1
|
Esther Rubavathy SM, Prakash M. Computational insights in repurposing a cardiovascular drug for Alzheimer's disease: the role of aromatic amino acids in stabilizing the drug through π-π stacking interaction. Phys Chem Chem Phys 2025; 27:1071-1082. [PMID: 39679694 DOI: 10.1039/d4cp03291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is a neurological condition that worsens over time and causes linguistic difficulties, cognitive decline, and memory loss. Since AD is a complicated, multifaceted illness, it is critical to identify drugs to combat this degenerative condition. Histone deacetylase 2 (HDAC2) represents a promising epigenetic target for neurodegenerative diseases. So, for this study, we chose HDAC2 as the targeted protein. Repurposing drugs has many advantages, including reduced costs and high profits. There is a lower probability of malfunction because the unique drug candidate has previously completed numerous investigations. In this study, we have taken 58 clinically approved food and drug administration (FDA) drugs utilized in clinical trials for AD. Molecular docking was carried out for the 58 compounds. The telmisartan drug has the highest binding score of -9.4 kcal mol-1. The angiotensin II receptor blocker (ARB) telmisartan has demonstrated some promise in AD research as of the last update in January 2022. However, its exact significance in treating or preventing AD is still being studied. Molecular dynamics (MD) and molecular mechanics with generalized born and surface area solvation (MM-GBSA)/interaction entropy (IE) calculations were carried out to study the structural stability of the complexes. Umbrella sampling (US) techniques are a cutting-edge drug development method to understand more about the interactions between protein and ligand. π-π stacking interactions play a major role in helping the ligand to bind in the zinc bounding domain of the protein. From these analyses, we conclude that telmisartan, which is a cardiovascular drug, is more potent than the other drugs to treat AD. The anti-inflammatory, neuroprotective, and blood-brain barrier-crossing qualities of telmisartan make it a promising therapeutic agent for AD; however, more research, including larger clinical trials, is needed to determine the drug's precise role in treating AD.
Collapse
Affiliation(s)
- S M Esther Rubavathy
- Computational Chemistry Research Laboratory (CCRL), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu, Tamil Nadu, India.
| | - M Prakash
- Computational Chemistry Research Laboratory (CCRL), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603 203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
2
|
Bagyinszky E, An SSA. Haploinsufficiency and Alzheimer's Disease: The Possible Pathogenic and Protective Genetic Factors. Int J Mol Sci 2024; 25:11959. [PMID: 39596030 PMCID: PMC11594089 DOI: 10.3390/ijms252211959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder influenced by various genetic factors. In addition to the well-established amyloid precursor protein (APP), Presenilin-1 (PSEN1), Presenilin-2 (PSEN2), and apolipoprotein E (APOE), several other genes such as Sortilin-related receptor 1 (SORL1), Phospholipid-transporting ATPase ABCA7 (ABCA7), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), Phosphatidylinositol-binding clathrin assembly protein (PICALM), and clusterin (CLU) were implicated. These genes contribute to neurodegeneration through both gain-of-function and loss-of-function mechanisms. While it was traditionally thought that heterozygosity in autosomal recessive mutations does not lead to disease, haploinsufficiency was linked to several conditions, including cancer, autism, and intellectual disabilities, indicating that a single functional gene copy may be insufficient for normal cellular functions. In AD, the haploinsufficiency of genes such as ABCA7 and SORL1 may play significant yet under-explored roles. Paradoxically, heterozygous knockouts of PSEN1 or PSEN2 can impair synaptic plasticity and alter the expression of genes involved in oxidative phosphorylation and cell adhesion. Animal studies examining haploinsufficient AD risk genes, such as vacuolar protein sorting-associated protein 35 (VPS35), sirtuin-3 (SIRT3), and PICALM, have shown that their knockout can exacerbate neurodegenerative processes by promoting amyloid production, accumulation, and inflammation. Conversely, haploinsufficiency in APOE, beta-secretase 1 (BACE1), and transmembrane protein 59 (TMEM59) was reported to confer neuroprotection by potentially slowing amyloid deposition and reducing microglial activation. Given its implications for other neurodegenerative diseases, the role of haploinsufficiency in AD requires further exploration. Modeling the mechanisms of gene knockout and monitoring their expression patterns is a promising approach to uncover AD-related pathways. However, challenges such as identifying susceptible genes, gene-environment interactions, phenotypic variability, and biomarker analysis must be addressed. Enhancing model systems through humanized animal or cell models, utilizing advanced research technologies, and integrating multi-omics data will be crucial for understanding disease pathways and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Strausbaugh Hjelmstad A, Pushie MJ, Ruth K, Escobedo M, Kuter K, Haas KL. Investigating Cu(I) binding to model peptides of N-terminal Aβ isoforms. J Inorg Biochem 2024; 253:112480. [PMID: 38309203 DOI: 10.1016/j.jinorgbio.2024.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Amyloid beta (Aβ) peptides and copper (Cu) ions are each involved in critical biological processes including antimicrobial activity, regulation of synaptic function, angiogenesis, and others. Aβ binds to Cu and may play a role in Cu trafficking. Aβ peptides exist in isoforms that vary at their C-and N-termini; variation at the N-terminal sequence affects Cu binding affinity, structure, and redox activity by providing different sets of coordinating groups to the metal ion. Several N-terminal isoforms have been detected in human brain tissues including Aβ1-40/42, Aβ3-42, pEAβ3-42, Aβ4-42, Aβ11-40 and pEAβ11-40 (where pE denotes an N-terminal pyroglutamic acid). Several previous works have individually investigated the affinity and structure of Cu(I) bound to some of these isoforms' metal binding domains. However, the disparately reported values are apparent constants collected under different sets of conditions, and thus an integrated comparison cannot be made. The work presented here provides the Cu(I) coordination structure and binding affinities of these six biologically relevant Aβ isoforms determined in parallel using model peptides of the Aβ metal binding domains (Aβ1-16, Aβ3-16, pEAβ3-16, Aβ4-16, Aβ11-16 and pEAβ11-16). The binding affinities of Cu(I)-Aβ complexes were measured using solution competition with ferrozine (Fz) and bicinchoninic acid (BCA), two colorimetric Cu(I) indicators in common use. The Cu(I) coordination structures were characterized by X-ray absorption spectroscopy. The data presented here facilitate comparison of the isoforms' Cu-binding interactions and contribute to our understanding of the role of Aβ peptides as copper chelators in healthy and diseased brains.
Collapse
Affiliation(s)
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kaylee Ruth
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Maria Escobedo
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, USA
| | - Kristin Kuter
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, USA
| | - Kathryn L Haas
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
4
|
Nudurupati U, Narla T, Punihaole D, Ou Y. A facile approach to create sensitive and selective Cu(ii) sensors on carbon fiber microelectrodes. RSC Adv 2023; 13:33688-33695. [PMID: 38019989 PMCID: PMC10652356 DOI: 10.1039/d3ra05119f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
A facile platform derived from deposition of ethynyl linkers on carbon fiber microelectrodes has been developed for sensitive and selective sensing of Cu(ii). This study is the first to demonstrate the successful anodic deposition of ethynyl linkers, specifically 1,4-diethynylbenzene, onto carbon fiber microelectrodes. Multi-scan deposition of DEB on these microelectrodes resulted in an increased sensitivity and selectivity towards Cu(ii) that persists amidst other divalent interferents and displays sustained performance over four days while stored at room temperature. This method can be extended to other ethynyl terminal moieties, thereby creating a versatile chemical platform that will enable improved sensitivity and selectivity for a new frontier of biomarker measurement.
Collapse
Affiliation(s)
| | - Terdha Narla
- Department of Pharmacology, University of Vermont USA
| | - David Punihaole
- Department of Chemistry, University of Vermont USA
- Pipeline Investigator in Vermont Centre for Cardiovascular & Brain Health USA
| | - Yangguang Ou
- Department of Chemistry, University of Vermont USA
- Pipeline Investigator in Vermont Centre for Cardiovascular & Brain Health USA
| |
Collapse
|
5
|
Doroszkiewicz J, Farhan JA, Mroczko J, Winkel I, Perkowski M, Mroczko B. Common and Trace Metals in Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2023; 24:15721. [PMID: 37958705 PMCID: PMC10649239 DOI: 10.3390/ijms242115721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Trace elements and metals play critical roles in the normal functioning of the central nervous system (CNS), and their dysregulation has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In a healthy CNS, zinc, copper, iron, and manganese play vital roles as enzyme cofactors, supporting neurotransmission, cellular metabolism, and antioxidant defense. Imbalances in these trace elements can lead to oxidative stress, protein aggregation, and mitochondrial dysfunction, thereby contributing to neurodegeneration. In AD, copper and zinc imbalances are associated with amyloid-beta and tau pathology, impacting cognitive function. PD involves the disruption of iron and manganese levels, leading to oxidative damage and neuronal loss. Toxic metals, like lead and cadmium, impair synaptic transmission and exacerbate neuroinflammation, impacting CNS health. The role of aluminum in AD neurofibrillary tangle formation has also been noted. Understanding the roles of these elements in CNS health and disease might offer potential therapeutic targets for neurodegenerative disorders. The Codex Alimentarius standards concerning the mentioned metals in foods may be one of the key legal contributions to safeguarding public health. Further research is needed to fully comprehend these complex mechanisms and develop effective interventions.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Maciej Perkowski
- Department of Public International Law and European Law, Faculty of Law, University of Bialystok, 15-089 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
6
|
Kepp KP, Robakis NK, Høilund-Carlsen PF, Sensi SL, Vissel B. The amyloid cascade hypothesis: an updated critical review. Brain 2023; 146:3969-3990. [PMID: 37183523 DOI: 10.1093/brain/awad159] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023] Open
Abstract
Results from recent clinical trials of antibodies that target amyloid-β (Aβ) for Alzheimer's disease have created excitement and have been heralded as corroboration of the amyloid cascade hypothesis. However, while Aβ may contribute to disease, genetic, clinical, imaging and biochemical data suggest a more complex aetiology. Here we review the history and weaknesses of the amyloid cascade hypothesis in view of the new evidence obtained from clinical trials of anti-amyloid antibodies. These trials indicate that the treatments have either no or uncertain clinical effect on cognition. Despite the importance of amyloid in the definition of Alzheimer's disease, we argue that the data point to Aβ playing a minor aetiological role. We also discuss data suggesting that the concerted activity of many pathogenic factors contribute to Alzheimer's disease and propose that evolving multi-factor disease models will better underpin the search for more effective strategies to treat the disease.
Collapse
Affiliation(s)
- Kasper P Kepp
- Section of Biophysical and Biomedicinal chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nikolaos K Robakis
- Icahn School of Medicine at Mount Sinai Medical Center, New York, NY 10029, USA
| | - Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Stefano L Sensi
- Center for Advanced Studies and Technology-CAST, and Institute for Advanced Biotechnology (ITAB), University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, 66013, Italy
| | - Bryce Vissel
- St Vincent's Hospital Centre for Applied Medical Research, St Vincent's Hospital, Sydney, 2010, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Fedele E. Anti-Amyloid Therapies for Alzheimer's Disease and the Amyloid Cascade Hypothesis. Int J Mol Sci 2023; 24:14499. [PMID: 37833948 PMCID: PMC10578107 DOI: 10.3390/ijms241914499] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Over the past 30 years, the majority of (pre)clinical efforts to find an effective therapy for Alzheimer's disease (AD) focused on clearing the β-amyloid peptide (Aβ) from the brain since, according to the amyloid cascade hypothesis, the peptide was (and it is still considered by many) the pathogenic determinant of this neurodegenerative disorder. However, as reviewed in this article, results from the numerous clinical trials that have tested anti-Aβ therapies to date indicate that this peptide plays a minor role in the pathogenesis of AD. Indeed, even Aducanumab and Lecanemab, the two antibodies recently approved by the FDA for AD therapy, as well as Donanemab showed limited efficacy on cognitive parameters in phase III clinical trials, despite their capability of markedly lowering Aβ brain load. Furthermore, preclinical evidence demonstrates that Aβ possesses several physiological functions, including memory formation, suggesting that AD may in part be due to a loss of function of this peptide. Finally, it is generally accepted that AD could be the result of many molecular dysfunctions, and therefore, if we keep chasing only Aβ, it means that we cannot see the forest for the trees.
Collapse
Affiliation(s)
- Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
8
|
Kiouri DP, Tsoupra E, Peana M, Perlepes SP, Stefanidou ME, Chasapis CT. Multifunctional role of zinc in human health: an update. EXCLI JOURNAL 2023; 22:809-827. [PMID: 37780941 PMCID: PMC10539547 DOI: 10.17179/excli2023-6335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 10/03/2023]
Abstract
Zinc is a multipurpose trace element for the human body, as it plays a crucial part in various physiological processes, such as cell growth and development, metabolism, cognitive, reproductive, and immune system function. Its significance in human health is widely acknowledged, and this has led the scientific community towards more research that aims to uncover all of its beneficial properties, especially when compared to other essential metal ions. One notable area where zinc has shown beneficial effects is in the prevention and treatment of various diseases, including cancer. This review aims to explain the involvement of zinc in specific health conditions such as cancer, coronavirus disease 2019 (COVID-19) and neurological disorders like Alzheimer's disease, as well as its impact on the gut microbiome.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Evi Tsoupra
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Maria E. Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
9
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
10
|
Chen C, Wei J, Ma X, Xia B, Shakir N, Zhang JK, Zhang L, Cui Y, Ferguson D, Qiu S, Bai F. Disrupted Maturation of Prefrontal Layer 5 Neuronal Circuits in an Alzheimer's Mouse Model of Amyloid Deposition. Neurosci Bull 2023; 39:881-892. [PMID: 36152121 PMCID: PMC10264337 DOI: 10.1007/s12264-022-00951-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022] Open
Abstract
Mutations in genes encoding amyloid precursor protein (APP) and presenilins (PSs) cause familial forms of Alzheimer's disease (AD), a neurodegenerative disorder strongly associated with aging. It is currently unknown whether and how AD risks affect early brain development, and to what extent subtle synaptic pathology may occur prior to overt hallmark AD pathology. Transgenic mutant APP/PS1 over-expression mouse lines are key tools for studying the molecular mechanisms of AD pathogenesis. Among these lines, the 5XFAD mice rapidly develop key features of AD pathology and have proven utility in studying amyloid plaque formation and amyloid β (Aβ)-induced neurodegeneration. We reasoned that transgenic mutant APP/PS1 over-expression in 5XFAD mice may lead to neurodevelopmental defects in early cortical neurons, and performed detailed synaptic physiological characterization of layer 5 (L5) neurons from the prefrontal cortex (PFC) of 5XFAD and wild-type littermate controls. L5 PFC neurons from 5XFAD mice show early APP/Aβ immunolabeling. Whole-cell patch-clamp recording at an early post-weaning age (P22-30) revealed functional impairments; although 5XFAD PFC-L5 neurons exhibited similar membrane properties, they were intrinsically less excitable. In addition, these neurons received smaller amplitude and frequency of miniature excitatory synaptic inputs. These functional disturbances were further corroborated by decreased dendritic spine density and spine head volumes that indicated impaired synapse maturation. Slice biotinylation followed by Western blot analysis of PFC-L5 tissue revealed that 5XFAD mice showed reduced synaptic AMPA receptor subunit GluA1 and decreased synaptic NMDA receptor subunit GluN2A. Consistent with this, patch-clamp recording of the evoked L23>L5 synaptic responses revealed a reduced AMPA/NMDA receptor current ratio, and an increased level of AMPAR-lacking silent synapses. These results suggest that transgenic mutant forms of APP/PS1 overexpression in 5XFAD mice leads to early developmental defects of cortical circuits, which could contribute to the age-dependent synaptic pathology and neurodegeneration later in life.
Collapse
Affiliation(s)
- Chang Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Baomei Xia
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Neha Shakir
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Jessica K Zhang
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Le Zhang
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| | - Feng Bai
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
11
|
Donadio V, Sturchio A, Rizzo G, Abu Rumeileh S, Liguori R, Espay AJ. Pathology vs pathogenesis: Rationale and pitfalls in the clinicopathology model of neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:35-55. [PMID: 36796947 DOI: 10.1016/b978-0-323-85538-9.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In neurodegenerative disorders, the term pathology is often implicitly referred to as pathogenesis. Pathology has been conceived as a window into the pathogenesis of neurodegenerative disorders. This clinicopathologic framework posits that what can be identified and quantified in postmortem brain tissue can explain both premortem clinical manifestations and the cause of death, a forensic approach to understanding neurodegeneration. As the century-old clinicopathology framework has yielded little correlation between pathology and clinical features or neuronal loss, the relationship between proteins and degeneration is ripe for revisitation. There are indeed two synchronous consequences of protein aggregation in neurodegeneration: the loss of the soluble/normal proteins on one; the accrual of the insoluble/abnormal fraction of these proteins on the other. The omission of the first part in the protein aggregation process is an artifact of the early autopsy studies: soluble, normal proteins have disappeared, with only the remaining insoluble fraction amenable to quantification. We here review the collective evidence from human data suggesting that protein aggregates, known collectively as pathology, are the consequence of many biological, toxic, and infectious exposures, but may not explain alone the cause or pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden; James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Samir Abu Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
12
|
Sanders OD. Virus-Like Cytosolic and Cell-Free Oxidatively Damaged Nucleic Acids Likely Drive Inflammation, Synapse Degeneration, and Neuron Death in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:1-19. [PMID: 36761106 PMCID: PMC9881037 DOI: 10.3233/adr-220047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, inflammation, and amyloid-β are Alzheimer's disease (AD) hallmarks that cause each other and other AD hallmarks. Most amyloid-β-lowering, antioxidant, anti-inflammatory, and antimicrobial AD clinical trials failed; none stopped or reversed AD. Although signs suggest an infectious etiology, no pathogen accumulated consistently in AD patients. Neuropathology, neuronal cell culture, rodent, genome-wide association, epidemiological, biomarker, and clinical studies, plus analysis using Hill causality criteria and revised Koch's postulates, indicate that the virus-like oxidative damage-associated molecular-pattern (DAMP) cytosolic and cell-free nucleic acids accumulated in AD patients' brains likely drive neuroinflammation, synaptotoxicity, and neurotoxicity. Cytosolic oxidatively-damaged mitochondrial DNA accumulated outside mitochondria dose-dependently in preclinical AD and AD patients' hippocampal neurons, and in AD patients' neocortical neurons but not cerebellar neurons or glia. In oxidatively-stressed neural cells and rodents' brains, cytosolic oxidatively-damaged mitochondrial DNA accumulated and increased antiviral and inflammatory proteins, including cleaved caspase-1, interleukin-1β, and interferon-β. Cytosolic double-stranded RNA and DNA are DAMPs that induce antiviral interferons and/or inflammatory proteins by oligomerizing with various innate-immune pattern-recognition receptors, e.g., cyclic GMP-AMP synthase and the nucleotide-binding-oligomerization-domain-like-receptor-pyrin-domain-containing-3 inflammasome. In oxidatively-stressed neural cells, cytosolic oxidatively-damaged mitochondrial DNA caused synaptotoxicity and neurotoxicity. Depleting mitochondrial DNA prevented these effects. Additionally, cell-free nucleic acids accumulated in AD patients' blood, extracellular vesicles, and senile plaques. Injecting cell-free nucleic acids bound to albumin oligomers into wild-type mice's hippocampi triggered antiviral interferon-β secretion; interferon-β injection caused synapse degeneration. Deoxyribonuclease-I treatment appeared to improve a severe-AD patient's Mini-Mental Status Exam by 15 points. Preclinical and clinical studies of deoxyribonuclease-I and a ribonuclease for AD should be prioritized.
Collapse
Affiliation(s)
- Owen Davis Sanders
- Nebraska Medical Center, Omaha, NE, USA,Correspondence to: Owen Davis Sanders, 210 S 16th St. Apt. 215, Omaha, NE 68102, USA. E-mails: and
| |
Collapse
|
13
|
Lardelli M. An Alternative View of Familial Alzheimer's Disease Genetics. J Alzheimers Dis 2023; 96:13-39. [PMID: 37718800 DOI: 10.3233/jad-230313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Probabilistic and parsimony-based arguments regarding available genetics data are used to propose that Hardy and Higgin's amyloid cascade hypothesis is valid but is commonly interpreted too narrowly to support, incorrectly, the primacy of the amyloid-β peptide (Aβ) in driving Alzheimer's disease pathogenesis. Instead, increased activity of the βCTF (C99) fragment of AβPP is the critical pathogenic determinant altered by mutations in the APP gene. This model is consistent with the regulation of APP mRNA translation via its 5' iron responsive element. Similar arguments support that the pathological effects of familial Alzheimer's disease mutations in the genes PSEN1 and PSEN2 are not exerted directly via changes in AβPP cleavage to produce different ratios of Aβ length. Rather, these mutations likely act through effects on presenilin holoprotein conformation and function, and possibly the formation and stability of multimers of presenilin holoprotein and/or of the γ-secretase complex. All fAD mutations in APP, PSEN1, and PSEN2 likely find unity of pathological mechanism in their actions on endolysosomal acidification and mitochondrial function, with detrimental effects on iron homeostasis and promotion of "pseudo-hypoxia" being of central importance. Aβ production is enhanced and distorted by oxidative stress and accumulates due to decreased lysosomal function. It may act as a disease-associated molecular pattern enhancing oxidative stress-driven neuroinflammation during the cognitive phase of the disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
Pacheco Pachado M, Casas AI, Elbatreek MH, Nogales C, Guney E, Espay AJ, Schmidt HH. Re-Addressing Dementia by Network Medicine and Mechanism-Based Molecular Endotypes. J Alzheimers Dis 2023; 96:47-56. [PMID: 37742653 PMCID: PMC10657714 DOI: 10.3233/jad-230694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
Alzheimer's disease (AD) and other forms of dementia are together a leading cause of disability and death in the aging global population, imposing a high personal, societal, and economic burden. They are also among the most prominent examples of failed drug developments. Indeed, after more than 40 AD trials of anti-amyloid interventions, reduction of amyloid-β (Aβ) has never translated into clinically relevant benefits, and in several cases yielded harm. The fundamental problem is the century-old, brain-centric phenotype-based definitions of diseases that ignore causal mechanisms and comorbidities. In this hypothesis article, we discuss how such current outdated nosology of dementia is a key roadblock to precision medicine and articulate how Network Medicine enables the substitution of clinicopathologic phenotypes with molecular endotypes and propose a new framework to achieve precision and curative medicine for patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Mayra Pacheco Pachado
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ana I. Casas
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Universitätsklinikum Essen, Klinik für Neurologie, Essen, Germany
| | - Mahmoud H. Elbatreek
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Cristian Nogales
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Emre Guney
- Discovery and Data Science (DDS) Unit, STALICLA R&D SL, Barcelona, Spain
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Harald H.H.W. Schmidt
- Department of Pharmacology and Personalised Medicine, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Imbimbo BP, Ippati S, Watling M, Imbimbo C. Role of monomeric amyloid-β in cognitive performance in Alzheimer's disease: Insights from clinical trials with secretase inhibitors and monoclonal antibodies. Pharmacol Res 2023; 187:106631. [PMID: 36586644 DOI: 10.1016/j.phrs.2022.106631] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
According to the β-amyloid (Aβ) hypothesis of Alzheimer's disease (AD), brain Aβ accumulation is the primary cascade event leading to cognitive deficit and dementia. Numerous anti-Aβ drugs either inhibiting production or aggregation of Aβ or stimulating its clearance have failed to show clinical benefit in large scale AD trials, with β- and γ-secretase inhibitors consistently worsening cognitive and clinical decline. In June 2021, the FDA approved aducanumab, an anti-Aβ monoclonal antibody for early AD based on its ability to reduce brain amyloid plaques, while two other amyloid-clearing antibodies (lecanemab and donanemab) have recently produced encouraging cognitive and clinical results. We reviewed AD trials using PubMed, meeting abstracts and ClinicalTrials.gov and evaluated the effects of such drugs on cerebrospinal fluid (CSF) Aβ levels, correlating them with cognitive effects. We found that β-secretase and γ-secretase inhibitors produce detrimental cognitive effects by significantly reducing CSF Aβ levels. We speculate that monoclonal antibodies targeting Aβ protofibrils, fibrils or plaques may improve cognitive performance in early AD by increasing soluble Aβ levels through Aβ aggregate disassembly and/or stabilization of existing Aβ monomers.These findings suggest that the real culprit in AD may be decreased levels of soluble monomeric Aβ due to sequestration into brain Aβ aggregates and plaques.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy.
| | - Stefania Ippati
- San Raffaele Scientific Institute, San Raffaele Hospital, 20132 Milan, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
16
|
Polo-Cuadrado E, Rojas-Peña C, Acosta-Quiroga K, Camargo-Ayala L, Brito I, Cisterna J, Moncada F, Trilleras J, Rodríguez-Núñez YA, Gutierrez M. Design, synthesis, theoretical study, antioxidant, and anticholinesterase activities of new pyrazolo-fused phenanthrolines. RSC Adv 2022; 12:33032-33048. [PMID: 36425206 PMCID: PMC9671100 DOI: 10.1039/d2ra05532e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 10/19/2023] Open
Abstract
Pyrazole-fused phenanthroline compounds were obtained through several synthetic routes. NMR, HRMS, and IR techniques were used to characterize and confirm the chemical structures. Crystal structures were obtained from compounds 3a, 5b, 5j, 5k, and 5n and analyzed using X-ray diffraction. Compounds were evaluated as acetyl (AChE) and butyrylcholinesterase (BChE) inhibitors, and the results showed a moderate activity. Compound 5c presented the best activity against AChE (IC50 = 53.29 μM) and compound 5l against BChE enzyme (IC50 = 119.3 μM). Furthermore, the ability of the synthetic compounds to scavenge cationic radicals DPPH and ABTS was evaluated. Compound 5e (EC50 = 26.71 μg mL-1) presented the best results in the DPPH assay, and compounds 5e, 5f and 5g (EC50 = 11.51, 3.10 and <3 μg mL-1, respectively) showed better ABTS cationic radical scavenging results. Finally, in silico analyses indicated that 71% of the compounds show good oral availability and are within the ranges established by the Lipinski criteria.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Cristian Rojas-Peña
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Karen Acosta-Quiroga
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
- Doctorado en Química, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile Santiago Chile
| | - Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica (LSO-Act-Bio), Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Avda., Campus Coloso Antofagasta 02800 Chile
| | - Félix Moncada
- Departamento de Química, Universidad Nacional de Colombia Av. Cra 30 # 45-03 Bogotá Colombia
| | - Jorge Trilleras
- Grupo de Investigación en Compuestos Heterocíclicos, Universidad del Atlántico Puerto Colombia 081007 Colombia
| | - Yeray A Rodríguez-Núñez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello Republica 275 Santiago 8370146 Chile
| | - Margarita Gutierrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
17
|
Bacchella C, Dell'Acqua S, Nicolis S, Monzani E, Casella L. The reactivity of copper complexes with neuronal peptides promoted by catecholamines and its impact on neurodegeneration. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Chen C, Ma X, Wei J, Shakir N, Zhang JK, Zhang L, Nehme A, Cui Y, Ferguson D, Bai F, Qiu S. Early impairment of cortical circuit plasticity and connectivity in the 5XFAD Alzheimer's disease mouse model. Transl Psychiatry 2022; 12:371. [PMID: 36075886 PMCID: PMC9458752 DOI: 10.1038/s41398-022-02132-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Genetic risk factors for neurodegenerative disorders, such as Alzheimer's disease (AD), are expressed throughout the life span. How these risk factors affect early brain development and function remain largely unclear. Analysis of animal models with high constructive validity for AD, such as the 5xFAD mouse model, may provide insights on potential early neurodevelopmental effects that impinge on adult brain function and age-dependent degeneration. The 5XFAD mouse model over-expresses human amyloid precursor protein (APP) and presenilin 1 (PS1) harboring five familial AD mutations. It is unclear how the expression of these mutant proteins affects early developing brain circuits. We found that the prefrontal cortex (PFC) layer 5 (L5) neurons in 5XFAD mice exhibit transgenic APP overloading at an early post-weaning age. Impaired synaptic plasticity (long-term potentiation, LTP) was seen at 6-8 weeks age in L5 PFC circuit, which was correlated with increased intracellular APP. APP overloading was also seen in L5 pyramidal neurons in the primary visual cortex (V1) during the critical period of plasticity (4-5 weeks age). Whole-cell patch clamp recording in V1 brain slices revealed reduced intrinsic excitability of L5 neurons in 5XFAD mice, along with decreased spontaneous miniature excitatory and inhibitory inputs. Functional circuit mapping using laser scanning photostimulation (LSPS) combined with glutamate uncaging uncovered reduced excitatory synaptic connectivity onto L5 neurons in V1, and a more pronounced reduction in inhibitory connectivity, indicative of altered excitation and inhibition during VC critical period. Lastly, in vivo single-unit recording in V1 confirmed that monocular visual deprivation-induced ocular dominance plasticity during critical period was impaired in 5XFAD mice. Our study reveals plasticity deficits across multiple cortical regions and indicates altered early cortical circuit developmental trajectory as a result of mutant APP/PS1 over-expression.
Collapse
Affiliation(s)
- Chang Chen
- grid.41156.370000 0001 2314 964XDepartment of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008 China ,grid.134563.60000 0001 2168 186XBasic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004 USA
| | - Xiaokuang Ma
- grid.134563.60000 0001 2168 186XBasic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004 USA
| | - Jing Wei
- grid.134563.60000 0001 2168 186XBasic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004 USA
| | - Neha Shakir
- grid.134563.60000 0001 2168 186XBasic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004 USA
| | - Jessica K. Zhang
- grid.134563.60000 0001 2168 186XBasic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004 USA
| | - Le Zhang
- grid.134563.60000 0001 2168 186XBasic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004 USA
| | - Antoine Nehme
- grid.134563.60000 0001 2168 186XBasic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004 USA
| | - Yuehua Cui
- grid.134563.60000 0001 2168 186XBasic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004 USA
| | - Deveroux Ferguson
- grid.134563.60000 0001 2168 186XBasic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004 USA
| | - Feng Bai
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| |
Collapse
|
19
|
Should we lower or raise levels of amyloid-β in the brains of Alzheimer patients? Pharmacol Res 2022; 183:106390. [DOI: 10.1016/j.phrs.2022.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
|
20
|
Sun C, Zhang S, Ba S, Dang J, Ren Q, Zhu Y, Liu K, Jin M. Eucommia ulmoides Olive Male Flower Extracts Ameliorate Alzheimer's Disease-Like Pathology in Zebrafish via Regulating Autophagy, Acetylcholinesterase, and the Dopamine Transporter. Front Mol Neurosci 2022; 15:901953. [PMID: 35754707 PMCID: PMC9222337 DOI: 10.3389/fnmol.2022.901953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neural disorder. However, the therapeutic agents for AD are limited. Eucommia ulmoides Olive (EUO) is widely used as a traditional Chinese herb to treat various neurodegenerative disorders. Therefore, we investigated whether the extracts of EUO male flower (EUMF) have therapeutic effects against AD. We focused on the flavonoids of EUMF and identified the composition using a targeted HPLC-MS analysis. As a result, 125 flavonoids and flavanols, 32 flavanones, 22 isoflavonoids, 11 chalcones and dihydrochalcones, and 17 anthocyanins were identified. Then, the anti-AD effects of the EUMF were tested by using zebrafish AD model. The behavioral changes were detected by automated video-tracking system. Aβ deposition was assayed by thioflavin S staining. Ache activity and cell apoptosis in zebrafish were tested by, Acetylcholine Assay Kit and TUNEL assay, respectively. The results showed that EUMF significantly rescued the dyskinesia of zebrafish and inhibited Aβ deposition, Ache activity, and occurrence of cell apoptosis in the head of zebrafish induced by AlCl3. We also investigated the mechanism underlying anti-AD effects of EUMF by RT-qPCR and found that EUMF ameliorated AD-like symptoms possibly through inhibiting excessive autophagy and the abnormal expressions of ache and slc6a3 genes. In summary, our findings suggested EUMF can be a therapeutic candidate for AD treatment.
Collapse
Affiliation(s)
- Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Shuaikang Ba
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Yongqiang Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Key Laboratory for Drug Screening Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
21
|
Abstract
Amyloid-β (Aβ) peptides are involved in Alzheimer's disease (AD) development. The interactions of these peptides with copper and zinc ions also seem to be crucial for this pathology. Although Cu(II) and Zn(II) ions binding by Aβ peptides has been scrupulously investigated, surprisingly, this phenomenon has not been so thoroughly elucidated for N-truncated Aβ4-x-probably the most common version of this biomolecule. This negligence also applies to mixed Cu-Zn complexes. From the structural in silico analysis presented in this work, it appears that there are two possible mixed Cu-Zn(Aβ4-x) complexes with different stoichiometries and, consequently, distinct properties. The Cu-Zn(Aβ4-x) complex with 1:1:1 stoichiometry may have a neuroprotective superoxide dismutase-like activity. On the other hand, another mixed 2:1:2 Cu-Zn(Aβ4-x) complex is perhaps a seed for toxic oligomers. Hence, this work proposes a novel research direction for our better understanding of AD development.
Collapse
|
22
|
Ishikawa Y, Itoh R, Tsujimoto R, Tamano H, Takeda A. Isoproterenol injected into the basolateral amygdala rescues amyloid β 1-42-induced conditioned fear memory deficit via reducing intracellular Zn 2+ toxicity. Neurosci Lett 2022; 766:136353. [PMID: 34793899 DOI: 10.1016/j.neulet.2021.136353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
On the basis of amyloid β (Aβ) peptides as triggers in atrophy of structures in the limbic system, here we postulated that Aβ1-42-induced intracellular Zn2+ toxicity in the basolateral amygdala contributes to conditioned fear memory. Aβ1-42 increased intracellular Zn2+ level in the amygdala after local injection of Aβ1-42 into the basolateral amygdala, resulting in conditioned fear memory deficit via attenuated LTP at perforant pathway-basolateral amygdala synapses. Co-injection of isoproterenol, a beta-adrenergic receptor agonist, reduced Aβ1-42-mediated increase in intracellular Zn2+, resulting in rescue of the memory deficit and attenuated LTP. The present study suggests that beta-adrenergic activity induced by isoproterenol in the basolateral amygdala rescues the impairment of conditioned fear memory by Aβ1-42. The rescuing effect may be linked with reducing Aβ1-42-induced intracellular Zn2+ toxicity. Furthermore, Aβ1-42 injection into the basolateral amygdala also attenuated LTP at perforant pathway-dentate granule cell synapses, while co-injection of isoproterenol rescued it, suggesting that Aβ1-42 toxicity in the basolateral amygdala also affects hippocampus-dependent memory. It is likely that beta-adrenergic receptor activation in the basolateral amygdala rescues the limbic system exposed to Aβ1-42 toxicity.
Collapse
Affiliation(s)
- Yudai Ishikawa
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryusei Itoh
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Rin Tsujimoto
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
23
|
Ren J, Zhang S, Wang X, Deng Y, Zhao Y, Xiao Y, Liu J, Chu L, Qi X. MEF2C ameliorates learning, memory, and molecular pathological changes in Alzheimer’s disease in vivo and in vitro. Acta Biochim Biophys Sin (Shanghai) 2021; 54:77-90. [PMID: 35130621 PMCID: PMC9909301 DOI: 10.3724/abbs.2021012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Myocyte enhancer factor 2C (MEF2C) is highly expressed in the nervous system, and regulates neuro-development, synaptic plasticity, and inflammation. However, its mechanism in Alzheimer's disease (AD) is underestimated. In this study, the role and mechanism of MEF2C were investigated in the brain tissue specimens from patients with AD, APPswe/PSEN1dE9 double transgenic (APP/PS1_DT) mice, and SH-SY5Y cells treated with β-amyloid peptide (Aβ). The results indicated that the expression of MEF2C is significantly reduced, and the expression of MEF2C/Aβ in different parts of brain is negatively correlated in patients with AD. Knockdown of MEF2C promotes cell apoptosis and the level of β-amyloid precursor protein cleaving enzyme 1 (BACE) but reduces BACE2 expression. In addition, knockdown of enhances the generation and aggregation of Aβ in the cortex of APP/PS1_DT mice, reduces the expression of synaptic proteins, exacerbates the ability of learning and memory of APP/PS1_DT mice, damages the structure of mitochondria, increases the oxidative stress (OS) level, and inhibits the expression levels of members of the Nrf2-ARE signal pathway. In summary, inhibition of MEF2C exacerbates the toxic effect of Aβ and , damages synaptic plasticity, reduces the ability of learning and memory of APP/PS1 mice, and increases the level of OS via the Nrf2-ARE signal pathway.
Collapse
Affiliation(s)
- Jiamou Ren
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China,Department of Laboratory Medicinethe 4th People′s Hospital of GuiyangGuiyang550004China
| | - Shuli Zhang
- Chinese People′s Liberation ArmySecret Service Center Sanatorium of XiamenXiamen361000China
| | - Xiaoling Wang
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China
| | - Yuxin Deng
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China
| | - Yi Zhao
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China
| | - Jian Liu
- Department of NeurosurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyang550004China
| | - Liangzhao Chu
- Department of NeurosurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyang550004China,Correspondence address. Tel: +86-851-86752814; E-mail: (X.Q.) / E-mail: (L.C.)@qq.com
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic DiseasesMinistry of Education & Key Laboratory of Medical Molecular Biology of Guizhou ProvinceGuizhou Medical UniversityGuiyang550004China,Translational Medicine Research CenterGuizhou Medical UniversityGuiyang550004China,Correspondence address. Tel: +86-851-86752814; E-mail: (X.Q.) / E-mail: (L.C.)@qq.com
| |
Collapse
|
24
|
Cendrowska-Pinkosz M, Krauze M, Juśkiewicz J, Ognik K. The effect of the use of copper carbonate and copper nanoparticles in the diet of rats on the level of β-amyloid and acetylcholinesterase in selected organs. J Trace Elem Med Biol 2021; 67:126777. [PMID: 33984546 DOI: 10.1016/j.jtemb.2021.126777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Copper has an important role in nervous system function, as a cofactor of many enzymes and in the synthesis of neurotransmitters. Both the dose and the chemical form of copper can determine the impact of this element on metabolism, the neurological system and the immune system. AIMS The aim of the study was to determine whether and in what form the addition of copper changes the level of amyloid beta and acetylcholinesterase level in selected rat tissues. METHODS Thirty, healthy, male, albino Wistar rats aged 7 weeks were randomly divided into 3 groups. Three experimental treatments were used to evaluate the effects of different levels and sources of Cu (6.5 mg kg of diet) in the diet: Cu0 - rats fed a diet without Cu supplementation; Cusalt - rats fed a diet with CuCO3 (6.5 mg kg of diet) during two months of feeding; CuNPs - rats fed a diet with Cu nanoparticles (6.5 mg kg of diet) during two months of feeding. In blood serum and tissue homogenates there rated the indicators proving the potential neurodegenerative effect and epigenetic DNA damage induced by chemical form of copper or lack of additional copper supplementation in diet were determined. There were analysed: level of acetylcholinesterase, β-amyloid, low-density lipoprotein receptor-related protein 1, apyrimidinic endonuclease, thymidine glycosidase, alkylpurine-DNA-N-glycosylase and glycosylated acetylcholinesterase. RESULTS Irrespective of the form of copper added, it was found to increase acetylcholinesterase level in the brain, spleen and liver, as well as in the blood plasma of the rats. Copper in the form of CuCO3 was found to increase acetylcholinesterase level in the kidneys. The addition of both forms of copper caused a marked increase in the plasma concentration of β-amyloid in comparison with the diet with no added Cu. The addition of both forms of copper caused a marked increase in the plasma concentration of β-amyloid in comparison with the diet with no added Cu. CONCLUSIONS A lack of added Cu in the diet of rats reduces the concentration of amyloid-β in the blood, whereas administration of copper, in the form of either CuNPs or CuCO3, increases the level of this peptide in the blood. The use of copper in the form of CuNPs in the diet of rats does not increase the level of β-amyloid more than the use of the carbonate form of this element. The use of CuNPs or CuCO3 in the diet of rats increases acetylcholinesterase level in the brain, spleen, liver, and blood. CuNPs in the diet of rats were not found to increase acetylcholinesterase level to a greater extent than Cu+2 carbonate.
Collapse
Affiliation(s)
| | - Magdalena Krauze
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland.
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Biological Function of Food, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| |
Collapse
|
25
|
Squitti R, Faller P, Hureau C, Granzotto A, White AR, Kepp KP. Copper Imbalance in Alzheimer's Disease and Its Link with the Amyloid Hypothesis: Towards a Combined Clinical, Chemical, and Genetic Etiology. J Alzheimers Dis 2021; 83:23-41. [PMID: 34219710 DOI: 10.3233/jad-201556] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cause of Alzheimer's disease (AD) is incompletely defined. To date, no mono-causal treatment has so far reached its primary clinical endpoints, probably due to the complexity and diverse neuropathology contributing to the neurodegenerative process. In the present paper, we describe the plausible etiological role of copper (Cu) imbalance in the disease. Cu imbalance is strongly associated with neurodegeneration in dementia, but a complete biochemical etiology consistent with the clinical, chemical, and genetic data is required to support a causative association, rather than just correlation with disease. We hypothesize that a Cu imbalance in the aging human brain evolves as a gradual shift from bound metal ion pools, associated with both loss of energy production and antioxidant function, to pools of loosely bound metal ions, involved in gain-of-function oxidative stress, a shift that may be aggravated by chemical aging. We explain how this may cause mitochondrial deficits, energy depletion of high-energy demanding neurons, and aggravated protein misfolding/oligomerization to produce different clinical consequences shaped by the severity of risk factors, additional comorbidities, and combinations with other types of pathology. Cu imbalance should be viewed and integrated with concomitant genetic risk factors, aging, metabolic abnormalities, energetic deficits, neuroinflammation, and the relation to tau, prion proteins, α-synuclein, TAR DNA binding protein-43 (TDP-43) as well as systemic comorbidity. Specifically, the Amyloid Hypothesis is strongly intertwined with Cu imbalance because amyloid-β protein precursor (AβPP)/Aβ are probable Cu/Zn binding proteins with a potential role as natural Cu/Zn buffering proteins (loss of function), and via the plausible pathogenic role of Cu-Aβ.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Alberto Granzotto
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Anthony R White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
26
|
Wang K, Na L, Duan M. The Pathogenesis Mechanism, Structure Properties, Potential Drugs and Therapeutic Nanoparticles against the Small Oligomers of Amyloid-β. Curr Top Med Chem 2021; 21:151-167. [PMID: 32938351 DOI: 10.2174/1568026620666200916123000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disease that affects millions of people in the world. The abnormal aggregation of amyloid β protein (Aβ) is regarded as the key event in AD onset. Meanwhile, the Aβ oligomers are believed to be the most toxic species of Aβ. Recent studies show that the Aβ dimers, which are the smallest form of Aβ oligomers, also have the neurotoxicity in the absence of other oligomers in physiological conditions. In this review, we focus on the pathogenesis, structure and potential therapeutic molecules against small Aβ oligomers, as well as the nanoparticles (NPs) in the treatment of AD. In this review, we firstly focus on the pathogenic mechanism of Aβ oligomers, especially the Aβ dimers. The toxicity of Aβ dimer or oligomers, which attributes to the interactions with various receptors and the disruption of membrane or intracellular environments, were introduced. Then the structure properties of Aβ dimers and oligomers are summarized. Although some structural information such as the secondary structure content is characterized by experimental technologies, detailed structures are still absent. Following that, the small molecules targeting Aβ dimers or oligomers are collected; nevertheless, all of these ligands have failed to come into the market due to the rising controversy of the Aβ-related "amyloid cascade hypothesis". At last, the recent progress about the nanoparticles as the potential drugs or the drug delivery for the Aβ oligomers are present.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liu Na
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
27
|
Pasieka A, Panek D, Jończyk J, Godyń J, Szałaj N, Latacz G, Tabor J, Mezeiova E, Chantegreil F, Dias J, Knez D, Lu J, Pi R, Korabecny J, Brazzolotto X, Gobec S, Höfner G, Wanner K, Więckowska A, Malawska B. Discovery of multifunctional anti-Alzheimer's agents with a unique mechanism of action including inhibition of the enzyme butyrylcholinesterase and γ-aminobutyric acid transporters. Eur J Med Chem 2021; 218:113397. [PMID: 33838585 DOI: 10.1016/j.ejmech.2021.113397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Looking for an effective anti-Alzheimer's agent is very challenging; however, a multifunctional ligand strategy may be a promising solution for the treatment of this complex disease. We herein present the design, synthesis and biological evaluation of novel hydroxyethylamine derivatives displaying unique, multiple properties that have not been previously reported. The original mechanism of action combines inhibitory activity against disease-modifying targets: β-secretase enzyme (BACE1) and amyloid β (Aβ) aggregation, along with an effect on targets associated with symptom relief - inhibition of butyrylcholinesterase (BuChE) and γ-aminobutyric acid transporters (GATs). Among the obtained molecules, compound 36 exhibited the most balanced and broad activity profile (eeAChE IC50 = 2.86 μM; eqBuChE IC50 = 60 nM; hBuChE IC50 = 20 nM; hBACE1 IC50 = 5.9 μM; inhibition of Aβ aggregation = 57.9% at 10 μM; mGAT1 IC50 = 10.96 μM; and mGAT2 IC50 = 19.05 μM). Moreover, we also identified 31 as the most potent mGAT4 and hGAT3 inhibitor (IC50 = 5.01 μM and IC50 = 2.95 μM, respectively), with high selectivity over other subtypes. Compounds 36 and 31 represent new anti-Alzheimer agents that can ameliorate cognitive decline and modify the progress of disease.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Julia Tabor
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Fabien Chantegreil
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Junfeng Lu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91223, Brétigny sur Orge, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Georg Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Klaus Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377, Munich, Germany
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
28
|
Retromer dysfunction at the nexus of tauopathies. Cell Death Differ 2021; 28:884-899. [PMID: 33473181 PMCID: PMC7937680 DOI: 10.1038/s41418-020-00727-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
Tauopathies define a broad range of neurodegenerative diseases that encompass pathological aggregation of the microtubule-associated protein tau. Although tau aggregation is a central feature of these diseases, their underlying pathobiology is remarkably heterogeneous at the molecular level. In this review, we summarize critical differences that account for this heterogeneity and contrast the physiological and pathological functions of tau. We focus on the recent understanding of its prion-like behavior that accounts for its spread in the brain. Moreover, we acknowledge the limited appreciation about how upstream cellular changes influence tauopathy. Dysfunction of the highly conserved endosomal trafficking complex retromer is found in numerous tauopathies such as Alzheimer's disease, Pick's disease, and progressive supranuclear palsy, and we discuss how this has emerged as a major contributor to various aspects of neurodegenerative diseases. In particular, we highlight recent investigations that have elucidated the contribution of retromer dysfunction to distinct measures of tauopathy such as tau hyperphosphorylation, aggregation, and impaired cognition and behavior. Finally, we discuss the potential benefit of targeting retromer for modifying disease burden and identify important considerations with such an approach moving toward clinical translation.
Collapse
|
29
|
Mehra R, Kepp KP. Computational prediction and molecular mechanism of γ-secretase modulators. Eur J Pharm Sci 2021; 157:105626. [DOI: 10.1016/j.ejps.2020.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
|
30
|
Sato Y, Takiguchi M, Tamano H, Takeda A. Extracellular Zn 2+-Dependent Amyloid-β 1-42 Neurotoxicity in Alzheimer's Disease Pathogenesis. Biol Trace Elem Res 2021; 199:53-61. [PMID: 32281074 DOI: 10.1007/s12011-020-02131-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
The basal level of extracellular Zn2+ is in the range of low nanomolar (~ 10 nM) in the hippocampus. However, extracellular Zn2+ dynamics plays a key role for not only cognitive activity but also cognitive decline. Extracellular Zn2+ dynamics is modified by glutamatergic synapse excitation and the presence of amyloid-β1-42 (Aβ1-42), a causative peptide in Alzheimer's disease (AD). When human Aβ1-42 reaches high picomolar (> 100 pM) in the extracellular compartment of the rat dentate gyrus, Zn-Aβ1-42 complexes are readily formed and taken up into dentate granule cells, followed by Aβ1-42-induced cognitive decline that is linked with Zn2+ released from intracellular Zn-Aβ1-42 complexes. Aβ1-42-induced intracellular Zn2+ toxicity is accelerated with aging because of age-related increase in extracellular Zn2+. The recent findings suggest that Aβ1-42 secreted continuously from neuron terminals causes age-related cognitive decline and neurodegeneration via intracellular Zn2+ dysregulation. On the other hand, metallothioneins (MTs), zinc-binding proteins, quickly serve for intracellular Zn2+-buffering under acute intracellular Zn2+ dysregulation. On the basis of the idea that the defense strategy against Aβ1-42-induced pathogenesis leads to preventing the AD development, this review deals with extracellular Zn2+-dependent Aβ1-42 neurotoxicity, which is accelerated with aging.
Collapse
Affiliation(s)
- Yuichi Sato
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Mako Takiguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
31
|
A computer-simulated mechanism of familial Alzheimer’s disease: Mutations enhance thermal dynamics and favor looser substrate-binding to γ-secretase. J Struct Biol 2020; 212:107648. [DOI: 10.1016/j.jsb.2020.107648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/22/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
|
32
|
The Function of Transthyretin Complexes with Metallothionein in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239003. [PMID: 33256250 PMCID: PMC7730073 DOI: 10.3390/ijms21239003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most frequently diagnosed types of dementia in the elderly. An important pathological feature in AD is the aggregation and deposition of the β-amyloid (Aβ) in extracellular plaques. Transthyretin (TTR) can cleave Aβ, resulting in the formation of short peptides with less activity of amyloid plaques formation, as well as being able to degrade Aβ peptides that have already been aggregated. In the presence of TTR, Aβ aggregation decreases and toxicity of Aβ is abolished. This may prevent amyloidosis but the malfunction of this process leads to the development of AD. In the context of Aβplaque formation in AD, we discuss metallothionein (MT) interaction with TTR, the effects of which depend on the type of MT isoform. In the brains of patients with AD, the loss of MT-3 occurs. On the contrary, MT-1/2 level has been consistently reported to be increased. Through interaction with TTR, MT-2 reduces the ability of TTR to bind to Aβ, while MT-3 causes the opposite effect. It increases TTR-Aβ binding, providing inhibition of Aβ aggregation. The protective effect, assigned to MT-3 against the deposition of Aβ, relies also on this mechanism. Additionally, both Zn7MT-2 and Zn7MT-3, decrease Aβ neurotoxicity in cultured cortical neurons probably because of a metal swap between Zn7MT and Cu(II)Aβ. Understanding the molecular mechanism of metals transfer between MT and other proteins as well as cognition of the significance of TTR interaction with different MT isoforms can help in AD treatment and prevention.
Collapse
|
33
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
34
|
Si Z, Wang X. The Neuroprotective and Neurodegeneration Effects of Heme Oxygenase-1 in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1259-1272. [PMID: 33016915 DOI: 10.3233/jad-200720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by complex pathological and biological features. Notably, extracellular amyloid-β deposits as senile plaques and intracellular aggregation of hyperphosphorylated tau as neurofibrillary tangles remain the primary premortem criterion for the diagnosis of AD. Currently, there exist no disease-modifying therapies for AD, and many clinical trials have failed to show its benefits for patients. Heme oxygenase 1 (HO-1) is a 32 kDa enzyme, which catalyzes the degradation of cellular heme to free ferrous iron, biliverdin, and carbon monoxide under stressful conditions. Several studies highlight the crucial pathological roles of HO-1 in the molecular processes of AD. The beneficial roles of HO-1 overexpression in AD brains are widely accepted due to its ability to convert pro-oxidant heme to biliverdin and bilirubin (antioxidants), which promote restoration of a suitable tissue redox microenvironment. However, the intracellular oxidative stress might be amplified by metabolites of HO-1 and exacerbate the progression of AD under certain circumstances. Several lines of evidence have demonstrated that upregulated HO-1 is linked to tauopathies, neuronal damage, and synapse aberrations in AD. Here, we review the aspects of the molecular mechanisms by which HO-1 regulates AD and the latest information on the pathobiology of AD. We further highlight the neuroprotective and neurodystrophic actions of HO-1 and the feasibility of HO-1 as a therapeutic target for AD.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Dehury B, Kepp KP. Membrane dynamics of γ-secretase with the anterior pharynx-defective 1B subunit. J Cell Biochem 2020; 122:69-85. [PMID: 32830360 DOI: 10.1002/jcb.29832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/13/2020] [Indexed: 01/12/2023]
Abstract
The four-subunit protease complex γ-secretase cleaves many single-pass transmembrane (TM) substrates, including Notch and β-amyloid precursor protein to generate amyloid-β (Aβ), central to Alzheimer's disease. Two of the subunits anterior pharynx-defective 1 (APH-1) and presenilin (PS) exist in two homologous forms APH1-A and APH1-B, and PS1 and PS2. The consequences of these variations are poorly understood and could affect Aβ production and γ-secretase medicine. Here, we developed the first complete structural model of the APH-1B subunit using the published cryo-electron microscopy (cryo-EM) structures of APH1-A (Protein Data Bank: 5FN2, 5A63, and 6IYC). We then performed all-atom molecular dynamics simulations at 303 K in a realistic bilayer system to understand both APH-1B alone and in γ-secretase without and with substrate C83-bound. We show that APH-1B adopts a 7TM topology with a water channel topology similar to APH-1A. We demonstrate direct transport of water through this channel, mainly via Glu84, Arg87, His170, and His196. The apo and holo states closely resemble the experimental cryo-EM structures with APH-1A, however with subtle differences: The substrate-bound APH-1B γ-secretase was quite stable, but some TM helices of PS1 and APH-1B rearranged in the membrane consistent with the disorder seen in the cryo-EM data. This produces different accessibility of water molecules for the catalytic aspartates of PS1, critical for Aβ production. In particular, we find that the typical distance between the catalytic aspartates of PS1 and the C83 cleavage sites are shorter in APH-1B, that is, it represents a more closed state, due to interactions with the C-terminal fragment of PS1. Our structural-dynamic model of APH-1B alone and in γ-secretase suggests generally similar topology but some notable differences in water accessibility which may be relevant to the protein's existence in two forms and their specific function and location.
Collapse
Affiliation(s)
- Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
36
|
Dehury B, Tang N, Mehra R, Blundell TL, Kepp KP. Side-by-side comparison of Notch- and C83 binding to γ-secretase in a complete membrane model at physiological temperature. RSC Adv 2020; 10:31215-31232. [PMID: 35520661 PMCID: PMC9056423 DOI: 10.1039/d0ra04683c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/15/2020] [Indexed: 12/29/2022] Open
Abstract
γ-Secretase cleaves the C99 fragment of the amyloid precursor protein, leading to formation of aggregated β-amyloid peptide central to Alzheimer's disease, and Notch, essential for cell regulation. Recent cryogenic electron microscopy (cryo-EM) structures indicate major changes upon substrate binding, a β-sheet recognition motif, and a possible helix unwinding to expose peptide bonds towards nucleophilic attack. Here we report side-by-side comparison of the 303 K dynamics of the two proteins in realistic membranes using molecular dynamics simulations. Our ensembles agree with the cryo-EM data (full-protein Cα-RMSD = 1.62–2.19 Å) but reveal distinct presenilin helix conformation states and thermal β-strand to coil transitions of C83 and Notch100. We identify distinct 303 K hydrogen bond dynamics and water accessibility of the catalytic sites. The RKRR motif (1758–1761) contributes significantly to Notch binding and serves as a “membrane anchor” that prevents Notch displacement. Water that transiently hydrogen bonds to G1753 and V1754 probably represents the catalytic nucleophile. At 303 K, Notch and C83 binding induce different conformation states, with Notch mostly present in a closed state with shorter Asp–Asp distance. This may explain the different outcome of Notch and C99 cleavage, as the latter is more imprecise with many products. Our identified conformation states may aid efforts to develop conformation-selective drugs that target C99 and Notch cleavage differently, e.g. Notch-sparing γ-secretase modulators. Distinct membrane dynamics and conformations of C83- and Notch-bound γ-secretase may aid the development of Notch-sparing treatments of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Budheswar Dehury
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409.,Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Ning Tang
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Rukmankesh Mehra
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge Tennis Court Road CB2 1GA UK
| | - Kasper P Kepp
- Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark +45 45252409
| |
Collapse
|
37
|
Zinc Therapy in Early Alzheimer's Disease: Safety and Potential Therapeutic Efficacy. Biomolecules 2020; 10:biom10081164. [PMID: 32784855 PMCID: PMC7466035 DOI: 10.3390/biom10081164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc therapy is normally utilized for treatment of Wilson disease (WD), an inherited condition that is characterized by increased levels of non-ceruloplasmin bound ('free') copper in serum and urine. A subset of patients with Alzheimer's disease (AD) or its prodromal form, known as Mild Cognitive Impairment (MCI), fail to maintain a normal copper metabolic balance and exhibit higher than normal values of non-ceruloplasmin copper. Zinc's action mechanism involves the induction of intestinal cell metallothionein, which blocks copper absorption from the intestinal tract, thus restoring physiological levels of non-ceruloplasmin copper in the body. On this basis, it is employed in WD. Zinc therapy has shown potential beneficial effects in preliminary AD clinical trials, even though the studies have missed their primary endpoints, since they have study design and other important weaknesses. Nevertheless, in the studied AD patients, zinc effectively decreased non-ceruloplasmin copper levels and showed potential for improved cognitive performances with no major side effects. This review discusses zinc therapy safety and the potential therapeutic effects that might be expected on a subset of individuals showing both cognitive complaints and signs of copper imbalance.
Collapse
|
38
|
Tamano H, Ishikawa Y, Shioya A, Itoh R, Oneta N, Shimaya R, Egawa M, Adlard PA, Bush AI, Takeda A. Adrenergic β receptor activation reduces amyloid β 1-42-mediated intracellular Zn 2+ toxicity in dentate granule cells followed by rescuing impairment of dentate gyrus LTP. Neurotoxicology 2020; 79:177-183. [PMID: 32512026 DOI: 10.1016/j.neuro.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Adrenergic β receptor activation prevents human soluble amyloid β (Aβ)-induced impairment of long-term potentiation (LTP) in slices. On the basis of the evidence that human Aβ1-42-induced impairment of LTP is due to Aβ1-42-mediated Zn2+ toxicity, we postulated that adrenergic β receptor activation reduces Aβ1-42-mediated intracellular Zn2+ toxicity followed by rescuing Aβ1-42 toxicity. To test the effect of adrenergic β receptor activation, LTP was recorded at perforant pathway-dentate granule cell synapses of anesthetized rats 60 min after Aβ1-42 injection into the dentate granule cell layer. Human Aβ1-42-induced impairment of LTP was rescued by co-injection of isoproterenol, an adrenergic β receptor agonist, but not by co-injection of phenylephrine, an adrenergic α1 receptor agonist. Isoproterenol did not reduce Aβ1-42 uptake into dentate granule cells, but reduced increase in intracellular Zn2+ in dentate granule cells induced by Aβ1-42. In contrast, phenylephrine did not reduce both Aβ1-42 uptake and increase in intracellular Zn2+ by Aβ1-42. In the case of human Aβ1-40 and rat Aβ1-42, which do not increase intracellular Zn2+, human Aβ1-40- and rat Aβ1-42-induced impairments of LTP were not rescued by co-injection of isoproterenol. The present study indicates that adrenergic β receptor activation reduces Aβ1-42-mediated increase in intracellular Zn2+ in dentate granule cells, resulting in rescuing Aβ1-42-induced impairment of LTP. It is likely that noradrenergic neuron activation by stimulating the locus coeruleus is effective for rescuing Aβ1-42-induced cognitive decline that is caused by intracellular Zn2+ dysregulation in the hippocampus.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yudai Ishikawa
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Aoi Shioya
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryusei Itoh
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoya Oneta
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryota Shimaya
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mako Egawa
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
39
|
Mehra R, Kepp KP. Identification of Structural Calcium Binding Sites in Membrane-Bound Presenilin 1 and 2. J Phys Chem B 2020; 124:4697-4711. [PMID: 32420742 DOI: 10.1021/acs.jpcb.0c01712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Variants of presenilin (PS1 and PS2) are the main genetic risk factors of familial Alzheimer's disease and thus central to the disease etiology. Although mostly studied as catalytic units of γ-secretase controlling Aβ production, presenilins also affect calcium levels, which are disturbed in Alzheimer's disease. We investigated the interaction of calcium with both PS1 and PS2 using all-atom molecular dynamics (MD) simulations in realistic membrane models, with the specific aim to identify any Ca2+ sites. We did not observe any complete Ca2+ leak event, but we identified four persistent Ca2+ sites in membrane-bound PS1 and PS2: One in HL2 near the C-terminal of TM6, one in HL2 toward the N-terminal of TM7, a site at the catalytic aspartate on TM7, and a site at the PALP motif on TM9. The sites feature negatively charged glutamates and aspartates typical of calcium binding. Structural homology to diaspartate calcium transport proteins and mutation studies of calcium efflux support our identified calcium sites. Calcium consistently dampens HL2 motions in all comparisons (PS1, protonated PS1, PS2, protonated PS2). Due to their location in HL2 and the active site, we propose that the calcium sites control autoproteolytic maturation of presenilin by a pH-dependent conformational restriction of the HL2 recognition loop, which also regulates calcium transport proteins such as inositol 1,4,5-triphosphate receptor and ryanodine receptor. Our structural dynamics could provide a possible molecular basis for the need of both calcium and presenilin for lysosome proteolytic function, perhaps relevant also to other protein misfolding diseases.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark
| | - Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
40
|
Mei X, Zhu L, Zhou Q, Li X, Chen Z. Interplay of curcumin and its liver metabolism on the level of Aβ in the brain of APP swe/PS1 dE9 mice before AD onset. Pharmacol Rep 2020; 72:1604-1613. [PMID: 32468514 DOI: 10.1007/s43440-020-00116-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND An increasing number of studies have shown that Alzheimer's disease (AD) is a systemic disease characterized by brain dysfunction. In this study, we aimed to investigate the effects of curcumin on the liver, an important metabolic organ, and on the brain in APPswe/PS1dE9 (APP/PS1) mice, and the interaction between these effects. METHODS Curcumin was administered to 5-month-old APP/PS1 transgenic mice for 7 consecutive days using the intragastric (ig) and intracerebroventricular (icv) administration routes, respectively. The object recognition test (ORT) and open field test (OFT) were conducted to evaluate long-term recognition memory and anxiety after curcumin administration. Levels of β-amyloid (Aβ), Aβ42, and interleukin-1β (IL-1β) in the brain and liver were measured. RESULTS In the ig group, curcumin ameliorated anxiety-like behavior and suppressed the level of Aβ42 in the liver and the total Aβ in the brain. In the icv group, curcumin treatment affected the distribution of Aβ42 and IL-1β in the brain compared to the liver. There was a significant treatment-region interaction in Aβ42 level for the icv group (F(1, 24) = 17.7, p < 0.001), but no interaction effect for the ig group. CONCLUSION Our findings show that curcumin administration before Aβ deposition shows promise for preventing AD, and further that curcumin may play an important role in the clearance of Aβ42 from the brain to the peripheral circulation.
Collapse
Affiliation(s)
- Xi Mei
- Kangning Hospital of Ningbo, Ningbo, Zhejiang, China.
| | - Lina Zhu
- Weifang Medical University, Weifang, Shandong, China
| | - Qi Zhou
- Kangning Hospital of Ningbo, Ningbo, Zhejiang, China
| | - Xingxing Li
- Kangning Hospital of Ningbo, Ningbo, Zhejiang, China
| | | |
Collapse
|
41
|
Jana K, Mehra R, Dehury B, Blundell TL, Kepp KP. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics. Proteins 2020; 88:1233-1250. [PMID: 32368818 DOI: 10.1002/prot.25897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Protein thermostability is important to evolution, diseases, and industrial applications. Proteins use diverse molecular strategies to achieve stability at high temperature, yet reducing the entropy of unfolding seems required. We investigated five small α-proteins and five β-proteins with known, distinct structures and thermostability (Tm ) using multi-seed molecular dynamics simulations at 300, 350, and 400 K. The proteins displayed diverse changes in hydrogen bonding, solvent exposure, and secondary structure with no simple relationship to Tm . Our dynamics were in good agreement with experimental B-factors at 300 K and insensitive to force-field choice. Despite the very distinct structures, the native-state (300 + 350 K) free-energy landscapes (FELs) were significantly broader for the two most thermostable proteins and smallest for the three least stable proteins in both the α- and β-group and with both force fields studied independently (tailed t-test, 95% confidence level). Our results suggest that entropic ensembles stabilize proteins at high temperature due to reduced entropy of unfolding, viz., ΔG = ΔH - TΔS. Supporting this mechanism, the most thermostable proteins were also the least kinetically stable, consistent with broader FELs, typified by villin headpiece and confirmed by specific comparison to a mesophilic ortholog of Thermus thermophilus apo-pyrophosphate phosphohydrolase. We propose that molecular strategies of protein thermostabilization, although diverse, tend to converge toward highest possible entropy in the native state consistent with the functional requirements. We speculate that this tendency may explain why many proteins are not optimally structured and why molten-globule states resemble native proteins so much.
Collapse
Affiliation(s)
| | | | - Budheswar Dehury
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
42
|
Malmberg M, Malm T, Gustafsson O, Sturchio A, Graff C, Espay AJ, Wright AP, El Andaloussi S, Lindén A, Ezzat K. Disentangling the Amyloid Pathways: A Mechanistic Approach to Etiology. Front Neurosci 2020; 14:256. [PMID: 32372895 PMCID: PMC7186396 DOI: 10.3389/fnins.2020.00256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 12/23/2022] Open
Abstract
Amyloids are fibrillar protein aggregates associated with diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes and Creutzfeldt-Jakob disease. The process of amyloid polymerization involves three pathological protein transformations; from natively folded conformation to the cross-β conformation, from biophysically soluble to insoluble, and from biologically functional to non-functional. While amyloids share a similar cross-β conformation, the biophysical transformation can either take place spontaneously via a homogeneous nucleation mechanism (HON) or catalytically on an exogenous surface via a heterogeneous nucleation mechanism (HEN). Here, we postulate that the different nucleation pathways can serve as a mechanistic basis for an etiological classification of amyloidopathies, where hereditary forms generally follow the HON pathway, while sporadic forms follow seed-induced (prions) or surface-induced (including microbially induced) HEN pathways. Critically, the conformational and biophysical amyloid transformation results in loss-of-function (LOF) of the original natively folded and soluble protein. This LOF can, at least initially, be the mechanism of amyloid toxicity even before amyloid accumulation reaches toxic levels. By highlighting the important role of non-protein species in amyloid formation and LOF mechanisms of toxicity, we propose a generalized mechanistic framework that could help better understand the diverse etiology of amyloid diseases and offer new opportunities for therapeutic interventions, including replacement therapies.
Collapse
Affiliation(s)
- Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Oskar Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Sturchio
- Department of Neurology and Rehabilitation Medicine, James J and Joan A Gardner Center for Parkinson Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Alberto J. Espay
- Department of Neurology and Rehabilitation Medicine, James J and Joan A Gardner Center for Parkinson Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
| | - Anthony P. Wright
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Mano Y, Otake H, Shibata T, Kubo E, Sasaki H, Nagai N. Enhancement of Amyloid β 1-43 Production in the Lens Epithelium of Japanese Type 2 Diabetic Patients. Biomedicines 2020; 8:biomedicines8040087. [PMID: 32294928 PMCID: PMC7235728 DOI: 10.3390/biomedicines8040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/18/2022] Open
Abstract
We investigated whether the accumulation of amyloid β-protein (Aβ) is enhanced in the lenses of diabetic patients. Lens epithelium samples were collected from Japanese patients during cataract surgery, and the Aβ levels and gene expression of Aβ-producing and -degrading enzymes in the samples were measured by ELISA and real-time RT-PCR, respectively. The Aβ1–43 levels in lenses of non-diabetic patients were low (0.11 pmol/g protein), while the levels in lenses of diabetic patients were significantly (6-fold) higher. Moreover, the Aβ1–43/total-Aβ ratio in the lenses of diabetic patients was also significantly higher than non-diabetic patients (p < 0.05). In addition, the mRNA levels for Aβ-producing enzymes were also enhanced in the lenses of diabetic patients. In contrast to the results for Aβ-producing enzymes, the mRNAs for the Aβ-degrading enzymes in the lenses of diabetic patients were significantly lower than in non-diabetic patients (p < 0.05). Furthermore, Aβ1–43/total-Aβ ratio in lenses was found to increase with plasma glucose level. In conclusion, these results suggest that high glucose levels cause both an increase in Aβ production and a decrease in Aβ degradation, and these changes lead to the enhancement in Aβ1–43 accumulation in the lenses of diabetic patients. These findings are useful for developing therapies for diabetic cataracts and for developing anti-cataract drugs.
Collapse
Affiliation(s)
- Yu Mano
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.M.); (H.O.)
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.M.); (H.O.)
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan; (T.S.); (E.K.); (H.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan; (T.S.); (E.K.); (H.S.)
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku Uchinada-machi, Kahoku-gun, Ishikawa 920-0293, Japan; (T.S.); (E.K.); (H.S.)
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan; (Y.M.); (H.O.)
- Correspondence: ; Tel.: +81-6-4307-3638
| |
Collapse
|
44
|
Huy Pham DQ, Krupa P, Nguyen HL, La Penna G, Li MS. Computational Model to Unravel the Function of Amyloid-β Peptides in Contact with a Phospholipid Membrane. J Phys Chem B 2020; 124:3300-3314. [DOI: 10.1021/acs.jpcb.0c00771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dinh Quoc Huy Pham
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Hoang Linh Nguyen
- Institute for Computational Science and Technology, 6 Quarter, Linh Trung Ward, Thu
Duc District, 00133 Ho Chi Minh City, Vietnam
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute for Chemistry of Organometallic Compounds (ICCOM), 50019 Florence, Italy
- National Institute for Nuclear Physics (INFN), Section of Roma-Tor Vergata, 00186 Roma, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
45
|
Wang XL, Deng YX, Gao YM, Dong YT, Wang F, Guan ZZ, Hong W, Qi XL. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY) 2020; 12:543-570. [PMID: 31905173 PMCID: PMC6977648 DOI: 10.18632/aging.102640] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023]
Abstract
Ligands of nicotinic acetylcholine receptors (nAChRs) are widely considered as potential therapeutic agents. The present study used primary hippocampus cells and APPswe/PSEN1dE9 double-transgenic mice models to study the possible therapeutic effect and underlying mechanism of the specific activation of α7 nAChR by PNU-282987 in the pathogenesis of Alzheimer’s disease. The results indicated that activation of α7 nAChR attenuated the Aβ-induced cell apoptosis, decreased the deposition of Aβ, increased the expression of synaptic-associated proteins, and maintained synaptic morphology. Furthermore, in the APP/PS1_DT mice model, activation of α7 nAChR attenuated Aβ-induced synaptic loss, reduced the deposition of Aβ in the hippocampus, maintained the integral structure of hippocampus-derived synapse, and activated the calmodulin (CaM)-calmodulin-dependent protein kinase II (CaMKII)-cAMP response element-binding protein signaling pathway by upregulation of its key signaling proteins. In addition, activation of α7 nAChR improved the learning and memory abilities of the APP/PS1_DT mice. Collectively, the activation of α7 nAChR by PNU-282987 attenuated the toxic effect of Aβ in vivo and in vitro, which including reduced deposition of Aβ in the hippocampus, maintained synaptic morphology by partially reversing the expression levels of synaptic-associated proteins, activation of the Ca2+ signaling pathway, and improvement of the cognitive abilities of APP/PS1_DT mice.
Collapse
Affiliation(s)
- Xiao-Ling Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China.,School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yu-Xin Deng
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China.,School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yu-Mei Gao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Fan Wang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University , Guiyang 550004, P.R. China
| | - Zhi-Zhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P. R. China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
46
|
Bacchella C, Nicolis S, Dell'Acqua S, Rizzarelli E, Monzani E, Casella L. Membrane Binding Strongly Affecting the Dopamine Reactivity Induced by Copper Prion and Copper/Amyloid-β (Aβ) Peptides. A Ternary Copper/Aβ/Prion Peptide Complex Stabilized and Solubilized in Sodium Dodecyl Sulfate Micelles. Inorg Chem 2019; 59:900-912. [PMID: 31869218 DOI: 10.1021/acs.inorgchem.9b03153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combination between dyshomeostatic levels of catecholamine neurotransmitters and redox-active metals such as copper and iron exacerbates the oxidative stress condition that typically affects neurodegenerative diseases. We report a comparative study of the oxidative reactivity of copper complexes with amyloid-β (Aβ40) and the prion peptide fragment 76-114 (PrP76-114), containing the high-affinity binding site, toward dopamine and 4-methylcatechol, in aqueous buffer and in sodium dodecyl sulfate micelles, as a model membrane environment. The competitive oxidative and covalent modifications undergone by the peptides were also evaluated. The high binding affinity of Cu/peptide to micelles and lipid membranes leads to a strong reduction (Aβ40) and quenching (PrP76-114) of the oxidative efficiency of the binary complexes and to a stabilization and redox silencing of the ternary complex CuII/Aβ40/PrP76-114, which is highly reactive in solution. The results improve our understanding of the pathological and protective effects associated with these complexes, depending on the physiological environment.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Stefania Nicolis
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche , Via P. Gaifami 18 , 95125 Catania , Italy
| | - Enrico Monzani
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Luigi Casella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
47
|
Tamano H, Takiguchi M, Tanaka Y, Murakami T, Adlard PA, Bush AI, Takeda A. Preferential Neurodegeneration in the Dentate Gyrus by Amyloid β 1-42-Induced Intracellular Zn 2+Dysregulation and Its Defense Strategy. Mol Neurobiol 2019; 57:1875-1888. [PMID: 31865526 DOI: 10.1007/s12035-019-01853-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
On the basis of the evidence that rapid intracellular Zn2+ dysregulation by amyloid β1-42 (Aβ1-42) in the normal hippocampus transiently induces cognitive decline, here we report preferential neurodegeneration in the dentate gyrus by Aβ1-42-induced intracellular Zn2+ dysregulation and its defense strategy. Neurodegeneration was preferentially observed in the dentate granule cell layer in the hippocampus after a single Aβ1-42 injection into the lateral ventricle but not in the CA1 and CA3 pyramidal cell layers, while intracellular Zn2+ dysregulation was extensively observed in the hippocampus in addition to the dentate gyrus. Neurodegeneration in the dentate granule cell layer was rescued after co-injection of extracellular and intracellular Zn2+ chelators, i.e., CaEDTA and ZnAF-2DA, respectively. Aβ1-42-induced cognitive impairment was also rescued by co-injection of CaEDTA and ZnAF-2DA. Pretreatment with dexamethasone, an inducer of metalothioneins, Zn2+-binding proteins rescued neurodegeneration in the dentate granule cell layer and cognitive impairment via blocking the intracellular Zn2+ dysregulation induced by Aβ1-42. The present study indicates that intracellular Zn2+ dysregulation induced by Aβ1-42 preferentially causes neurodegeneration in the dentate gyrus, resulting in hippocampus-dependent cognitive decline. It is likely that controlling intracellular Zn2+ dysregulation, which is induced by the rapid uptake of Zn-Aβ1-42 complexes, is a defense strategy for Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Mako Takiguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yukino Tanaka
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Taku Murakami
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
48
|
Computational analysis of Alzheimer-causing mutations in amyloid precursor protein and presenilin 1. Arch Biochem Biophys 2019; 678:108168. [DOI: 10.1016/j.abb.2019.108168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
|
49
|
Imbimbo BP, Watling M. Investigational BACE inhibitors for the treatment of Alzheimer's disease. Expert Opin Investig Drugs 2019; 28:967-975. [PMID: 31661331 DOI: 10.1080/13543784.2019.1683160] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The amyloid hypothesis of Alzheimer's disease (AD) states that brain accumulation of amyloid-β (Aβ) oligomers and soluble aggregates represents the major causal event of the disease. Several small organic molecules have been synthesized and developed to inhibit the enzyme (β-site amyloid precursor protein cleaving enzyme-1 or BACE1) whose action represents the rate-limiting step in Aβ production.Areas covered: We reviewed the pharmacology and clinical trials of major BACE1 inhibitors.Expert opinion: In transgenic mouse models of AD, BACE1 inhibitors dose-dependently lower Aβ levels in brain and cerebrospinal fluid (CSF) but the evidence for attenuation or reversal cognitive or behavioral deficits is very scanty. In AD patients, BACE1 inhibitors robustly lower plasma and CSF Aβ levels and reduce brain plaques but without cognitive, clinical, or functional benefit. To date, seventeen BACE1 inhibitors have failed in double-blind, placebo-controlled clinical trials in patients with mild-to-moderate or prodromal AD, or in cognitively normal subjects at risk of developing AD. Several of these studies were prematurely interrupted due to toxicity or cognitive and behavioral worsening compared to placebo-treated patients. Elenbecestat, the last BACE1 inhibitor remaining in late clinical testing for AD, was recently discontinued due to safety concerns.
Collapse
Affiliation(s)
| | - Mark Watling
- CNS & Pain Department, TranScrip Partners, Reading, UK
| |
Collapse
|
50
|
Asadi M, Ebrahimi M, Mohammadi-Khanaposhtani M, Azizian H, Sepehri S, Nadri H, Biglar M, Amanlou M, Larijani B, Mirzazadeh R, Edraki N, Mahdavi M. Design, Synthesis, Molecular Docking, and Cholinesterase Inhibitory Potential of Phthalimide-Dithiocarbamate Hybrids as New Agents for Treatment of Alzheimer's Disease. Chem Biodivers 2019; 16:e1900370. [PMID: 31523926 DOI: 10.1002/cbdv.201900370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023]
Abstract
A novel series of phthalimide-dithiocarbamate hybrids was synthesized and evaluated for in vitro inhibitory potentials against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The anti-cholinesterase results indicated that among the synthesized compounds, the compounds 7g and 7h showed the most potent anti-AChE and anti-BuChE activities, respectively. Molecular docking and dynamic studies of the compounds 7g and 7h, respectively, in the active site of AChE and BuChE revealed that these compounds as well interacted with studied cholinesterases. These compounds also possessed drug-like properties and were able to cross the BBB.
Collapse
Affiliation(s)
- Mehdi Asadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, 1417653761, Tehran, Iran
| | - Mostafa Ebrahimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, 1417653761, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, 4717647745, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, 14665354, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, 5618953141, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, 1417653761, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| | - Roghieh Mirzazadeh
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 7134853734, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1417653761, Iran
| |
Collapse
|