1
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
2
|
Yousefi E, Gewily M, König F, Höglinger G, Hopfner F, Karlsson MO, Ristl R, Zehetmayer S, Posch M. Efficiency of multivariate tests in trials in progressive supranuclear palsy. Sci Rep 2024; 14:25581. [PMID: 39462124 PMCID: PMC11514033 DOI: 10.1038/s41598-024-76668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Measuring disease progression in clinical trials for testing novel treatments for multifaceted diseases as progressive supranuclear palsy (PSP), remains challenging. In this study we assess a range of statistical approaches to compare outcomes as measured by the items of the progressive supranuclear palsy rating scale (PSPRS). We consider several statistical approaches, including sum scores, a modified PSPRS rating scale that had been recommended by FDA in a pre-IND meeting, multivariate tests, and analysis approaches based on multiple comparisons of the individual items. In addition, we propose two novel approaches which measure disease status based on Item Response Theory models. We assess the performance of these tests under various scenarios in an extensive simulation study and illustrate their use with a re-analysis of the ABBV-8E12 clinical trial. Furthermore, we discuss the impact of the FDA-recommended scoring of item scores on the power of the statistical tests. We find that classical approaches as the PSPRS sum score demonstrate moderate to high power when treatment effects are consistent across the individual items. The tests based on Item Response Theory (IRT) models yield the highest power when the simulated data are generated from an IRT model. The multiple testing based approaches have a higher power in settings where the treatment effect is limited to certain domains or items. The study demonstrates that there is no one-size-fits-all testing procedure for evaluating treatment effects using PSPRS items; the optimal method varies based on the specific effect size patterns. The efficiency of the PSPRS sum score, while generally robust and straightforward to apply, varies depending on the specific patterns of effect sizes encountered and more powerful alternatives are available in specific settings. These findings can have important implications for the design of future clinical trials in PSP and similar multifaceted diseases.
Collapse
Affiliation(s)
- Elham Yousefi
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Mohamed Gewily
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Franz König
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Günter Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Franziska Hopfner
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | | | - Robin Ristl
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Sonja Zehetmayer
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Martin Posch
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Dilcher R, Wall S, Groß M, Katzdobler S, Wagemann O, Palleis C, Weidinger E, Fietzek U, Bernhardt A, Kurz C, Ferschmann C, Scheifele M, Zaganjori M, Gnörich J, Bürger K, Janowitz D, Rauchmann B, Stöcklein S, Bartenstein P, Villemagne V, Seibyl J, Sabri O, Barthel H, Perneczky R, Schöberl F, Zwergal A, Höglinger GU, Levin J, Franzmeier N, Brendel M. Combining cerebrospinal fluid and PI-2620 tau-PET for biomarker-based stratification of Alzheimer's disease and 4R-tauopathies. Alzheimers Dement 2024; 20:6896-6909. [PMID: 39263969 PMCID: PMC11485081 DOI: 10.1002/alz.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Recent advances in biomarker research have improved the diagnosis and monitoring of Alzheimer's disease (AD), but in vivo biomarker-based workflows to assess 4R-tauopathy (4RT) patients are currently missing. We suggest a novel biomarker-based algorithm to characterize AD and 4RTs. METHODS We cross-sectionally assessed combinations of cerebrospinal fluid measures (CSF p-tau181 and t-tau) and 18F-PI-2620 tau-positron emission tomography (PET) in patients with AD (n = 64), clinically suspected 4RTs (progressive supranuclear palsy or corticobasal syndrome, n = 82) and healthy controls (n = 19). RESULTS Elevated CSF p-tau181 and cortical 18F-PI-2620 binding was characteristic for AD while normal CSF p-tau181 with elevated subcortical 18F-PI-2620 binding was characteristic for 4RTs. 18F-PI-2620-assessed posterior cortical hypoperfusion could be used as an additional neuronal injury biomarker in AD. DISCUSSION The specific combination of CSF markers and 18F-PI-2620 tau-PET in disease-specific regions facilitates the biomarker-guided stratification of AD and 4RTs. This has implications for biomarker-aided diagnostic workflows and the advancement in clinical trials. HIGHLIGHTS Novel biomarker-based algorithm for differentiating AD and 4R-tauopathies. A combination of CSF p-tau181 and 18F-PI-2620 discriminates AD versus 4R tauopathies. Hypoperfusion serves as an additional neuronal injury biomarker in AD.
Collapse
Affiliation(s)
- Roxane Dilcher
- NeuroscienceMonash UniversityMelbourneAustralia
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Stephan Wall
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Mattes Groß
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Sabrina Katzdobler
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Olivia Wagemann
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Carla Palleis
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Endy Weidinger
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Urban Fietzek
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Alexander Bernhardt
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Carolin Kurz
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Christian Ferschmann
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Maximilian Scheifele
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Mirlind Zaganjori
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Johannes Gnörich
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Katharina Bürger
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Daniel Janowitz
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Boris‐Stephan Rauchmann
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
- Institute for NeuroradiologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Sophia Stöcklein
- Department of RadiologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Peter Bartenstein
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
| | - Victor Villemagne
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Molecular Imaging & TherapyAustin HealthHeidelbergAustralia
| | - John Seibyl
- Institute for Neurodegenerative DisordersNew HavenConnecticutUSA
| | - Osama Sabri
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Henryk Barthel
- Department of Nuclear MedicineUniversity Hospital LeipzigLeipzigGermany
| | - Robert Perneczky
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
- Department of Psychiatry and PsychotherapyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Florian Schöberl
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
| | - Andreas Zwergal
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- German Center for Vertigo and Balance Disorders (DSGZ)University Hospital of Munich, LMU MunichMünchenGermany
| | - Günter U. Höglinger
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Johannes Levin
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of NeurologyUniversity Hospital of Munich, LMU MunichMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia ResearchUniversity Hospital of Munich, LMU MunichMünchenGermany
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- Department of Psychiatry and NeurochemistryUniversity of GothenburgThe Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyMölndal and GothenburgSweden
| | - Matthias Brendel
- Department of Nuclear MedicineUniversity Hospital of MunichLMU MunichMünchenGermany
- (SyNergy), Munich Cluster for Systems NeurologyMünchenGermany
- (DZNE), German Center for Neurodegenerative DiseasesMünchenGermany
| |
Collapse
|
4
|
Shan X, Zhang A, Rezzonico MG, Tsai MC, Sanchez-Priego C, Zhang Y, Chen MB, Choi M, Andrade López JM, Phu L, Cramer AL, Zhang Q, Pattison JM, Rose CM, Hoogenraad CC, Jeong CG. Fully defined NGN2 neuron protocol reveals diverse signatures of neuronal maturation. CELL REPORTS METHODS 2024; 4:100858. [PMID: 39255791 PMCID: PMC11440061 DOI: 10.1016/j.crmeth.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/26/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
NGN2-driven induced pluripotent stem cell (iPSC)-to-neuron conversion is a popular method for human neurological disease modeling. In this study, we present a standardized approach for generating neurons utilizing clonal, targeted-engineered iPSC lines with defined reagents. We demonstrate consistent production of excitatory neurons at scale and long-term maintenance for at least 150 days. Temporal omics, electrophysiological, and morphological profiling indicate continued maturation to postnatal-like neurons. Quantitative characterizations through transcriptomic, imaging, and functional assays reveal coordinated actions of multiple pathways that drive neuronal maturation. We also show the expression of disease-related genes in these neurons to demonstrate the relevance of our protocol for modeling neurological disorders. Finally, we demonstrate efficient generation of NGN2-integrated iPSC lines. These workflows, profiling data, and functional characterizations enable the development of reproducible human in vitro models of neurological disorders.
Collapse
Affiliation(s)
- Xiwei Shan
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Ai Zhang
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Mitchell G Rezzonico
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Yingjie Zhang
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Michelle B Chen
- Department of Cellular and Tissue Genomics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Meena Choi
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Lilian Phu
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Amber L Cramer
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Qiao Zhang
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jillian M Pattison
- Advanced Cell Engineering, Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Christopher M Rose
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Claire G Jeong
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
5
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Mejzini R, Caruthers MH, Schafer B, Kostov O, Sudheendran K, Ciba M, Danielsen M, Wilton S, Akkari PA, Flynn LL. Allele-Selective Thiomorpholino Antisense Oligonucleotides as a Therapeutic Approach for Fused-in-Sarcoma Amyotrophic Lateral Sclerosis. Int J Mol Sci 2024; 25:8495. [PMID: 39126066 PMCID: PMC11312655 DOI: 10.3390/ijms25158495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Pathogenic variations in the fused in sarcoma (FUS) gene are associated with rare and aggressive forms of amyotrophic lateral sclerosis (ALS). As FUS-ALS is a dominant disease, a targeted, allele-selective approach to FUS knockdown is most suitable. Antisense oligonucleotides (AOs) are a promising therapeutic platform for treating such diseases. In this study, we have explored the potential for allele-selective knockdown of FUS. Gapmer-type AOs targeted to two common neutral polymorphisms in FUS were designed and evaluated in human fibroblasts. AOs had either methoxyethyl (MOE) or thiomorpholino (TMO) modifications. We found that the TMO modification improved allele selectivity and efficacy for the lead sequences when compared to the MOE counterparts. After TMO-modified gapmer knockdown of the target allele, up to 93% of FUS transcripts detected were from the non-target allele. Compared to MOE-modified AOs, the TMO-modified AOs also demonstrated reduced formation of structured nuclear inclusions and SFPQ aggregation that can be triggered by phosphorothioate-containing AOs. How overall length and gap length of the TMO-modified AOs affected allele selectivity, efficiency and off-target gene knockdown was also evaluated. We have shown that allele-selective knockdown of FUS may be a viable therapeutic strategy for treating FUS-ALS and demonstrated the benefits of the TMO modification for allele-selective applications.
Collapse
Affiliation(s)
- Rita Mejzini
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (S.W.); (P.A.A.); (L.L.F.)
- The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Marvin H. Caruthers
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; (M.H.C.); (B.S.); (O.K.); (K.S.); (M.C.); (M.D.)
| | - Balazs Schafer
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; (M.H.C.); (B.S.); (O.K.); (K.S.); (M.C.); (M.D.)
| | - Ondrej Kostov
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; (M.H.C.); (B.S.); (O.K.); (K.S.); (M.C.); (M.D.)
| | - Kavitha Sudheendran
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; (M.H.C.); (B.S.); (O.K.); (K.S.); (M.C.); (M.D.)
| | - Marija Ciba
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; (M.H.C.); (B.S.); (O.K.); (K.S.); (M.C.); (M.D.)
| | - Mathias Danielsen
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; (M.H.C.); (B.S.); (O.K.); (K.S.); (M.C.); (M.D.)
| | - Steve Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (S.W.); (P.A.A.); (L.L.F.)
- The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Patrick Anthony Akkari
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (S.W.); (P.A.A.); (L.L.F.)
- The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Black Swan Pharmaceuticals, Wake Forest, NC 27587, USA
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (S.W.); (P.A.A.); (L.L.F.)
- The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
- Black Swan Pharmaceuticals, Wake Forest, NC 27587, USA
| |
Collapse
|
7
|
Roemer SN, Brendel M, Gnörich J, Malpetti M, Zaganjori M, Quattrone A, Gross M, Steward A, Dewenter A, Wagner F, Dehsarvi A, Ferschmann C, Wall S, Palleis C, Rauchmann BS, Katzdobler S, Jäck A, Stockbauer A, Fietzek UM, Bernhardt AM, Weidinger E, Zwergal A, Stöcklein S, Perneczky R, Barthel H, Sabri O, Levin J, Höglinger GU, Franzmeier N. Subcortical tau is linked to hypoperfusion in connected cortical regions in 4-repeat tauopathies. Brain 2024; 147:2428-2439. [PMID: 38842726 DOI: 10.1093/brain/awae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
Four-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R tauopathies are progressive supranuclear palsy (PSP) and corticobasal degeneration characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies. We included 51 Aβ-negative patients with clinically diagnosed PSP variants (n = 26) or corticobasal syndrome (n = 25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol to determine an early 0.5-2.5 min post tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20-40 min post tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlases. We determined tau epicentres as subcortical regions with the highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicentres to cortical regions of interest using a resting-state functional MRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether: (i) higher subcortical tau-PET was associated with reduced cortical perfusion; and (ii) cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicentres. As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicentres aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicentre showed lower perfusion. Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.
Collapse
Affiliation(s)
- Sebastian N Roemer
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Andrea Quattrone
- Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mattes Gross
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christian Ferschmann
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stephan Wall
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Boris S Rauchmann
- Department of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander Jäck
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Stockbauer
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander M Bernhardt
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Endy Weidinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Perneczky
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London SW7 2BX, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, SE 413 90 Mölndal and Gothenburg, Sweden
| |
Collapse
|
8
|
Holland N, Savulich G, Jones PS, Whiteside DJ, Street D, Swann P, Naessens M, Malpetti M, Hong YT, Fryer TD, Rittman T, Mulroy E, Aigbirhio FI, Bhatia KP, O'Brien JT, Rowe JB. Differential Synaptic Loss in β-Amyloid Positive Versus β-Amyloid Negative Corticobasal Syndrome. Mov Disord 2024; 39:1166-1178. [PMID: 38671545 DOI: 10.1002/mds.29814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/OBJECTIVE The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to β-amyloid status. METHODS Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [11C]UCB-J non-displaceable binding potential (BPND), AD-tau pathology by [18F]AV-1451 BPND, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had β-amyloid imaging with 11C-labeled Pittsburgh Compound-B ([11C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BPND and gray matter volume between groups were assessed by ANOVA. RESULTS Compared to controls, patients with CBS had higher [18F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the β-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side. DISCUSSION Distinct patterns of [11C]UCB-J and [18F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - George Savulich
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David J Whiteside
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Duncan Street
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peter Swann
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Michelle Naessens
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - John T O'Brien
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Liu Y, Xia X, Zheng M, Shi B. Bio-Nano Toolbox for Precision Alzheimer's Disease Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314354. [PMID: 38778446 DOI: 10.1002/adma.202314354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is the most burdensome aging-associated neurodegenerative disorder, and its treatment encounters numerous failures during drug development. Although there are newly approved in-market β-amyloid targeting antibody solutions, pathological heterogeneity among patient populations still challenges the treatment outcome. Emerging advances in gene therapies offer opportunities for more precise personalized medicine; while, major obstacles including the pathological heterogeneity among patient populations, the puzzled mechanism for druggable target development, and the precision delivery of functional therapeutic elements across the blood-brain barrier remain and limit the use of gene therapy for central neuronal diseases. Aiming for "precision delivery" challenges, nanomedicine provides versatile platforms that may overcome the targeted delivery challenges for AD gene therapy. In this perspective, to picture a toolbox for AD gene therapy strategy development, the most recent advances from benchtop to clinics are highlighted, possibly available gene therapy targets, tools, and delivery platforms are outlined, their challenges as well as rational design elements are addressed, and perspectives in this promising research field are discussed.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan, 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
10
|
McInvale JJ, Canoll P, Hargus G. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in Alzheimer's disease and frontotemporal dementia. Brain Pathol 2024; 34:e13231. [PMID: 38246596 PMCID: PMC11189780 DOI: 10.1111/bpa.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative diseases are increasing in prevalence and comprise a large socioeconomic burden on patients and their caretakers. The need for effective therapies and avenues for disease prevention and monitoring is of paramount importance. Fluid biomarkers for neurodegenerative diseases have gained a variety of uses, including informing participant selection for clinical trials, lending confidence to clinical diagnosis and disease staging, determining prognosis, and monitoring therapeutic response. Their role is expected to grow as disease-modifying therapies start to be available to a broader range of patients and as prevention strategies become established. Many of the underlying molecular mechanisms of currently used biomarkers are incompletely understood. Animal models and in vitro systems using cell lines have been extensively employed but face important translatability limitations. Induced pluripotent stem cell (iPSC) technology, where a theoretically unlimited range of cell types can be reprogrammed from peripheral cells sampled from patients or healthy individuals, has gained prominence over the last decade. It is a promising avenue to study physiological and pathological biomarker function and response to experimental therapeutics. Such systems are amenable to high-throughput drug screening or multiomics readouts such as transcriptomics, lipidomics, and proteomics for biomarker discovery, investigation, and validation. The present review describes the current state of biomarkers in the clinical context of neurodegenerative diseases, with a focus on Alzheimer's disease and frontotemporal dementia. We include a discussion of how iPSC models have been used to investigate and test biomarkers such as amyloid-β, phosphorylated tau, neurofilament light chain or complement proteins, and even nominate novel biomarkers. We discuss the limitations of current iPSC methods, mentioning alternatives such as coculture systems and three-dimensional organoids which address some of these concerns. Finally, we propose exciting prospects for stem cell transplantation paradigms using animal models as a preclinical tool to study biomarkers in the in vivo context.
Collapse
Affiliation(s)
- Julie J. McInvale
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
- Medical Scientist Training Program, Columbia UniversityNew YorkNew YorkUSA
| | - Peter Canoll
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Gunnar Hargus
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
11
|
Majumder M, Dutta D. Oligodendrocyte Dysfunction in Tauopathy: A Less Explored Area in Tau-Mediated Neurodegeneration. Cells 2024; 13:1112. [PMID: 38994964 PMCID: PMC11240328 DOI: 10.3390/cells13131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Aggregation of the microtubule-associated protein tau (MAPT) is the hallmark pathology in a spectrum of neurodegenerative disorders collectively called tauopathies. Physiologically, tau is an inherent neuronal protein that plays an important role in the assembly of microtubules and axonal transport. However, disease-associated mutations of this protein reduce its binding to the microtubule components and promote self-aggregation, leading to formation of tangles in neurons. Tau is also expressed in oligodendrocytes, where it has significant developmental roles in oligodendrocyte maturation and myelin synthesis. Oligodendrocyte-specific tau pathology, in the form of fibrils and coiled coils, is evident in major tauopathies including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Multiple animal models of tauopathy expressing mutant forms of MAPT recapitulate oligodendroglial tau inclusions with potential to cause degeneration/malfunction of oligodendrocytes and affecting the neuronal myelin sheath. Till now, mechanistic studies heavily concentrated on elucidating neuronal tau pathology. Therefore, more investigations are warranted to comprehensively address tau-induced pathologies in oligodendrocytes. The present review provides the current knowledge available in the literature about the intricate relations between tau and oligodendrocytes in health and diseases.
Collapse
Affiliation(s)
- Moumita Majumder
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Debashis Dutta
- Department of Pediatrics, Darby’s Children Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Hastings A, Cullinane P, Wrigley S, Revesz T, Morris HR, Dickson JC, Jaunmuktane Z, Warner TT, De Pablo-Fernández E. Neuropathologic Validation and Diagnostic Accuracy of Presynaptic Dopaminergic Imaging in the Diagnosis of Parkinsonism. Neurology 2024; 102:e209453. [PMID: 38759132 DOI: 10.1212/wnl.0000000000209453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Degeneration of the presynaptic nigrostriatal dopaminergic system is one of the main biological features of Parkinson disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which can be measured using single-photon emission CT imaging for diagnostic purposes. Despite its widespread use in clinical practice and research, the diagnostic properties of presynaptic nigrostriatal dopaminergic (DAT) imaging in parkinsonism have never been evaluated against the diagnostic gold standard of neuropathology. The aim of this study was to evaluate the diagnostic parameters of DAT imaging compared with pathologic diagnosis in patients with parkinsonism. METHODS Retrospective cohort study of patients with DAT imaging for the investigation of a clinically uncertain parkinsonism with brain donation between 2010 and 2021 to the Queen Square Brain Bank (London). Patients with DAT imaging for investigation of pure ataxia or dementia syndromes without parkinsonism were excluded. Those with a pathologic diagnosis of PD, MSA, PSP, or CBD were considered presynaptic dopaminergic parkinsonism, and other pathologies were considered postsynaptic for the analysis. DAT imaging was performed in routine clinical practice and visually classified by hospital nuclear medicine specialists as normal or abnormal. The results were correlated with neuropathologic diagnosis to calculate diagnostic accuracy parameters for the diagnosis of presynaptic dopaminergic parkinsonism. RESULTS All of 47 patients with PD, 41 of 42 with MSA, 68 of 73 with PSP, and 6 of 10 with CBD (sensitivity 100%, 97.6%, 93.2%, and 60%, respectively) had abnormal presynaptic dopaminergic imaging. Eight of 17 patients with presumed postsynaptic parkinsonism had abnormal scans (specificity 52.9%). DISCUSSION DAT imaging has very high sensitivity and negative predictive value for the diagnosis of presynaptic dopaminergic parkinsonism, particularly for PD. However, patients with CBD, and to a lesser extent PSP (of various phenotypes) and MSA (with predominant ataxia), can show normal DAT imaging. A range of other neurodegenerative disorders may have abnormal DAT scans with low specificity in the differential diagnosis of parkinsonism. DAT imaging is a useful diagnostic tool in the differential diagnosis of parkinsonism, although clinicians should be aware of its diagnostic properties and limitations. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that DAT imaging does not accurately distinguish between presynaptic dopaminergic parkinsonism and non-presynaptic dopaminergic parkinsonism.
Collapse
Affiliation(s)
- Alexandra Hastings
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Patrick Cullinane
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Sarah Wrigley
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Tamas Revesz
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Huw R Morris
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - John C Dickson
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Zane Jaunmuktane
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Thomas T Warner
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Eduardo De Pablo-Fernández
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| |
Collapse
|
13
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
14
|
Yuan Y, Mao X, Pan X, Zhang R, Su W. Kinetic Ensemble of Tau Protein through the Markov State Model and Deep Learning Analysis. J Chem Theory Comput 2024; 20:2947-2958. [PMID: 38501645 DOI: 10.1021/acs.jctc.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The ordered assembly of Tau protein into filaments characterizes Alzheimer's and other neurodegenerative diseases, and thus, stabilization of Tau protein is a promising avenue for tauopathies therapy. To dissect the underlying aggregation mechanisms on Tau, we employ a set of molecular simulations and the Markov state model to determine the kinetics of ensemble of K18. K18 is the microtubule-binding domain of Tau protein and plays a vital role in the microtubule assembly, recycling processes, and amyloid fibril formation. Here, we efficiently explore the conformation of K18 with about 150 μs lifetimes in silico. Our results observe that all four repeat regions (R1-R4) are very dynamic, featuring frequent conformational conversion and lacking stable conformations, and the R2 region is more flexible than the R1, R3, and R4 regions. Additionally, it is worth noting that residues 300-310 in R2-R3 and residues 319-336 in R3 tend to form sheet structures, indicating that K18 has a broader functional role than individual repeat monomers. Finally, the simulations combined with Markov state models and deep learning reveal 5 key conformational states along the transition pathway and provide the information on the microsecond time scale interstate transition rates. Overall, this study offers significant insights into the molecular mechanism of Tau pathological aggregation and develops novel strategies for both securing tauopathies and advancing drug discovery.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Xuqi Mao
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Xiaohang Pan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Ruisheng Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Wei Su
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
15
|
Alafuzoff I, Libard S. Ageing-Related Neurodegeneration and Cognitive Decline. Int J Mol Sci 2024; 25:4065. [PMID: 38612875 PMCID: PMC11012171 DOI: 10.3390/ijms25074065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Neuropathological assessment was conducted on 1630 subjects, representing 5% of all the deceased that had been sent to the morgue of Uppsala University Hospital during a 15-year-long period. Among the 1630 subjects, 1610 were ≥41 years of age (range 41 to 102 years). Overall, hyperphosphorylated (HP) τ was observed in the brains of 98% of the 1610 subjects, and amyloid β-protein (Aβ) in the brains of 64%. The most common alteration observed was Alzheimer disease neuropathologic change (ADNC) (56%), followed by primary age-related tauopathy (PART) in 26% of the subjects. In 16% of the subjects, HPτ was limited to the locus coeruleus. In 14 subjects (<1%), no altered proteins were observed. In 3 subjects, only Aβ was observed, and in 17, HPτ was observed in a distribution other than that seen in ADNC/PART. The transactive DNA-binding protein 43 (TDP43) associated with limbic-predominant age-related TDP encephalopathy (LATE) was observed in 565 (35%) subjects and α-synuclein (αS) pathology, i.e., Lewy body disease (LBD) or multi system atrophy (MSA) was observed in the brains of 21% of the subjects. A total of 39% of subjects with ADNC, 59% of subjects with PART, and 81% of subjects with HPτ limited to the locus coeruleus lacked concomitant pathologies, i.e., LATE-NC or LBD-NC. Of the 293 (18% of the 1610 subjects) subjects with dementia, 81% exhibited a high or intermediate level of ADNC. In 84% of all individuals with dementia, various degrees of concomitant alterations were observed; i.e., MIXED-NC was a common cause of dementia. A high or intermediate level of PART was observed in 10 subjects with dementia (3%), i.e., tangle-predominant dementia. No subjects exhibited only vascular NC (VNC), but in 17 subjects, severe VNC might have contributed to cognitive decline. Age-related tau astrogliopathy (ARTAG) was observed in 37% of the 1610 subjects and in 53% of those with dementia.
Collapse
Affiliation(s)
- Irina Alafuzoff
- Department of Pathology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Sylwia Libard
- Department of Pathology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| |
Collapse
|
16
|
Pasqualotto A, da Silva V, Pellenz FM, Schuh AFS, Schwartz IVD, Siebert M. Identification of metabolic pathways and key genes associated with atypical parkinsonism using a systems biology approach. Metab Brain Dis 2024; 39:577-587. [PMID: 38305999 DOI: 10.1007/s11011-024-01342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/23/2023] [Indexed: 02/03/2024]
Abstract
Atypical parkinsonism (AP) is a group of complex neurodegenerative disorders with marked clinical and pathophysiological heterogeneity. The use of systems biology tools may contribute to the characterization of hub-bottleneck genes, and the identification of its biological pathways to broaden the understanding of the bases of these disorders. A systematic search was performed on the DisGeNET database, which integrates data from expert curated repositories, GWAS catalogues, animal models and the scientific literature. The tools STRING 11.0 and Cytoscape 3.8.2 were used for analysis of protein-protein interaction (PPI) network. The PPI network topography analyses were performed using the CytoHubba 0.1 plugin for Cytoscape. The hub and bottleneck genes were inserted into 4 different sets on the InteractiveVenn. Additional functional enrichment analyses were performed to identify Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology for a described set of genes. The systematic search in the DisGeNET database identified 485 genes involved with Atypical Parkinsonism. Superimposing these genes, we detected a total of 31 hub-bottleneck genes. Moreover, our functional enrichment analyses demonstrated the involvement of these hub-bottleneck genes in 3 major KEGG pathways. We identified 31 highly interconnected hub-bottleneck genes through a systems biology approach, which may play a key role in the pathogenesis of atypical parkinsonism. The functional enrichment analyses showed that these genes are involved in several biological processes and pathways, such as the glial cell development, glial cell activation and cognition, pathways were related to Alzheimer disease and Parkinson disease. As a hypothesis, we highlight as possible key genes for AP the MAPT (microtubule associated protein tau), APOE (apolipoprotein E), SNCA (synuclein alpha) and APP (amyloid beta precursor protein) genes.
Collapse
Affiliation(s)
- Amanda Pasqualotto
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Felipe Mateus Pellenz
- Serviço de Endocrinologia, -Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Artur Francisco Schumacher Schuh
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Departatamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ida Vanessa Doederlein Schwartz
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Marina Siebert
- BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós Graduação em Hepatologia e Gastroenterologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
Wang B, Kobeissy F, Golpich M, Cai G, Li X, Abedi R, Haskins W, Tan W, Benner SA, Wang KKW. Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development. Molecules 2024; 29:1124. [PMID: 38474636 DOI: 10.3390/molecules29051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aptamers developed using in vitro Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology are single-stranded nucleic acids 10-100 nucleotides in length. Their targets, often with specificity and high affinity, range from ions and small molecules to proteins and other biological molecules as well as larger systems, including cells, tissues, and animals. Aptamers often rival conventional antibodies with improved performance, due to aptamers' unique biophysical and biochemical properties, including small size, synthetic accessibility, facile modification, low production cost, and low immunogenicity. Therefore, there is sustained interest in engineering and adapting aptamers for many applications, including diagnostics and therapeutics. Recently, aptamers have shown promise as early diagnostic biomarkers and in precision medicine for neurodegenerative and neurological diseases. Here, we critically review neuro-targeting aptamers and their potential applications in neuroscience research, neuro-diagnostics, and neuro-medicine. We also discuss challenges that must be overcome, including delivery across the blood-brain barrier, increased affinity, and improved in vivo stability and in vivo pharmacokinetic properties.
Collapse
Affiliation(s)
- Bang Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Firas Kobeissy
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Mojtaba Golpich
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Guangzheng Cai
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiaowei Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Reem Abedi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - William Haskins
- Gryphon Bio, Inc., 611 Gateway Blvd. Suite 120 #253, South San Francisco, CA 94080, USA
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou 310022, China
| | - Steven A Benner
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Kevin K W Wang
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| |
Collapse
|
18
|
Sexton CE, Bitan G, Bowles KR, Brys M, Buée L, Maina MB, Clelland CD, Cohen AD, Crary JF, Dage JL, Diaz K, Frost B, Gan L, Goate AM, Golbe LI, Hansson O, Karch CM, Kolb HC, La Joie R, Lee SE, Matallana D, Miller BL, Onyike CU, Quiroz YT, Rexach JE, Rohrer JD, Rommel A, Sadri‐Vakili G, Schindler SE, Schneider JA, Sperling RA, Teunissen CE, Weninger SC, Worley SL, Zheng H, Carrillo MC. Novel avenues of tau research. Alzheimers Dement 2024; 20:2240-2261. [PMID: 38170841 PMCID: PMC10984447 DOI: 10.1002/alz.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION The pace of innovation has accelerated in virtually every area of tau research in just the past few years. METHODS In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation. RESULTS Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research. DISCUSSION The virtual meeting provided an opportunity to foster cross-sector collaboration and partnerships as well as a forum for updating colleagues on research-advancing tools and programs that are steadily moving the field forward.
Collapse
Affiliation(s)
| | - Gal Bitan
- Department of NeurologyDavid Geffen School of MedicineBrain Research InstituteMolecular Biology InstituteUniversity of California Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Kathryn R. Bowles
- UK Dementia Research Institute at the University of EdinburghCentre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | | | - Luc Buée
- Univ LilleInsermCHU‐LilleLille Neuroscience and CognitionLabEx DISTALZPlace de VerdunLilleFrance
| | - Mahmoud Bukar Maina
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexFalmerUK
- Biomedical Science Research and Training CentreYobe State UniversityDamaturuNigeria
| | - Claire D. Clelland
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ann D. Cohen
- University of PittsburghSchool of MedicineDepartment of Psychiatry and Alzheimer's disease Research CenterPittsburghPennsylvaniaUSA
| | - John F. Crary
- Departments of PathologyNeuroscience, and Artificial Intelligence & Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jeffrey L. Dage
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | | | - Bess Frost
- Sam & Ann Barshop Institute for Longevity & Aging Studies Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders Department of Cell Systems and Anatomy University of Texas Health San AntonioSan AntonioTexasUSA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research InstituteFeil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNew YorkUSA
| | - Alison M Goate
- Department of Genetics & Genomic SciencesRonald M. Loeb Center for Alzheimer's diseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Lawrence I. Golbe
- CurePSPIncNew YorkNew YorkUSA
- Rutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityLundSweden
| | - Celeste M. Karch
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Renaud La Joie
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Suzee E. Lee
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Diana Matallana
- Aging InstituteNeuroscience ProgramPsychiatry DepartmentSchool of MedicinePontificia Universidad JaverianaBogotáColombia
- Mental Health DepartmentHospital Universitario Fundaciòn Santa FeBogotaColombia
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Chiadi U. Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryJohns Hopkins University School of MedicineBaltimoreBaltimoreMarylandUSA
| | - Yakeel T. Quiroz
- Departments of Psychiatry and NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jessica E. Rexach
- Program in NeurogeneticsDepartment of NeurologyDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Jonathan D. Rohrer
- Department of Neurodegenerative DiseaseDementia Research CentreUniversity College London Institute of Neurology, Queen SquareLondonUK
| | - Amy Rommel
- Rainwater Charitable FoundationFort WorthTexasUSA
| | - Ghazaleh Sadri‐Vakili
- Sean M. Healey &AMG Center for ALS at Mass GeneralMassachusetts General HospitalBostonMassachusettsUSA
| | - Suzanne E. Schindler
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Reisa A. Sperling
- Center for Alzheimer Research and TreatmentBrigham and Women's HospitalMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryClinical Chemistry departmentAmsterdam NeuroscienceProgram NeurodegenerationAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | | | - Hui Zheng
- Huffington Center on AgingBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
19
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
20
|
Samudra N, Lerner H, Yack L, Walsh CM, Kirsch HE, Kudo K, Yballa C, La Joie R, Gorno‐Tempini ML, Spina S, Seeley WW, Neylan TC, Miller BL, Rabinovici GD, Boxer A, Grinberg LT, Rankin KP, Nagarajan SS, Ranasinghe KG. Spatiotemporal characteristics of neurophysiological changes in patients with four-repeat tauopathies. Ann Clin Transl Neurol 2024; 11:525-535. [PMID: 38226843 PMCID: PMC10863921 DOI: 10.1002/acn3.51974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
INTRODUCTION Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), are the most common four-repeat tauopathies (4RT), and both frequently occur with varying degree of Alzheimer's disease (AD) copathology. Intriguingly, patients with 4RT and patients with AD are at opposite ends of the wakefulness spectrum-AD showing reduced wakefulness and excessive sleepiness whereas 4RT showing decreased homeostatic sleep. The neural mechanisms underlying these distinct phenotypes in the comorbid condition of 4RT and AD are unknown. The objective of the current study was to define the alpha oscillatory spectrum, which is prominent in the awake resting-state in the human brain, in patients with primary 4RT, and how it is modified in comorbid AD-pathology. METHOD In an autopsy-confirmed case series of 4R-tauopathy patients (n = 10), whose primary neuropathological diagnosis was either PSP (n = 7) or CBD (n = 3), using high spatiotemporal resolution magnetoencephalography (MEG), we quantified the spectral power density within alpha-band (8-12 Hz) and examined how this pattern was modified in increasing AD-copathology. For each patient, their regional alpha power was compared to an age-matched normative control cohort (n = 35). RESULT Patients with 4RT showed increased alpha power but in the presence of AD-copathology alpha power was reduced. CONCLUSIONS Alpha power increase in PSP-tauopathy and reduction in the presence of AD-tauopathy is consistent with the observation that neurons activating wakefulness-promoting systems are preserved in PSP but degenerated in AD. These results highlight the selectively vulnerable impacts in 4RT versus AD-tauopathy that may have translational significance on disease-modifying therapies for specific proteinopathies.
Collapse
Affiliation(s)
- Niyatee Samudra
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Hannah Lerner
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Leslie Yack
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
- Department of PsychiatrySan Francisco Veterans Affairs, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Christine M. Walsh
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Heidi E. Kirsch
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCalifornia94143USA
- Epilepsy Center, Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kiwamu Kudo
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCalifornia94143USA
- Medical Imaging Business CenterRicoh CompanyKanazawaJapan
| | - Claire Yballa
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Renaud La Joie
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Maria L. Gorno‐Tempini
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Salvatore Spina
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - William W. Seeley
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Thomas C. Neylan
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
- Department of PsychiatrySan Francisco Veterans Affairs, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Bruce L. Miller
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCalifornia94143USA
| | - Adam Boxer
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
- Department of PathologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Katherine P. Rankin
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCalifornia94143USA
| | - Kamalini G. Ranasinghe
- Memory and Aging Center, Department of NeurologyWeill Institute for Neurosciences, University of California San FranciscoSan FranciscoCalifornia94158USA
| |
Collapse
|
21
|
Palleis C, Franzmeier N, Weidinger E, Bernhardt AM, Katzdobler S, Wall S, Ferschmann C, Harris S, Schmitt J, Schuster S, Gnörich J, Finze A, Biechele G, Lindner S, Albert NL, Bartenstein P, Sabri O, Barthel H, Rupprecht R, Nuscher B, Stephens AW, Rauchmann BS, Perneczky R, Haass C, Brendel M, Levin J, Höglinger GU. Association of Neurofilament Light Chain, [ 18F]PI-2620 Tau-PET, TSPO-PET, and Clinical Progression in Patients With β-Amyloid-Negative CBS. Neurology 2024; 102:e207901. [PMID: 38165362 PMCID: PMC10834119 DOI: 10.1212/wnl.0000000000207901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Corticobasal syndrome (CBS) with underlying 4-repeat tauopathy is a progressive neurodegenerative disease characterized by declining cognitive and motor functions. Biomarkers for assessing pathologic brain changes in CBS including tau-PET, 18 kDa translocator protein (TSPO)-PET, structural MRI, neurofilament light chain (NfL), or glial fibrillary acidic protein (GFAP) have recently been evaluated for differential diagnosis and disease staging, yet their association with disease trajectories remains unclear. Therefore, we performed a head-to-head comparison of neuroimaging (tau-PET, TSPO-PET, structural MRI) and plasma biomarkers (NfL, GFAP) as prognostic tools for longitudinal clinical trajectories in β-amyloid (Aβ)-negative CBS. METHODS We included patients with clinically diagnosed Aβ-negative CBS with clinical follow-up data who underwent baseline structural MRI and plasma-NfL analysis for assessing neurodegeneration, [18F]PI-2620-PET for assessing tau pathology, [18F]GE-180-PET for assessing microglia activation, and plasma-GFAP analysis for assessing astrocytosis. To quantify tau and microglia load, we assessed summary scores of whole-brain, cortical, and subcortical PET signal. For structural MRI analysis, we quantified subcortical and cortical gray matter volume. Plasma NfL and GFAP values were assessed using Simoa-based immunoassays. Symptom progression was determined using a battery of cognitive and motor tests (i.e., Progressive Supranuclear Palsy Rating Scale [PSPRS]). Using linear mixed models, we tested whether the assessed biomarkers at baseline were associated with faster symptom progression over time (i.e., time × biomarker interaction). RESULTS Overall, 21 patients with Aβ-negative CBS with ∼2-year clinical follow-up data were included. Patients with CBS with more widespread global tau-PET signal showed faster clinical progression (PSPRS: B/SE = 0.001/0.0005, p = 0.025), driven by cortical rather than subcortical tau-PET. By contrast, patients with higher global [18F]GE-180-PET readouts showed slower clinical progression (PSPRS: B/SE = -0.056/0.023, p = 0.019). No association was found between gray matter volume and clinical progression. Concerning fluid biomarkers, only higher plasma-NfL (PSPRS: B/SE = 0.176/0.046, p < 0.001) but not GFAP was associated with faster clinical deterioration. In a subsequent sensitivity analysis, we found that tau-PET, TSPO-PET, and plasma-NfL showed significant interaction effects with time on clinical trajectories when tested in the same model. DISCUSSION [18F]PI-2620 tau-PET, [18F]GE-180 TSPO-PET, and plasma-NfL show prognostic potential for clinical progression in patients with Aβ-negative CBS with probable 4-repeat tauopathy, which can be useful for clinical decision-making and stratifying patients in clinical trials.
Collapse
Affiliation(s)
- Carla Palleis
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Nicolai Franzmeier
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Endy Weidinger
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Alexander M Bernhardt
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Sabrina Katzdobler
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Stephan Wall
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Christian Ferschmann
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Stefanie Harris
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Julia Schmitt
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Sebastian Schuster
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Johannes Gnörich
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Anika Finze
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Gloria Biechele
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Simon Lindner
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Nathalie L Albert
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Peter Bartenstein
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Osama Sabri
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Henryk Barthel
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Rainer Rupprecht
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Brigitte Nuscher
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Andrew W Stephens
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Boris-Stephan Rauchmann
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Robert Perneczky
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Christian Haass
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Matthias Brendel
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Johannes Levin
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Günter U Höglinger
- From the Departments of Neurology (C.P., E.W., A.M.B., S.K., J.L., G.U.H.), Nuclear Medicine (S.W., C.F., S.H., J.S., S.S., J.G., A.F., G.B., S.L., N.L.A., P.B., M.B.), and Psychiatry and Psychotherapy (B.-S.R., R.P.) and the Institutes for Stroke and Dementia Research (N.F.) and Neuroradiology (B.-S.R.), University Hospital, LMU Munich, Germany; Munich Cluster for Systems Neurology (C.P., N.F., S.K., P.B., R.P., C.H., M.B., J.L.), SyNergy, Germany; German Center for Neurodegenerative Diseases (C.P., E.W., A.M.B., S.K., B.N., B.-S.R., R.P., C.H., M.B., J.L., G.U.H.), DZNE-Munich, Germany; Department of Nuclear Medicine (O.S., H.B.), Leipzig University Medical Centre; Department of Psychiatry and Psychotherapy (R.R.), University of Regensburg, Germany; Life Molecular Imaging GmbH (A.W.S.), Berlin, Germany; Sheffield Institute for Translational Neuroscience (SITraN) (B.-S.R., R.P.), University of Sheffield, United Kingdom; Ageing Epidemiology Research Unit (AGE) (R.P.), School of Public Health, Imperial College London, United Kingdom; and Chair of Metabolic Biochemistry (C.H.), Biomedical Center (BMC), Ludwig-Maximilians-Universität LMU, Munich, Germany
| |
Collapse
|
22
|
Sande R, Godad A, Doshi G. Zebrafish Experimental Animal Models for AD: A Comprehensive Review. Curr Rev Clin Exp Pharmacol 2024; 19:295-311. [PMID: 38284707 DOI: 10.2174/0127724328279684240104094257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024]
Abstract
AD disease (AD) is a multifaceted and intricate neurodegenerative disorder characterized by intracellular neurofibrillary tangle (NFT) formation and the excessive production and deposition of Aβ senile plaques. While transgenic AD models have been found instrumental in unravelling AD pathogenesis, they involve cost and time constraints during the preclinical phase. Zebrafish, owing to their simplicity, well-defined behavioural patterns, and relevance to neurodegenerative research, have emerged as a promising complementary model. Zebrafish possess glutaminergic and cholinergic pathways implicated in learning and memory, actively contributing to our understanding of neural transmission processes. This review sheds light on the molecular mechanisms by which various neurotoxic agents, including okadaic acid (OKA), cigarette smoke extract, metals, and transgenic zebrafish models with genetic similarities to AD patients, induce cognitive impairments and neuronal degeneration in mammalian systems. These insights may facilitate the identification of effective neurotoxic agents for replicating AD pathogenesis in the zebrafish brain. In this comprehensive review, the pivotal role of zebrafish models in advancing our comprehension of AD is emphasized. These models hold immense potential for shaping future research directions and clinical interventions, ultimately contributing to the development of novel AD therapies.
Collapse
Affiliation(s)
- Ruksar Sande
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Angel Godad
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
23
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
24
|
Martinez-Valbuena I, Lee S, Santamaria E, Irigoyen JF, Forrest S, Li J, Tanaka H, Couto B, Reyes NG, Qamar H, Karakani AM, Kim A, Senkevich K, Rogaeva E, Fox SH, Tartaglia C, Visanji NP, Andrews T, Lang AE, Kovacs GG. 4R-Tau seeding activity unravels molecular subtypes in patients with Progressive Supranuclear Palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559953. [PMID: 37808843 PMCID: PMC10557711 DOI: 10.1101/2023.09.28.559953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Progressive Supranuclear palsy (PSP) is a 4-repeat (4-R) tauopathy. We hypothesized that the molecular diversity of tau could explain the heterogeneity seen in PSP disease progression. To test this hypothesis, we performed an extensive biochemical characterisation of the high molecular weight tau species (HMW-Tau) in 20 different brain regions of 25 PSP patients. We found a correlation between the HMW-Tau species and tau seeding capacity in the primary motor cortex, where we confirmed that an elevated 4R-Tau seeding activity correlates with a shorter disease duration. To identify factors that contribute to these differences, we performed proteomic and spatial transcriptomic analysis that revealed key mechanistic pathways, in particular those involving the immune system, that defined patients demonstrating high and low tau seeding capacity. These observations suggest that differences in the tau seeding activity may contribute to the considerable heterogeneity seen in disease progression of patients suffering from PSP.
Collapse
|
25
|
Waheed Z, Choudhary J, Jatala FH, Fatimah, Noor A, Zerr I, Zafar S. The Role of Tau Proteoforms in Health and Disease. Mol Neurobiol 2023; 60:5155-5166. [PMID: 37266762 DOI: 10.1007/s12035-023-03387-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Tau is a microtubule-associated binding protein in the nervous system that is known for its role in stabilizing microtubules throughout the nerve cell. It accumulates as β-sheet-rich aggregates and neurofibrillary tangles, leading to an array of different pathologies. Six splice variants of this protein, generated from the microtubule-associated protein tau (MAPT) gene, are expressed in the brain. Amongst these variants, 0N3R, is prominent during fetal development, while the rest, 0N4R, 1N3R, 1N4R, 2N3R, and 2N4R, are expressed in postnatal stages. Tau isoforms play their role separately or in combination with others to contribute to one or multiple neurodegenerative disorders and clinical syndromes. For instance, in Alzheimer's disease and a subset of frontotemporal lobar degeneration (FTLD)-MAPT (i.e., R406W and V337M), both 3R and 4R isoforms are involved; therefore, they are called 3R/4R mix tauopathies. On the other hand, 4R isoforms are aggregated in progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and a majority of FTLD-MAPT and these diseases are called 4R tauopathies. Similarly, Pick's disease has an association with 3R tau isoforms and is thereby referred to as 3R tauopathy. Unlike 3R isoforms, the 4R variants have a faster rate of aggregation that accelerates the associated neurodegenerative mechanisms. Moreover, post-translational modifications of each isoform occur at a different rate and dictate their physiological and pathological attributes. The smallest tau isoform (0N3R) is highly phosphorylated in the fetal brain but does not lead to the generation of aggregates. On the other hand, proteoforms in the adult human brain undergo aggregation upon their phosphorylation and glycation. Expanding on this knowledge, this article aims to review the physiological and pathological roles of tau isoforms and their underlying mechanisms that result in neurological deficits. Physiological and pathological relevance of microtubule-associated protein tau (MAPT): Tau exists as six splice variants in the brain, each differing with respect to expression, post-translational modifications (PTMs), and aggregation kinetics. Physiologically, they are involved in the stabilization of microtubules that form the molecular highways for axonal transport. However, an imbalance in their expression and the associated PTMs leads to a disruption in their physiological function through the formation of neurofibrillary tangles that accumulate in various regions of the brain and contribute to several types of tauopathies.
Collapse
Affiliation(s)
- Zuha Waheed
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Jawaria Choudhary
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Faria Hasan Jatala
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Fatimah
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
| | - Aneeqa Noor
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan.
| | - Inga Zerr
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Saima Zafar
- School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, Sector H-12, Islamabad, 46000, Pakistan
- Clinical Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
26
|
Forrest SL, Lee S, Nassir N, Martinez-Valbuena I, Sackmann V, Li J, Ahmed A, Tartaglia MC, Ittner LM, Lang AE, Uddin M, Kovacs GG. Cell-specific MAPT gene expression is preserved in neuronal and glial tau cytopathologies in progressive supranuclear palsy. Acta Neuropathol 2023; 146:395-414. [PMID: 37354322 PMCID: PMC10412651 DOI: 10.1007/s00401-023-02604-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Microtubule-associated protein tau (MAPT) aggregates in neurons, astrocytes and oligodendrocytes in a number of neurodegenerative diseases, including progressive supranuclear palsy (PSP). Tau is a target of therapy and the strategy includes either the elimination of pathological tau aggregates or reducing MAPT expression, and thus the amount of tau protein made to prevent its aggregation. Disease-associated tau affects brain regions in a sequential manner that includes cell-to-cell spreading. Involvement of glial cells that show tau aggregates is interpreted as glial cells taking up misfolded tau assuming that glial cells do not express enough MAPT. Although studies have evaluated MAPT expression in human brain tissue homogenates, it is not clear whether MAPT expression is compromised in cells accumulating pathological tau. To address these perplexing aspects of disease pathogenesis, this study used RNAscope combined with immunofluorescence (AT8), and single-nuclear(sn) RNAseq to systematically map and quantify MAPT expression dynamics across different cell types and brain regions in controls (n = 3) and evaluated whether tau cytopathology affects MAPT expression in PSP (n = 3). MAPT transcripts were detected in neurons, astrocytes and oligodendrocytes, and varied between brain regions and within each cell type, and were preserved in all cell types with tau aggregates in PSP. These results propose a complex scenario in all cell types, where, in addition to the ingested misfolded tau, the preserved cellular MAPT expression provides a pool for local protein production that can (1) be phosphorylated and aggregated, or (2) feed the seeding of ingested misfolded tau by providing physiological tau, both accentuating the pathological process. Since tau cytopathology does not compromise MAPT gene expression in PSP, a complete loss of tau protein expression as an early pathogenic component is less likely. These observations provide rationale for a dual approach to therapy by decreasing cellular MAPT expression and targeting removal of misfolded tau.
Collapse
Affiliation(s)
- Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Valerie Sackmann
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Awab Ahmed
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- University Health Network Memory Clinic, Krembil Brain Institute, Toronto, ON, Canada
| | - Lars M Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Krembil Discovery Tower, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Nikom D, Zheng S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat Rev Neurosci 2023; 24:457-473. [PMID: 37336982 DOI: 10.1038/s41583-023-00717-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Alternative splicing generates a myriad of RNA products and protein isoforms of different functions from a single gene. Dysregulated alternative splicing has emerged as a new mechanism broadly implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer disease, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson disease and repeat expansion diseases. Understanding the mechanisms and functional outcomes of abnormal splicing in neurological disorders is vital in developing effective therapies to treat mis-splicing pathology. In this Review, we discuss emerging research and evidence of the roles of alternative splicing defects in major neurodegenerative diseases and summarize the latest advances in RNA-based therapeutic strategies to target these disorders.
Collapse
Affiliation(s)
- David Nikom
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA
| | - Sika Zheng
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA.
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA.
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
28
|
Quadalti C, Palmqvist S, Hall S, Rossi M, Mammana A, Janelidze S, Dellavalle S, Mattsson-Carlgren N, Baiardi S, Stomrud E, Hansson O, Parchi P. Clinical effects of Lewy body pathology in cognitively impaired individuals. Nat Med 2023; 29:1964-1970. [PMID: 37464058 PMCID: PMC10427416 DOI: 10.1038/s41591-023-02449-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023]
Abstract
There is poor knowledge about the clinical effects of Lewy body (LB) pathology in patients with cognitive impairment, especially when coexisting with Alzheimer's disease (AD) pathology (amyloid-β and tau). Using a seed amplification assay, we analyzed cerebrospinal fluid for misfolded LB-associated α-synuclein in 883 memory clinic patients with mild cognitive impairment or dementia from the BioFINDER study. Twenty-three percent had LB pathology, of which only 21% fulfilled clinical criteria of Parkinson's disease or dementia with Lewy bodies at baseline. Among these LB-positive patients, 48% had AD pathology. Fifty-four percent had AD pathology in the whole sample (17% of mild cognitive impairment and 24% of patients with dementia were also LB-positive). When examining independent cross-sectional effects, LB pathology but not amyloid-β or tau, was associated with hallucinations and worse attention/executive, visuospatial and motor function. LB pathology was also associated with faster longitudinal decline in all examined cognitive functions, independent of amyloid-β, tau, cognitive stage and a baseline diagnosis of dementia with Lewy bodies/Parkinson's disease. LB status provides a better precision-medicine approach to predict clinical trajectories independent of AD biomarkers and a clinical diagnosis, which could have implications for the clinical management of cognitive impairment and the design of AD and LB drug trials.
Collapse
Affiliation(s)
- Corinne Quadalti
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Sara Hall
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Angela Mammana
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Sofia Dellavalle
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Neurology Clinic, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Simone Baiardi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna (ISNB), Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
29
|
Holden MR, Krzesinski BJ, Weismiller HA, Shady JR, Margittai M. MAP2 caps tau fibrils and inhibits aggregation. J Biol Chem 2023; 299:104891. [PMID: 37286038 PMCID: PMC10404690 DOI: 10.1016/j.jbc.2023.104891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/13/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Fibrils of the microtubule-associated protein tau are intimately linked to the pathology of Alzheimer's disease (AD) and related neurodegenerative disorders. A current paradigm for pathology spreading in the human brain is that short tau fibrils transfer between neurons and then recruit naive tau monomers onto their tips, perpetuating the fibrillar conformation with high fidelity and speed. Although it is known that the propagation could be modulated in a cell-specific manner and thereby contribute to phenotypic diversity, there is still limited understanding of how select molecules are involved in this process. MAP2 is a neuronal protein that shares significant sequence homology with the repeat-bearing amyloid core region of tau. There is discrepancy about MAP2's involvement in pathology and its relationship with tau fibrillization. Here, we employed the entire repeat regions of 3R and 4R MAP2, to investigate their modulatory role in tau fibrillization. We find that both proteins block the spontaneous and seeded aggregation of 4R tau, with 4R MAP2 being slightly more potent. The inhibition of tau seeding is observed in vitro, in HEK293 cells, and in AD brain extracts, underscoring its broader scope. MAP2 monomers specifically bind to the end of tau fibrils, preventing recruitment of further tau and MAP2 monomers onto the fibril tip. The findings uncover a new function for MAP2 as a tau fibril cap that could play a significant role in modulating tau propagation in disease and may hold promise as a potential intrinsic protein inhibitor.
Collapse
Affiliation(s)
- Michael R Holden
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Brad J Krzesinski
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Hilary A Weismiller
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Justin R Shady
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, USA.
| |
Collapse
|
30
|
Holland N, Jones PS, Savulich G, Naessens M, Malpetti M, Whiteside DJ, Street D, Swann P, Hong YT, Fryer TD, Rittman T, Mulroy E, Aigbirhio FI, Bhatia KP, O'Brien JT, Rowe JB. Longitudinal Synaptic Loss in Primary Tauopathies: An In Vivo [ 11 C]UCB-J Positron Emission Tomography Study. Mov Disord 2023; 38:1316-1326. [PMID: 37171832 PMCID: PMC10947001 DOI: 10.1002/mds.29421] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Synaptic loss is characteristic of many neurodegenerative diseases; it occurs early and is strongly related to functional deficits. OBJECTIVE In this longitudinal observational study, we determine the rate at which synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and we test the relationship with disease progression. METHODS Our cross-sectional cohort included 32 participants with probable PSP and 16 with probable CBD (all amyloid-negative corticobasal syndrome), recruited from tertiary care centers in the United Kingdom, and 33 sex- and age-matched healthy control subjects. Synaptic density was estimated by positron emission tomography imaging with the radioligand [11 C]UCB-J that binds synaptic vesicle 2A. Clinical severity and cognition were assessed by the PSP Rating Scale and the Addenbrooke's cognitive examination. Regional [11 C]UCB-J nondisplaceable binding potential was estimated in Hammersmith Atlas regions of interest. Twenty-two participants with PSP/CBD had a follow-up [11 C]UCB-J positron emission tomography scan after 1 year. We calculated the annualized change in [11 C]UCB-J nondisplaceable binding potential and correlated this with the change in clinical severity. RESULTS We found significant annual synaptic loss within the frontal lobe (-3.5%, P = 0.03) and the right caudate (-3.9%, P = 0.046). The degree of longitudinal synaptic loss within the frontal lobe correlated with the rate of change in the PSP Rating Scale (R = 0.47, P = 0.03) and cognition (Addenbrooke's Cognitive Examination-Revised, R = -0.62, P = 0.003). CONCLUSIONS We provide in vivo evidence for rapid progressive synaptic loss, correlating with clinical progression in primary tauopathies. Synaptic loss may be an important therapeutic target and outcome variable for early-phase clinical trials of disease-modifying treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Cambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
| | - P. Simon Jones
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - George Savulich
- Department of PsychiatryUniversity of Cambridge, School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Michelle Naessens
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Maura Malpetti
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - David J. Whiteside
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Duncan Street
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Peter Swann
- Cambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
- Department of PsychiatryUniversity of Cambridge, School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Young T. Hong
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Tim D. Fryer
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Timothy Rittman
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Eoin Mulroy
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Franklin I. Aigbirhio
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - John T. O'Brien
- Cambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
- Department of PsychiatryUniversity of Cambridge, School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - James B. Rowe
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Cambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
31
|
Bowles KR, Pugh DA, Pedicone C, Oja L, Weitzman SA, Liu Y, Chen JL, Disney MD, Goate AM. Development of MAPT S305 mutation models exhibiting elevated 4R tau expression, resulting in altered neuronal and astrocytic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543224. [PMID: 37333200 PMCID: PMC10274740 DOI: 10.1101/2023.06.02.543224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Due to the importance of 4R tau in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in iPSC-derived neurons, which express very low levels of 4R tau. To address this problem we have developed a panel of isogenic iPSC lines carrying the MAPT splice-site mutations S305S, S305I or S305N, derived from four different donors. All three mutations significantly increased the proportion of 4R tau expression in iPSC-neurons and astrocytes, with up to 80% 4R transcripts in S305N neurons from as early as 4 weeks of differentiation. Transcriptomic and functional analyses of S305 mutant neurons revealed shared disruption in glutamate signaling and synaptic maturity, but divergent effects on mitochondrial bioenergetics. In iPSC-astrocytes, S305 mutations induced lysosomal disruption and inflammation and exacerbated internalization of exogenous tau that may be a precursor to the glial pathologies observed in many tauopathies. In conclusion, we present a novel panel of human iPSC lines that express unprecedented levels of 4R tau in neurons and astrocytes. These lines recapitulate previously characterized tauopathy-relevant phenotypes, but also highlight functional differences between the wild type 4R and mutant 4R proteins. We also highlight the functional importance of MAPT expression in astrocytes. These lines will be highly beneficial to tauopathy researchers enabling a more complete understanding of the pathogenic mechanisms underlying 4R tauopathies across different cell types.
Collapse
Affiliation(s)
- KR Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - DA Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - C Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - L Oja
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - SA Weitzman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Y Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - JL Chen
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - MD Disney
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - AM Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
32
|
Darricau M, Katsinelos T, Raschella F, Milekovic T, Crochemore L, Li Q, Courtine G, McEwan WA, Dehay B, Bezard E, Planche V. Tau seeds from patients induce progressive supranuclear palsy pathology and symptoms in primates. Brain 2023; 146:2524-2534. [PMID: 36382344 PMCID: PMC10232263 DOI: 10.1093/brain/awac428] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Progressive supranuclear palsy is a primary tauopathy affecting both neurons and glia and is responsible for both motor and cognitive symptoms. Recently, it has been suggested that progressive supranuclear palsy tauopathy may spread in the brain from cell to cell in a 'prion-like' manner. However, direct experimental evidence of this phenomenon, and its consequences on brain functions, is still lacking in primates. In this study, we first derived sarkosyl-insoluble tau fractions from post-mortem brains of patients with progressive supranuclear palsy. We also isolated the same fraction from age-matched control brains. Compared to control extracts, the in vitro characterization of progressive supranuclear palsy-tau fractions demonstrated a high seeding activity in P301S-tau expressing cells, displaying after incubation abnormally phosphorylated (AT8- and AT100-positivity), misfolded, filamentous (pentameric formyl thiophene acetic acid positive) and sarkosyl-insoluble tau. We bilaterally injected two male rhesus macaques in the supranigral area with this fraction of progressive supranuclear palsy-tau proteopathic seeds, and two other macaques with the control fraction. The quantitative analysis of kinematic features revealed that progressive supranuclear palsy-tau injected macaques exhibited symptoms suggestive of parkinsonism as early as 6 months after injection, remaining present until euthanasia at 18 months. An object retrieval task showed the progressive appearance of a significant dysexecutive syndrome in progressive supranuclear palsy-tau injected macaques compared to controls. We found AT8-positive staining and 4R-tau inclusions only in progressive supranuclear palsy-tau injected macaques. Characteristic pathological hallmarks of progressive supranuclear palsy, including globose and neurofibrillary tangles, tufted astrocytes and coiled bodies, were found close to the injection sites but also in connected brain regions that are known to be affected in progressive supranuclear palsy (striatum, pallidum, thalamus). Interestingly, while glial AT8-positive lesions were the most frequent near the injection site, we found mainly neuronal inclusions in the remote brain area, consistent with a neuronal transsynaptic spreading of the disease. Our results demonstrate that progressive supranuclear palsy patient-derived tau aggregates can induce motor and behavioural impairments in non-human primates related to the prion-like seeding and spreading of typical pathological progressive supranuclear palsy lesions. This pilot study paves the way for supporting progressive supranuclear palsy-tau injected macaque as a relevant animal model to accelerate drug development targeting this rare and fatal neurodegenerative disease.
Collapse
Affiliation(s)
- Morgane Darricau
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Taxiarchis Katsinelos
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0AH Cambridge, UK
| | - Flavio Raschella
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - Tomislav Milekovic
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - Louis Crochemore
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Qin Li
- Motac Neuroscience, F-33000 Bordeaux, France
| | - Grégoire Courtine
- Swiss Federal Institute of Technology (EPFL), CH-1011 Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), CH-1011 Lausanne, Switzerland
- Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
| | - William A McEwan
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, CB2 0AH Cambridge, UK
| | - Benjamin Dehay
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Erwan Bezard
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- Motac Neuroscience, F-33000 Bordeaux, France
| | - Vincent Planche
- University of Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
- CHU de Bordeaux, Pôle de Neurosciences Cliniques, Centre Mémoire de Ressources et de Recherche, F-33000 Bordeaux, France
| |
Collapse
|
33
|
Schönecker S, Palleis C, Franzmeier N, Katzdobler S, Ferschmann C, Schuster S, Finze A, Scheifele M, Prix C, Fietzek U, Weidinger E, Nübling G, Vöglein J, Patt M, Barthel H, Sabri O, Danek A, Höglinger GU, Brendel M, Levin J. Symptomatology in 4-repeat tauopathies is associated with data-driven topology of [ 18F]-PI-2620 tau-PET signal. Neuroimage Clin 2023; 38:103402. [PMID: 37087820 PMCID: PMC10300609 DOI: 10.1016/j.nicl.2023.103402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/05/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
In recent years in vivo visualization of tau deposits has become possible with various PET radiotracers. The tau tracer [18F]PI-2620 proved high affinity both to 3-repeat/4-repeat tau in Alzheimer's disease as well as to 4-repeat tau in progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). However, to be clinically relevant, biomarkers should not only correlate with pathological changes but also with disease stage and progression. Therefore, we aimed to investigate the correlation between topology of [18F]PI-2620 uptake and symptomatology in 4-repeat tauopathies. 72 patients with possible or probable 4-repeat tauopathy, i.e. 31 patients with PSP-Richardson's syndrome (PSP-RS), 30 with amyloid-negative CBS and 11 with PSP-non-RS/CBS, underwent [18F]PI-2620-PET. Principal component analysis was performed to identify groups of similar brain regions based on 20-40 min p.i. regional standardized uptake value ratio z-scores. Correlations between component scores and the items of the PSP Rating Scale were explored. Motor signs like gait, arising from chair and postural instability showed a positive correlation with tracer uptake in mesial frontoparietal lobes and the medial superior frontal gyrus and adjacent anterior cingulate cortex. While the signs disorientation and bradyphrenia showed a positive correlation with tracer uptake in the parietooccipital junction, the signs disorientation and arising from chair were negatively correlated with tau-PET signal in the caudate nucleus and thalamus. Total PSP Rating Scale Score showed a trend towards a positive correlation with mesial frontoparietal lobes and a negative correlation with caudate nucleus and thalamus. While in CBS patients, the main finding was a negative correlation of tracer binding in the caudate nucleus and thalamus and a positive correlation of tracer binding in medial frontal cortex with gait and motor signs, in PSP-RS patients various correlations of clinical signs with tracer binding in specific cerebral regions could be detected. Our data reveal [18F]PI-2620 tau-PET topology to correlate with symptomatology in 4-repeat tauopathies. Longitudinal studies will be needed to address whether a deterioration of signs and symptoms over time can be monitored by [18F]PI-2620 in 4-repeat tauopathies and whether [18F]PI-2620 may serve as a marker of disease progression in future therapeutic trials. The detected negative correlation of tracer binding in the caudate nucleus and thalamus with the signs disorientation and arising from chair may be due to an increasing atrophy in these regions leading to partial volume effects and a relative decrease of tracer uptake in the disease course. As cerebral regions correlating with symptomatology differ depending on the clinical phenotype, a precise knowledge of clinical signs and symptoms is necessary when interpreting [18F]PI-2620 PET results.
Collapse
Affiliation(s)
- Sonja Schönecker
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität München, LMU München, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Ferschmann
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Catharina Prix
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Urban Fietzek
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Department of Neurology and Clinical Neurophysiology, Schön Klinik München Schwabing, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; European Reference Network for Rare Neurological Diseases (ERN-RND), Munich, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Nuclear Medicine, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; European Reference Network for Rare Neurological Diseases (ERN-RND), Munich, Germany.
| |
Collapse
|
34
|
Perbet R, Zufferey V, Leroux E, Parietti E, Espourteille J, Culebras L, Perriot S, Du Pasquier R, Bégard S, Deramecourt V, Déglon N, Toni N, Buée L, Colin M, Richetin K. Tau Transfer via Extracellular Vesicles Disturbs the Astrocytic Mitochondrial System. Cells 2023; 12:cells12070985. [PMID: 37048058 PMCID: PMC10093208 DOI: 10.3390/cells12070985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Tauopathies are neurodegenerative disorders involving the accumulation of tau isoforms in cell subpopulations such as astrocytes. The origins of the 3R and 4R isoforms of tau that accumulate in astrocytes remain unclear. Extracellular vesicles (EVs) were isolated from primary neurons overexpressing 1N3R or 1N4R tau or from human brain extracts (progressive supranuclear palsy or Pick disease patients or controls) and characterized (electron microscopy, nanoparticle tracking analysis (NTA), proteomics). After the isolated EVs were added to primary astrocytes or human iPSC-derived astrocytes, tau transfer and mitochondrial system function were evaluated (ELISA, immunofluorescence, MitoTracker staining). We demonstrated that neurons in which 3R or 4R tau accumulated had the capacity to transfer tau to astrocytes and that EVs were essential for the propagation of both isoforms of tau. Treatment with tau-containing EVs disrupted the astrocytic mitochondrial system, altering mitochondrial morphology, dynamics, and redox state. Although similar levels of 3R and 4R tau were transferred, 3R tau-containing EVs were significantly more damaging to astrocytes than 4R tau-containing EVs. Moreover, EVs isolated from the brain fluid of patients with different tauopathies affected mitochondrial function in astrocytes derived from human iPSCs. Our data indicate that tau pathology spreads to surrounding astrocytes via EVs-mediated transfer and modifies their function.
Collapse
Affiliation(s)
- Romain Perbet
- Univ. Lille, Inserm, CHU Lille, LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - Valentin Zufferey
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| | - Elodie Leroux
- Univ. Lille, Inserm, CHU Lille, LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - Enea Parietti
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| | - Jeanne Espourteille
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| | - Lucas Culebras
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| | - Sylvain Perriot
- Laboratory of Neuroimmunology, Neuroscience Research Centre, Department of Clinical Neurosciences, CHUV, 1011 Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Neuroscience Research Centre, Department of Clinical Neurosciences, CHUV, 1011 Lausanne, Switzerland
| | - Séverine Bégard
- Univ. Lille, Inserm, CHU Lille, LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - Vincent Deramecourt
- Univ. Lille, Inserm, CHU Lille, LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN), Laboratory of Neurotherapies and Neuromodulation, 1011 Lausanne, Switzerland
| | - Nicolas Toni
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - Morvane Colin
- Univ. Lille, Inserm, CHU Lille, LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - Kevin Richetin
- Department of Psychiatry, Center for Psychiatric Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
35
|
Malarte ML, Gillberg PG, Kumar A, Bogdanovic N, Lemoine L, Nordberg A. Discriminative binding of tau PET tracers PI2620, MK6240 and RO948 in Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy brains. Mol Psychiatry 2023; 28:1272-1283. [PMID: 36447011 PMCID: PMC10005967 DOI: 10.1038/s41380-022-01875-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Recent mechanistic and structural studies have challenged the classical tauopathy classification approach and revealed the complexity and heterogeneity of tau pathology in Alzheimer's disease (AD) and primary tauopathies such as corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), progressing beyond distinct tau isoforms. In this multi-tau tracer study, we focused on the new second-generation tau PET tracers PI2620, MK6240 and RO948 to investigate this tau complexity in AD, CBD, and PSP brains using post-mortem radioligand binding studies and autoradiography of large and small frozen brain sections. Saturation binding studies indicated multiple binding sites for 3H-PI2620 in AD, CBD and PSP brains with different binding affinities (Kd ranging from 0.2 to 0.7 nM) and binding site densities (following the order: BmaxAD > BmaxCBD > BmaxPSP). Competitive binding studies complemented these findings, demonstrating the presence of two binding sites [super-high affinity (SHA): IC50(1) = 8.1 pM; and high affinity (HA): IC50(2) = 4.9 nM] in AD brains. Regional binding distribution studies showed that 3H-PI2620 could discriminate between AD (n = 6) and control cases (n = 9), especially in frontal cortex and temporal cortex tissue (p < 0.001) as well as in the hippocampal region (p = 0.02). 3H-PI2620, 3H-MK6240 and 3H-RO948 displayed similar binding behaviour in AD brains (in both homogenate competitive studies and one large frozen hemispherical brain section autoradiography studies) in terms of binding affinities, number of sites and regional patterns. Our small section autoradiography studies in the frontal cortex of CBD (n = 3) and PSP brains (n = 2) showed high specificity for 3H-PI2620 but not for 3H-MK6240 or 3H-RO948. Our findings clearly demonstrate different binding properties among the second-generation tau PET tracers, which may assist in further understanding of tau heterogeneity in AD versus non-AD tauopathies and suggests potential for development of pure selective 4R tau PET tracers.
Collapse
Grants
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
- Stiftelsen Olle Engkvist Byggmästare
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- Stockholms Läns Landsting (Stockholm County Council)
- Hjärnfonden (Swedish Brain Foundation)
- Stockholm County Council -Karolinska Institute regional agreement on medical training and clinical research (ALF grant),the Swedish Alzheimer Foundation, the Foundation for Old Servants, Gun and Bertil Stohne’s Foundation, the KI Foundation for Geriatric Diseases, the Swedish Dementia Foundation, the Center for Innovative Medicine (CIMED) Region Stockholm, the Michael J Fox Foundation (MJFF-019728), the Alzheimer Association USA (AARF -21-848395), and the Recherche sur Alzheimer Foundation (Paris, France).
Collapse
Affiliation(s)
- Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Laëtitia Lemoine
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
36
|
Tabeshmehr P, Eftekharpour E. Tau; One Protein, So Many Diseases. BIOLOGY 2023; 12:244. [PMID: 36829521 PMCID: PMC9953016 DOI: 10.3390/biology12020244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
Tau, a member of the microtubule-associated proteins, is a known component of the neuronal cytoskeleton; however, in the brain tissue, it is involved in other vital functions beyond maintaining the cellular architecture. The pathologic tau forms aggregates inside the neurons and ultimately forms the neurofibrillary tangles. Intracellular and extracellular accumulation of different tau isoforms, including dimers, oligomers, paired helical filaments and tangles, lead to a highly heterogenous group of diseases named "Tauopathies". About twenty-six different types of tauopathy diseases have been identified that have different clinical phenotypes or pathophysiological characteristics. Although all these diseases are identified by tau aggregation, they are distinguishable based on the specific tau isoforms, the affected cell types and the brain regions. The neuropathological and phenotypical heterogeneity of these diseases impose significant challenges for discovering new diagnostic and therapeutic strategies. Here, we review the recent literature on tau protein and the pathophysiological mechanisms of tauopathies. This article mainly focuses on physiologic and pathologic tau and aims to summarize the upstream and downstream events and discuss the current diagnostic approaches and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eftekhar Eftekharpour
- Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
37
|
Jin Y, Connors T, Bouyer J, Fischer I. Regulation of Tau Expression in Superior Cervical Ganglion (SCG) Neurons In Vivo and In Vitro. Cells 2023; 12:cells12020226. [PMID: 36672160 PMCID: PMC9856632 DOI: 10.3390/cells12020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The superior cervical ganglion (SCG) is part of the autonomic nervous system providing sympathetic innervation to the head and neck, and has been regularly used to prepare postnatal neuronal cultures for cell biological studies. We found that during development these neurons change tau expression from the low molecular weight (LMW) isoforms to Big tau, with the potential to affect functions associated with tau such as microtubule dynamic and axonal transport. Big tau contains the large 4a exon that transforms tau from LMW isoforms of 45-60 kDa to 110 kDa. We describe tau expression during postnatal development reporting that the transition from LMW tau to Big tau which started at late embryonic stages is completed by about 4-5 weeks postnatally. We confirmed the presence of Big tau in dissociated postnatal SCG neurons making them an ideal system to study the function of Big tau in neurons. We used SCG explants to examine the response of SCG neurons to lesion and found that Big tau expression returned gradually along the regrowing neurites suggesting that it does not drives regeneration, but facilitates the structure/function of mature SCG neurons. The structural/functional roles of Big tau remain unknown, but it is intriguing that neurons that express Big tau appear less vulnerable to tauopathies.
Collapse
|
38
|
Costa MFD, Höglinger GU, Rösler TW. Development of a cell-free screening assay for the identification of direct PERK activators. PLoS One 2023; 18:e0283943. [PMID: 37200357 DOI: 10.1371/journal.pone.0283943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/21/2023] [Indexed: 05/20/2023] Open
Abstract
The activation of the unfolded protein response, particularly via the PERK pathway, has been suggested as a promising therapeutic approach in tauopathies, a group of neurodegenerative disorders characterized by the abnormal phosphorylation and aggregation of tau protein. So far, a shortage of available direct PERK activators has been limiting the progresses in this field. Our study aimed at the development of a cell-free screening assay enabling the detection of novel direct PERK activators. By applying the catalytic domain of recombinant human PERK, we initially determined ideal conditions of the kinase assay reaction, including parameters such as optimal kinase concentration, temperature, and reaction time. Instead of using PERK's natural substrate proteins, eIF2α and NRF2, we applied SMAD3 as phosphorylation-accepting protein and successfully detected cell-free PERK activation and inhibition by selected modulators (e.g., calcineurin-B, GSK2606414). The developed assay revealed to be sufficiently stable and robust to assess an activating EC50-value. Additionally, our results suggested that PERK activation may take place independent of the active site which can be blocked by a kinase inhibitor. Finally, we confirmed the applicability of the assay by measuring PERK activation by MK-28, a recently described PERK activator. Overall, our data show that a cell-free luciferase-based assay with the recombinant human PERK kinase domain and SMAD3 as substrate protein is capable of detecting PERK activation, which enables to screen large compound libraries for direct PERK activators, in a high-throughput-based approach. These activators will be useful for deepening our understanding of the PERK signaling pathway, and may also lead to the identification of new therapeutic drug candidates for neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Márcia F D Costa
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Thomas W Rösler
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
39
|
Katzdobler S, Nitschmann A, Barthel H, Bischof G, Beyer L, Marek K, Song M, Wagemann O, Palleis C, Weidinger E, Nack A, Fietzek U, Kurz C, Häckert J, Stapf T, Ferschmann C, Scheifele M, Eckenweber F, Biechele G, Franzmeier N, Dewenter A, Schönecker S, Saur D, Schroeter ML, Rumpf JJ, Rullmann M, Schildan A, Patt M, Stephens AW, van Eimeren T, Neumaier B, Drzezga A, Danek A, Classen J, Bürger K, Janowitz D, Rauchmann BS, Stöcklein S, Perneczky R, Schöberl F, Zwergal A, Höglinger GU, Bartenstein P, Villemagne V, Seibyl J, Sabri O, Levin J, Brendel M. Additive value of [ 18F]PI-2620 perfusion imaging in progressive supranuclear palsy and corticobasal syndrome. Eur J Nucl Med Mol Imaging 2023; 50:423-434. [PMID: 36102964 PMCID: PMC9816230 DOI: 10.1007/s00259-022-05964-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. METHODS Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). RESULTS Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). CONCLUSION [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression.
Collapse
Affiliation(s)
- Sabrina Katzdobler
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Alexander Nitschmann
- grid.411095.80000 0004 0477 2585Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Henryk Barthel
- grid.411339.d0000 0000 8517 9062Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Gerard Bischof
- grid.411097.a0000 0000 8852 305XDepartment of Nuclear Medicine, University Hospital Cologne, Cologne, Germany ,Molecular Organization of the Brain, Institute for Neuroscience and Medicine, INM-2), Jülich, Germany
| | - Leonie Beyer
- grid.411095.80000 0004 0477 2585Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ken Marek
- grid.452597.8InviCRO, LLC, Boston, MA USA ,grid.452597.8Molecular Neuroimaging, A Division of inviCRO, New Haven, CT USA
| | - Mengmeng Song
- grid.411095.80000 0004 0477 2585Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Olivia Wagemann
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Endy Weidinger
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Anne Nack
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Urban Fietzek
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Carolin Kurz
- grid.411095.80000 0004 0477 2585Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Jan Häckert
- grid.411095.80000 0004 0477 2585Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany ,grid.7307.30000 0001 2108 9006Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, BKH Augsburg, Augsburg, Germany
| | - Theresa Stapf
- grid.411095.80000 0004 0477 2585Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Christian Ferschmann
- grid.411095.80000 0004 0477 2585Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Maximilian Scheifele
- grid.411095.80000 0004 0477 2585Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Florian Eckenweber
- grid.411095.80000 0004 0477 2585Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Gloria Biechele
- grid.411095.80000 0004 0477 2585Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Nicolai Franzmeier
- grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Anna Dewenter
- grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sonja Schönecker
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Dorothee Saur
- grid.9647.c0000 0004 7669 9786Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Matthias L. Schroeter
- grid.9647.c0000 0004 7669 9786Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany ,grid.9647.c0000 0004 7669 9786LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany ,grid.419524.f0000 0001 0041 5028Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jost-Julian Rumpf
- grid.9647.c0000 0004 7669 9786Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Michael Rullmann
- grid.411339.d0000 0000 8517 9062Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Andreas Schildan
- grid.411339.d0000 0000 8517 9062Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Marianne Patt
- grid.411339.d0000 0000 8517 9062Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | | | - Thilo van Eimeren
- grid.411097.a0000 0000 8852 305XDepartment of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Bernd Neumaier
- grid.411097.a0000 0000 8852 305XDepartment of Nuclear Medicine, University Hospital Cologne, Cologne, Germany ,grid.8385.60000 0001 2297 375XInstitute for Neuroscience and Medicine (INM-3), Cognitive Neuroscience, Research Centre Juelich, Juelich, Germany
| | - Alexander Drzezga
- grid.411097.a0000 0000 8852 305XDepartment of Nuclear Medicine, University Hospital Cologne, Cologne, Germany ,Molecular Organization of the Brain, Institute for Neuroscience and Medicine, INM-2), Jülich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Adrian Danek
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Joseph Classen
- grid.9647.c0000 0004 7669 9786Department of Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Katharina Bürger
- grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- grid.411095.80000 0004 0477 2585Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- grid.7307.30000 0001 2108 9006Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, BKH Augsburg, Augsburg, Germany ,grid.411095.80000 0004 0477 2585Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sophia Stöcklein
- grid.411095.80000 0004 0477 2585Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Robert Perneczky
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.7307.30000 0001 2108 9006Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, BKH Augsburg, Augsburg, Germany ,grid.7445.20000 0001 2113 8111Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College, London, UK
| | - Florian Schöberl
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Günter U. Höglinger
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.10423.340000 0000 9529 9877Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Peter Bartenstein
- grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.411095.80000 0004 0477 2585Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Victor Villemagne
- grid.410678.c0000 0000 9374 3516Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC Australia ,grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - John Seibyl
- grid.452597.8InviCRO, LLC, Boston, MA USA ,grid.452597.8Molecular Neuroimaging, A Division of inviCRO, New Haven, CT USA
| | - Osama Sabri
- grid.411339.d0000 0000 8517 9062Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, Germany
| | - Johannes Levin
- grid.411095.80000 0004 0477 2585Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany ,grid.411095.80000 0004 0477 2585Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | | |
Collapse
|
40
|
Havlicek DF, Furhang R, Nikulina E, Smith-Salzberg B, Lawless S, Severin SA, Mallaboeva S, Nayab F, Seifert AC, Crary JF, Bergold PJ. A single closed head injury in male adult mice induces chronic, progressive white matter atrophy and increased phospho-tau expressing oligodendrocytes. Exp Neurol 2023; 359:114241. [PMID: 36240881 DOI: 10.1016/j.expneurol.2022.114241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Traumatic brain injury (TBI) acutely damages the brain; this injury can evolve into chronic neurodegeneration. While much is known about the chronic effects arising from multiple mild TBIs, far less is known about the long-term effects of a single moderate to severe TBI. We found that a single moderate closed head injury to mice induces diffuse axonal injury within 1-day post-injury (DPI). At 14 DPI, injured animals have atrophy of ipsilesional cortex, thalamus, and corpus callosum, with bilateral atrophy of the dorsal fornix. Atrophy of the ipsilesional corpus callosum is accompanied by decreased fractional anisotropy and increased mean and radial diffusivity that remains unchanged between 14 and 180 DPI. Injured animals show an increased density of phospho-tau immunoreactive (pTau+) cells in the ipsilesional cortex and thalamus, and bilaterally in corpus callosum. Between 14 and 180 DPI, atrophy occurs in the ipsilesional ventral fornix, contralesional corpus callosum, and bilateral internal capsule. Diffusion tensor MRI parameters remain unchanged in white matter regions with delayed atrophy. Between 14 and 180 DPI, pTau+ cell density increases bilaterally in corpus callosum, but decreases in cortex and thalamus. The location of pTau+ cells within the ipsilesional corpus callosum changes between 14 and 180 DPI; density of all cells increases including pTau+ or pTau- cells. >90% of the pTau+ cells are in the oligodendrocyte lineage in both gray and white matter. Density of thioflavin-S+ cells in thalamus increases by 180 DPI. These data suggest a single closed head impact produces multiple forms of chronic neurodegeneration. Gray and white matter regions proximal to the impact site undergo early atrophy. More distal white matter regions undergo chronic, progressive white matter atrophy with an increasing density of oligodendrocytes containing pTau. These data suggest a complex chronic neurodegenerative process arising from a single moderate closed head injury.
Collapse
Affiliation(s)
- David F Havlicek
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Rachel Furhang
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Elena Nikulina
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Bayle Smith-Salzberg
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Siobhán Lawless
- School of Graduate Studies, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sasha A Severin
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Sevara Mallaboeva
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Fizza Nayab
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America
| | - Alan C Seifert
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Peter J Bergold
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States of America.
| |
Collapse
|
41
|
Oliveira Hauer K, Pawlik D, Leuzy A, Janelidze S, Hall S, Hansson O, Smith R. Performance of [ 18F]RO948 PET, MRI and CSF neurofilament light in the differential diagnosis of progressive supranuclear palsy. Parkinsonism Relat Disord 2023; 106:105226. [PMID: 36442367 DOI: 10.1016/j.parkreldis.2022.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The diagnosis of progressive supranuclear palsy (PSP) is often challenging since PSP may clinically resemble other neurodegenerative disorders. Recently, the tau PET tracer [18F]RO948, a potential new biomarker for PSP, was developed. The aim of this study was to determine the ability of three different biomarkers, including [18F]RO948 PET, to distinguish PSP patients from healthy controls and from patients with α-synucleinopathies. METHODS Patients with PSP (n = 23), α-synucleinopathies (n = 47) and healthy controls (n = 61) were included from the BioFINDER-2 study. [18F]RO948 standardized uptake value ratios (SUVR), magnetic resonance imaging midbrain/pons ratio, and cerebrospinal fluid neurofilament light (NfL) levels were compared between diagnostic groups individually and in combination. RESULTS [18F]RO948 PET SUVR in the globus pallidus, NfL, and midbrain/pons area ratios were all able to differentiate PSP patients from controls and from patients with α-synucleinopathies ([18F]RO948 [mean ± SD]: controls 1.24 ± 0.22; PSP 1.47 ± 0.4; PD 1.18 ± 0.2; DLB 1.25 ± 0.24, p < 0.05), (NfL pg/mL [mean ± SD]: controls 1055 ± 569; PSP 2197 ± 1010; PD 1038 ± 416; DLB 1548 ± 687, p < 0.001) and (midbrain/pons ratio [mean ± SD]: controls 0.46 ± 0.07; PSP 0.34 ± 0.09; PD 0.43 ± 0.06; DLB 0.40 ± 0.07, p < 0.01). Receiver operating characteristic (ROC) analyses indicated that combining the three biomarkers resulted in the highest area under the ROC values (0.94 [0.88-1.00]) for separating controls from PSP and (0.92 [0.85-0.99]) for separating PSP from α-synucleinopathies. CONCLUSIONS All studied biomarkers could individually separate PSP from controls and α-synucleinopathies patients at a group level. The optimal prediction models included NfL and midbrain/pons ratio for separating controls from PSP and all three biomarkers for separating PSP from α-synucleinopathies.
Collapse
Affiliation(s)
- Kevin Oliveira Hauer
- Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Daria Pawlik
- Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Antoine Leuzy
- Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Shorena Janelidze
- Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Sara Hall
- Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Oskar Hansson
- Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden; Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Ruben Smith
- Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
42
|
Oizumi H, Sugimura Y, Totsune T, Kawasaki I, Ohshiro S, Baba T, Kimpara T, Sakuma H, Hasegawa T, Kawahata I, Fukunaga K, Takeda A. Plasma sphingolipid abnormalities in neurodegenerative diseases. PLoS One 2022; 17:e0279315. [PMID: 36525454 PMCID: PMC9757566 DOI: 10.1371/journal.pone.0279315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In recent years, there has been increasing evidence that several lipid metabolism abnormalities play an important role in the pathogenesis of neurodegenerative diseases. However, it is still unclear which lipid metabolism abnormalities play the most important role in neurodegenerative diseases. Plasma lipid metabolomics (lipidomics) has been shown to be an unbiased method that can be used to explore lipid metabolism abnormalities in neurodegenerative diseases. Plasma lipidomics in neurodegenerative diseases has been performed only in idiopathic Parkinson's disease (IPD) and Alzheimer's disease (AD), and comprehensive studies are needed to clarify the pathogenesis. METHODS In this study, we investigated plasma lipids using lipidomics in individuals with neurodegenerative diseases and healthy controls (CNs). Plasma lipidomics was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in those with IPD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), AD, and progressive supranuclear palsy (PSP) and CNs. RESULTS The results showed that (1) plasma sphingosine-1-phosphate (S1P) was significantly lower in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (2) Plasma monohexylceramide (MonCer) and lactosylceramide (LacCer) were significantly higher in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (3) Plasma MonCer levels were significantly positively correlated with plasma LacCer levels in all enrolled groups. CONCLUSION S1P, Glucosylceramide (GlcCer), the main component of MonCer, and LacCer are sphingolipids that are biosynthesized from ceramide. Recent studies have suggested that elevated GlcCer and decreased S1P levels in neurons are related to neuronal cell death and that elevated LacCer levels induce neurodegeneration by neuroinflammation. In the present study, we found decreased plasma S1P levels and elevated plasma MonCer and LacCer levels in those with neurodegenerative diseases, which is a new finding indicating the importance of abnormal sphingolipid metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Yoko Sugimura
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Tomoko Totsune
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Iori Kawasaki
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Saki Ohshiro
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Teiko Kimpara
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Hiroaki Sakuma
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai, Japan
- Department of Cognitive and Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
43
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
44
|
Corsi A, Bombieri C, Valenti MT, Romanelli MG. Tau Isoforms: Gaining Insight into MAPT Alternative Splicing. Int J Mol Sci 2022; 23:ijms232315383. [PMID: 36499709 PMCID: PMC9735940 DOI: 10.3390/ijms232315383] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Tau microtubule-associated proteins, encoded by the MAPT gene, are mainly expressed in neurons participating in axonal transport and synaptic plasticity. Six major isoforms differentially expressed during cell development and differentiation are translated by alternative splicing of MAPT transcripts. Alterations in the expression of human Tau isoforms and their aggregation have been linked to several neurodegenerative diseases called tauopathies, including Alzheimer's disease, progressive supranuclear palsy, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17. Great efforts have been dedicated in recent years to shed light on the complex regulatory mechanism of Tau splicing, with a perspective to developing new RNA-based therapies. This review summarizes the most recent contributions to the knowledge of Tau isoform expression and experimental models, highlighting the role of cis-elements and ribonucleoproteins that regulate the alternative splicing of Tau exons.
Collapse
|
45
|
Kallinen A, Kassiou M. Tracer development for PET imaging of proteinopathies. Nucl Med Biol 2022; 114-115:108-120. [PMID: 35487833 DOI: 10.1016/j.nucmedbio.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022]
Abstract
This review outlines small molecule radiotracers developed for positron emission tomography (PET) imaging of proteinopathies, neurodegenerative diseases characterised by accumulation of malformed proteins, over the last two decades with the focus on radioligands that have progressed to clinical studies. Introduction provides a short summary of proteinopathy targets used for PET imaging, including vastly studied proteins Aβ and tau and emerging α-synuclein. In the main section, clinically relevant Aβ and tau radioligand classes and their properties are discussed, including an overview of lead compounds and radioligand candidates studied as α-synuclein imaging agents in the early discovery and preclinical development phase. Lastly, the specific challenges and future directions in proteinopathy radioligand development are summarized.
Collapse
Affiliation(s)
- Annukka Kallinen
- Garvan Institute of Medical Research, 384 Victoria St, NSW 2010, Australia.
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Muñiz JA, Facal CL, Urrutia L, Clerici-Delville R, Damianich A, Ferrario JE, Falasco G, Avale ME. SMaRT modulation of tau isoforms rescues cognitive and motor impairments in a preclinical model of tauopathy. Front Bioeng Biotechnol 2022; 10:951384. [PMID: 36277399 PMCID: PMC9581281 DOI: 10.3389/fbioe.2022.951384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tau is a microtubule-associated protein predominantly expressed in neurons, which participates in microtubule polymerization and axonal transport. Abnormal tau metabolism leads to neurodegenerative diseases named tauopathies, such as Alzheimer’s disease and frontotemporal dementia. The alternative splicing of exon 10 (E10) in the primary transcript produces tau protein isoforms with three (3R) or four (4R) microtubule binding repeats, which are found in equal amounts in the normal adult human brain. Several tauopathies are associated with abnormal E10 alternative splicing, leading to an imbalance between 3R and 4R isoforms, which underlies disease. Correction of such imbalance represents a potential disease-modifying therapy for those tauopathies. We have previously optimized a trans-splicing RNA reprogramming strategy to modulate the 3R:4R tau content in a mouse model of tauopathy related to tau mis-splicing (htau mice), and showed that local modulation of E10 inclusion in the prefrontal cortex prevents cognitive decline, neuronal firing impairments and hyperphosphorylated tau accumulation. Furthermore, local shifting of 3R–4R tau into the striatum of htau mice prevented motor coordination deficits. However, a major bottleneck of our previous work is that local splicing regulation was performed in young mice, before the onset of pathological phenotypes. Here we tested whether regulation of tau E10 splicing could rescue tau pathology phenotypes in htau mice, after the onset of cognitive and motor impairments, comparable to early stages of human tauopathies. To determine phenotypic time course and affected brain nuclei, we assessed htau mice using behavioural tests and microPET FDG imaging over time, similarly to diagnosis methods used in patients. Based on these analyses, we performed local delivery of pre-trans splicing molecules to regulate E10 inclusion either into the medial prefrontal cortex (mPFC) or the striatum at 6-month-old once behavioral phenotypes and metabolic changes were detected. Tau isoforms modulation into the mPFC restored cognitive performance in mice that previously showed mild to severe memory impairment while motor coordination deficit was rescued after striatal injection of trans-splicing molecules. Our data suggest that tau regulation could recover pathological phenotypes early after phenotypic onset, raising promising perspectives for the use of RNA based therapies in tauopathies related to MAPT abnormal splicing.
Collapse
Affiliation(s)
- Javier Andrés Muñiz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
| | - Carolina Lucía Facal
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
| | - Leandro Urrutia
- Laboratorio De Imágenes Preclínicas, Centro de Imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - Ramiro Clerici-Delville
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Buenos Aires, Argentina
| | - Ana Damianich
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
| | - Juan E. Ferrario
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3), Buenos Aires, Argentina
| | - Germán Falasco
- Laboratorio De Imágenes Preclínicas, Centro de Imágenes Moleculares, FLENI, Buenos Aires, Argentina
| | - María Elena Avale
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor N Torres”, Buenos Aires, Argentina
- *Correspondence: María Elena Avale,
| |
Collapse
|
47
|
Fagnen C, Giovannini J, Catto M, Voisin-Chiret AS, Sopkova-de Oliveira Santos J. On the Tracks of the Aggregation Mechanism of the PHF6 Peptide from Tau Protein: Molecular Dynamics, Energy, and Interaction Network Investigations. ACS Chem Neurosci 2022; 13:2874-2887. [PMID: 36153969 DOI: 10.1021/acschemneuro.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The formation of neurofibrillary tangles (NFTs), composed of tau protein aggregates, is a hallmark of some neurodegenerative diseases called tauopathies. NFTs are composed of paired helical filaments (PHFs) of tau protein with a dominant β-sheet secondary structuration. The NFT formation mechanism is not known yet. This study focuses on PHF6, a crucial hexapeptide responsible for tau aggregation. A 2 μs molecular dynamics simulation was launched to determine the keys of the PHF6 aggregation mechanism. Hydrogen bonding, van der Waals, and other non-covalent interactions as π-stacking were investigated. Parallel aggregation was slightly preferred due to its adaptability, but antiparallel aggregation remained widely present during the PHF6 aggregation. The analysis highlighted the leading role of hydrogen bonds identified at the atomic level for each aggregation process. The aggregation study emphasized the importance of Tyr310 during the β-sheets' complexation through π-stacking.
Collapse
Affiliation(s)
- Charline Fagnen
- CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Normandie, UNICAEN, Boulevard Henri Becquerel, F-14032Caen, France
| | - Johanna Giovannini
- CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Normandie, UNICAEN, Boulevard Henri Becquerel, F-14032Caen, France.,Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125Bari (I), Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125Bari (I), Italy
| | - Anne Sophie Voisin-Chiret
- CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Normandie, UNICAEN, Boulevard Henri Becquerel, F-14032Caen, France
| | - Jana Sopkova-de Oliveira Santos
- CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Normandie, UNICAEN, Boulevard Henri Becquerel, F-14032Caen, France
| |
Collapse
|
48
|
Hromadkova L, Siddiqi MK, Liu H, Safar JG. Populations of Tau Conformers Drive Prion-like Strain Effects in Alzheimer's Disease and Related Dementias. Cells 2022; 11:2997. [PMID: 36230957 PMCID: PMC9562632 DOI: 10.3390/cells11192997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Recent findings of diverse populations of prion-like conformers of misfolded tau protein expand the prion concept to Alzheimer's disease (AD) and monogenic frontotemporal lobar degeneration (FTLD)-MAPT P301L, and suggest that distinct strains of misfolded proteins drive the phenotypes and progression rates in many neurodegenerative diseases. Notable progress in the previous decades has generated many lines of proof arguing that yeast, fungal, and mammalian prions determine heritable as well as infectious traits. The extraordinary phenotypic diversity of human prion diseases arises from structurally distinct prion strains that target, at different progression speeds, variable brain structures and cells. Although human prion research presents beneficial lessons and methods to study the mechanism of strain diversity of protein-only pathogens, the fundamental molecular mechanism by which tau conformers are formed and replicate in diverse tauopathies is still poorly understood. In this review, we summarize up to date advances in identification of diverse tau conformers through biophysical and cellular experimental paradigms, and the impact of heterogeneity of pathological tau strains on personalized structure- and strain-specific therapeutic approaches in major tauopathies.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - He Liu
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jiri G. Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
49
|
Mak G, Menon S, Lu JQ. Neurofilaments in neurologic disorders and beyond. J Neurol Sci 2022; 441:120380. [PMID: 36027641 DOI: 10.1016/j.jns.2022.120380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Many neurologic diseases can initially present as a diagnostic challenge and even when a diagnosis is made, monitoring of disease activity, progression and response to therapy may be limited with existing clinical and paraclinical assessments. As such, the identification of disease specific biomarkers provides a promising avenue by which diseases can be effectively diagnosed, monitored and used as a prognostic indicator for long-term outcomes. Neurofilaments are an integral component of the neuronal cytoskeleton, where assessment of neurofilaments in the blood, cerebrospinal fluid (CSF) and diseased tissue has been shown to have value in providing diagnostic clarity, monitoring disease activity, tracking progression and treatment efficacy, as well as lending prognostic insight into long-term outcomes. As such, this review attempts to provide a glimpse into the structure and function of neurofilaments, their role in various neurologic and non-neurologic disorders, including uncommon conditions with recent knowledge of neurofilament-related pathology, as well as their applicability in future clinical practice.
Collapse
Affiliation(s)
- Gloria Mak
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| | - Suresh Menon
- McMaster University, Department of Medicine, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
50
|
Jecmenica Lukic M, Respondek G, Kurz C, Compta Y, Gelpi E, Ferguson LW, Rajput A, Troakes C, van Swieten JC, Giese A, Roeber S, Herms J, Arzberger T, Höglinger G. Long-duration progressive supranuclear palsy: clinical course and pathological underpinnings. Ann Neurol 2022; 92:637-649. [PMID: 35872640 DOI: 10.1002/ana.26455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/21/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To identify the clinical characteristics of the subgroup of benign progressive supranuclear palsy with particularly long disease duration; to define neuropathological determinants underlying variability in disease duration in progressive supranuclear palsy. METHODS Clinical and pathological features were compared among 186 autopsy-confirmed cases with progressive supranuclear palsy with ≥10 years and shorter survival times. RESULTS 45 cases (24.2%) had a disease duration of ≥10 years. The absence of ocular motor abnormalities within the first 3 years from disease onset was the only significant independent clinical predictor of longer survival. Histopathologically, the neurodegeneration parameters in each survival group were paralleled anatomically by the distribution of neuronal cytoplasmic inclusions, whereas the tufted astrocytes displayed anatomically an opposite severity pattern. Most interestingly, we found significantly less coiled bodies in those who survive longer, in contrast to patients with less favorable course. INTERPRETATIONS A considerable proportion of patients had a more 'benign' disease course with ≥10 years survival. They had a distinct pattern and evolution of core symptoms compared to patients with short survival. The inverted anatomical patterns of astrocytic tau distribution suggest distinct implications of these cell types in trans-cellular propagation. The tempo of disease progression appeared to be determined mostly by oligodendroglial tau, where high degree of oligodendroglial tau pathology might affect neuronal integrity and function on top of neuronal tau pathology. The relative contribution of glial tau should be further explored in cellular and animal models. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Milica Jecmenica Lukic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Clinic of Neurology, The University Clinical Center of Serbia, Belgrade, Republic of Serbia
| | - Gesine Respondek
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Carolin Kurz
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany
| | - Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Hospital Clínic de Barcelona / IDIBAPS / CIBERNED / (CB06/05/0018-ISCIII) / European Reference Network for Rare Neurological Diseases (ERN-RND) / Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank and Neurology Department, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, Centres de Recerca de Catalunya (CERCA), Barcelona, Catalonia, Spain.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Leslie W Ferguson
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Canada
| | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Canada
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, London, United Kingdom
| | | | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Armin Giese
- Center for Neuropathology and Prion Research, Munich, LMU, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Munich, LMU, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Munich, LMU, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany.,Center for Neuropathology and Prion Research, Munich, LMU, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|