal role of IAF in the generation of acute pain experience in healthy individuals.
Collapse
|
39
|
Functional connectivity and neurotransmitter impairments of the salience brain network in chronic low back pain patients: a combined resting state functional MRI and 1H-MRS study. Pain 2022; 163:2337-2347. [PMID: 35417435 DOI: 10.1097/j.pain.0000000000002626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Functional re-organisation of the salience network (SN) has been proposed as one of the key pathomechanisms associated with central nociceptive processing in the chronic pain state. Being associated with an altered functional connectivity within the SN, these processes have been hypothesized to result from a loss of inhibitory function leading to node hyperexcitability and spontaneous pain. Combined resting-state (rs) BOLD fMRI and 1H-MR spectroscopy was applied to chronic back pain (CBP) patients and healthy subjects (HS) to assess deviations from functional integrity (weighted closeness centrality, wCC, derived from rs-fMRI), oscillatory BOLD characteristics (spectral power, SP), and neurotransmitter levels (GABA+, glutamate+glutamine) in two key SN nodes, anterior insular (aInsR) and anterior mid-cingulate (aMCC) cortices. In addition, examinations were repeated in CBP patients after a four week interdisciplinary multimodal pain treatment and in HS after four weeks to explore longitudinal, treatment-mediated changes in target variables. The aInsR and, to a lesser extent, the aMCC of patients exhibited significantly reduced wCC accompanied by a SP shift from a lower to a higher frequency band, indicating a desynchronization of their neuronal activity within the SN, possibly due to increased spontaneous activations. Without revealing neurotransmitter differences, patients alone showed significant positive associations between local GABA+ levels and wCC in aInsR, suggesting a stronger dependence of node synchronization on the inhibitory tone in the chronic pain state. However, this needs to be explored in future using MRS techniques that are more sensitive to detecting subtle neurotransmitter changes and also allow multifocal characterization of neurotransmitter tone.
Collapse
|
40
|
Forstenpointner J, Elman I, Freeman R, Borsook D. The Omnipresence of Autonomic Modulation in Health and Disease. Prog Neurobiol 2022; 210:102218. [PMID: 35033599 DOI: 10.1016/j.pneurobio.2022.102218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
The Autonomic Nervous System (ANS) is a critical part of the homeostatic machinery with both central and peripheral components. However, little is known about the integration of these components and their joint role in the maintenance of health and in allostatic derailments leading to somatic and/or neuropsychiatric (co)morbidity. Based on a comprehensive literature search on the ANS neuroanatomy we dissect the complex integration of the ANS: (1) First we summarize Stress and Homeostatic Equilibrium - elucidating the responsivity of the ANS to stressors; (2) Second we describe the overall process of how the ANS is involved in Adaptation and Maladaptation to Stress; (3) In the third section the ANS is hierarchically partitioned into the peripheral/spinal, brainstem, subcortical and cortical components of the nervous system. We utilize this anatomical basis to define a model of autonomic integration. (4) Finally, we deploy the model to describe human ANS involvement in (a) Hypofunctional and (b) Hyperfunctional states providing examples in the healthy state and in clinical conditions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, SH, Germany.
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Gong W, Yi B, Liu X, Luo F. The subsequent interruptive effects of pain on attention. Eur J Pain 2021; 26:786-795. [PMID: 34970813 DOI: 10.1002/ejp.1904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/26/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pain is known to interrupt attentional performance selectively. In a previous study we showed that the interruptive effect of thermal pain on attention could persist up to 1500 ms after painful stimulus offset, but whether the pain modality affects this subsequent interruptive effect remains unclear. METHODS The present study was conducted to determine the time course of the interruptive effect of electrically induced pain on orienting and executive attention using various intervals between electric stimulation and attentional tasks (0, 250, 500, 750, 1000, 1250, and 1500 ms) and three study groups (pain, non-pain, and control). We performed two separate experiments in which participants performed a spatial cue task (experiment 1) and the Stroop task (experiment 2). Participants in the pain and non-pain groups received brief electric somatosensory stimulation, and those in the control group received no physical stimulus. We compared the performance of the three groups under the interstimulus interval (ISI) conditions. RESULTS The impairment of orienting attention prevailed under the first six ISI conditions in the pain and non-pain groups (F2, 63 = 5.72, P < 0.01); executive attention was not affected (F1,66 = 1.64, P = 0.20), confirming the persistence of the interruptive effect after stimulus offset. CONCLUSIONS This study demonstrated the interruptive effect of somatic stimulation on subsequent orienting attention performance, with no effect on executive attention. These findings suggest that pain has differential effects on the components of attention, depending on its modality and salience.
Collapse
Affiliation(s)
- Wenxiao Gong
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, P.R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Bing Yi
- Department of Psychology, Renmin University of China, Beijing, 100872, P.R. China
| | - Xiaoqian Liu
- School of Sociology, China University of Political Science and Law, Beijing, 100088, P.R. China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, P.R. China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
42
|
Li L, Di X, Zhang H, Huang G, Zhang L, Liang Z, Zhang Z. Characterization of whole-brain task-modulated functional connectivity in response to nociceptive pain: A multisensory comparison study. Hum Brain Mapp 2021; 43:1061-1075. [PMID: 34761468 PMCID: PMC8764484 DOI: 10.1002/hbm.25707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
Previous functional magnetic resonance imaging (fMRI) studies have shown that brain responses to nociceptive pain, non-nociceptive somatosensory, visual, and auditory stimuli are extremely similar. Actually, perception of external sensory stimulation requires complex interactions among distributed cortical and subcortical brain regions. However, the interactions among these regions elicited by nociceptive pain remain unclear, which limits our understanding of mechanisms of pain from a brain network perspective. Task fMRI data were collected with a random sequence of intermixed stimuli of four sensory modalities in 80 healthy subjects. Whole-brain psychophysiological interaction analysis was performed to identify task-modulated functional connectivity (FC) patterns for each modality. Task-modulated FC strength and graph-theoretical-based network properties were compared among the four modalities. Lastly, we performed across-sensory-modality prediction analysis based on the whole-brain task-modulated FC patterns to confirm the specific relationship between brain patterns and sensory modalities. For each sensory modality, task-modulated FC patterns were distributed over widespread brain regions beyond those typically activated or deactivated during the stimulation. As compared with the other three sensory modalities, nociceptive stimulation exhibited significantly different patterns (more widespread and stronger FC within the cingulo-opercular network, between cingulo-opercular and sensorimotor networks, between cingulo-opercular and emotional networks, and between default mode and emotional networks) and global property (smaller modularity). Further, a cross-sensory-modality prediction analysis found that task-modulated FC patterns could predict sensory modality at the subject level successfully. Collectively, these results demonstrated that the whole-brain task-modulated FC is preferentially modulated by pain, thus providing new insights into the neural mechanisms of pain processing.
Collapse
Affiliation(s)
- Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
43
|
Intrinsic network activity reflects the ongoing experience of chronic pain. Sci Rep 2021; 11:21870. [PMID: 34750460 PMCID: PMC8576042 DOI: 10.1038/s41598-021-01340-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Analyses of intrinsic network activity have been instrumental in revealing cortical processes that are altered in chronic pain patients. In a novel approach, we aimed to elucidate how intrinsic functional networks evolve in regard to the fluctuating intensity of the experience of chronic pain. In a longitudinal study with 156 fMRI sessions, 20 chronic back pain patients and 20 chronic migraine patients were asked to continuously rate the intensity of their endogenous pain. We investigated the relationship between the fluctuation of intrinsic network activity with the time course of subjective pain ratings. For chronic back pain, we found increased cortical network activity for the salience network and a local pontine network, as well as decreased network activity in the anterior and posterior default mode network for higher pain intensities. Higher pain intensities in chronic migraine were accompanied with lower activity in a prefrontal cortical network. By taking the perspective of the individual, we focused on the variability of the subjective perception of pain, which include phases of relatively low pain and phases of relatively high pain. The present design of the assessment of ongoing endogenous pain can be a powerful and promising tool to assess the signature of a patient's endogenous pain encoding.
Collapse
|
44
|
Abstract
OBJECTIVE Although it is acknowledged that pain may be modulated by cognitive factors, little is known about the effect of aging on these control processes. The present study investigated electroencephalographical correlates of pain processing and its cognitive modulation in healthy older individuals. METHODS For this purpose, the impact of distraction on pain was evaluated in 21 young (9 men; 20.71 [2.30]) and 20 older (10 men; 66.80 [4.14]) adults. Participants received individually adjusted electrical pain stimuli in a high-distraction condition (one-back task) and in a low-distraction condition (simple letter response task). Pain-related evoked potentials and pain ratings were analyzed. RESULTS Both groups rated pain as less intense (F(1,39) = 13.954, p < .001) and less unpleasant (F(1,39) = 10.111, p = .003) when it was experienced during the high- rather than the low-distraction condition. However, in comparison to younger participants, older adults gave higher unpleasantness ratings to painful stimulation (F(1,39) = 4.233, p = .046), accompanied by attenuated neural responses (N1-P1 and P3 amplitudes), regardless of the distraction condition (F(1,38) = 6.028 [p = .019] and F(1,38) = 6.669 [p = .014], respectively). CONCLUSIONS Older participants felt pain relief through distraction, like younger participants. However, we also found that aging may enhance affective aspects of pain perception. Finally, our results show that aging is characterized by reduced neural processing of painful stimuli. This phenomenon could be related to the increased vulnerability of older participants to develop chronic pain.
Collapse
|
45
|
Dai W, Qiu E, Chen Y, Xing X, Xi W, Zhang M, Li K, Tian L, Dong Z, Yu S. Enhanced functional connectivity between habenula and salience network in medication-overuse headache complicating chronic migraine positions it within the addiction disorders: an ICA-based resting-state fMRI study. J Headache Pain 2021; 22:107. [PMID: 34503441 PMCID: PMC8428097 DOI: 10.1186/s10194-021-01318-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background Medication-overuse headache (MOH) is a relatively frequently occurring secondary headache caused by overuse of analgesics and/or acute migraine medications. It is believed that MOH is associated with dependence behaviors and substance addiction, in which the salience network (SN) and the habenula may play an important role. This study aims to investigate the resting-state (RS) functional connectivity between the habenula and the SN in patients with MOH complicating chronic migraine (CM) compared with those with episodic migraine (EM) and healthy controls (HC). Methods RS-fMRI and 3-dimensional T1-weighted images of 17 patients with MOH + CM, 18 patients with EM and 30 matched healthy HC were obtained. The RS-fMRI data were analyzed using the independent component analysis (ICA) method to investigate the group differences of functional connectivity between the habenula and the SN in three groups. Correlation analysis was performed thereafter with all clinical variables by Pearson correlation. Results Increased functional connectivity between bilateral habenula and SN was detected in patients with MOH + CM compared with patients with EM and HC respectively. Correlation analysis showed significant correlation between medication overuse duration and habenula-SN connectivity in MOH + CM patients. Conclusions The current study supported MOH to be lying within a spectrum of dependence and addiction disorder. The enhanced functional connectivity of the habenula with SN may correlate to the development or chronification of MOH. Furthermore, the habenula may be an indicator or treatment target for MOH for its integrative role involved in multiple aspects of MOH.
Collapse
Affiliation(s)
- Wei Dai
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, 100853, Beijing, China.,Chinese PLA Medical School, 100853, Beijing, China
| | - Enchao Qiu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, 100853, Beijing, China
| | - Yun Chen
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, 100853, Beijing, China.,Chinese PLA Medical School, 100853, Beijing, China
| | - Xinbo Xing
- Department of Radiology, Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Wei Xi
- Department of Radiology, Fourth Medical Center of Chinese PLA General Hospital, 100048, Beijing, China
| | - Meichen Zhang
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, 100853, Beijing, China
| | - Ke Li
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, 100853, Beijing, China.,Chinese PLA Medical School, 100853, Beijing, China
| | - Lixia Tian
- School of Computer and Information Technology, Beijing Jiaotong University, 100044, Beijing, China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, 100853, Beijing, China.
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, 100853, Beijing, China.
| |
Collapse
|
46
|
Yu W, Caira CM, Del R Rivera Sanchez N, Moseley GA, Kash TL. Corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis exhibit sex-specific pain encoding in mice. Sci Rep 2021; 11:12500. [PMID: 34127705 PMCID: PMC8203647 DOI: 10.1038/s41598-021-91672-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) plays an emerging role in pain regulation. Pharmacological studies have found that inhibiting corticotropin-releasing factor (CRF) signaling in the BNST can selectively mitigate the sensory and affective-motivational components of pain. However, mechanistic insight on the source of CRF that drives BNST responses to these harmful experiences remains unknown. In the present study, we used a series of genetic approaches to show that CRF in the BNST is engaged in the processing and modulation of pain. We conducted cell-type specific in vivo calcium imaging in CRF-Cre mice and found robust and synchronized recruitment of BNSTCRF neurons during acute exposures to noxious heat. Distinct patterns of recruitment were observed by sex, as the magnitude and timing of heat responsive activity in BNSTCRF neurons differed for male and female mice. We then used a viral approach in Floxed-CRF mice to selectively reduce CRF expression in the BNST and found it decreased nociceptive sensitivity for both sexes and increased paw attending for females. Together, these findings reveal that CRF in the BNST influences multiple facets of the pain experience to impact the sex-specific expression of pain-related behaviors.
Collapse
Affiliation(s)
- Waylin Yu
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Pharmacology, School of Medicine, University of North Carolina At Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Christina M Caira
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Natalia Del R Rivera Sanchez
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Garrett A Moseley
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Department of Pharmacology, School of Medicine, University of North Carolina At Chapel Hill, CB 7178 Thurston Bowles Building, 104 Manning Drive, Chapel Hill, NC, 27599, USA.
- Bowles Center for Alcohol Studies, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Pharmacology, School of Medicine, University of North Carolina At Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
47
|
Timmers I, van de Ven VG, Vlaeyen JW, Smeets RJ, Verbunt JA, de Jong JR, Kaas AL. Corticolimbic Circuitry in Chronic Pain Tracks Pain Intensity Relief Following Exposure In Vivo. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:28-36. [PMID: 36324433 PMCID: PMC9616294 DOI: 10.1016/j.bpsgos.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background A subset of patients with chronic pain who receive exposure in vivo (EXP) treatment experience clinically relevant relief of pain intensity. Although pain relief is not an explicit therapeutic target, it is important to understand how and why this concomitant effect occurs in some patients but not others. This longitudinal study therefore aimed to characterize brain plasticity as well as to explore pretreatment factors related to pain relief. Methods Resting-state functional magnetic resonance imaging data were acquired in 30 patients with chronic pain. Twenty-three patients completed EXP, and 6-month follow-up data were available in 20 patients (magnetic resonance imaging data in 17 patients). Pain-free control data were acquired at two time points (n = 29, n = 21). Seed-based resting-state functional connectivity (rsFC) analyses were performed, with seeds in the amygdala, hippocampus, and nucleus accumbens. Results Pain relief after EXP was highly variable, with 60% of patients reporting a clinically relevant improvement. Amygdala rsFC with the middle frontal gyrus decreased significantly over time in patients but was not associated with pain relief. In contrast, greater pain relief was associated with greater decreases over time in hippocampus rsFC with the precuneus, which was related to reductions in catastrophizing (EXP therapeutic target) as well. Greater pain relief was also associated with lower pretreatment rsFC between nucleus accumbens and postcentral gyrus. Conclusions While changes in hippocampus rsFC were associated with pain relief after EXP, pretreatment nucleus accumbens rsFC showed potential prognostic value. Our findings further support the importance of corticolimbic circuitry in chronic pain, emphasizing its relation to pain relief and identifying potential underlying mechanisms and prognostic factors, warranting further testing in independent samples.
Collapse
|
48
|
Taesler P, Rose M. The modulation of neural insular activity by a brain computer interface differentially affects pain discrimination. Sci Rep 2021; 11:9795. [PMID: 33963226 PMCID: PMC8105353 DOI: 10.1038/s41598-021-89206-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/11/2021] [Indexed: 11/20/2022] Open
Abstract
The experience of pain is generated by activations throughout a complex pain network with the insular cortex as a central processing area. The state of ongoing oscillatory activity can influence subsequent processing throughout this network. In particular the ongoing theta-band power can be relevant for later pain processing, however a direct functional relation to post-stimulus processing or behaviour is missing. Here, we used a non-invasive brain-computer interface to either increase or decrease ongoing theta-band power originating in the insular cortex. Our results show a differential modulation of oscillatory power and even more important a transfer to independently measured pain processing and sensation. Pain evoked neural power and subjective pain discrimination were differentially affected by the induced modulations of the oscillatory state. The results demonstrate a functional relevance of insular based theta-band oscillatory states for the processing and subjective discrimination of nociceptive stimuli and offer the perspective for clinical applications.
Collapse
Affiliation(s)
- Philipp Taesler
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, W34, 20251, Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, W34, 20251, Hamburg, Germany.
| |
Collapse
|
49
|
Local Anesthesia Injection in Upper Blepharoplasty Surgery: A Side at a Time or Both Sides at Once? A Prospective Randomized Study. Dermatol Surg 2021; 47:241-244. [PMID: 33481452 DOI: 10.1097/dss.0000000000002718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Perceived pain during local anesthesia injections can be effected by the injection sequence. OBJECTIVE We sought to compare pain levels during local anesthesia injections during upper lid blepharoplasty (ULB) using 2 surgical sequences. MATERIALS AND METHODS We conducted a prospective, randomized clinical trial. Patients with ULB were randomized to either have local anesthesia injection followed by ULB in the right eyelid and then in the left (Group A) or to have local anesthesia injection to both eyelids followed by ULB on both eyelids (Group B). Pain was assessed using a visual analog scale (VAS) for pain score of 0 to 10. RESULTS Forty patients were included and randomized. The mean VAS score in Group A was 2.60 ± 1.84 and 3.30 ± 1.62 (right and left, respectively, p value = .035). The mean VAS score in Group B was 2.55 ± 1.63 and 2.80 ± 1.67 (right and left eyelids, respectively, p value = .258). No intergroup difference in pain was found. CONCLUSION Patients having sequential anesthesia during ULB perceived more pain on injection to the second eyelid, whereas patients having local anesthesia followed by ULB perceived the same amount of pain in both eyes. Pain levels in both groups were similar. Local anesthesia injections in both groups were well tolerated.
Collapse
|
50
|
Ashina M, Terwindt GM, Al-Karagholi MAM, de Boer I, Lee MJ, Hay DL, Schulte LH, Hadjikhani N, Sinclair AJ, Ashina H, Schwedt TJ, Goadsby PJ. Migraine: disease characterisation, biomarkers, and precision medicine. Lancet 2021; 397:1496-1504. [PMID: 33773610 DOI: 10.1016/s0140-6736(20)32162-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/27/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Migraine is a disabling neurological disorder, diagnosis of which is based on clinical criteria. A shortcoming of these criteria is that they do not fully capture the heterogeneity of migraine, including the underlying genetic and neurobiological factors. This complexity has generated momentum for biomarker research to improve disease characterisation and identify novel drug targets. In this Series paper, we present the progress that has been made in the search for biomarkers of migraine within genetics, provocation modelling, biochemistry, and neuroimaging research. Additionally, we outline challenges and future directions for each biomarker modality. We also discuss the advances made in combining and integrating data from multiple biomarker modalities. These efforts contribute to developing precision medicine that can be applied to future patients with migraine.
Collapse
Affiliation(s)
- Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark; Department of Nervous Diseases of the Institute of Professional Education, IM Sechenov First Moscow State Medical University, Moscow, Russia; Department of Neurology, Azerbaijan Medical University, Baku, Azerbaijan.
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene de Boer
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Mi Ji Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Debbie L Hay
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Laura H Schulte
- Clinic for Psychiatry and Psychotherapy, University Medical Center Eppendorf, Hamburg, Germany
| | - Nouchine Hadjikhani
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Gillberg Neuropsychiatry Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Alexandra J Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter J Goadsby
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|