1
|
Goto S. Functional pathology of neuroleptic-induced dystonia based on the striatal striosome-matrix dopamine system in humans. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-334545. [PMID: 39631787 DOI: 10.1136/jnnp-2024-334545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Neuroleptic-induced dystonia is a source of great concern in clinical practice because of its iatrogenic nature which can potentially lead to life-threatening conditions. Since all neuroleptics (antipsychotics) share the ability to block the dopamine D2-type receptors (D2Rs) that are highly enriched in the striatum, this drug-induced dystonia is thought to be caused by decreased striatal D2R activity. However, how associations of striatal D2R inactivation with dystonia are formed remains elusive.A growing body of evidence suggests that imbalanced activities between D1R-expressing medium spiny neurons and D2R-expressing medium spiny neurons (D1-MSNs and D2-MSNs) in the striatal striosome-matrix system underlie the pathophysiology of various basal ganglia disorders including dystonia. Given the specificity of the striatal dopamine D1 system in 'humans', this article highlights the striatal striosome hypothesis in causing 'repetitive' and 'stereotyped' motor symptoms which are key clinical features of dystonia. It is suggested that exposure to neuroleptics may reduce striosomal D1-MSN activity and thereby cause dystonia symptoms. This may occur through an increase in the striatal cholinergic activity and the collateral inhibitory action of D2-MSNs onto neighbouring D1-MSNs within the striosome subfields. The article proposes a functional pathology of the striosome-matrix dopamine system for neuroleptic-induced acute dystonia or neuroleptic-withdrawal dystonia. A rationale for the effectiveness of dopaminergic or cholinergic pharmacotherapy is also provided for treating dystonias. This narrative review covers various aspects of the relevant field and provides a detailed discussion of the mechanisms of neuroleptic-induced dystonia.
Collapse
Affiliation(s)
- Satoshi Goto
- Research Organization of Science and Technology, Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
2
|
Gemperli K, Folorunso F, Norin B, Joshua R, Rykowski R, Hill C, Galindo R, Aravamuthan BR. Preterm birth is associated with dystonic features and reduced cortical parvalbumin immunoreactivity in mice. Pediatr Res 2024:10.1038/s41390-024-03603-8. [PMID: 39433959 DOI: 10.1038/s41390-024-03603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Preterm birth is a common cause of dystonia. Though dystonia is often associated with striatal dysfunction after neonatal brain injury, cortical dysfunction may best predict dystonia following preterm birth. Furthermore, abnormal sensorimotor cortex inhibition is associated with genetic and idiopathic dystonias. To investigate cortical dysfunction and dystonia following preterm birth, we developed a new model of preterm birth in mice. METHODS We induced preterm birth in C57BL/6J mice at embryonic day 18.3, ~24 h early. Leg adduction variability and amplitude, metrics we have shown distinguish between dystonia from spasticity during gait in people with CP, were quantified from gait videos of mice. Parvalbumin-positive interneurons, the largest population of cortical inhibitory interneurons, were quantified in the sensorimotor cortex and striatum. RESULTS Mice born preterm demonstrate increased leg adduction amplitude and variability during gait, suggestive of clinically observed dystonic gait features. Mice born preterm also demonstrate fewer parvalbumin-positive interneurons and reduced parvalbumin immunoreactivity in the sensorimotor cortex, but not the striatum, suggesting dysfunction of cortical inhibition. CONCLUSIONS These data may suggest an association between cortical dysfunction and dystonic gait features following preterm birth. We propose that our novel mouse model of preterm birth can be used to study this association. IMPACT Mouse models of true preterm birth are valuable for studying clinical complications of prematurity. Mice born preterm demonstrate increased leg adduction amplitude and variability during gait, suggestive of clinically observed dystonic gait features. Mice born preterm demonstrate fewer parvalbumin-positive interneurons and reduced parvalbumin immunoreactivity in the sensorimotor cortex, suggesting dysfunction of cortical inhibition. Mice born preterm do not demonstrate changes in parvalbumin immunoreactivity in the striatum. Cortical dysfunction may be associated with dystonic gait features following preterm birth.
Collapse
Affiliation(s)
- Kat Gemperli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Femi Folorunso
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Norin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Joshua
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rykowski
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Clayton Hill
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rafael Galindo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bhooma R Aravamuthan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Scarduzio M, Eskow Jaunarajs KL, Standaert DG. Striatal cholinergic transmission in an inducible transgenic mouse model of paroxysmal non-kinesiogenic dyskinesia. Neurobiol Dis 2024; 201:106685. [PMID: 39343248 DOI: 10.1016/j.nbd.2024.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Altered interaction between striatonigral dopaminergic (DA) inputs and local acetylcholine (ACh) in striatum has long been hypothesized to play a central role in the pathophysiology of dystonia and dyskinesia. Indeed, previous research using several genetic mouse models of human isolated dystonia identified a shared endophenotype with paradoxical excitation of striatal cholinergic interneuron (ChIs) activity in response to activation of dopamine D2 receptors (D2R). These mouse models lack a dystonic motor phenotype, which leaves a critical gap in comprehending the role of DA and ACh transmission in the manifestations of dystonia. To tackle this question, we used a combination of ex vivo slice physiology and in vivo monitoring of striatal ACh dynamics in the inducible, phenotypically penetrant, transgenic mouse model of paroxysmal non-kinesiogenic dyskinesia (PNKD), an animal with both dystonic and dyskinetic features. We found that, similarly to genetic models of isolated dystonia, the PNKD mouse displays D2R-induced paradoxical excitation of ChI firing in ex vivo striatal brain slices. In vivo, caffeine triggers dystonic symptoms while reversing the D2R-mediated excitation of ChIs and desynchronizing ACh release in PNKD mice. In WT littermate controls, caffeine stimulates spontaneous locomotion through a similar but reversed mechanism involving an excitatory switch of the D2R control of ChI activity, associated with enhanced synchronization of ACh release. These observations suggest that the "paradoxical excitation" of cholinergic interneurons described in isolated dystonia models could represent a compensatory or protective mechanism that prevents manifestation of movement abnormalities and that phenotypic dystonia is possible only when this is absent. These findings also suggest that D2Rs may play an important role in synchronizing the ChI network leading to rhythmic ACh release during heightened movement states. Dysfunction of this interaction and corresponding desynchrony of ACh release may contribute to aberrant movements.
Collapse
Affiliation(s)
- Mariangela Scarduzio
- Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL, USA; Department of Neurology, UAB, Birmingham, AL, USA.
| | - Karen L Eskow Jaunarajs
- Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL, USA; Department of Neurology, UAB, Birmingham, AL, USA
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Birmingham, AL, USA; Department of Neurology, UAB, Birmingham, AL, USA
| |
Collapse
|
4
|
Voegtle A, Mohrbutter C, Hils J, Schulz S, Weuthen A, Brämer U, Ullsperger M, Sweeney-Reed CM. Cholinergic modulation of motor sequence learning. Eur J Neurosci 2024; 60:3706-3718. [PMID: 38716689 DOI: 10.1111/ejn.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 07/06/2024]
Abstract
The cholinergic system plays a key role in motor function, but whether pharmacological modulation of cholinergic activity affects motor sequence learning is unknown. The acetylcholine receptor antagonist biperiden, an established treatment in movement disorders, reduces attentional modulation, but whether it influences motor sequence learning is not clear. Using a randomized, double-blind placebo-controlled crossover design, we tested 30 healthy young participants and showed that biperiden impairs the ability to learn sequential finger movements, accompanied by widespread oscillatory broadband power changes (4-25 Hz) in the motor sequence learning network after receiving biperiden, with greater power in the theta, alpha and beta bands over ipsilateral motor and bilateral parietal-occipital areas. The reduced early theta power during a repeated compared with random sequence, likely reflecting disengagement of top-down attention to sensory processes, was disrupted by biperiden. Alpha synchronization during repeated sequences reflects sensory gating and lower visuospatial attention requirements compared with visuomotor responses to random sequences. After biperiden, alpha synchronization was greater, potentially reflecting excessive visuospatial attention reduction, affecting visuomotor responding required to enable sequence learning. Beta oscillations facilitate sequence learning by integrating visual and somatosensory inputs, stabilizing repeated sequences and promoting prediction of the next stimulus. The beta synchronization after biperiden fits with a disruption of the selective visuospatial attention enhancement associated with initial sequence learning. These findings highlight the role of cholinergic processes in motor sequence learning.
Collapse
Affiliation(s)
- Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Catharina Mohrbutter
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan Hils
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Steve Schulz
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Weuthen
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Uwe Brämer
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Ullsperger
- Institute of Psychology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Lewis SA, Aravamuthan B, Fehlings D, Kruer MC. Evolving understanding of CP phenotypes: the importance of dystonia. Pediatr Res 2024:10.1038/s41390-024-03327-9. [PMID: 38926549 DOI: 10.1038/s41390-024-03327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/15/2024] [Indexed: 06/28/2024]
Abstract
Cerebral palsy (CP) is the core neurodevelopmental disorder affecting movement. Several distinct movement disorders can occur in people with cerebral palsy. Dystonia is a movement disorder that causes non-velocity-dependent hypertonia and/or abnormal, often repetitive, twisting movements, and/or postures. Dystonia occurs more frequently in patients with CP than has been recognized previously, and is treated differently than other aspects of CP. Dystonia is an important cause of chronic pain, hospitalization, and musculoskeletal complications. We describe recent advances in dystonia diagnosis in patients with cerebral palsy and highlight focus areas for ongoing research and clinical care. IMPACT: Dystonia is a movement disorder that is more common in people with cerebral palsy (CP) than previously thought. Dystonia contributes to hospitalization, chronic pain, and complications in CP patients. People with dystonic CP require different tools to diagnose and treat their condition. We summarize current state of the art in dystonia in CP and identify areas of focus for future work.
Collapse
Affiliation(s)
- Sara A Lewis
- Departments of Cellular & Molecular Medicine, Child Health, and Neurology and Program in Genetics, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's, Phoenix, AZ, USA
| | - Bhooma Aravamuthan
- Division of Pediatric Neurology, Department of Neurology, School of Medicine, Washington University in St Louis and St Louis Children's Hospital, St Louis, MO, USA
| | - Darcy Fehlings
- Holland Bloorview Kids Rehabilitation Hospital, Deparment of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Michael C Kruer
- Departments of Cellular & Molecular Medicine, Child Health, and Neurology and Program in Genetics, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's, Phoenix, AZ, USA.
| |
Collapse
|
6
|
Lewis SA, Forstrom J, Tavani J, Schafer R, Tiede Z, Padilla-Lopez SR, Kruer MC. eIF2α phosphorylation evokes dystonia-like movements with D2-receptor and cholinergic origin and abnormal neuronal connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594240. [PMID: 38798458 PMCID: PMC11118466 DOI: 10.1101/2024.05.14.594240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dystonia is the 3rd most common movement disorder. Dystonia is acquired through either injury or genetic mutations, with poorly understood molecular and cellular mechanisms. Eukaryotic initiation factor alpha (eIF2α) controls cell state including neuronal plasticity via protein translation control and expression of ATF4. Dysregulated eIF2α phosphorylation (eIF2α-P) occurs in dystonia patients and models including DYT1, but the consequences are unknown. We increased/decreased eIF2α-P and tested motor control and neuronal properties in a Drosophila model. Bidirectionally altering eIF2α-P produced dystonia-like abnormal posturing and dyskinetic movements in flies. These movements were also observed with expression of the DYT1 risk allele. We identified cholinergic and D2-receptor neuroanatomical origins of these dyskinetic movements caused by genetic manipulations to dystonia molecular candidates eIF2α-P, ATF4, or DYT1, with evidence for decreased cholinergic release. In vivo, increased and decreased eIF2α-P increase synaptic connectivity at the NMJ with increased terminal size and bouton synaptic release sites. Long-term treatment of elevated eIF2α-P with ISRIB restored adult longevity, but not performance in a motor assay. Disrupted eIF2α-P signaling may alter neuronal connectivity, change synaptic release, and drive motor circuit changes in dystonia.
Collapse
Affiliation(s)
- Sara A Lewis
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jacob Forstrom
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jennifer Tavani
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Robert Schafer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Zach Tiede
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Sergio R Padilla-Lopez
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Cellular & Molecular Medicine, Genetics, and Neurology, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Programs in Neuroscience, Molecular & Cellular Biology, and Biomedical Informatics, Arizona State University, Tempe, AZ USA
| |
Collapse
|
7
|
Matsuda T, Morigaki R, Hayasawa H, Koyama H, Oda T, Miyake K, Takagi Y. Striatal parvalbumin interneurons are activated in a mouse model of cerebellar dystonia. Dis Model Mech 2024; 17:dmm050338. [PMID: 38616770 PMCID: PMC11128288 DOI: 10.1242/dmm.050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.
Collapse
Affiliation(s)
- Taku Matsuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Ryoma Morigaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan
| | - Hiroaki Hayasawa
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Koyama
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kazuhisa Miyake
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
8
|
Calakos N, Caffall ZF. The integrated stress response pathway and neuromodulator signaling in the brain: lessons learned from dystonia. J Clin Invest 2024; 134:e177833. [PMID: 38557486 PMCID: PMC10977992 DOI: 10.1172/jci177833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of Neurology
- Department of Neurobiology, and
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | | |
Collapse
|
9
|
Gemperli K, Folorunso F, Norin B, Joshua R, Hill C, Rykowski R, Galindo R, Aravamuthan BR. Mice born preterm develop gait dystonia and reduced cortical parvalbumin immunoreactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578353. [PMID: 38352408 PMCID: PMC10862908 DOI: 10.1101/2024.02.01.578353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Preterm birth leading to cerebral palsy (CP) is the most common cause of childhood dystonia, a movement disorder that is debilitating and often treatment refractory. Dystonia has been typically associated with dysfunction of striatal cholinergic interneurons, but clinical imaging data suggests that cortical injury may best predict dystonia following preterm birth. Furthermore, abnormal sensorimotor cortex inhibition has been found in many studies of non-CP dystonias. To assess the potential for a cortical etiology of dystonia following preterm birth, we developed a new model of preterm birth in mice. Noting that term delivery in mice on a C57BL/6J background is embryonic day 19.1 (E19.1), we induced preterm birth at the limits of pup viability at embryonic day (E) 18.3, equivalent to human 22 weeks gestation. Mice born preterm demonstrate display clinically validated metrics of dystonia during gait (leg adduction amplitude and variability) and also demonstrate reduced parvalbumin immunoreactivity in the sensorimotor cortex, suggesting dysfunction of cortical parvalbumin-positive inhibitory interneurons. Notably, reduced parvalbumin immunoreactivity or changes in parvalbumin-positive neuronal number were not observed in the striatum. These data support the association between cortical dysfunction and dystonia following preterm birth. We propose that our mouse model of preterm birth can be used to study this association and potentially also study other sequelae of extreme prematurity.
Collapse
Affiliation(s)
- Kat Gemperli
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Femi Folorunso
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Benjamin Norin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Rebecca Joshua
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Clayton Hill
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Rachel Rykowski
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | | | | |
Collapse
|
10
|
El Atiallah I, Ponterio G, Meringolo M, Martella G, Sciamanna G, Tassone A, Montanari M, Mancini M, Castagno AN, Yu-Taeger L, Nguyen HHP, Bonsi P, Pisani A. Loss-of-function of GNAL dystonia gene impairs striatal dopamine receptors-mediated adenylyl cyclase/ cyclic AMP signaling pathway. Neurobiol Dis 2024; 191:106403. [PMID: 38182074 DOI: 10.1016/j.nbd.2024.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Loss-of-function mutations in the GNAL gene are responsible for DYT-GNAL dystonia. However, how GNAL mutations contribute to synaptic dysfunction is still unclear. The GNAL gene encodes the Gαolf protein, an isoform of stimulatory Gαs enriched in the striatum, with a key role in the regulation of cAMP signaling. Here, we used a combined biochemical and electrophysiological approach to study GPCR-mediated AC-cAMP cascade in the striatum of the heterozygous GNAL (GNAL+/-) rat model. We first analyzed adenosine type 2 (A2AR), and dopamine type 1 (D1R) receptors, which are directly coupled to Gαolf, and observed that the total levels of A2AR were increased, whereas D1R level was unaltered in GNAL+/- rats. In addition, the striatal isoform of adenylyl cyclase (AC5) was reduced, despite unaltered basal cAMP levels. Notably, the protein expression level of dopamine type 2 receptor (D2R), that inhibits the AC5-cAMP signaling pathway, was also reduced, similar to what observed in different DYT-TOR1A dystonia models. Accordingly, in the GNAL+/- rat striatum we found altered levels of the D2R regulatory proteins, RGS9-2, spinophilin, Gβ5 and β-arrestin2, suggesting a downregulation of D2R signaling cascade. Additionally, by analyzing the responses of striatal cholinergic interneurons to D2R activation, we found that the receptor-mediated inhibitory effect is significantly attenuated in GNAL+/- interneurons. Altogether, our findings demonstrate a profound alteration in the A2AR/D2R-AC-cAMP cascade in the striatum of the rat DYT-GNAL dystonia model, and provide a plausible explanation for our previous findings on the loss of dopamine D2R-dependent corticostriatal long-term depression.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio N Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy
| | - Libo Yu-Taeger
- Department of Human Genetics, Ruhr University Bochum, Germany
| | | | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Fondazione Mondino, Pavia, Italy.
| |
Collapse
|
11
|
Zhu L, Meng H, Zhang W, Xie W, Sun H, Hou S. The pathogenesis of blepharospasm. Front Neurol 2024; 14:1336348. [PMID: 38274886 PMCID: PMC10808626 DOI: 10.3389/fneur.2023.1336348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Blepharospasm is a focal dystonia characterized by involuntary tetanic contractions of the orbicularis oculi muscle, which can lead to functional blindness and loss of independent living ability in severe cases. It usually occurs in adults, with a higher incidence rate in women than in men. The etiology and pathogenesis of this disease have not been elucidated to date, but it is traditionally believed to be related to the basal ganglia. Studies have also shown that this is related to the decreased activity of inhibitory neurons in the cerebral cortex caused by environmental factors and genetic predisposition. Increasingly, studies have focused on the imbalance in the regulation of neurotransmitters, including dopamine, serotonin, and acetylcholine, in blepharospasm. The onset of the disease is insidious, and the misdiagnosis rate is high based on history and clinical manifestations. This article reviews the etiology, epidemiological features, and pathogenesis of blepharospasm, to improve understanding of the disease by neurologists and ophthalmologists.
Collapse
Affiliation(s)
- Lixia Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Wenjing Xie
- Department of Neurology, The Second Hospital of Jilin University, Changchun, China
| | - Huaiyu Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Shuai Hou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Franz D, Richter A, Köhling R. Electrophysiological insights into deep brain stimulation of the network disorder dystonia. Pflugers Arch 2023; 475:1133-1147. [PMID: 37530804 PMCID: PMC10499667 DOI: 10.1007/s00424-023-02845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Deep brain stimulation (DBS), a treatment for modulating the abnormal central neuronal circuitry, has become the standard of care nowadays and is sometimes the only option to reduce symptoms of movement disorders such as dystonia. However, on the one hand, there are still open questions regarding the pathomechanisms of dystonia and, on the other hand, the mechanisms of DBS on neuronal circuitry. That lack of knowledge limits the therapeutic effect and makes it hard to predict the outcome of DBS for individual dystonia patients. Finding electrophysiological biomarkers seems to be a promising option to enable adapted individualised DBS treatment. However, biomarker search studies cannot be conducted on patients on a large scale and experimental approaches with animal models of dystonia are needed. In this review, physiological findings of deep brain stimulation studies in humans and animal models of dystonia are summarised and the current pathophysiological concepts of dystonia are discussed.
Collapse
Affiliation(s)
- Denise Franz
- Oscar Langendorff Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
13
|
Arakawa I, Muramatsu I, Uwada J, Sada K, Matsukawa N, Masuoka T. Acetylcholine release from striatal cholinergic interneurons is controlled differently depending on the firing pattern. J Neurochem 2023; 167:38-51. [PMID: 37653723 DOI: 10.1111/jnc.15950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
How is the quantal size in neurotransmitter release adjusted for various firing levels? We explored the possible mechanisms that regulate acetylcholine (ACh) release from cholinergic interneurons using an ultra-mini superfusion system. After preloading [3 H]ACh in rat striatal cholinergic interneurons, the release was elicited by electrical stimulation under a condition in which presynaptic cholinergic and dopaminergic feedback was inhibited. [3 H]ACh release was reproducible at intervals of more than 10 min; shorter intervals resulted in reduced levels of ACh release. Upon persistent stimulation for 10 min, ACh release transiently increased, before gradually decreasing. Vesamicol, an inhibitor of the vesicular ACh transporter (VAChT), had no effect on the release induced by the first single pulse, but it reduced the release caused by subsequent pulses. Vesamicol also reduced the [3 H]ACh release evoked by multiple pulses, and the inhibition was enhanced by repetitive stimulation. The decreasing phase of [3 H]ACh release during persistent stimulation was accelerated by vesamicol treatment. Thus, it is likely that releasable ACh was slowly compensated for via VAChT during and after stimulation, changing the vesicular ACh content. In addition, ACh release per pulse decreased under high-frequency stimulation. The present results suggest that ACh release from striatal cholinergic interneurons may be adjusted by changes in the quantal size due to slow replenishment via VAChT, and by a reduction in release probability upon high-frequency stimulation. These two distinct processes likely enable the fine tuning of neurotransmission and neuroprotection/limitation against excessive output and have important physiological roles in the brain.
Collapse
Affiliation(s)
- Itsumi Arakawa
- Department of Neurology, Nagoya City University Graduate School of Medicine, Nagoya, Japan
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Fukui, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Fukui, Japan
- Kimura Hospital, Fukui, Japan
| | - Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Kiyonao Sada
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Fukui, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
14
|
Gemperli K, Lu X, Chintalapati K, Rust A, Bajpai R, Suh N, Blackburn J, Gelineau-Morel R, Kruer MC, Mingbundersuk D, O'Malley J, Tochen L, Waugh J, Wu S, Feyma T, Perlmutter J, Mennerick S, McCall J, Aravamuthan BR. Chronic striatal cholinergic interneuron excitation induces clinically-relevant dystonic behavior in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549778. [PMID: 37503287 PMCID: PMC10370117 DOI: 10.1101/2023.07.19.549778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dystonia is common, debilitating, often medically refractory, and difficult to diagnose. The gold standard for both clinical and mouse model dystonia evaluation is subjective assessment, ideally by expert consensus. However, this subjectivity makes translational quantification of clinically-relevant dystonia metrics across species nearly impossible. Many mouse models of genetic dystonias display abnormal striatal cholinergic interneuron excitation, but few display subjectively dystonic features. Therefore, whether striatal cholinergic interneuron pathology causes dystonia remains unknown. To address these critical limitations, we first demonstrate that objectively quantifiable leg adduction variability correlates with leg dystonia severity in people. We then show that chemogenetic excitation of striatal cholinergic interneurons in mice causes comparable leg adduction variability in mice. This clinically-relevant dystonic behavior in mice does not occur with acute excitation, but rather develops after 14 days of ongoing striatal cholinergic interneuron excitation. This requirement for prolonged excitation recapitulates the clinically observed phenomena of a delay between an inciting brain injury and subsequent dystonia manifestation and demonstrates a causative link between chronic striatal cholinergic interneuron excitation and clinically-relevant dystonic behavior in mice. Therefore, these results support targeting striatal ChIs for dystonia drug development and suggests early treatment in the window following injury but prior to dystonia onset. One Sentence Summary Chronic excitation of dorsal striatal cholinergic interneuron causes clinically-relevant dystonic phenotypes in mice.
Collapse
|
15
|
Steel D, Reid KM, Pisani A, Hess EJ, Fox S, Kurian MA. Advances in targeting neurotransmitter systems in dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:217-258. [PMID: 37482394 DOI: 10.1016/bs.irn.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is characterised as uncontrolled, often painful involuntary muscle contractions that cause abnormal postures and repetitive or twisting movements. These movements can be continuous or sporadic and affect different parts of the body and range in severity. Dystonia and its related conditions present a huge cause of neurological morbidity worldwide. Although therapies are available, achieving optimal symptom control without major unwanted effects remains a challenge. Most pharmacological treatments for dystonia aim to modulate the effects of one or more neurotransmitters in the central nervous system, but doing so effectively and with precision is far from straightforward. In this chapter we discuss the physiology of key neurotransmitters, including dopamine, noradrenaline, serotonin (5-hydroxytryptamine), acetylcholine, GABA, glutamate, adenosine and cannabinoids, and their role in dystonia. We explore the ways in which existing pharmaceuticals as well as novel agents, currently in clinical trial or preclinical development, target dystonia, and their respective advantages and disadvantages. Finally, we discuss current and emerging genetic therapies which may be used to treat genetic forms of dystonia.
Collapse
Affiliation(s)
- Dora Steel
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom; Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kimberley M Reid
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Ellen J Hess
- Emory University School of Medicine, CA, United States
| | - Susan Fox
- Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, ON, Canada
| | - Manju A Kurian
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom; Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
16
|
Matar E, Bhatia K. Dystonia and Parkinson's disease: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:347-411. [PMID: 37482398 DOI: 10.1016/bs.irn.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Parkinsonism and dystonia co-occur across many movement disorders and are most encountered in the setting of Parkinson's disease. Here we aim to explore the shared neurobiological underpinnings of dystonia and parkinsonism through the clinical lens of the conditions in which these movement disorders can be seen together. Foregrounding the discussion, we briefly review the circuits of the motor system and the neuroanatomical and neurophysiological aspects of motor control and highlight their relevance to the proposed pathophysiology of parkinsonism and dystonia. Insight into shared biology is then sought from dystonia occurring in PD and other forms of parkinsonism including those disorders in which both can be co-expressed simultaneously. We organize these within a biological schema along with important questions to be addressed in this space.
Collapse
Affiliation(s)
- Elie Matar
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Kailash Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom
| |
Collapse
|
17
|
Dzhalagoniya IZ, Usova SV, Gamaleya AA, Tomskiy AA, Shaikh AG, Sedov AS. DYT1 dystonia: Neurophysiological properties of the pallidal activity. Parkinsonism Relat Disord 2023; 112:105447. [PMID: 37267819 DOI: 10.1016/j.parkreldis.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The aim of this paper is to find the differences in the physiology of the pallidal neurons in DYT1 and non-DYT1 dystonia. METHODS We performed microelectrode recording of the single unit activity in both segments of the globus pallidus during stereotactic implantation of electrodes for deep brain stimulation (DBS). RESULTS We found a reduced firing rate, reduced burst rate, and increased pause index in both pallidal segments in DYT1. Also, in DYT1 the activity in both pallidal segments was similar, but not so in non-DYT1. CONCLUSION The results suggest a common pathological focus for both pallidal segments, located in the striatum. We also speculate that strong striatal influence on GPi and GPe overrides other input sources to the pallidal nuclei causing similarity in neuronal activity. SIGNIFICANCE We found significant differences in neuronal activity between DYT1 and non-DYT1 neurons. Our findings shed light on the pathophysiology of DYT-1 dystonia which can be very different from non-DYT1 dystonia and have other efficient treatment tactics.
Collapse
Affiliation(s)
- Indiko Z Dzhalagoniya
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation.
| | - Svetlana V Usova
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation
| | - Anna A Gamaleya
- N.N. Burdenko National Medical Research Center for Neurosurgery, 4th Tverskaya-Yamskaya st. 16, Moscow, Russian Federation
| | - Alexey A Tomskiy
- N.N. Burdenko National Medical Research Center for Neurosurgery, 4th Tverskaya-Yamskaya st. 16, Moscow, Russian Federation
| | - Aasef G Shaikh
- Department of Neurology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA; Daroff-DelOsso Ocular Motility Laboratory, Neurology Service, Louis Stoke VA Medical Center, 10701 East Blvd, Cleveland, OH, USA
| | - Alexey S Sedov
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Novatorov st. 7A-1, Moscow, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
18
|
Lenka A, Pandey S. Dystonia and tremor: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:413-439. [PMID: 37482399 DOI: 10.1016/bs.irn.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia and tremor are the two most commonly encountered hyperkinetic movement disorders encountered in clinical practice. While there has been substantial progress in the research on these two disorders, there also exists a lot of gray areas. Entities such as dystonic tremor and tremor associated with dystonia occupy a major portion of the "gray zone". In addition, there is a marked clinical heterogeneity and overlap of several clinical and epidemiological features among dystonia and tremor. These facts raise the possibility that dystonia and tremor could be having shared biology. In this chapter, we revisit critical aspects of this possibility that may have important clinical and research implications in the future. We comprehensively review the points in favor and against the theory that dystonia and tremor have shared biology from clinical, epidemiological, genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, United States
| | - Sanjay Pandey
- Department of Neurology, Amrita Hospital, Faridabad, Delhi National Capital Region, India.
| |
Collapse
|
19
|
Schulz A, Richter F, Richter A. In vivo optogenetic inhibition of striatal parvalbumin-reactive interneurons induced genotype-specific changes in neuronal activity without dystonic signs in male DYT1 knock-in mice. J Neurosci Res 2023; 101:448-463. [PMID: 36546658 DOI: 10.1002/jnr.25157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/30/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The pathophysiology of early-onset torsion dystonia (TOR1A/DYT1) remains unclear. Like 70% of human mutation carriers, rodent models with ΔGAG mutation such as DYT1 knock-in (KI) mice do not show overt dystonia but have subtle sensorimotor deficits and pattern of abnormal synaptic plasticity within the striatal microcircuits. There is evidence that dysfunction of striatal parvalbumin-reactive (Parv+) fast-spiking interneurons (FSIs) can be involved in dystonic signs. To elucidate the relevance of these GABAergic interneurons in the pathophysiology of DYT1 dystonia, we used in vivo optogenetics to specifically inhibit Parv+ and to detect changes in motor behavior and neuronal activity. Optogenetic fibers were bilaterally implanted into the dorsal striatum of male DYT1 KI mice and wild-type (WT) littermates expressing halorhodopsin (eNpHR3.0) in Parv+ interneurons. While stimulations with yellow light pulses for up to 60 min at different pulse durations and interval lengths did not induce abnormal movements, such as dystonic signs, immunohistochemical examinations revealed genotype-dependent differences. In contrast to WT mice, stimulated DYT1 KI showed decreased striatal neuronal activity, that is, less c-Fos reactive neurons, and increased activation of cholinergic interneurons after optogenetic inhibition of Parv+ interneurons. These findings suggest an involvement of Parv+ interneurons in an impaired striatal network in DYT1 KI mice, but at least short-term inhibition of these GABAergic interneurons is not sufficient to trigger a dystonic phenotype, similar to previously shown optogenetic activation of cholinergic interneurons.
Collapse
Affiliation(s)
- Anja Schulz
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.,Institute of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Berryman D, Barrett J, Liu C, Maugee C, Waldbaum J, Yi D, Xing H, Yokoi F, Saxena S, Li Y. Motor deficit and lack of overt dystonia in Dlx conditional Dyt1 knockout mice. Behav Brain Res 2023; 439:114221. [PMID: 36417958 PMCID: PMC10364669 DOI: 10.1016/j.bbr.2022.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
DYT1 or DYT-TOR1A dystonia is early-onset generalized dystonia caused by a trinucleotide deletion of GAG in the TOR1A or DYT1 gene leads to the loss of a glutamic acid residue in the resulting torsinA protein. A mouse model with overt dystonia is of unique importance to better understand the DYT1 pathophysiology and evaluate preclinical drug efficacy. DYT1 dystonia is likely a network disorder involving multiple brain regions, particularly the basal ganglia. Tor1a conditional knockout in the striatum or cerebral cortex leads to motor deficits, suggesting the importance of corticostriatal connection in the pathogenesis of dystonia. Indeed, corticostriatal long-term depression impairment has been demonstrated in multiple targeted DYT1 mouse models. Pappas and colleagues developed a conditional knockout line (Dlx-CKO) that inactivated Tor1a in the forebrain and surprisingly displayed overt dystonia. We set out to validate whether conditional knockout affecting both cortex and striatum would lead to overt dystonia and whether machine learning-based video behavioral analysis could be used to facilitate high throughput preclinical drug screening. We generated Dlx-CKO mice and found no overt dystonia or motor deficits at 4 months. At 8 months, retesting revealed motor deficits in rotarod, beam walking, grip strength, and hyperactivity in the open field; however, no overt dystonia was visually discernible or through the machine learning-based video analysis. Consistent with other targeted DYT1 mouse models, we observed age-dependent deficits in the beam walking test, which is likely a better motor behavioral test for preclinical drug testing but more labor-intensive when overt dystonia is absent.
Collapse
Affiliation(s)
- David Berryman
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jake Barrett
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Canna Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian Maugee
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Julien Waldbaum
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Daiyao Yi
- Herbert Wertheim College of Engineering, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shreya Saxena
- Herbert Wertheim College of Engineering, Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
El Atiallah I, Bonsi P, Tassone A, Martella G, Biella G, Castagno AN, Pisani A, Ponterio G. Synaptic Dysfunction in Dystonia: Update From Experimental Models. Curr Neuropharmacol 2023; 21:2310-2322. [PMID: 37464831 PMCID: PMC10556390 DOI: 10.2174/1570159x21666230718100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 07/20/2023] Open
Abstract
Dystonia, the third most common movement disorder, refers to a heterogeneous group of neurological diseases characterized by involuntary, sustained or intermittent muscle contractions resulting in repetitive twisting movements and abnormal postures. In the last few years, several studies on animal models helped expand our knowledge of the molecular mechanisms underlying dystonia. These findings have reinforced the notion that the synaptic alterations found mainly in the basal ganglia and cerebellum, including the abnormal neurotransmitters signalling, receptor trafficking and synaptic plasticity, are a common hallmark of different forms of dystonia. In this review, we focus on the major contribution provided by rodent models of DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT/ PARK-GCH1, DYT/PARK-TH and DYT-SGCE dystonia, which reveal that an abnormal motor network and synaptic dysfunction represent key elements in the pathophysiology of dystonia.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Antonio N. Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
22
|
Su JH, Hu YW, Song YP, Yang Y, Li RY, Zhou KG, Hu L, Wan XH, Teng F, Jin LJ. Dystonia-like behaviors and impaired sensory-motor integration following neurotoxic lesion of the pedunculopontine tegmental nucleus in mice. Front Neurol 2023; 14:1102837. [PMID: 37064180 PMCID: PMC10101329 DOI: 10.3389/fneur.2023.1102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction The pedunculopontine nucleus (PPTg) is a vital interface between the basal ganglia and cerebellum, participating in modulation of the locomotion and muscle tone. Pathological changes of the PPTg have been reported in patients and animal models of dystonia, while its effect and mechanism on the phenotyping of dystonia is still unknown. Methods In this study, a series of behavioral tests focusing on the specific deficits of dystonia were conducted for mice with bilateral and unilateral PPTg excitotoxic lesion, including the dystonia-like movements evaluation, different types of sensory-motor integrations, explorative behaviors and gait. In addition, neural dysfunctions including apoptosis, neuroinflammation, neurodegeneration and neural activation of PPTg-related motor areas in the basal ganglia, reticular formations and cerebellum were also explored. Results Both bilateral and unilateral lesion of the PPTg elicited dystonia-like behaviors featured by the hyperactivity of the hindlimb flexors. Moreover, proprioceptive and auditory sensory-motor integrations were impaired in bilaterally lesioned mice, while no overt alterations were found for the tactile sensory-motor integration, explorative behaviors and gait. Similar but milder behavioral deficits were found in the unilaterally lesioned mice, with an effective compensation was observed for the auditory sensory-motor integration. Histologically, no neural loss, apoptosis, neuroinflammation and neurodegeneration were found in the substantia nigra pars compacta and caudate putamen (CPu) following PPTg lesion, while reduced neural activity was found in the dorsolateral part of the CPu and striatal indirect pathway-related structures including subthalamic nucleus, globus pallidus internus and substantia nigra pars reticular. Moreover, the neural activity was decreased for the reticular formations such as pontine reticular nucleus, parvicellular reticular nucleus and gigantocellular reticular nucleus, while deep cerebellar nuclei were spared. Conclusion In conclusion, lesion of the PPTg could elicit dystonia-like behaviors through its effect on the balance of the striatal pathways and the reticular formations.
Collapse
Affiliation(s)
- Jun-Hui Su
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yao-Wen Hu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun-Ping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruo-Yu Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai-Ge Zhou
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Xin-Hua Wan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Fei Teng
| | - Ling-Jing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Ling-Jing Jin
| |
Collapse
|
23
|
Yellajoshyula D, Opeyemi S, Dauer WT, Pappas SS. Genetic evidence of aberrant striatal synaptic maturation and secretory pathway alteration in a dystonia mouse model. DYSTONIA 2022; 1:10892. [PMID: 36874764 PMCID: PMC9980434 DOI: 10.3389/dyst.2022.10892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models of DYT-TOR1A dystonia consistently demonstrate abnormalities of striatal cholinergic function, but the molecular pathways underlying this pathophysiology are unclear. To probe these molecular pathways in a genetic model of DYT-TOR1A, we performed laser microdissection in juvenile mice to isolate striatal cholinergic interneurons and non-cholinergic striatal tissue largely comprising spiny projection neurons during maturation. Both cholinergic and GABAergic enriched samples demonstrated a defined set of gene expression changes consistent with a role of torsinA in the secretory pathway. GABAergic enriched striatum samples also showed alteration to genes regulating synaptic transmission and an upregulation of activity dependent immediate early genes. Reconstruction of Golgi-Cox stained striatal spiny projection neurons from adult mice demonstrated significantly increased spiny density, suggesting that torsinA null striatal neurons have increased excitability during striatal maturation and long lasting increases in afferent input. These findings are consistent with a developmental role for torsinA in the secretory pathway and link torsinA loss of function with functional and structural changes of striatal cholinergic and GABAergic neurons. These transcriptomic datasets are freely available as a resource for future studies of torsinA loss of function-mediated striatal dysfunction.
Collapse
Affiliation(s)
| | - Sunday Opeyemi
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
24
|
Su JH, Hu YW, Yang Y, Li RY, Teng F, Li LX, Jin LJ. Dystonia and the pedunculopontine nucleus: Current evidences and potential mechanisms. Front Neurol 2022; 13:1065163. [PMID: 36504662 PMCID: PMC9727297 DOI: 10.3389/fneur.2022.1065163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Being a major component of the midbrain locomotion region, the pedunculopontine nucleus (PPN) is known to have various connections with the basal ganglia, the cerebral cortex, thalamus, and motor regions of the brainstem and spinal cord. Functionally, the PPN is associated with muscle tone control and locomotion modulation, including motor initiation, rhythm and speed. In addition to its motor functions, the PPN also contribute to level of arousal, attention, memory and learning. Recent studies have revealed neuropathologic deficits in the PPN in both patients and animal models of dystonia, and deep brain stimulation of the PPN also showed alleviation of axial dystonia in patients of Parkinson's disease. These findings indicate that the PPN might play an important role in the development of dystonia. Moreover, with increasing preclinical evidences showed presence of dystonia-like behaviors, muscle tone changes, impaired cognitive functions and sleep following lesion or neuromodulation of the PPN, it is assumed that the pathological changes of the PPN might contribute to both motor and non-motor manifestations of dystonia. In this review, we aim to summarize the involvement of the PPN in dystonia based on the current preclinical and clinical evidences. Moreover, potential mechanisms for its contributions to the manifestation of dystonia is also discussed base on the dystonia-related basal ganglia-cerebello-thalamo-cortical circuit, providing fundamental insight into the targeting of the PPN for the treatment of dystonia in the future.
Collapse
Affiliation(s)
- Jun-hui Su
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yao-wen Hu
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruo-yu Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-xi Li
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling-jing Jin
- Department of Neurology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China,*Correspondence: Ling-jing Jin
| |
Collapse
|
25
|
Lee JH, Liu Q, Dadgar-Kiani E. Solving brain circuit function and dysfunction with computational modeling and optogenetic fMRI. Science 2022; 378:493-499. [PMID: 36327349 PMCID: PMC10543742 DOI: 10.1126/science.abq3868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Can we construct a model of brain function that enables an understanding of whole-brain circuit mechanisms underlying neurological disease and use it to predict the outcome of therapeutic interventions? How are pathologies in neurological disease, some of which are observed to have spatial spreading mechanisms, associated with circuits and brain function? In this review, we discuss approaches that have been used to date and future directions that can be explored to answer these questions. By combining optogenetic functional magnetic resonance imaging (fMRI) with computational modeling, cell type-specific, large-scale brain circuit function and dysfunction are beginning to be quantitatively parameterized. We envision that these developments will pave the path for future therapeutics developments based on a systems engineering approach aimed at directly restoring brain function.
Collapse
Affiliation(s)
- Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, CA 94305, USA
| | - Qin Liu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Ehsan Dadgar-Kiani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Imbriani P, Sciamanna G, El Atiallah I, Cerri S, Hess EJ, Pisani A. Synaptic effects of ethanol on striatal circuitry: therapeutic implications for dystonia. FEBS J 2022; 289:5834-5849. [PMID: 34217152 PMCID: PMC9786552 DOI: 10.1111/febs.16106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022]
Abstract
Alcohol consumption affects motor behavior and motor control. Both acute and chronic alcohol abuse have been extensively investigated; however, the therapeutic efficacy of alcohol on some movement disorders, such as myoclonus-dystonia or essential tremor, still does not have a plausible mechanistic explanation. Yet, there are surprisingly few systematic trials with known GABAergic drugs mimicking the effect of alcohol on neurotransmission. In this brief survey, we aim to summarize the effects of EtOH on striatal function, providing an overview of its cellular and synaptic actions in a 'circuit-centered' view. In addition, we will review both experimental and clinical evidence, in the attempt to provide a plausible mechanistic explanation for alcohol-responsive movement disorders, with particular emphasis on dystonia. Different hypotheses emerge, which may provide a rationale for the utilization of drugs that mimic alcohol effects, predicting potential drug repositioning.
Collapse
Affiliation(s)
- Paola Imbriani
- Department of Systems MedicineUniversity of Rome ‘Tor Vergata’Italy,IRCCS Fondazione Santa LuciaRomeItaly
| | - Giuseppe Sciamanna
- Department of Systems MedicineUniversity of Rome ‘Tor Vergata’Italy,IRCCS Fondazione Santa LuciaRomeItaly
| | - Ilham El Atiallah
- Department of Systems MedicineUniversity of Rome ‘Tor Vergata’Italy,IRCCS Fondazione Santa LuciaRomeItaly
| | | | - Ellen J. Hess
- Departments of Pharmacology and Chemical Biology and NeurologyEmory UniversityAtlantaGAUSA
| | - Antonio Pisani
- IRCCS Mondino FoundationPaviaItaly,Department of Brain and Behavioral SciencesUniversity of PaviaItaly
| |
Collapse
|
27
|
Oz O, Matityahu L, Mizrahi-Kliger A, Kaplan A, Berkowitz N, Tiroshi L, Bergman H, Goldberg JA. Non-uniform distribution of dendritic nonlinearities differentially engages thalamostriatal and corticostriatal inputs onto cholinergic interneurons. eLife 2022; 11:76039. [PMID: 35815934 PMCID: PMC9302969 DOI: 10.7554/elife.76039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/09/2022] [Indexed: 11/13/2022] Open
Abstract
The tonic activity of striatal cholinergic interneurons (CINs) is modified differentially by their afferent inputs. Although their unitary synaptic currents are identical, in most CINs cortical inputs onto distal dendrites only weakly entrain them, whereas proximal thalamic inputs trigger abrupt pauses in discharge in response to salient external stimuli. To test whether the dendritic expression of the active conductances that drive autonomous discharge contribute to the CINs’ capacity to dissociate cortical from thalamic inputs, we used an optogenetics-based method to quantify dendritic excitability in mouse CINs. We found that the persistent sodium (NaP) current gave rise to dendritic boosting, and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) current gave rise to a subhertz membrane resonance. This resonance may underlie our novel finding of an association between CIN pauses and internally-generated slow wave events in sleeping non-human primates. Moreover, our method indicated that dendritic NaP and HCN currents were preferentially expressed in proximal dendrites. We validated the non-uniform distribution of NaP currents: pharmacologically; with two-photon imaging of dendritic back-propagating action potentials; and by demonstrating boosting of thalamic, but not cortical, inputs by NaP currents. Thus, the localization of active dendritic conductances in CIN dendrites mirrors the spatial distribution of afferent terminals and may promote their differential responses to thalamic vs. cortical inputs.
Collapse
Affiliation(s)
- Osnat Oz
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Matityahu
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv Mizrahi-Kliger
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Kaplan
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Berkowitz
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Tiroshi
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joshua A Goldberg
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Xing H, Yokoi F, Walker AL, Torres-Medina R, Liu Y, Li Y. Electrophysiological characterization of the striatal cholinergic interneurons in Dyt1 ΔGAG knock-in mice. DYSTONIA 2022; 1:10557. [PMID: 36329866 PMCID: PMC9629210 DOI: 10.3389/dyst.2022.10557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DYT1 dystonia is an inherited early-onset movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, and abnormal postures. Most DYT1 patients have a heterozygous trinucleotide GAG deletion mutation (ΔGAG) in DYT1/TOR1A, coding for torsinA. Dyt1 heterozygous ΔGAG knock-in (KI) mice show motor deficits and reduced striatal dopamine receptor 2 (D2R). Striatal cholinergic interneurons (ChIs) are essential in regulating striatal motor circuits. Multiple dystonia rodent models, including KI mice, show altered ChI firing and modulation. However, due to the errors in assigning KI mice, it is essential to replicate these findings in genetically confirmed KI mice. Here, we found irregular and decreased spontaneous firing frequency in the acute brain slices from Dyt1 KI mice. Quinpirole, a D2R agonist, showed less inhibitory effect on the spontaneous ChI firing in Dyt1 KI mice, suggesting decreased D2R function on the striatal ChIs. On the other hand, a muscarinic receptor agonist, muscarine, inhibited the ChI firing in both wild-type (WT) and Dyt1 KI mice. Trihexyphenidyl, a muscarinic acetylcholine receptor M1 antagonist, had no significant effect on the firing. Moreover, the resting membrane property and functions of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, μ-opioid receptors, and large-conductance calcium-activated potassium (BK) channels were unaffected in Dyt1 KI mice. The results suggest that the irregular and low-frequency firing and decreased D2R function are the main alterations of striatal ChIs in Dyt1 KI mice. These results appear consistent with the reduced dopamine release and high striatal acetylcholine tone in the previous reports.
Collapse
Affiliation(s)
- Hong Xing
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Ariel Luz Walker
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Rosemarie Torres-Medina
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuning Liu
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| |
Collapse
|
29
|
Ponterio G, Faustini G, El Atiallah I, Sciamanna G, Meringolo M, Tassone A, Imbriani P, Cerri S, Martella G, Bonsi P, Bellucci A, Pisani A. Alpha-Synuclein is Involved in DYT1 Dystonia Striatal Synaptic Dysfunction. Mov Disord 2022; 37:949-961. [PMID: 35420219 PMCID: PMC9323501 DOI: 10.1002/mds.29024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 12/26/2022] Open
Abstract
Background The neuronal protein alpha‐synuclein (α‐Syn) is crucially involved in Parkinson's disease pathophysiology. Intriguingly, torsinA (TA), the protein causative of DYT1 dystonia, has been found to accumulate in Lewy bodies and to interact with α‐Syn. Both proteins act as molecular chaperones and control synaptic machinery. Despite such evidence, the role of α‐Syn in dystonia has never been investigated. Objective We explored whether α‐Syn and N‐ethylmaleimide sensitive fusion attachment protein receptor proteins (SNAREs), that are known to be modulated by α‐Syn, may be involved in DYT1 dystonia synaptic dysfunction. Methods We used electrophysiological and biochemical techniques to study synaptic alterations in the dorsal striatum of the Tor1a+/Δgag mouse model of DYT1 dystonia. Results In the Tor1a+/Δgag DYT1 mutant mice, we found a significant reduction of α‐Syn levels in whole striata, mainly involving glutamatergic corticostriatal terminals. Strikingly, the striatal levels of the vesicular SNARE VAMP‐2, a direct α‐Syn interactor, and of the transmembrane SNARE synaptosome‐associated protein 23 (SNAP‐23), that promotes glutamate synaptic vesicles release, were markedly decreased in mutant mice. Moreover, we detected an impairment of miniature glutamatergic postsynaptic currents (mEPSCs) recorded from striatal spiny neurons, in parallel with a decreased asynchronous release obtained by measuring quantal EPSCs (qEPSCs), which highlight a robust alteration in release probability. Finally, we also observed a significant reduction of TA striatal expression in α‐Syn null mice. Conclusions Our data demonstrate an unprecedented relationship between TA and α‐Syn, and reveal that α‐Syn and SNAREs alterations characterize the synaptic dysfunction underlying DYT1 dystonia. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Pisani
- IRCCS Fondazione Mondino, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Daripa B, Lucchese S. A Rare Case of Domperidone-Induced Acute Dystonia in a Young Adult Due to Consumption of Combination Drug (Proton Pump Inhibitors With Domperidone) and Its Possible Pathomechanism. Cureus 2022; 14:e23723. [PMID: 35509739 PMCID: PMC9060727 DOI: 10.7759/cureus.23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 11/11/2022] Open
Abstract
Globally, a substantial number of people are tormented by dystonia. Domperidone, a D-2 receptor antagonist acts outside the blood-brain barrier in the brain stem as well as on the gastrointestinal tract. In India, domperidone is conveniently obtainable over the counter as a combination drug with proton pump inhibitors (PPIs) for dyspepsia and gastro-esophageal reflux disease. We present a rare case of domperidone-induced acute dystonia in a young adult presented within 72 hours after consuming two oral doses of this combination drug (PPIs with domperidone) for dyspepsia. Drug-induced extra pyramidal symptoms (EPS) are often misdiagnosed as some psychiatric condition and undoubtedly its expeditious diagnosis staves off unnecessary investigations and ameliorates prognosis. Our case ignites alertness amongst practitioners in India over the judicious use of PPIs with domperidone as the latter may trigger EPS. Such combination drugs can be prescribed if absolutely mandatory by the treating physician. The possible pathomechanism of this hyperkinetic motor phenomenon, perturbing the equilibrium of the cortical-subcortical circuit and resulting in an overflow of muscular activity, is attempted to be explained here, although the explicit mechanism is still blurry.
Collapse
|
31
|
Caubit X, Gubellini P, Roubertoux PL, Carlier M, Molitor J, Chabbert D, Metwaly M, Salin P, Fatmi A, Belaidouni Y, Brosse L, Kerkerian-Le Goff L, Fasano L. Targeted Tshz3 deletion in corticostriatal circuit components segregates core autistic behaviors. Transl Psychiatry 2022; 12:106. [PMID: 35292625 PMCID: PMC8924251 DOI: 10.1038/s41398-022-01865-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/15/2023] Open
Abstract
We previously linked TSHZ3 haploinsufficiency to autism spectrum disorder (ASD) and showed that embryonic or postnatal Tshz3 deletion in mice results in behavioral traits relevant to the two core domains of ASD, namely social interaction deficits and repetitive behaviors. Here, we provide evidence that cortical projection neurons (CPNs) and striatal cholinergic interneurons (SCINs) are two main and complementary players in the TSHZ3-linked ASD syndrome. In the cerebral cortex, TSHZ3 is expressed in CPNs and in a proportion of GABAergic interneurons, but not in cholinergic interneurons or glial cells. In the striatum, TSHZ3 is expressed in all SCINs, while its expression is absent or partial in the other main brain cholinergic systems. We then characterized two new conditional knockout (cKO) models generated by crossing Tshz3flox/flox with Emx1-Cre (Emx1-cKO) or Chat-Cre (Chat-cKO) mice to decipher the respective role of CPNs and SCINs. Emx1-cKO mice show altered excitatory synaptic transmission onto CPNs and impaired plasticity at corticostriatal synapses, with neither cortical neuron loss nor abnormal layer distribution. These animals present social interaction deficits but no repetitive patterns of behavior. Chat-cKO mice exhibit no loss of SCINs but changes in the electrophysiological properties of these interneurons, associated with repetitive patterns of behavior without social interaction deficits. Therefore, dysfunction in either CPNs or SCINs segregates with a distinct ASD behavioral trait. These findings provide novel insights onto the implication of the corticostriatal circuitry in ASD by revealing an unexpected neuronal dichotomy in the biological background of the two core behavioral domains of this disorder.
Collapse
Affiliation(s)
- Xavier Caubit
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Paolo Gubellini
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pierre L. Roubertoux
- grid.5399.60000 0001 2176 4817Aix-Marseille Univ, INSERM, MMG, UMR1251 Marseille, France
| | - Michèle Carlier
- grid.463724.00000 0004 0385 2989Aix-Marseille Univ, CNRS, LPC, UMR7290 Marseille, France
| | - Jordan Molitor
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Dorian Chabbert
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Mehdi Metwaly
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Pascal Salin
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Ahmed Fatmi
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Yasmine Belaidouni
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | - Lucie Brosse
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, IBDM, UMR7288 Marseille, France
| | | | - Laurent Fasano
- Aix-Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France.
| |
Collapse
|
32
|
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 2022; 166:105650. [DOI: 10.1016/j.nbd.2022.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
|
33
|
Abstract
Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Muramatsu I, Uwada J, Chihara K, Sada K, Wang MH, Yazawa T, Taniguchi T, Ishibashi T, Masuoka T. Evaluation of radiolabeled acetylcholine synthesis and release in rat striatum. J Neurochem 2021; 160:342-355. [PMID: 34878648 DOI: 10.1111/jnc.15556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cholinergic transmission underlies higher brain functions such as cognition and movement. To elucidate the process whereby acetylcholine (ACh) release is maintained and regulated in the central nervous system, uptake of [3 H]choline and subsequent synthesis and release of [3 H]ACh were investigated in rat striatal segments. Incubation with [3 H]choline elicited efficient uptake via high-affinity choline transporter-1, resulting in accumulation of [3 H]choline and [3 H]ACh. However, following inhibition of ACh esterase (AChE), incubation with [3 H]choline led predominantly to the accumulation of [3 H]ACh. Electrical stimulation and KCl depolarization selectively released [3 H]ACh but not [3 H]choline. [3 H]ACh release gradually declined upon repetitive stimulation, whereas the release was reproducible under inhibition of AChE. [3 H]ACh release was abolished after treatment with vesamicol, an inhibitor of vesicular ACh transporter. These results suggest that releasable ACh is continually replenished from the cytosol to releasable pools of cholinergic vesicles to maintain cholinergic transmission. [3 H]ACh release evoked by electrical stimulation was abolished by tetrodotoxin, but that induced by KCl was largely resistant. ACh release was Ca2+ dependent and exhibited slightly different sensitivities to N- and P-type Ca2+ channel toxins (ω-conotoxin GVIA and ω-agatoxin IVA, respectively) between both stimuli. [3 H]ACh release was negatively regulated by M2 muscarinic and D2 dopaminergic receptors. The present results suggest that inhibition of AChE within cholinergic neurons and of presynaptic negative regulation of ACh release contributes to maintenance and facilitation of cholinergic transmission, providing a potentially useful clue for the development of therapies for cholinergic dysfunction-associated disorders, in addition to inhibition of synaptic cleft AChE.
Collapse
Affiliation(s)
- Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan.,Kimura Hospital, Awara, Fukui, Japan
| | - Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kazuyasu Chihara
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | - Kiyonao Sada
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | - Mao-Hsien Wang
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan.,Department of Anesthesia, En Chu Kon Hospital, New Taipei City, Taiwan, ROC
| | - Takashi Yazawa
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takanobu Taniguchi
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
35
|
Jin JW, Chapa A, Kockara N, Helminiak A. Haloperidol-induced isolated lingual dystonia. BMJ Case Rep 2021; 14:e242272. [PMID: 34610953 PMCID: PMC8493922 DOI: 10.1136/bcr-2021-242272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2021] [Indexed: 11/04/2022] Open
Abstract
A 28-year-old woman presenting with agitation and mania with psychotic features developed symptoms of isolated lingual dystonia shortly after the initiation of a haloperidol concentrate regimen.
Collapse
Affiliation(s)
- Jeff Wang Jin
- Department of Psychiatry and Behavioral Sciences, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Alejandro Chapa
- Louis A Faillace Department of Psychiatry and Behavioral Sciences, UTHealth Harris County Psychiatric Center, Houston, Texas, USA
| | - Neriman Kockara
- Louis A Faillace Department of Psychiatry and Behavioral Sciences, UTHealth Harris County Psychiatric Center, Houston, Texas, USA
| | - Amanda Helminiak
- Louis A Faillace Department of Psychiatry and Behavioral Sciences, UTHealth Harris County Psychiatric Center, Houston, Texas, USA
| |
Collapse
|
36
|
Mazere J, Dilharreguy B, Catheline G, Vidailhet M, Deffains M, Vimont D, Ribot B, Barse E, Cif L, Mazoyer B, Langbour N, Pisani A, Allard M, Lamare F, Guehl D, Fernandez P, Burbaud P. Striatal and cerebellar vesicular acetylcholine transporter expression is disrupted in human DYT1 dystonia. Brain 2021; 144:909-923. [PMID: 33638639 DOI: 10.1093/brain/awaa465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Early-onset torsion dystonia (TOR1A/DYT1) is a devastating hereditary motor disorder whose pathophysiology remains unclear. Studies in transgenic mice suggested abnormal cholinergic transmission in the putamen, but this has not yet been demonstrated in humans. The role of the cerebellum in the pathophysiology of the disease has also been highlighted but the involvement of the intrinsic cerebellar cholinergic system is unknown. In this study, cholinergic neurons were imaged using PET with 18F-fluoroethoxybenzovesamicol, a radioligand of the vesicular acetylcholine transporter (VAChT). Here, we found an age-related decrease in VAChT expression in the posterior putamen and caudate nucleus of DYT1 patients versus matched controls, with low expression in young but not in older patients. In the cerebellar vermis, VAChT expression was also significantly decreased in patients versus controls, but independently of age. Functional connectivity within the motor network studied in MRI and the interregional correlation of VAChT expression studied in PET were also altered in patients. These results show that the cholinergic system is disrupted in the brain of DYT1 patients and is modulated over time through plasticity or compensatory mechanisms.
Collapse
Affiliation(s)
- Joachim Mazere
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Bixente Dilharreguy
- Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Gwenaëlle Catheline
- Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Marie Vidailhet
- Institut du Cerveau et de la Moelle épinière (ICM) UMR 1127, hôpital de la Pitié-Salpétrière, Department of Neurology, AP-HP, Sorbonne Université, 75013, Paris, France
| | - Marc Deffains
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France
| | - Delphine Vimont
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Bastien Ribot
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France
| | - Elodie Barse
- Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Laura Cif
- Department of Neurosurgery, CHU de Montpellier, 34000, France
| | - Bernard Mazoyer
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France
| | - Nicolas Langbour
- Centre de Recherche en Psychiatrie, CH de la Milétrie, 86000, Poitiers, France
| | - Antonio Pisani
- Department of Brain and Behavioural Sciences, University of Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Michèle Allard
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Frédéric Lamare
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Dominique Guehl
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France.,Service de Neurophysiologie Clinique, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Philippe Fernandez
- Department of Nuclear Medicine, CHU de Bordeaux, France.,Institute of Cognitive and Integrative Neurosciences, CNRS UMR 5287, Bordeaux University, F33000, Bordeaux, France
| | - Pierre Burbaud
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, 33076, Bordeaux, France.,Service de Neurophysiologie Clinique, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
37
|
Heerdegen M, Zwar M, Franz D, Hörnschemeyer MF, Neubert V, Plocksties F, Niemann C, Timmermann D, Bahls C, van Rienen U, Paap M, Perl S, Lüttig A, Richter A, Köhling R. Mechanisms of pallidal deep brain stimulation: Alteration of cortico-striatal synaptic communication in a dystonia animal model. Neurobiol Dis 2021; 154:105341. [PMID: 33753292 DOI: 10.1016/j.nbd.2021.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022] Open
Abstract
Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from understood. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown. We hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal function. We tested this hypothesis in the dtsz hamster, an animal model of inherited generalised, paroxysmal dystonia. Hamsters (dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes in the GPi. DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 h. Synaptic cortico-striatal field potentials, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurones were recorded in brain slice preparations obtained immediately after EPN-DBS. The main findings were as follows: a. DBS increased cortico-striatal evoked responses in healthy, but not in dystonic tissue. b. Commensurate with this, DBS increased inhibitory control of these evoked responses in dystonic, and decreased inhibitory control in healthy tissue. c. Further, DBS reduced mEPSC frequency strongly in dystonic, and less prominently in healthy tissue, showing that also a modulation of presynaptic mechanisms is likely involved. d. Cellular properties of medium-spiny neurones remained unchanged. We conclude that DBS leads to dampening of cortico-striatal communication, and restores intrastriatal inhibitory tone.
Collapse
Affiliation(s)
- Marco Heerdegen
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Monique Zwar
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Denise Franz
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | | | - Valentin Neubert
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Christoph Niemann
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Christian Bahls
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany; Department Life, Light & Matter, University of Rostock, Germany
| | - Maria Paap
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Stefanie Perl
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Anika Lüttig
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany; Department of Ageing of Individuals and Society, University of Rostock, Germany.
| |
Collapse
|
38
|
Tassone A, Martella G, Meringolo M, Vanni V, Sciamanna G, Ponterio G, Imbriani P, Bonsi P, Pisani A. Vesicular Acetylcholine Transporter Alters Cholinergic Tone and Synaptic Plasticity in DYT1 Dystonia. Mov Disord 2021; 36:2768-2779. [PMID: 34173686 PMCID: PMC9291835 DOI: 10.1002/mds.28698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acetylcholine‐mediated transmission plays a central role in the impairment of corticostriatal synaptic activity and plasticity in multiple DYT1 mouse models. However, the nature of such alteration remains unclear. Objective The aim of the present work was to characterize the mechanistic basis of cholinergic dysfunction in DYT1 dystonia to identify potential targets for pharmacological intervention. Methods We utilized electrophysiology recordings, immunohistochemistry, enzymatic activity assays, and Western blotting techniques to analyze in detail the cholinergic machinery in the dorsal striatum of the Tor1a+/− mouse model of DYT1 dystonia. Results We found a significant increase in the vesicular acetylcholine transporter (VAChT) protein level, the protein responsible for loading acetylcholine (ACh) from the cytosol into synaptic vesicles, which indicates an altered cholinergic tone. Accordingly, in Tor1a+/− mice we measured a robust elevation in basal ACh content coupled to a compensatory enhancement of acetylcholinesterase (AChE) enzymatic activity. Moreover, pharmacological activation of dopamine D2 receptors, which is expected to reduce ACh levels, caused an abnormal elevation in its content, as compared to controls. Patch‐clamp recordings revealed a reduced effect of AChE inhibitors on cholinergic interneuron excitability, whereas muscarinic autoreceptor function was preserved. Finally, we tested the hypothesis that blockade of VAChT could restore corticostriatal long‐term synaptic plasticity deficits. Vesamicol, a selective VAChT inhibitor, rescued a normal expression of synaptic plasticity. Conclusions Overall, our findings indicate that VAChT is a key player in the alterations of striatal plasticity and a novel target to normalize cholinergic dysfunction observed in DYT1 dystonia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanni
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
39
|
Yokoi F, Dang MT, Zhang L, Dexter KM, Efimenko I, Krishnaswamy S, Villanueva M, Misztal CI, Gerard M, Lynch P, Li Y. Reversal of motor-skill transfer impairment by trihexyphenidyl and reduction of dorsolateral striatal cholinergic interneurons in Dyt1 ΔGAG knock-in mice. IBRO Neurosci Rep 2021; 11:1-7. [PMID: 34189496 PMCID: PMC8215213 DOI: 10.1016/j.ibneur.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/06/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
DYT-TOR1A or DYT1 early-onset generalized dystonia is an inherited movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, or abnormal postures. The majority of the DYT1 dystonia patients have a trinucleotide GAG deletion in DYT1/TOR1A. Trihexyphenidyl (THP), an antagonist for excitatory muscarinic acetylcholine receptor M1, is commonly used to treat dystonia. Dyt1 heterozygous ΔGAG knock-in (KI) mice, which have the corresponding mutation, exhibit impaired motor-skill transfer. Here, the effect of THP injection during the treadmill training period on the motor-skill transfer to the accelerated rotarod performance was examined. THP treatment reversed the motor-skill transfer impairment in Dyt1 KI mice. Immunohistochemistry showed that Dyt1 KI mice had a significant reduction of the dorsolateral striatal cholinergic interneurons. In contrast, Western blot analysis showed no significant alteration in the expression levels of the striatal enzymes and transporters involved in the acetylcholine metabolism. The results suggest a functional alteration of the cholinergic system underlying the impairment of motor-skill transfer and the pathogenesis of DYT1 dystonia. Training with THP in a motor task may improve another motor skill performance in DYT1 dystonia.
Collapse
Key Words
- ACh, acetylcholine
- AChE, acetylcholinesterase
- BSA, bovine serum albumin
- CI, confidence interval
- ChAT, choline acetyltransferase
- ChI, cholinergic interneuron
- ChT, choline transporter
- Cholinergic interneuron
- DAB, 3,3′-diaminobenzidine
- DF, degrees of freedom
- Dystonia
- Dyt1 KI mice, Dyt1 ΔGAG heterozygous knock-in mice
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- KO, knockout
- LTD, long-term depression
- Motor learning
- PB, phosphate buffer
- PBS, phosphate-buffered saline
- PET, positron emission tomography
- Rotarod
- THP, trihexyphenidyl
- TOR1A
- TorsinA
- TrkA, tropomyosin receptor kinase A
- VAChT, vesicular acetylcholine transporter
- WT, wild-type
- n.s., not significant
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Mai Tu Dang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA.,Department of Biomedical Sciences, Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Kelly M Dexter
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Iakov Efimenko
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Shiv Krishnaswamy
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Matthew Villanueva
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Carly I Misztal
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Malinda Gerard
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Patrick Lynch
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute of Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| |
Collapse
|
40
|
Svetel M, Tomić A, Kresojević N, Dragašević N, Kostić V. Perspectives on the pharmacological management of dystonia. Expert Opin Pharmacother 2021; 22:1555-1566. [PMID: 33904811 DOI: 10.1080/14656566.2021.1919083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Treatment of dystonia is particularly complex due to various etiologies and heterogeneous clinical manifestation, as well as different degrees of disability. In absence of causative treatment, all symptomatic therapy should be predominantly tailored to ameliorate those symptoms (motor and non/motor) that mostly affect patients' daily life and regular activities. Many different treatment options, including oral medications, neurosurgical interventions, physical and occupational therapy are available in treatment of dystonia.Areas covered: The aim of this perspective is to point out different possibilities in pharmacological management of dystonic movements. Due to pure clinical presentation, the authors concentrate mainly on the isolated dystonias, which are presented solely as dystonic movements. Combined and complex dystonias are not instructive due to compound clinical presentation and consequently, complicated treatment. The article is based on a literature search from sources including PubMed, the Cochrane Library, Web of Science, PiCarta, and PsycINFO.Expert opinion: Although dystonia therapy should be adapted according to the individual needs, severity, age, type, symptoms distribution and acceptable side-effect profile, certain principles should be followed to reach the optimal result. Furthermore, the authors believe that a better understanding of the pathophysiology of dystonia will bring with it the development of new and improved treatment approaches and medications.
Collapse
Affiliation(s)
- Marina Svetel
- Movement Disorders Department, Clinic of Neurology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Tomić
- Movement Disorders Department, Clinic of Neurology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Kresojević
- Movement Disorders Department, Clinic of Neurology, Clinical Center of Serbia, Belgrade, Serbia
| | - Nataša Dragašević
- Movement Disorders Department, Clinic of Neurology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Kostić
- Movement Disorders Department, Clinic of Neurology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
41
|
Danielsson K, Lagström O, Ericson M, Söderpalm B, Adermark L. Subregion-specific effects on striatal neurotransmission and dopamine-signaling by acute and repeated amphetamine exposure. Neuropharmacology 2021; 194:108638. [PMID: 34116108 DOI: 10.1016/j.neuropharm.2021.108638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Repeated administration of psychostimulants, such as amphetamine, is associated with a progressive increased sensitivity to some of the drug's effects, but tolerance towards others. We hypothesized that these adaptations in part could be linked to differential effects by amphetamine on dopaminergic signaling in striatal subregions. To test this theory, acute and long-lasting changes in dopaminergic neurotransmission were assessed in the nucleus accumbens (nAc) and the dorsomedial striatum (DMS) following amphetamine exposure in Wistar rats. By means of in vivo microdialysis, dopamine release induced by local administration of amphetamine was monitored in nAc and DMS of amphetamine naïve rats, and in rats subjected to five days of systemic amphetamine administration (2.0 mg/kg/day) followed by two weeks of withdrawal. In parallel, ex vivo electrophysiology was conducted to outline the effect of acute and repeated amphetamine exposure on striatal neurotransmission. The data shows that amphetamine increases dopamine in a concentration-dependent and subregion-specific manner. Furthermore, repeated administration of amphetamine followed by abstinence resulted in a selective decrease in baseline dopamine in the nAc, and a potentiation of the relative dopamine elevation after systemic amphetamine in the same area. Ex vivo electrophysiology demonstrated decreased excitatory neurotransmission in brain slices from amphetamine-treated animals, and a nAc selective shift in the responsiveness to the dopamine D2-receptor agonist quinpirole. These selective effects on dopamine signaling seen in striatal subregions after repeated drug exposure may partially explain why tolerance develops to the rewarding effects, but not towards the psychosis inducing properties of amphetamine.
Collapse
Affiliation(s)
- Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Oona Lagström
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy University of Gothenburg, Sweden.
| |
Collapse
|
42
|
Staege S, Kutschenko A, Baumann H, Glaß H, Henkel L, Gschwendtberger T, Kalmbach N, Klietz M, Hermann A, Lohmann K, Seibler P, Wegner F. Reduced Expression of GABA A Receptor Alpha2 Subunit Is Associated With Disinhibition of DYT-THAP1 Dystonia Patient-Derived Striatal Medium Spiny Neurons. Front Cell Dev Biol 2021; 9:650586. [PMID: 34095114 PMCID: PMC8176025 DOI: 10.3389/fcell.2021.650586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
DYT-THAP1 dystonia (formerly DYT6) is an adolescent-onset dystonia characterized by involuntary muscle contractions usually involving the upper body. It is caused by mutations in the gene THAP1 encoding for the transcription factor Thanatos-associated protein (THAP) domain containing apoptosis-associated protein 1 and inherited in an autosomal-dominant manner with reduced penetrance. Alterations in the development of striatal neuronal projections and synaptic function are known from transgenic mice models. To investigate pathogenetic mechanisms, human induced pluripotent stem cell (iPSC)-derived medium spiny neurons (MSNs) from two patients and one family member with reduced penetrance carrying a mutation in the gene THAP1 (c.474delA and c.38G > A) were functionally characterized in comparison to healthy controls. Calcium imaging and quantitative PCR analysis revealed significantly lower Ca2+ amplitudes upon GABA applications and a marked downregulation of the gene encoding the GABAA receptor alpha2 subunit in THAP1 MSNs indicating a decreased GABAergic transmission. Whole-cell patch-clamp recordings showed a significantly lower frequency of miniature postsynaptic currents (mPSCs), whereas the frequency of spontaneous action potentials (APs) was elevated in THAP1 MSNs suggesting that decreased synaptic activity might have resulted in enhanced generation of APs. Our molecular and functional data indicate that a reduced expression of GABAA receptor alpha2 subunit could eventually lead to limited GABAergic synaptic transmission, neuronal disinhibition, and hyperexcitability of THAP1 MSNs. These data give pathophysiological insight and may contribute to the development of novel treatment strategies for DYT-THAP1 dystonia.
Collapse
Affiliation(s)
- Selma Staege
- Department of Neurology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Anna Kutschenko
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Hauke Baumann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University of Rostock, Rostock, Germany
| | - Lisa Henkel
- Department of Neurology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases Rostock/Greifswald, Rostock, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| |
Collapse
|
43
|
Rescue of striatal long-term depression by chronic mGlu5 receptor negative allosteric modulation in distinct dystonia models. Neuropharmacology 2021; 192:108608. [PMID: 33991565 DOI: 10.1016/j.neuropharm.2021.108608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
An impairment of long-term synaptic plasticity is considered as a peculiar endophenotype of distinct forms of dystonia, a common, disabling movement disorder. Among the few therapeutic options, broad-spectrum antimuscarinic drugs are utilized, aimed at counteracting abnormal striatal acetylcholine-mediated transmission, which plays a crucial role in dystonia pathophysiology. We previously demonstrated a complete loss of long-term synaptic depression (LTD) at corticostriatal synapses in rodent models of two distinct forms of isolated dystonia, resulting from mutations in the TOR1A (DYT1), and GNAL (DYT25) genes. In addition to anticholinergic agents, the aberrant excitability of striatal cholinergic cells can be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). Here, we tested the efficacy of the negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) on striatal LTD. We show that, whereas acute treatment failed to rescue LTD, chronic dipraglurant rescued this form of synaptic plasticity both in DYT1 mice and GNAL rats. Our analysis of the pharmacokinetic profile of dipraglurant revealed a relatively short half-life, which led us to uncover a peculiar time-course of recovery based on the timing from last dipraglurant injection. Indeed, striatal spiny projection neurons (SPNs) recorded within 2 h from last administration showed full expression of synaptic plasticity, whilst the extent of recovery progressively diminished when SPNs were recorded 4-6 h after treatment. Our findings suggest that distinct dystonia genes may share common signaling pathway dysfunction. More importantly, they indicate that dipraglurant might be a potential novel therapeutic agent for this disabling disorder.
Collapse
|
44
|
Downs AM, Fan X, Kadakia RF, Donsante Y, Jinnah HA, Hess EJ. Cell-intrinsic effects of TorsinA(ΔE) disrupt dopamine release in a mouse model of TOR1A dystonia. Neurobiol Dis 2021; 155:105369. [PMID: 33894367 DOI: 10.1016/j.nbd.2021.105369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
TOR1A-associated dystonia, otherwise known as DYT1 dystonia, is an inherited dystonia caused by a three base-pair deletion in the TOR1A gene (TOR1AΔE). Although the mechanisms underlying the dystonic movements are largely unknown, abnormalities in striatal dopamine and acetylcholine neurotransmission are consistently implicated whereby dopamine release is reduced while cholinergic tone is increased. Because striatal cholinergic neurotransmission mediates dopamine release, it is not known if the dopamine release deficit is mediated indirectly by abnormal acetylcholine neurotransmission or if Tor1a(ΔE) acts directly within dopaminergic neurons to attenuate release. To dissect the microcircuit that governs the deficit in dopamine release, we conditionally expressed Tor1a(ΔE) in either dopamine neurons or cholinergic interneurons in mice and assessed striatal dopamine release using ex vivo fast scan cyclic voltammetry or dopamine efflux using in vivo microdialysis. Conditional expression of Tor1a(ΔE) in cholinergic neurons did not affect striatal dopamine release. In contrast, conditional expression of Tor1a(ΔE) in dopamine neurons reduced dopamine release to 50% of normal, which is comparable to the deficit in Tor1a+/ΔE knockin mice that express the mutation ubiquitously. Despite the deficit in dopamine release, we found that the Tor1a(ΔE) mutation does not cause obvious nerve terminal dysfunction as other presynaptic mechanisms, including electrical excitability, vesicle recycling/refilling, Ca2+ signaling, D2 dopamine autoreceptor function and GABAB receptor function, are intact. Although the mechanistic link between Tor1a(ΔE) and dopamine release is unclear, these results clearly demonstrate that the defect in dopamine release is caused by the action of the Tor1a(ΔE) mutation within dopamine neurons.
Collapse
Affiliation(s)
- Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Radhika F Kadakia
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
Poppi LA, Ho-Nguyen KT, Shi A, Daut CT, Tischfield MA. Recurrent Implication of Striatal Cholinergic Interneurons in a Range of Neurodevelopmental, Neurodegenerative, and Neuropsychiatric Disorders. Cells 2021; 10:907. [PMID: 33920757 PMCID: PMC8071147 DOI: 10.3390/cells10040907] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Cholinergic interneurons are "gatekeepers" for striatal circuitry and play pivotal roles in attention, goal-directed actions, habit formation, and behavioral flexibility. Accordingly, perturbations to striatal cholinergic interneurons have been associated with many neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The role of acetylcholine in many of these disorders is well known, but the use of drugs targeting cholinergic systems fell out of favor due to adverse side effects and the introduction of other broadly acting compounds. However, in response to recent findings, re-examining the mechanisms of cholinergic interneuron dysfunction may reveal key insights into underlying pathogeneses. Here, we provide an update on striatal cholinergic interneuron function, connectivity, and their putative involvement in several disorders. In doing so, we aim to spotlight recurring physiological themes, circuits, and mechanisms that can be investigated in future studies using new tools and approaches.
Collapse
Affiliation(s)
- Lauren A. Poppi
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Khue Tu Ho-Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anna Shi
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Cynthia T. Daut
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Max A. Tischfield
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
46
|
Kilic-Berkmen G, Wright LJ, Perlmutter JS, Comella C, Hallett M, Teller J, Pirio Richardson S, Peterson DA, Cruchaga C, Lungu C, Jinnah HA. The Dystonia Coalition: A Multicenter Network for Clinical and Translational Studies. Front Neurol 2021; 12:660909. [PMID: 33897610 PMCID: PMC8060489 DOI: 10.3389/fneur.2021.660909] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal postures, repetitive movements, or both. Research in dystonia has been challenged by several factors. First, dystonia is uncommon. Dystonia is not a single disorder but a family of heterogenous disorders with varied clinical manifestations and different causes. The different subtypes may be seen by providers in different clinical specialties including neurology, ophthalmology, otolaryngology, and others. These issues have made it difficult for any single center to recruit large numbers of subjects with specific types of dystonia for research studies in a timely manner. The Dystonia Coalition is a consortium of investigators that was established to address these challenges. Since 2009, the Dystonia Coalition has encouraged collaboration by engaging 56 sites across North America, Europe, Asia, and Australia. Its emphasis on collaboration has facilitated establishment of international consensus for the definition and classification of all dystonias, diagnostic criteria for specific subtypes of dystonia, standardized evaluation strategies, development of clinimetrically sound measurement tools, and large multicenter studies that document the phenotypic heterogeneity and evolution of specific types of dystonia.
Collapse
Affiliation(s)
- Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Laura J. Wright
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joel S. Perlmutter
- Department of Neurology, Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Cynthia Comella
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, United States
| | - Jan Teller
- Dystonia Medical Research Foundation, Chicago, IL, United States
| | - Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - David A. Peterson
- Institute for Neural Computation, University of California, San Diego, La Jolla, CA, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, MO, United States
| | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, United States
| | - H. A. Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
47
|
Mencacci NE, Brockmann MM, Dai J, Pajusalu S, Atasu B, Campos J, Pino G, Gonzalez-Latapi P, Patzke C, Schwake M, Tucci A, Pittman A, Simon-Sanchez J, Carvill GL, Balint B, Wiethoff S, Warner TT, Papandreou A, Soo A, Rein R, Kadastik-Eerme L, Puusepp S, Reinson K, Tomberg T, Hanagasi H, Gasser T, Bhatia KP, Kurian MA, Lohmann E, Õunap K, Rosenmund C, Südhof TC, Wood NW, Krainc D, Acuna C. Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. J Clin Invest 2021; 131:140625. [PMID: 33539324 DOI: 10.1172/jci140625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.
Collapse
Affiliation(s)
- Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
| | - Jinye Dai
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Burcu Atasu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christopher Patzke
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Schwake
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arianna Tucci
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alan Pittman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Wiethoff
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Klinik für Neurologie mit Institut für Translationale Neurologie, Albert Schweitzer Campus 1, Gebäude A1, Münster, Germany
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Audrey Soo
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | | | | | - Sanna Puusepp
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Tiiu Tomberg
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Manju A Kurian
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom.,Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom
| | - Ebba Lohmann
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | | | - Thomas C Südhof
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Claudio Acuna
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA.,Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| |
Collapse
|
48
|
Kutschenko A, Staege S, Grütz K, Glaß H, Kalmbach N, Gschwendtberger T, Henkel LM, Heine J, Grünewald A, Hermann A, Seibler P, Wegner F. Functional and Molecular Properties of DYT-SGCE Myoclonus-Dystonia Patient-Derived Striatal Medium Spiny Neurons. Int J Mol Sci 2021; 22:3565. [PMID: 33808167 PMCID: PMC8037318 DOI: 10.3390/ijms22073565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/20/2023] Open
Abstract
Myoclonus-dystonia (DYT-SGCE, formerly DYT11) is characterized by alcohol-sensitive, myoclonic-like appearance of fast dystonic movements. It is caused by mutations in the SGCE gene encoding ε-sarcoglycan leading to a dysfunction of this transmembrane protein, alterations in the cerebello-thalamic pathway and impaired striatal plasticity. To elucidate underlying pathogenic mechanisms, we investigated induced pluripotent stem cell (iPSC)-derived striatal medium spiny neurons (MSNs) from two myoclonus-dystonia patients carrying a heterozygous mutation in the SGCE gene (c.298T>G and c.304C>T with protein changes W100G and R102X) in comparison to two matched healthy control lines. Calcium imaging showed significantly elevated basal intracellular Ca2+ content and lower frequency of spontaneous Ca2+ signals in SGCE MSNs. Blocking of voltage-gated Ca2+ channels by verapamil was less efficient in suppressing KCl-induced Ca2+ peaks of SGCE MSNs. Ca2+ amplitudes upon glycine and acetylcholine applications were increased in SGCE MSNs, but not after GABA or glutamate applications. Expression of voltage-gated Ca2+ channels and most ionotropic receptor subunits was not altered. SGCE MSNs showed significantly reduced GABAergic synaptic density. Whole-cell patch-clamp recordings displayed elevated amplitudes of miniature postsynaptic currents and action potentials in SGCE MSNs. Our data contribute to a better understanding of the pathophysiology and the development of novel therapeutic strategies for myoclonus-dystonia.
Collapse
Grants
- Karlheinz-Hartmann-Stiftung (Hannover, Germany), Ellen-Schmidt-Program (Hannover, Germany), Hermann and Lilly Schilling Stiftung für medizinische Forschung im Stifterverband, German Research Foundation (FOR2488) Karlheinz-Hartmann-Stiftung (Hannover, Germany), Ellen-Schmidt-Program (Hannover, Germany), Hermann and Lilly Schilling Stiftung für medizinische Forschung im Stifterverband, German Research Foundation (FOR2488)
Collapse
Affiliation(s)
- Anna Kutschenko
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
| | - Selma Staege
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| | - Karen Grütz
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (K.G.); (A.G.); (P.S.)
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht-Kossel“, Department of Neurology, University Medical Center, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; (H.G.); (A.H.)
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
| | - Thomas Gschwendtberger
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| | - Lisa M. Henkel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| | - Johanne Heine
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (K.G.); (A.G.); (P.S.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel“, Department of Neurology, University Medical Center, University of Rostock, Gehlsheimer Str. 20, 18147 Rostock, Germany; (H.G.); (A.H.)
- German Center for Neurodegenerative Diseases Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (K.G.); (A.G.); (P.S.)
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (A.K.); (S.S.); (N.K.); (T.G.); (L.M.H.); (J.H.)
- Center for Systems Neuroscience, Bünteweg 2, 30559 Hannover, Germany
| |
Collapse
|
49
|
Alteration of the cholinergic system and motor deficits in cholinergic neuron-specific Dyt1 knockout mice. Neurobiol Dis 2021; 154:105342. [PMID: 33757902 DOI: 10.1016/j.nbd.2021.105342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Dystonia is a neurological movement disorder characterized by sustained or intermittent muscle contractions, repetitive movement, and sometimes abnormal postures. DYT1 dystonia is one of the most common genetic dystonias, and most patients carry heterozygous DYT1 ∆GAG mutations causing a loss of a glutamic acid of the protein torsinA. Patients can be treated with anticholinergics, such as trihexyphenidyl, suggesting an abnormal cholinergic state. Early work on the cell-autonomous effects of Dyt1 deletion with ChI-specific Dyt1 conditional knockout mice (Dyt1 Ch1KO) revealed abnormal electrophysiological responses of striatal ChIs to muscarine and quinpirole, motor deficits, and no changes in the number or size of the ChIs. However, the Chat-cre line that was used to derive Dyt1 Ch1KO mice contained a neomycin cassette and was reported to have ectopic cre-mediated recombination. In this study, we generated a Dyt1 Ch2KO mouse line by removing the neomycin cassette in Dyt1 Ch1KO mice. The Dyt1 Ch2KO mice showed abnormal paw clenching behavior, motor coordination and balance deficits, impaired motor learning, reduced striatal choline acetyltransferase protein level, and a reduced number of striatal ChIs. Furthermore, the mutant striatal ChIs had a normal muscarinic inhibitory function, impaired quinpirole-mediated inhibition, and altered current density. Our findings demonstrate a cell-autonomous effect of Dyt1 deletion on the striatal ChIs and a critical role for the striatal ChIs and corticostriatal pathway in the pathogenesis of DYT1 dystonia.
Collapse
|
50
|
Li J, Levin DS, Kim AJ, Pappas SS, Dauer WT. TorsinA restoration in a mouse model identifies a critical therapeutic window for DYT1 dystonia. J Clin Invest 2021; 131:139606. [PMID: 33529159 DOI: 10.1172/jci139606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
In inherited neurodevelopmental diseases, pathogenic processes unique to critical periods during early brain development may preclude the effectiveness of gene modification therapies applied later in life. We explored this question in a mouse model of DYT1 dystonia, a neurodevelopmental disease caused by a loss-of-function mutation in the TOR1A gene encoding torsinA. To define the temporal requirements for torsinA in normal motor function and gene replacement therapy, we developed a mouse line enabling spatiotemporal control of the endogenous torsinA allele. Suppressing torsinA during embryogenesis caused dystonia-mimicking behavioral and neuropathological phenotypes. Suppressing torsinA during adulthood, however, elicited no discernible abnormalities, establishing an essential requirement for torsinA during a developmental critical period. The developing CNS exhibited a parallel "therapeutic critical period" for torsinA repletion. Although restoring torsinA in juvenile DYT1 mice rescued motor phenotypes, there was no benefit from adult torsinA repletion. These data establish a unique requirement for torsinA in the developing nervous system and demonstrate that the critical period genetic insult provokes permanent pathophysiology mechanistically delinked from torsinA function. These findings imply that to be effective, torsinA-based therapeutic strategies must be employed early in the course of DYT1 dystonia.
Collapse
Affiliation(s)
- Jay Li
- Medical Scientist Training Program.,Cellular and Molecular Biology Graduate Program
| | - Daniel S Levin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute.,Department of Neurology
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute.,Department of Neurology.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|