1
|
Pahl MC, Sharma P, Thomas RM, Thompson Z, Mount Z, Pippin JA, Morawski PA, Sun P, Su C, Campbell D, Grant SFA, Wells AD. Dynamic chromatin architecture identifies new autoimmune-associated enhancers for IL2 and novel genes regulating CD4+ T cell activation. eLife 2024; 13:RP96852. [PMID: 39302339 PMCID: PMC11418197 DOI: 10.7554/elife.96852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic signals associated with autoimmune disease. The majority of these signals are located in non-coding regions and likely impact cis-regulatory elements (cRE). Because cRE function is dynamic across cell types and states, profiling the epigenetic status of cRE across physiological processes is necessary to characterize the molecular mechanisms by which autoimmune variants contribute to disease risk. We localized risk variants from 15 autoimmune GWAS to cRE active during TCR-CD28 co-stimulation of naïve human CD4+ T cells. To characterize how dynamic changes in gene expression correlate with cRE activity, we measured transcript levels, chromatin accessibility, and promoter-cRE contacts across three phases of naive CD4+ T cell activation using RNA-seq, ATAC-seq, and HiC. We identified ~1200 protein-coding genes physically connected to accessible disease-associated variants at 423 GWAS signals, at least one-third of which are dynamically regulated by activation. From these maps, we functionally validated a novel stretch of evolutionarily conserved intergenic enhancers whose activity is required for activation-induced IL2 gene expression in human and mouse, and is influenced by autoimmune-associated genetic variation. The set of genes implicated by this approach are enriched for genes controlling CD4+ T cell function and genes involved in human inborn errors of immunity, and we pharmacologically validated eight implicated genes as novel regulators of T cell activation. These studies directly show how autoimmune variants and the genes they regulate influence processes involved in CD4+ T cell proliferation and activation.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Prabhat Sharma
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Rajan M Thomas
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Zachary Thompson
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Zachary Mount
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Peter A Morawski
- Benaroya Research Institute at Virginia MasonSeattleUnited States
| | - Peng Sun
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Daniel Campbell
- Benaroya Research Institute at Virginia MasonSeattleUnited States
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| | - Struan FA Grant
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Human Genetics, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Pediatrics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Division of Endocrinology and Diabetes, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Immunology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
2
|
Wachowski NA, Pippin JA, Boehm K, Lu S, Leonard ME, Manduchi E, Parlin UW, Wabitsch M, Chesi A, Wells AD, Grant SFA, Pahl MC. Implicating type 2 diabetes effector genes in relevant metabolic cellular models using promoter-focused Capture-C. Diabetologia 2024:10.1007/s00125-024-06261-x. [PMID: 39240351 DOI: 10.1007/s00125-024-06261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 09/07/2024]
Abstract
AIMS/HYPOTHESIS Genome-wide association studies (GWAS) have identified hundreds of type 2 diabetes loci, with the vast majority of signals located in non-coding regions; as a consequence, it remains largely unclear which 'effector' genes these variants influence. Determining these effector genes has been hampered by the relatively challenging cellular settings in which they are hypothesised to confer their effects. METHODS To implicate such effector genes, we elected to generate and integrate high-resolution promoter-focused Capture-C, assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq datasets to characterise chromatin and expression profiles in multiple cell lines relevant to type 2 diabetes for subsequent functional follow-up analyses: EndoC-BH1 (pancreatic beta cell), HepG2 (hepatocyte) and Simpson-Golabi-Behmel syndrome (SGBS; adipocyte). RESULTS The subsequent variant-to-gene analysis implicated 810 candidate effector genes at 370 type 2 diabetes risk loci. Using partitioned linkage disequilibrium score regression, we observed enrichment for type 2 diabetes and fasting glucose GWAS loci in promoter-connected putative cis-regulatory elements in EndoC-BH1 cells as well as fasting insulin GWAS loci in SGBS cells. Moreover, as a proof of principle, when we knocked down expression of the SMCO4 gene in EndoC-BH1 cells, we observed a statistically significant increase in insulin secretion. CONCLUSIONS/INTERPRETATION These results provide a resource for comparing tissue-specific data in tractable cellular models as opposed to relatively challenging primary cell settings. DATA AVAILABILITY Raw and processed next-generation sequencing data for EndoC-BH1, HepG2, SGBS_undiff and SGBS_diff cells are deposited in GEO under the Superseries accession GSE262484. Promoter-focused Capture-C data are deposited under accession GSE262496. Hi-C data are deposited under accession GSE262481. Bulk ATAC-seq data are deposited under accession GSE262479. Bulk RNA-seq data are deposited under accession GSE262480.
Collapse
Affiliation(s)
- Nicholas A Wachowski
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ursula W Parlin
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Burton EA, Argenziano M, Cook K, Ridler M, Lu S, Su C, Manduchi E, Littleton SH, Leonard ME, Hodge KM, Wang LS, Schellenberg GD, Johnson ME, Pahl MC, Pippin JA, Wells AD, Anderson SA, Brown CD, Grant SF, Chesi A. Variant-to-function mapping of late-onset Alzheimer's disease GWAS signals in human microglial cell models implicates RTFDC1 at the CASS4 locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609230. [PMID: 39229212 PMCID: PMC11370593 DOI: 10.1101/2024.08.22.609230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Late-onset Alzheimer's disease (LOAD) research has principally focused on neurons over the years due to their known role in the production of amyloid beta plaques and neurofibrillary tangles. In contrast, recent genomic studies of LOAD have implicated microglia as culprits of the prolonged inflammation exacerbating the neurodegeneration observed in patient brains. Indeed, recent LOAD genome-wide association studies (GWAS) have reported multiple loci near genes related to microglial function, including TREM2, ABI3, and CR1. However, GWAS alone cannot pinpoint underlying causal variants or effector genes at such loci, as most signals reside in non-coding regions of the genome and could presumably confer their influence frequently via long-range regulatory interactions. We elected to carry out a combination of ATAC-seq and high-resolution promoter-focused Capture-C in two human microglial cell models (iPSC-derived microglia and HMC3) in order to physically map interactions between LOAD GWAS-implicated candidate causal variants and their corresponding putative effector genes. Notably, we observed consistent evidence that rs6024870 at the GWAS CASS4 locus contacted the promoter of nearby gene, RTFDC1. We subsequently observed a directionallly consistent decrease in RTFDC1 expression with the the protective minor A allele of rs6024870 via both luciferase assays in HMC3 cells and expression studies in primary human microglia. Through CRISPR-Cas9-mediated deletion of the putative regulatory region harboring rs6024870 in HMC3 cells, we observed increased pro-inflammatory cytokine secretion and decreased DNA double strand break repair related, at least in part, to RTFDC1 expression levels. Our variant-to-function approach therefore reveals that the rs6024870-harboring regulatory element at the LOAD 'CASS4' GWAS locus influences both microglial inflammatory capacity and DNA damage resolution, along with cumulative evidence implicating RTFDC1 as a novel candidate effector gene.
Collapse
Affiliation(s)
- Elizabeth A. Burton
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- CAMB Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariana Argenziano
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kieona Cook
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly Ridler
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sheridan H. Littleton
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- CAMB Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle E. Leonard
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Li-San Wang
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerard D. Schellenberg
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E. Johnson
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry and Behavioral Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D. Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Trang KB, Chesi A, Toikumo S, Pippin JA, Pahl MC, O’Brien JM, Amundadottir LT, Brown KM, Yang W, Welles J, Santoleri D, Titchenell PM, Seale P, Zemel BS, Wagley Y, Hankenson KD, Kaestner KH, Anderson SA, Kayser MS, Wells AD, Kranzler HR, Kember RL, Grant SF. Shared and unique 3D genomic features of substance use disorders across multiple cell types. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.18.24310649. [PMID: 39072016 PMCID: PMC11275669 DOI: 10.1101/2024.07.18.24310649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Recent genome-wide association studies (GWAS) have revealed shared genetic components among alcohol, opioid, tobacco and cannabis use disorders. However, the extent of the underlying shared causal variants and effector genes, along with their cellular context, remain unclear. We leveraged our existing 3D genomic datasets comprising high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq and RNA-seq across >50 diverse human cell types to focus on genomic regions that coincide with GWAS loci. Using stratified LD regression, we determined the proportion of genomewide SNP heritability attributable to the features assayed across our cell types by integrating recent GWAS summary statistics for the relevant traits: alcohol use disorder (AUD), tobacco use disorder (TUD), opioid use disorder (OUD) and cannabis use disorder (CanUD). Statistically significant enrichments (P<0.05) were observed in 14 specific cell types, with heritability reaching 9.2-fold for iPSC-derived cortical neurons and neural progenitors, confirming that they are crucial cell types for further functional exploration. Additionally, several pancreatic cell types, notably pancreatic beta cells, showed enrichment for TUD, with heritability enrichments up to 4.8-fold, suggesting genomic overlap with metabolic processes. Further investigation revealed significant positive genetic correlations between T2D with both TUD and CanUD (FDR<0.05) and a significant negative genetic correlation with AUD. Interestingly, after partitioning the heritability for each cell type's cis-regulatory elements, the correlation between T2D and TUD for pancreatic beta cells was greater (r=0.2) than the global genetic correlation value. Our study provides new genomic insights into substance use disorders and implicates cell types where functional follow-up studies could reveal causal variant-gene mechanisms underpinning these disorders.
Collapse
Affiliation(s)
- Khanh B. Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joan M. O’Brien
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Disease, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kevin M. Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wenli Yang
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaclyn Welles
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominic Santoleri
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Babette S. Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yadav Wagley
- Department of Orthopedic Surgery, University of Michigan Medical School Ann Arbor, MI, USA
| | - Kurt D. Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School Ann Arbor, MI, USA
| | - Klaus H. Kaestner
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel L. Kember
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
5
|
Coetzee SG, Hazelett DJ. MotifbreakR v2: extended capability and database integration. ARXIV 2024:arXiv:2407.03441v1. [PMID: 39010878 PMCID: PMC11247919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
MotifbreakR is a software tool that scans genetic variants against position weight matrices of transcription factors (TF) to determine the potential for the disruption of TF binding at the site of the variant. It leverages the Bioconductor suite of software packages and annotations to operate across a diverse array of genomes and motif databases. Initially developed to interrogate the effect of single nucleotide variants (common and rare SNVs) on potential TF binding sites, in motifbreakR v2, we have updated the functionality. New features include the ability to query other types of more complex genetic variants, such as short insertions and deletions (indels). This function allows modeling a more extensive array of variants that may have more significant effects on TF binding. Additionally, while TF binding is based partly on sequence preference, predictions of TF binding based on sequence preference alone can indicate many more potential binding events than observed. Adding information from DNA-binding sequencing datasets lends confidence to motif disruption prediction by demonstrating TF binding in cell lines and tissue types. Therefore, motifbreakR implements querying the ReMap2022 database for evidence that a TF matching the disrupted motif binds over the disrupting variant. Finally, in motifbreakR, in addition to the existing interface, we have implemented an R/Shiny graphical user interface to simplify and enhance access to researchers with different skill sets.
Collapse
Affiliation(s)
- Simon G Coetzee
- Department of Computational Biomedicine at Cedars-Sinai Medical Center
| | - Dennis J Hazelett
- Department of Computational Biomedicine at Cedars-Sinai Medical Center
- Cancer Prevention and Control - Samuel Oschin Cancer Center, Cedars-Sinai
| |
Collapse
|
6
|
Littleton SH, Trang KB, Volpe CM, Cook K, DeBruyne N, Maguire JA, Weidekamp MA, Hodge KM, Boehm K, Lu S, Chesi A, Bradfield JP, Pippin JA, Anderson SA, Wells AD, Pahl MC, Grant SFA. Variant-to-function analysis of the childhood obesity chr12q13 locus implicates rs7132908 as a causal variant within the 3' UTR of FAIM2. CELL GENOMICS 2024; 4:100556. [PMID: 38697123 PMCID: PMC11099382 DOI: 10.1016/j.xgen.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024]
Abstract
The ch12q13 locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via cis-regulation. We implicated rs7132908 as a putative causal variant by leveraging our in-house 3D genomic data and public domain datasets. Using a luciferase reporter assay, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. We generated isogenic human embryonic stem cell lines homozygous for either rs7132908 allele to assess changes in gene expression and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. The rs7132908 obesity risk allele influenced expression of FAIM2 and other genes and decreased the proportion of neurons produced by differentiation. We have functionally validated rs7132908 as a causal obesity variant that temporally regulates nearby effector genes and influences neurodevelopment and survival.
Collapse
Affiliation(s)
- Sheridan H Littleton
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Khanh B Trang
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christina M Volpe
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kieona Cook
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole DeBruyne
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mary Ann Weidekamp
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan P Bradfield
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Quantinuum Research LLC, San Diego, CA 92101, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Conery M, Pippin JA, Wagley Y, Trang K, Pahl MC, Villani DA, Favazzo LJ, Ackert-Bicknell CL, Zuscik MJ, Katsevich E, Wells AD, Zemel BS, Voight BF, Hankenson KD, Chesi A, Grant SF. GWAS-informed data integration and non-coding CRISPRi screen illuminate genetic etiology of bone mineral density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585778. [PMID: 38562830 PMCID: PMC10983984 DOI: 10.1101/2024.03.19.585778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Over 1,100 independent signals have been identified with genome-wide association studies (GWAS) for bone mineral density (BMD), a key risk factor for mortality-increasing fragility fractures; however, the effector gene(s) for most remain unknown. Informed by a variant-to-gene mapping strategy implicating 89 non-coding elements predicted to regulate osteoblast gene expression at BMD GWAS loci, we executed a single-cell CRISPRi screen in human fetal osteoblast 1.19 cells (hFOBs). The BMD relevance of hFOBs was supported by heritability enrichment from cross-cell type stratified LD-score regression involving 98 cell types grouped into 15 tissues. 24 genes showed perturbation in the screen, with four (ARID5B, CC2D1B, EIF4G2, and NCOA3) exhibiting consistent effects upon siRNA knockdown on three measures of osteoblast maturation and mineralization. Lastly, additional heritability enrichments, genetic correlations, and multi-trait fine-mapping revealed that many BMD GWAS signals are pleiotropic and likely mediate their effects via non-bone tissues that warrant attention in future screens.
Collapse
Affiliation(s)
- Mitchell Conery
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Khanh Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David A. Villani
- Colorado Program for Musculoskeletal Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Cell Biology, Stems Cells and Development Ph.D. Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lacey J. Favazzo
- Colorado Program for Musculoskeletal Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- University of Colorado Interdisciplinary Joint Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Cheryl L. Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- University of Colorado Interdisciplinary Joint Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michael J. Zuscik
- Colorado Program for Musculoskeletal Research, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- University of Colorado Interdisciplinary Joint Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eugene Katsevich
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin F. Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Pahl MC, Liu L, Pippin JA, Wagley Y, Boehm K, Hankenson KD, Wells AD, Yang W, Grant SFA. Variant to gene mapping for carpal tunnel syndrome risk loci implicates skeletal muscle regulatory elements. EBioMedicine 2024; 101:105038. [PMID: 38417377 PMCID: PMC10909706 DOI: 10.1016/j.ebiom.2024.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND Carpal tunnel syndrome (CTS) is a common disorder caused by compression of the median nerve in the wrist, resulting in pain and numbness throughout the hand and forearm. While multiple behavioural and physiological factors influence CTS risk, a growing body of evidence supports a strong genetic contribution. Recent genome-wide association study (GWAS) efforts have reported 53 independent signals associated with CTS. While GWAS can identify genetic loci conferring risk, it does not determine which cell types drive the genetic aetiology of the trait, which variants are "causal" at a given signal, and which effector genes correspond to these non-coding variants. These obstacles limit interpretation of potential disease mechanisms. METHODS We analysed CTS GWAS findings in the context of chromatin conformation between gene promoters and accessible chromatin regions across cellular models of bone, skeletal muscle, adipocytes and neurons. We identified proxy variants in high LD with the lead CTS sentinel SNPs residing in promoter connected open chromatin in the skeletal muscle and bone contexts. FINDINGS We detected significant enrichment for heritability in skeletal muscle myotubes, as well as a weaker correlation in human mesenchymal stem cell-derived osteoblasts. In myotubes, our approach implicated 117 genes contacting 60 proxy variants corresponding to 20 of the 53 GWAS signals. In the osteoblast context we implicated 30 genes contacting 24 proxy variants coinciding with 12 signals, of which 19 genes shared. We subsequently prioritized BZW2 as a candidate effector gene in CTS and implicated it as novel gene that perturbs myocyte differentiation in vitro. INTERPRETATION Taken together our results suggest that the CTS genetic component influences the size, integrity, and organization of multiple tissues surrounding the carpal tunnel, in particular muscle and bone, to predispose the nerve to being compressed in this disease setting. FUNDING This work was supported by NIH Grant UM1 DK126194 (SFAG and WY), R01AG072705 (SFAG & KDH) and the Center for Spatial and Functional Genomics at CHOP (SFAG & ADW). SFAG is supported by the Daniel B. Burke Endowed Chair for Diabetes Research. WY is supported by the Perelman School of Medicine of the University of Pennsylvania.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lin Liu
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA19104, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yadav Wagley
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kurt D Hankenson
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Wenli Yang
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia PA19104, USA.
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Mastropasqua F, Oksanen M, Soldini C, Alatar S, Arora A, Ballarino R, Molinari M, Agostini F, Poulet A, Watts M, Rabkina I, Becker M, Li D, Anderlid BM, Isaksson J, Lundin Remnelius K, Moslem M, Jacob Y, Falk A, Crosetto N, Bienko M, Santini E, Borgkvist A, Bölte S, Tammimies K. Deficiency of the Heterogeneous Nuclear Ribonucleoprotein U locus leads to delayed hindbrain neurogenesis. Biol Open 2023; 12:bio060113. [PMID: 37815090 PMCID: PMC10581386 DOI: 10.1242/bio.060113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/11/2023] Open
Abstract
Genetic variants affecting Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU) have been identified in several neurodevelopmental disorders (NDDs). HNRNPU is widely expressed in the human brain and shows the highest postnatal expression in the cerebellum. Recent studies have investigated the role of HNRNPU in cerebral cortical development, but the effects of HNRNPU deficiency on cerebellar development remain unknown. Here, we describe the molecular and cellular outcomes of HNRNPU locus deficiency during in vitro neural differentiation of patient-derived and isogenic neuroepithelial stem cells with a hindbrain profile. We demonstrate that HNRNPU deficiency leads to chromatin remodeling of A/B compartments, and transcriptional rewiring, partly by impacting exon inclusion during mRNA processing. Genomic regions affected by the chromatin restructuring and host genes of exon usage differences show a strong enrichment for genes implicated in epilepsies, intellectual disability, and autism. Lastly, we show that at the cellular level HNRNPU downregulation leads to an increased fraction of neural progenitors in the maturing neuronal population. We conclude that the HNRNPU locus is involved in delayed commitment of neural progenitors to differentiate in cell types with hindbrain profile.
Collapse
Affiliation(s)
- Francesca Mastropasqua
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Marika Oksanen
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Cristina Soldini
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Shemim Alatar
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Abishek Arora
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17164 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Maya Molinari
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Federico Agostini
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Michelle Watts
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Ielyzaveta Rabkina
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Johan Isaksson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Department of Medical Sciences, Child and Adolescent Psychiatry Unit, Uppsala University, 75309 Uppsala, Sweden
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
| | - Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
- Lund Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17164 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17164 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, 6845 Perth, Western Australia
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, 10431 Stockholm, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| |
Collapse
|
10
|
Mulvey B, Selmanovic D, Dougherty JD. Sex Significantly Impacts the Function of Major Depression-Linked Variants In Vivo. Biol Psychiatry 2023; 94:466-478. [PMID: 36803612 PMCID: PMC10425576 DOI: 10.1016/j.biopsych.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Genome-wide association studies have discovered blocks of common variants-likely transcriptional-regulatory-associated with major depressive disorder (MDD), though the functional subset and their biological impacts remain unknown. Likewise, why depression occurs in females more frequently than males is unclear. We therefore tested the hypothesis that risk-associated functional variants interact with sex and produce greater impact in female brains. METHODS We developed techniques to directly measure regulatory variant activity and sex interactions using massively parallel reporter assays in the mouse brain in vivo, in a cell type-specific manner, and applied these approaches to measure activity of >1000 variants from >30 MDD loci. RESULTS We identified extensive sex-by-allele effects in mature hippocampal neurons, suggesting that sex-differentiated impacts of genetic risk may underlie sex bias in disease. Unbiased informatics approaches indicated that functional MDD variants recurrently disrupt a number of transcription factor binding motifs, including those of sex hormone receptors. We confirmed a role for the latter by performing massively parallel reporter assays in neonatal mice on the day of birth (during a sex-differentiating hormone surge) and hormonally quiescent juveniles. CONCLUSIONS Our study provides novel insights into the influence of age, biological sex, and cell type on regulatory variant function and provides a framework for in vivo parallel assays to functionally define interactions between organismal variables such as sex and regulatory variation. Moreover, we experimentally demonstrate that a portion of the sex differences seen in MDD occurrence may be a product of sex-differentiated effects at associated regulatory variants.
Collapse
Affiliation(s)
- Bernard Mulvey
- Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Din Selmanovic
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Intellectual and Developmental Disabilities Research Center, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
11
|
Littleton SH, Trang KB, Volpe CM, Cook K, DeBruyne N, Ann Maguire J, Ann Weidekamp M, Boehm K, Chesi A, Pippin JA, Anderson SA, Wells AD, Pahl MC, Grant SF. Variant-to-function analysis of the childhood obesity chr12q13 locus implicates rs7132908 as a causal variant within the 3' UTR of FAIM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.553157. [PMID: 37662342 PMCID: PMC10473629 DOI: 10.1101/2023.08.21.553157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The ch12q13 obesity locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via an influence on cis-regulation within the genomic region. We implicated rs7132908 as a putative causal variant at this locus leveraging a combination of our inhouse 3D genomic data, public domain datasets, and several computational approaches. Using a luciferase reporter assay in human primary astrocytes, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. Motivated by this finding, we went on to generate isogenic human embryonic stem cell lines homozygous for either rs7132908 allele with CRISPR-Cas9 homology-directed repair to assess changes in gene expression due to genotype and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. We observed that the rs7132908 obesity risk allele influenced the expression of FAIM2 along with other genes, decreased the proportion of neurons produced during differentiation, up-regulated cell death gene sets, and conversely down-regulated neuron differentiation gene sets. We have therefore functionally validated rs7132908 as a causal obesity variant which temporally regulates nearby effector genes at the ch12q13 locus and influences neurodevelopment and survival.
Collapse
Affiliation(s)
- Sheridan H. Littleton
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Khanh B. Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christina M. Volpe
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kieona Cook
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole DeBruyne
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mary Ann Weidekamp
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stewart A. Anderson
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Nussinov R, Yavuz BR, Arici MK, Demirel HC, Zhang M, Liu Y, Tsai CJ, Jang H, Tuncbag N. Neurodevelopmental disorders, like cancer, are connected to impaired chromatin remodelers, PI3K/mTOR, and PAK1-regulated MAPK. Biophys Rev 2023; 15:163-181. [PMID: 37124926 PMCID: PMC10133437 DOI: 10.1007/s12551-023-01054-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase the chances of malignancy. To explore these vital questions, we focus on dysregulated PI3K/mTOR, a major brain cell growth pathway in differentiation, and MAPK, a critical pathway in proliferation, a hallmark of cancer. Differentiation is governed by chromatin organization, making aberrant chromatin remodelers highly likely agents in NDDs. Dysregulated chromatin organization and accessibility influence the lineage of specific cell brain types at specific embryonic development stages. PAK1, with pivotal roles in brain development and in cancer, also regulates MAPK. We review, clarify, and connect dysregulated pathways with dysregulated proliferation and differentiation in cancer and NDDs and highlight PAK1 role in brain development and MAPK regulation. Exactly how PAK1 activation controls brain development, and why specific chromatin remodeler components, e.g., BAF170 encoded by SMARCC2 in autism, await clarification.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Habibe Cansu Demirel
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
- School of Medicine, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
13
|
Pahl MC, Grant SFA, Leibel RL, Stratigopoulos G. Technologies, strategies, and cautions when deconvoluting genome-wide association signals: FTO in focus. Obes Rev 2023; 24:e13558. [PMID: 36882962 DOI: 10.1111/obr.13558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
Genome-wide association studies have revealed a plethora of genetic variants that correlate with polygenic conditions. However, causal molecular mechanisms have proven challenging to fully define. Without such information, the associations are not physiologically useful or clinically actionable. By reviewing studies of the FTO locus in the genetic etiology of obesity, we wish to highlight advances in the field fueled by the evolution of technical and analytic strategies in assessing the molecular bases for genetic associations. Particular attention is drawn to extrapolating experimental findings from animal models and cell types to humans, as well as technical aspects used to identify long-range DNA interactions and their biological relevance with regard to the associated trait. A unifying model is proposed by which independent obesogenic pathways regulated by multiple FTO variants and genes are integrated at the primary cilium, a cellular antenna where signaling molecules that control energy balance convene.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolph L Leibel
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| | - George Stratigopoulos
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
14
|
Palermo J, Chesi A, Zimmerman A, Sonti S, Pahl MC, Lasconi C, Brown EB, Pippin JA, Wells AD, Doldur-Balli F, Mazzotti DR, Pack AI, Gehrman PR, Grant SF, Keene AC. Variant-to-gene mapping followed by cross-species genetic screening identifies GPI-anchor biosynthesis as a regulator of sleep. SCIENCE ADVANCES 2023; 9:eabq0844. [PMID: 36608130 PMCID: PMC9821868 DOI: 10.1126/sciadv.abq0844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/05/2022] [Indexed: 05/13/2023]
Abstract
Genome-wide association studies (GWAS) in humans have identified loci robustly associated with several heritable diseases or traits, yet little is known about the functional roles of the underlying causal variants in regulating sleep duration or quality. We applied an ATAC-seq/promoter focused Capture C strategy in human iPSC-derived neural progenitors to carry out a "variant-to-gene" mapping campaign that identified 88 candidate sleep effector genes connected to relevant GWAS signals. To functionally validate the role of the implicated effector genes in sleep regulation, we performed a neuron-specific RNA interference screen in the fruit fly, Drosophila melanogaster, followed by validation in zebrafish. This approach identified a number of genes that regulate sleep including a critical role for glycosylphosphatidylinositol (GPI)-anchor biosynthesis. These results provide the first physical variant-to-gene mapping of human sleep genes followed by a model organism-based prioritization, revealing a conserved role for GPI-anchor biosynthesis in sleep regulation.
Collapse
Affiliation(s)
- Justin Palermo
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Zimmerman
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Shilpa Sonti
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew C. Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - James A. Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew D. Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Diego R. Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Allan I. Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Phillip R. Gehrman
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA 19104, USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Davis O. Abnormal Chromatin Folding in the Molecular Pathogenesis of Epilepsy and Autism Spectrum Disorder: a Meta-synthesis with Systematic Searching. Mol Neurobiol 2023; 60:768-779. [PMID: 36367658 PMCID: PMC9849311 DOI: 10.1007/s12035-022-03106-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
How DNA is folded and packaged in nucleosomes is an essential regulator of gene expression. Abnormal patterns of chromatin folding are implicated in a wide range of diseases and disorders, including epilepsy and autism spectrum disorder (ASD). These disorders are thought to have a shared pathogenesis involving an imbalance in the number of excitatory-inhibitory neurons formed during neurodevelopment; however, the underlying pathological mechanism behind this imbalance is poorly understood. Studies are increasingly implicating abnormal chromatin folding in neural stem cells as one of the candidate pathological mechanisms, but no review has yet attempted to summarise the knowledge in this field. This meta-synthesis is a systematic search of all the articles on epilepsy, ASD, and chromatin folding. Its two main objectives were to determine to what extent abnormal chromatin folding is implicated in the pathogenesis of epilepsy and ASD, and secondly how abnormal chromatin folding leads to pathological disease processes. This search produced 22 relevant articles, which together strongly implicate abnormal chromatin folding in the pathogenesis of epilepsy and ASD. A range of mutations and chromosomal structural abnormalities lead to this effect, including single nucleotide polymorphisms, copy number variants, translocations and mutations in chromatin modifying. However, knowledge is much more limited into how abnormal chromatin organisation subsequently causes pathological disease processes, not yet showing, for example, whether it leads to abnormal excitation-inhibitory neuron imbalance in human brain organoids.
Collapse
Affiliation(s)
- Oliver Davis
- grid.5335.00000000121885934Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| |
Collapse
|
16
|
Griffin A, Mahesh A, Tiwari VK. Disruption of the gene regulatory programme in neurodevelopmental disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194860. [PMID: 36007842 DOI: 10.1016/j.bbagrm.2022.194860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Cortical development consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. It is becoming clear that gene expression programs governing these events rely on the interplay between signalling molecules, transcription factors and epigenetic mechanisms. When genetic or environmental factors disrupt expression of genes involved in important brain development processes, neurodevelopmental disorders can occur. This review aims to highlight how recent advances in technologies have helped uncover and imitate the gene regulatory mechanisms commonly disrupted in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aoife Griffin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast BT9 7BL, United Kingdom
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast BT9 7BL, United Kingdom
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
17
|
Nuytemans K, Vasquez ML, Wang L, Van Booven D, Griswold AJ, Rajabli F, Celis K, Oron O, Hofmann N, Rolati S, Garcia-Serje C, Zhang S, Jin F, Argenziano M, Grant SF, Chesi A, Brown CD, Young JI, Dykxhoorn DM, Pericak-Vance MA, Vance JM. Identifying differential regulatory control of APOE ɛ4 on African versus European haplotypes as potential therapeutic targets. Alzheimers Dement 2022; 18:1930-1942. [PMID: 34978147 PMCID: PMC9250552 DOI: 10.1002/alz.12534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 01/28/2023]
Abstract
We previously demonstrated that in Alzheimer's disease (AD) patients, European apolipoprotein E (APOE) ε4 carriers express significantly more APOE ε4 in their brains than African AD carriers. We examined single nucleotide polymorphisms near APOE with significant frequency differences between African and European/Japanese APOE ε4 haplotypes that could contribute to this difference in expression through regulation. Two enhancer massively parallel reporter assay (MPRA) approaches were performed, supplemented with single fragment reporter assays. We used Capture C analyses to support interactions with the APOE promoter. Introns within TOMM40 showed increased enhancer activity in the European/Japanese versus African haplotypes in astrocytes and microglia. This region overlaps with APOE promoter interactions as assessed by Capture C analysis. Single variant analyses pinpoints rs2075650/rs157581, and rs59007384 as functionally different on these haplotypes. Identification of the mechanisms for differential regulatory function for APOE expression between African and European/Japanese haplotypes could lead to therapeutic targets for APOE ε4 carriers.
Collapse
Affiliation(s)
- Karen Nuytemans
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
- John T. Macdonald Foundation Department of Human Genetics,
University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marina Lipkin Vasquez
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
| | - Liyong Wang
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
- John T. Macdonald Foundation Department of Human Genetics,
University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
- John T. Macdonald Foundation Department of Human Genetics,
University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
- John T. Macdonald Foundation Department of Human Genetics,
University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katrina Celis
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
| | - Oded Oron
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
| | - Natalia Hofmann
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
| | - Sophie Rolati
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
| | - Catherine Garcia-Serje
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
| | - Shanshan Zhang
- Department of Genetics and Genome Sciences, School of
Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The Biomedical Sciences Training Program (BSTP), School of
Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, School of
Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Computer and Data Sciences, Case
Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio,
USA
| | | | - Struan F.A. Grant
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania,
Philadelphia, Pennsylvania, USA
- Center for Spatial and Functional Genomics,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Endocrinology and Diabetes, Children’s
Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alessandra Chesi
- Division of Human Genetics, Children’s Hospital of
Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Genetics, University of Pennsylvania,
Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine,
University of PennsylvaniaPerelman School of Medicine, Philadelphia, Pennsylvania,
USA
| | - Christopher D. Brown
- Department of Genetics, University of
PennsylvaniaPerelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Juan I. Young
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
- John T. Macdonald Foundation Department of Human Genetics,
University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
- John T. Macdonald Foundation Department of Human Genetics,
University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
- John T. Macdonald Foundation Department of Human Genetics,
University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeffery M. Vance
- John P. Hussman Institute for Human Genomics, University of
Miami Miller School of Medicine, Miami, Florida, USA
- John T. Macdonald Foundation Department of Human Genetics,
University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
18
|
Su C, Gao L, May CL, Pippin JA, Boehm K, Lee M, Liu C, Pahl MC, Golson ML, Naji A, Grant SFA, Wells AD, Kaestner KH. 3D chromatin maps of the human pancreas reveal lineage-specific regulatory architecture of T2D risk. Cell Metab 2022; 34:1394-1409.e4. [PMID: 36070683 PMCID: PMC9664375 DOI: 10.1016/j.cmet.2022.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) chromatin organization maps help dissect cell-type-specific gene regulatory programs. Furthermore, 3D chromatin maps contribute to elucidating the pathogenesis of complex genetic diseases by connecting distal regulatory regions and genetic risk variants to their respective target genes. To understand the cell-type-specific regulatory architecture of diabetes risk, we generated transcriptomic and 3D epigenomic profiles of human pancreatic acinar, alpha, and beta cells using single-cell RNA-seq, single-cell ATAC-seq, and high-resolution Hi-C of sorted cells. Comparisons of these profiles revealed differential A/B (open/closed) chromatin compartmentalization, chromatin looping, and transcriptional factor-mediated control of cell-type-specific gene regulatory programs. We identified a total of 4,750 putative causal-variant-to-target-gene pairs at 194 type 2 diabetes GWAS signals using pancreatic 3D chromatin maps. We found that the connections between candidate causal variants and their putative target effector genes are cell-type stratified and emphasize previously underappreciated roles for alpha and acinar cells in diabetes pathogenesis.
Collapse
Affiliation(s)
- Chun Su
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Long Gao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine L May
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - James A Pippin
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Boehm
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle Lee
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chengyang Liu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew C Pahl
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maria L Golson
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Pahl MC, Le Coz C, Su C, Sharma P, Thomas RM, Pippin JA, Cruz Cabrera E, Johnson ME, Leonard ME, Lu S, Chesi A, Sullivan KE, Romberg N, Grant SFA, Wells AD. Implicating effector genes at COVID-19 GWAS loci using promoter-focused Capture-C in disease-relevant immune cell types. Genome Biol 2022; 23:125. [PMID: 35659055 PMCID: PMC9164584 DOI: 10.1186/s13059-022-02691-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SARS-CoV-2 infection results in a broad spectrum of COVID-19 disease, from mild or no symptoms to hospitalization and death. COVID-19 disease severity has been associated with some pre-existing conditions and the magnitude of the adaptive immune response to SARS-CoV-2, and a recent genome-wide association study (GWAS) of the risk of critical illness revealed a significant genetic component. To gain insight into how human genetic variation attenuates or exacerbates disease following SARS-CoV-2 infection, we implicated putatively functional COVID risk variants in the cis-regulatory landscapes of human immune cell types with established roles in disease severity and used high-resolution chromatin conformation capture to map these disease-associated elements to their effector genes. RESULTS This functional genomic approach implicates 16 genes involved in viral replication, the interferon response, and inflammation. Several of these genes (PAXBP1, IFNAR2, OAS1, OAS3, TNFAIP8L1, GART) were differentially expressed in immune cells from patients with severe versus moderate COVID-19 disease, and we demonstrate a previously unappreciated role for GART in T cell-dependent antibody-producing B cell differentiation in a human tonsillar organoid model. CONCLUSIONS This study offers immunogenetic insight into the basis of COVID-19 disease severity and implicates new targets for therapeutics that limit SARS-CoV-2 infection and its resultant life-threatening inflammation.
Collapse
Affiliation(s)
- Matthew C Pahl
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Carole Le Coz
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Chun Su
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Prabhat Sharma
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Rajan M Thomas
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - James A Pippin
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Emylette Cruz Cabrera
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Michelle E Leonard
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Sumei Lu
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Neil Romberg
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Andrew D Wells
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Whole Genome DNA Methylation Profiling of D2 Medium Spiny Neurons in Mouse Nucleus Accumbens Using Two Independent Library Preparation Methods. Genes (Basel) 2022; 13:genes13020306. [PMID: 35205351 PMCID: PMC8872013 DOI: 10.3390/genes13020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
DNA methylation plays essential roles in various cellular processes. Next-generation sequencing has enabled us to study the functional implication of DNA methylation across the whole genome. However, this approach usually requires a substantial amount of genomic DNA, which limits its application to defined cell types within a discrete brain region. Here, we applied two separate protocols, Accel-NGS Methyl-Seq (AM-seq) and Enzymatic Methyl-seq (EM-seq), to profile the methylome of D2 dopamine receptor-expressing medium spiny neurons (D2-MSNs) in mouse nucleus accumbens (NAc). Using 40 ng DNA extracted from FACS-isolated D2-MSNs, we found that both methods yielded comparably high-quality methylome data. Additionally, we identified numerous unmethylated regions (UMRs) as cell type-specific regulatory regions. By comparing the NAc D2-MSN methylome with the published methylomes of mouse prefrontal cortex excitatory neurons and neural progenitor cells (NPCs), we identified numerous differentially methylated CpG and non-CpG regions. Our study not only presents a comparison of these two low-input DNA whole genome methylation profiling protocols, but also provides a resource of DNA methylome of mouse accumbal D2-MSNs, a neuron type that has critical roles in addiction and other neuropsychiatric disorders.
Collapse
|
21
|
Nussinov R, Tsai CJ, Jang H. How can same-gene mutations promote both cancer and developmental disorders? SCIENCE ADVANCES 2022; 8:eabm2059. [PMID: 35030014 PMCID: PMC8759737 DOI: 10.1126/sciadv.abm2059] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
The question of how same-gene mutations can drive both cancer and neurodevelopmental disorders has been puzzling. It has also been puzzling why those with neurodevelopmental disorders have a high risk of cancer. Ras, MEK, PI3K, PTEN, and SHP2 are among the oncogenic proteins that can harbor mutations that encode diseases other than cancer. Understanding why some of their mutations can promote cancer, whereas others promote neurodevelopmental diseases, and why even the same mutations may promote both phenotypes, has important clinical ramifications. Here, we review the literature and address these tantalizing questions. We propose that cell type–specific expression of the mutant protein, and of other proteins in the respective pathway, timing of activation (during embryonic development or sporadic emergence), and the absolute number of molecules that the mutations activate, alone or in combination, are pivotal in determining the pathological phenotypes—cancer and (or) developmental disorders.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
22
|
Pahl MC, Doege CA, Hodge KM, Littleton SH, Leonard ME, Lu S, Rausch R, Pippin JA, De Rosa MC, Basak A, Bradfield JP, Hammond RK, Boehm K, Berkowitz RI, Lasconi C, Su C, Chesi A, Johnson ME, Wells AD, Voight BF, Leibel RL, Cousminer DL, Grant SFA. Cis-regulatory architecture of human ESC-derived hypothalamic neuron differentiation aids in variant-to-gene mapping of relevant complex traits. Nat Commun 2021; 12:6749. [PMID: 34799566 PMCID: PMC8604959 DOI: 10.1038/s41467-021-27001-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
The hypothalamus regulates metabolic homeostasis by influencing behavior and endocrine systems. Given its role governing key traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function could yield insights into disease pathogenesis. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generate a high-resolution chromatin architecture atlas of an established embryonic stem cell derived hypothalamic-like neuron model across three stages of in vitro differentiation. We profile accessible chromatin and identify physical contacts between gene promoters and putative cis-regulatory elements to characterize global regulatory landscape changes during hypothalamic differentiation. Next, we integrate these data with GWAS loci for various complex traits, identifying multiple candidate effector genes. Our results reveal common target genes for these traits, potentially affecting core developmental pathways. Our atlas will enable future efforts to determine hypothalamic mechanisms influencing disease susceptibility.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Claudia A Doege
- Department of Pathology, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kenyaita M Hodge
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sheridan H Littleton
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michelle E Leonard
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sumei Lu
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rick Rausch
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Maria Caterina De Rosa
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alisha Basak
- Department of Pediatrics, Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jonathan P Bradfield
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Reza K Hammond
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Robert I Berkowitz
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Chiara Lasconi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics (Pediatrics) and the Naomi Berrie Diabetes Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Diana L Cousminer
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- GSK, Human Genetics and Computational Biology, 1250 South Collegeville Road, Collegeville, PA, 19426, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Couch ACM, Berger T, Hanger B, Matuleviciute R, Srivastava DP, Thuret S, Vernon AC. Maternal immune activation primes deficiencies in adult hippocampal neurogenesis. Brain Behav Immun 2021; 97:410-422. [PMID: 34352366 PMCID: PMC8478664 DOI: 10.1016/j.bbi.2021.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/25/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
Neurogenesis, the process in which new neurons are generated, occurs throughout life in the mammalian hippocampus. Decreased adult hippocampal neurogenesis (AHN) is a common feature across psychiatric disorders, including schizophrenia, depression- and anxiety-related behaviours, and is highly regulated by environmental influences. Epidemiological studies have consistently implicated maternal immune activation (MIA) during neurodevelopment as a risk factor for psychiatric disorders in adulthood. The extent to which the reduction of hippocampal neurogenesis in adulthood may be driven by early life exposures, such as MIA, is however unclear. We therefore reviewed the literature for evidence of the involvement of MIA in disrupting AHN. Consistent with our hypothesis, data from both in vivo murine and in vitro human models of AHN provide evidence for key roles of specific cytokines induced by MIA in the foetal brain in disrupting hippocampal neural progenitor cell proliferation and differentiation early in development. The precise molecular mechanisms however remain unclear. Nonetheless, these data suggest a potential latent vulnerability mechanism, whereby MIA primes dysfunction in the unique hippocampal pool of neural stem/progenitor cells. This renders offspring potentially more susceptible to additional environmental exposures later in life, such as chronic stress, resulting in the unmasking of psychopathology. We highlight the need for studies to test this hypothesis using validated animal models of MIA, but also to test the relevance of such data for human pathology at a molecular basis through the use of patient-derived induced pluripotent stem cells (hiPSC) differentiated into hippocampal progenitor cells.
Collapse
Affiliation(s)
- Amalie C M Couch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Thomas Berger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bjørn Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | | | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|