1
|
Ehret V, Dürr SC, Ustsinau U, Friske J, Scherer T, Fürnsinn C, Starčuková J, Helbich TH, Philippe C, Krššák M. Deuterium Metabolic Imaging Enables the Tracing of Substrate Fluxes Through the Tricarboxylic Acid Cycle in the Liver. NMR IN BIOMEDICINE 2025; 38:e5309. [PMID: 39676029 DOI: 10.1002/nbm.5309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Alterations in tricarboxylic acid (TCA) cycle metabolism are associated with hepatic metabolic disorders. Elevated hepatic acetate concentrations, often attributed to high caloric intake, are recognized as a pivotal factor in the etiology of obesity and metabolic syndrome. Therefore, the assessment of acetate breakdown and TCA cycle activity plays a central role in understanding the impact of diet-induced alterations on liver metabolism. Magnetic resonance-based deuterium metabolic imaging (DMI) could help to unravel the underlying mechanisms involved in disease development and progression, however, the application of conventional deuterated glucose does not lead to substantial enrichment in hepatic glutamine and glutamate. This study aimed to demonstrate the feasibility of DMI for tracking deuterated acetate breakdown via the TCA cycle in lean and diet-induced fatty liver (FL) rats using 3D DMI after an intraperitoneal infusion of sodium acetate-d3 at 9.4T. Localized and nonlocalized liver spectra acquired at 10 time points post-injection over a 130-min study revealed similar intrahepatic acetate uptake in both animal groups (AUCFL = 717.9 ± 131.1 mM▯min-1, AUClean = 605.1 ± 119.9 mM▯min-1, p = 0.62). Metabolic breakdown could be observed in both groups with an emerging glutamine/glutamate (Glx) peak as a downstream metabolic product (AUCFL = 113.6 ± 23.8 mM▯min-1, AUClean = 136.7 ± 41.7 mM▯min-1, p = 0.68). This study showed the viability of DMI for tracking substrate flux through the TCA cycle, underscoring its methodological potential for imaging metabolic processes in the body.
Collapse
Affiliation(s)
- Viktoria Ehret
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Sabine C Dürr
- Imaging Unit CIUS, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Usevalad Ustsinau
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Joachim Friske
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Jana Starčuková
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Prinz D, Bartsch SJ, Ehret V, Friske J, Pinker K, Helbich TH. [Multiparametric magnetic resonance imaging of the breast : What can we expect from the future?]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024:10.1007/s00117-024-01390-1. [PMID: 39611894 DOI: 10.1007/s00117-024-01390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND The combination of different MRI methods is described as multiparametric MRI (mpMRI) and plays a significant role in breast cancer diagnostics. Currently, mpMRI includes contrast-enhanced and diffusion-weighted MRI. For a more comprehensive characterization of the key processes involved in cancer development, additional MRI methods that capture functional processes at the cellular and molecular levels are necessary. In the context of preclinical studies, MRI methods that enable contrast-free evaluation of key processes at the metabolic and molecular levels are being developed for future clinical applications. OBJECTIVES What does multiparametric MRI in breast cancer look like in the future? METHODS Systematic literature analysis focusing on preclinical research with regard to mpMRI as well as development and modification of noninvasive MRI methods. RESULTS Some of the most promising MRI methods for the evaluation of breast cancer that can answer functional and metabolic questions are BOLD (blood oxygen level dependent), IVIM (intravoxel incoherent motion), DMI (deuterium metabolic imaging) and CEST (chemical exchange saturation transfer). A combination and, therefore, a multiparametric approach allows for a noninvasive differentiation of breast cancer subtypes and early detection of treatment response which is crucial for the future development of the disease. CONCLUSION Standardization of quantification methods as well as improvement and expansion of MRI methods enable such a multiparametric, functional, and metabolic evaluation of the tumor. Many of these are initially developed in preclinical settings before they can be translated into clinical practice.
Collapse
Affiliation(s)
- Daniela Prinz
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - Silvester J Bartsch
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - Viktoria Ehret
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Wien, Österreich
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - Katja Pinker
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich
- Division of Breast Imaging, Department of Radiology, Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Thomas H Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| |
Collapse
|
3
|
Allouche-Arnon H, Montrazi ET, Subramani B, Fisler M, Spigel I, Frydman L, Mehlman T, Brandis A, Harris T, Bar-Shir A. A Genetically Engineered Reporter System Designed for 2H-MRI Allows Quantitative In Vivo Mapping of Transgene Expression. J Am Chem Soc 2024; 146:31624-31632. [PMID: 39527270 PMCID: PMC11583250 DOI: 10.1021/jacs.4c09572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The ability to obtain quantitative spatial information on subcellular processes of deep tissues in vivo has been a long-standing challenge for molecular magnetic resonance imaging (MRI) approaches. This challenge remains even more so for quantifying readouts of genetically engineered MRI reporters. Here, we set to overcome this challenge with a molecular system designed to obtain quantitative 2H-MRI maps of a gene reporter. To this end, we synthesized deuterated thymidine, d3-thy, with three magnetically equivalent deuterons at its methyl group (-CD3), showing a singlet peak with a characteristic 2H-NMR frequency (δ = 1.7 ppm). The upfield 3.0 ppm offset from the chemical shift of the HDO signal (δ = 4.7 ppm) allows for spectrally resolving the two 2H NMR signals and quantifying the concentration of d3-thy based on the known concentration of a tissue's HDO. Following systemic administration of d3-thy, its accumulation as d3-thy monophosphate in cells expressing the human thymidine kinase 1 (hTK1) transgene was mapped with 2H-MRI. The data obtained in vivo show the ability to use the d3-thy/hTK1 pair as a reporter probe/reporter gene system to quantitatively map transgene expression with MRI. Relying on a structurally unmodified reporter probe (d3-thy) to image the expression of unmutated human protein (hTK1) shows the potential of molecular imaging with 2H-MRI to monitor gene reporters and other relevant biological targets.
Collapse
Affiliation(s)
- Hyla Allouche-Arnon
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elton T. Montrazi
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Balamurugan Subramani
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Fisler
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbal Spigel
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lucio Frydman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Tevie Mehlman
- Department
of Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Alexander Brandis
- Department
of Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Talia Harris
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Poli S, Emara AF, Lange NF, Ballabani E, Buser A, Schiavon M, Herzig D, Man CD, Bally L, Kreis R. Interleaved trinuclear MRS for single-session investigation of carbohydrate and lipid metabolism in human liver at 7T. NMR IN BIOMEDICINE 2024; 37:e5123. [PMID: 38423797 DOI: 10.1002/nbm.5123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
The liver plays a central role in metabolic homeostasis, as exemplified by a variety of clinical disorders with hepatic and systemic metabolic disarrays. Of particular interest are the complex interactions between lipid and carbohydrate metabolism in highly prevalent conditions such as obesity, diabetes, and fatty liver disease. Limited accessibility and the need for invasive procedures challenge direct investigations in humans. Hence, noninvasive dynamic evaluations of glycolytic flux and steady-state assessments of lipid levels and composition are crucial for basic understanding and may open new avenues toward novel therapeutic targets. Here, three different MR spectroscopy (MRS) techniques that have been combined in a single interleaved examination in a 7T MR scanner are evaluated. 1H-MRS and 13C-MRS probe endogenous metabolites, while deuterium metabolic imaging (DMI) relies on administration of deuterated tracers, currently 2H-labelled glucose, to map the spatial and temporal evolution of their metabolic fate. All three techniques have been optimized for a robust single-session clinical investigation and applied in a preliminary study of healthy subjects. The use of a triple-channel 1H/2H/13C RF coil enables interleaved examinations with no need for repositioning. Short-echo-time STEAM spectroscopy provides well resolved spectra to quantify lipid content and composition. The relative benefits of using water saturation versus metabolite cycling and types of respiratory synchronization were evaluated. 2H-MR spectroscopic imaging allowed for registration of time- and space-resolved glucose levels following oral ingestion of 2H-glucose, while natural abundance 13C-MRS of glycogen provides a dynamic measure of hepatic glucose storage. For DMI and 13C-MRS, the measurement precision of the method was estimated to be about 0.2 and about 16 mM, respectively, for 5 min scanning periods. Excellent results were shown for the determination of dynamic uptake of glucose with DMI and lipid profiles with 1H-MRS, while the determination of changes in glycogen levels by 13C-MRS is also feasible but somewhat more limited by signal-to-noise ratio.
Collapse
Affiliation(s)
- Simone Poli
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ahmed F Emara
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Naomi F Lange
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Edona Ballabani
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Angeline Buser
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Michele Schiavon
- Department of Information Engineering (DEI), University of Padova, Padua, Italy
| | - David Herzig
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Chiara Dalla Man
- Department of Information Engineering (DEI), University of Padova, Padua, Italy
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
5
|
Hoffmann E, Masthoff M, Kunz WG, Seidensticker M, Bobe S, Gerwing M, Berdel WE, Schliemann C, Faber C, Wildgruber M. Multiparametric MRI for characterization of the tumour microenvironment. Nat Rev Clin Oncol 2024; 21:428-448. [PMID: 38641651 DOI: 10.1038/s41571-024-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Our understanding of tumour biology has evolved over the past decades and cancer is now viewed as a complex ecosystem with interactions between various cellular and non-cellular components within the tumour microenvironment (TME) at multiple scales. However, morphological imaging remains the mainstay of tumour staging and assessment of response to therapy, and the characterization of the TME with non-invasive imaging has not yet entered routine clinical practice. By combining multiple MRI sequences, each providing different but complementary information about the TME, multiparametric MRI (mpMRI) enables non-invasive assessment of molecular and cellular features within the TME, including their spatial and temporal heterogeneity. With an increasing number of advanced MRI techniques bridging the gap between preclinical and clinical applications, mpMRI could ultimately guide the selection of treatment approaches, precisely tailored to each individual patient, tumour and therapeutic modality. In this Review, we describe the evolving role of mpMRI in the non-invasive characterization of the TME, outline its applications for cancer detection, staging and assessment of response to therapy, and discuss considerations and challenges for its use in future medical applications, including personalized integrated diagnostics.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Bobe
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | | | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
6
|
Sviyazov SV, Burueva DB, Chukanov NV, Razumov IA, Chekmenev EY, Salnikov OG, Koptyug IV. 15N Hyperpolarization of Metronidazole Antibiotic in Aqueous Media Using Phase-Separated Signal Amplification by Reversible Exchange with Parahydrogen. J Phys Chem Lett 2024; 15:5382-5389. [PMID: 38738984 PMCID: PMC11151165 DOI: 10.1021/acs.jpclett.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Metronidazole is a prospective hyperpolarized MRI contrast agent with potential hypoxia sensing utility for applications in cancer, stroke, neurodegenerative diseases, etc. We demonstrate a pilot procedure for production of ∼30 mM hyperpolarized [15N3]metronidazole in aqueous media by using a phase-separated SABRE-SHEATH hyperpolarization method, with nitrogen-15 polarization exceeding 2.2% on all three 15N sites achieved in less than 2 min. The 15N polarization T1 of ∼12 min is reported for the 15NO2 group at the clinically relevant field of 1.4 T in the aqueous phase, demonstrating a remarkably long lifetime of the hyperpolarized state. The produced aqueous solution of [15N3]metronidazole that contained only ∼100 μM of residual Ir was deemed biocompatible via validation through the MTT colorimetric test for assessing cell metabolic activity using human embryotic kidney HEK293T cells. This low-cost and ultrafast hyperpolarization procedure represents a major advance for the production of a biocompatible HP [15N3]metronidazole (and potentially other hyperpolarized drugs) formulation for MRI sensing applications.
Collapse
Affiliation(s)
- Sergey V. Sviyazov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Dudari B. Burueva
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Ivan A. Razumov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Montrazi ET, Sasson K, Agemy L, Scherz A, Frydman L. Molecular imaging of tumor metabolism: Insight from pyruvate- and glucose-based deuterium MRI studies. SCIENCE ADVANCES 2024; 10:eadm8600. [PMID: 38478615 PMCID: PMC10936946 DOI: 10.1126/sciadv.adm8600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Cancer diagnosis by metabolic MRI proposes to follow the fate of glycolytic precursors such as pyruvate or glucose, and their in vivo conversion into lactate. This study compares the 2H MRI outlooks afforded by these metabolites when targeting a pancreatic cancer model. Exogenously injected [3,3',3″-2H3]-pyruvate was visible only briefly; it generated a deuterated lactate signal throughout the body that faded after ~5 min, showing a minor concentration bias at the rims of the tumors. [6,6'-2H2]-glucose by contrast originated a lactate signal that localized clearly within the tumors, persisting for over an hour. Investigations alternating deuterated and nondeuterated glucose injections revealed correlations between the lactate generation and the glucose available at the tumor, evidencing a continuous and avid glucose consumption generating well-localized lactate signatures as driven by the Warburg effect. This is by contrast to the transient and more promiscuous pyruvate-to-lactate transformation, which seemed subject to transporter and kinetics effects. The consequences of these observations within metabolic MRI are briefly discussed.
Collapse
Affiliation(s)
- Elton T Montrazi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Sasson
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Flocke V, Temme S, Bouvain P, Grandoch M, Flögel U. Noninvasive assessment of metabolic turnover during inflammation by in vivo deuterium magnetic resonance spectroscopy. Front Immunol 2023; 14:1258027. [PMID: 37841266 PMCID: PMC10568178 DOI: 10.3389/fimmu.2023.1258027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Inflammation and metabolism exhibit a complex interplay, where inflammation influences metabolic pathways, and in turn, metabolism shapes the quality of immune responses. Here, glucose turnover is of special interest, as proinflammatory immune cells mainly utilize glycolysis to meet their energy needs. Noninvasive approaches to monitor both processes would help elucidate this interwoven relationship to identify new therapeutic targets and diagnostic opportunities. Methods For induction of defined inflammatory hotspots, LPS-doped Matrigel plugs were implanted into the neck of C57BL/6J mice. Subsequently, 1H/19F magnetic resonance imaging (MRI) was used to track the recruitment of 19F-loaded immune cells to the inflammatory focus and deuterium (2H) magnetic resonance spectroscopy (MRS) was used to monitor the metabolic fate of [6,6-2H2]glucose within the affected tissue. Histology and flow cytometry were used to validate the in vivo data. Results After plug implantation and intravenous administration of the 19F-containing contrast agent, 1H/19F MRI confirmed the infiltration of 19F-labeled immune cells into LPS-doped plugs while no 19F signal was observed in PBS-containing control plugs. Identification of the inflammatory focus was followed by i.p. bolus injection of deuterated glucose and continuous 2H MRS. Inflammation-induced alterations in metabolic fluxes could be tracked with an excellent temporal resolution of 2 min up to approximately 60 min after injection and demonstrated a more anaerobic glucose utilization in the initial phase of immune cell recruitment. Conclusion 1H/2H/19F MRI/MRS was successfully employed for noninvasive monitoring of metabolic alterations in an inflammatory environment, paving the way for simultaneous in vivo registration of immunometabolic data in basic research and patients.
Collapse
Affiliation(s)
- Vera Flocke
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anaesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
- University Hospital Düsseldorf, Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria Grandoch
- University Hospital Düsseldorf, Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
- Institute for Translational Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- University Hospital Düsseldorf, Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| |
Collapse
|