1
|
Jezsó B, Kálmán S, Farkas KG, Hathy E, Vincze K, Kovács-Schoblocher D, Lilienberg J, Tordai C, Nemoda Z, Homolya L, Apáti Á, Réthelyi JM. Haloperidol, Olanzapine, and Risperidone Induce Morphological Changes in an In Vitro Model of Human Hippocampal Neurogenesis. Biomolecules 2024; 14:688. [PMID: 38927091 PMCID: PMC11201986 DOI: 10.3390/biom14060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Induced pluripotent stem cell (iPSC) based neuronal differentiation is valuable for studying neuropsychiatric disorders and pharmacological mechanisms at the cellular level. We aimed to examine the effects of typical and atypical antipsychotics on human iPSC-derived neural progenitor cells (NPCs). METHODS Proliferation and neurite outgrowth were measured by live cell imaging, and gene expression levels related to neuronal identity were analyzed by RT-QPCR and immunocytochemistry during differentiation into hippocampal dentate gyrus granule cells following treatment of low- and high-dose antipsychotics (haloperidol, olanzapine, and risperidone). RESULTS Antipsychotics did not modify the growth properties of NPCs after 3 days of treatment. However, the characteristics of neurite outgrowth changed significantly in response to haloperidol and olanzapine. After three weeks of differentiation, mRNA expression levels of the selected neuronal markers increased (except for MAP2), while antipsychotics caused only subtle changes. Additionally, we found no changes in MAP2 or GFAP protein expression levels as a result of antipsychotic treatment. CONCLUSIONS Altogether, antipsychotic medications promoted neurogenesis in vitro by influencing neurite outgrowth rather than changing cell survival or gene expression. This study provides insights into the effects of antipsychotics on neuronal differentiation and highlights the importance of considering neurite outgrowth as a potential target of action.
Collapse
Affiliation(s)
- Bálint Jezsó
- Institute of Molecular Life Sciences, HUN-REN RCNS, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (B.J.)
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c., H-1117 Budapest, Hungary
- ELTE-MTA “Momentum” Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/c., H-1117 Budapest, Hungary
| | - Sára Kálmán
- Albert Szent-Györgyi Health Centre, Department of Psychiatry, University of Szeged, Szentháromság utca 5., H-6722 Szeged, Hungary;
| | - Kiara Gitta Farkas
- Institute of Molecular Life Sciences, HUN-REN RCNS, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (B.J.)
| | - Edit Hathy
- Institute of Molecular Life Sciences, HUN-REN RCNS, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (B.J.)
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6., H-1083 Budapest, Hungary
| | - Katalin Vincze
- Institute of Molecular Life Sciences, HUN-REN RCNS, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (B.J.)
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6., H-1083 Budapest, Hungary
| | | | - Julianna Lilienberg
- Institute of Molecular Life Sciences, HUN-REN RCNS, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (B.J.)
| | - Csongor Tordai
- Institute of Molecular Life Sciences, HUN-REN RCNS, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (B.J.)
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6., H-1083 Budapest, Hungary
| | - Zsófia Nemoda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6., H-1083 Budapest, Hungary
| | - László Homolya
- Institute of Molecular Life Sciences, HUN-REN RCNS, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (B.J.)
| | - Ágota Apáti
- Institute of Molecular Life Sciences, HUN-REN RCNS, Magyar tudósok körútja 2., H-1117 Budapest, Hungary; (B.J.)
| | - János M. Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa utca 6., H-1083 Budapest, Hungary
| |
Collapse
|
2
|
Olivares-Berjaga D, Martínez-Pinteño A, Rodríguez N, Madero S, Prohens L, Martínez-Serrano I, Mas S, Morén C, Parellada E, Gassó P. Effects of the PAM of mGluR2, JNJ-46356479, on brain apoptotic protein levels in a mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110955. [PMID: 38296154 DOI: 10.1016/j.pnpbp.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Current treatment for schizophrenia (SZ) ameliorates the positive symptoms, but is inefficient in treating the negative and cognitive symptoms. The SZ glutamatergic dysfunction hypothesis has opened new avenues in the development of novel drugs targeting the glutamate storm, an inducer of progressive neuropathological changes. Positive allosteric modulators of metabotropic glutamate receptor 2 (mGluR2), such as JNJ-46356479 (JNJ), reduce the presynaptic release of glutamate, which has previously been demonstrated to attenuate glutamate- and dopamine-induced apoptosis in human neuroblastoma cell cultures. We hypothesised that JNJ treatment would modify the brain levels of apoptotic proteins in a mouse model of ketamine (KET)-induced schizophrenia. We analysed the levels of proapoptotic (caspase-3 and Bax) and antiapoptotic (Bcl-2) proteins by western blot in the prefrontal cortex and hippocampus of JNJ-treated mice. JNJ attenuated apoptosis in the brain by partially restoring the levels of the antiapoptotic Bcl-2 protein, which is significantly reduced in animals exposed to KET. Additionally, a significant inverse correlation was observed between proapoptotic protein levels and behavioural deficits in the mice. Our findings suggest that JNJ may attenuate brain apoptosis in vivo, as previously described in cell cultures, providing a link between neuropathological deficits and SZ symptomatology.
Collapse
Affiliation(s)
| | - Albert Martínez-Pinteño
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Natalia Rodríguez
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Santiago Madero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain.
| | - Llucía Prohens
- Dept. of Basic Clinical Practice, University of Barcelona, Spain.
| | | | - Sergi Mas
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Constanza Morén
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Eduard Parellada
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Barcelona Clínic Schizophrenia Unit (BCSU), Dpt. of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Spain.
| | - Patricia Gassó
- Dept. of Basic Clinical Practice, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
3
|
Moura C, Vale N. The Role of Dopamine in Repurposing Drugs for Oncology. Biomedicines 2023; 11:1917. [PMID: 37509555 PMCID: PMC10377204 DOI: 10.3390/biomedicines11071917] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a neurotransmitter that plays an important role within the brain by regulating a wide variety of cognitive and emotional processes. In cancer, its role is distinct and uncertain, but it is characterized by the interaction with its receptors that may be in the tumor cells; we have examples of different types of cancer with this characteristic, of which breast and colon cancer stand out. It is believed that dopamine and some of its receptors also influence other cellular processes such as cell proliferation, survival, migration, and invasion. The potential of these receptors has allowed the exploration of existing drugs, originally developed for non-oncological purposes, for the possible treatment of cancer. However, regarding the repurposing of drugs for cancer treatment, the role of dopamine is not so straightforward and needs to be clarified. For this reason, this review intends to present concepts associated with twelve drugs reused for oncology based on dopamine and its receptors. Some of them can behave as antagonists and inhibit tumor cell growth leading to cell death. Attention to this group of drugs may enhance the study of other pharmacological conditions such as signaling pathways related to cell proliferation and migration. Modulation of these pathways using drugs originally developed for other conditions may offer potential therapeutic opportunities in oncology. It is important to note that while the repurposing of oncology drugs based on dopamine signaling is promising, further studies are still needed to fully understand the mechanisms involved and determine the clinical efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Catarina Moura
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Iyer VJ, Osman MA. Haldol Targets IQGAP1 Pathway and Promotes Novel Partner Interactions in Glioblastoma Cell Lines. MICROPUBLICATION BIOLOGY 2023; 2023. [PMID: 37228393 PMCID: PMC10203884 DOI: 10.17912/micropub.biology.000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Glioblastoma multiform (GBM) is an incurable heterogenous brain cancer with few clinical target options. IQGAP1 is a scaffold oncoprotein involved in GBM with unclear mechanism. Here we report that the antipsychotic drug Haldol differentially alters IQGAP1 signaling and inhibits GBM cell proliferation, thus providing novel molecular signatures for GBM classification and potential targeted therapy in personalized medicine.
Collapse
Affiliation(s)
- Varun J Iyer
- Department of Medicine, Division of Oncology, University of Toledo Medical Center, Toledo, Ohio, 43614 United States
| | - Mahasin A Osman
- Department of Medicine, Division of Oncology, University of Toledo Medical Center, Toledo, Ohio, 43614 United States
| |
Collapse
|
5
|
Kumon H, Yoshino Y, Ozaki T, Funahashi Y, Mori H, Ueno M, Ozaki Y, Yamazaki K, Ochi S, Iga JI, Ueno SI. Gestational Exposure to Haloperidol Changes Cdkn1a and Apaf1 mRNA Expressions in Mouse Hippocampus. Brain Res Bull 2023; 199:110662. [PMID: 37150328 DOI: 10.1016/j.brainresbull.2023.110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The onset of schizophrenia is associated with both genetic and environmental risks during brain development. Environmental factors during pregnancy can represent risk factors for schizophrenia, and we have previously reported that several microRNA and mRNA expression changes in fetal brains exposed to haloperidol during pregnancy may be related to the onset of this disease. This study aimed to replicate that research and focused on apoptotic-related gene expression changes. METHODS Haloperidol (1mg/kg) or aripiprazole (1mg/kg) was injected into pregnant mice. Using RNA sequencing for the hippocampus of each offspring born from pregnant mice exposed to haloperidol, we analyzed genes identified as changed in our previous report and validated two apoptosis-related genes (Cdkn1a and Apaf1) using quantitative polymerase chain reaction (qPCR) methods. Furthermore, we attempted to elucidate the direct effects of haloperidol and aripiprazole on those mRNA expressions in in vitro experiments. RESULTS RNA sequencing successfully replicated 16 up-regulated and 5 down-regulated genes in this study. Of those, up-regulations of Cdkn1a and Apaf1 mRNA expression were successfully validated by direct quantification. Moreover, haloperidol and aripiprazole dose-dependent upregulation of both mRNA expressions were confirmed in a Neuro2a cell line. CONCLUSIONS In the hippocampus of offspring, intraperitoneal injection of haloperidol to pregnant mice induced up-regulation of apoptotic genes that representing the phenotypic change without apoptosis. These findings will be useful for understanding the molecular biological mechanisms underlying the effects of antipsychotics on the fetal brain.
Collapse
Affiliation(s)
- Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tomoki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Hiroaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Mariko Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
6
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
7
|
Neurotoxic/Neuroprotective Effects of Clozapine and the Positive Allosteric Modulator of mGluR2 JNJ-46356479 in Human Neuroblastoma Cell Cultures. Int J Mol Sci 2023; 24:ijms24032054. [PMID: 36768378 PMCID: PMC9916793 DOI: 10.3390/ijms24032054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Current antipsychotics (APs) effectively control positive psychotic symptoms, mainly by blocking dopamine (DA) D2 receptors, but have little effect on negative and cognitive symptoms. Increased glutamate (GLU) release would trigger neurotoxicity, leading to apoptosis and synaptic pruning, which is involved in the pathophysiology of schizophrenia. New pharmacological strategies are being developed such as positive allosteric modulators (PAMs) of the metabotropic GLU receptor 2 (mGluR2) that inhibit the presynaptic release of GLU. We previously reported that treatment of adult mice with JNJ-46356479 (JNJ), a recently developed mGluR2 PAM, partially improved neuropathological deficits and schizophrenia-like behavior in a postnatal ketamine mouse model. In the present study, we evaluated, for the first time, the putative neuroprotective and antiapoptotic activity of JNJ in a human neuroblastoma cell line and compared it with the effect of clozapine (CLZ) as a clinical AP with the highest efficacy and with apparent utility in managing negative symptoms. Specifically, we measured changes in cell viability, caspase 3 activity and apoptosis, as well as in the expression of key genes involved in survival and cell death, produced by CLZ and JNJ alone and in combination with a high DA or GLU concentration as apoptosis inducers. Our results suggest that JNJ is not neurotoxic and attenuates apoptosis, particularly by decreasing the caspase 3 activation induced by DA and GLU, as well as increasing and decreasing the number of viable and apoptotic cells, respectively, only when cultures were exposed to GLU. Its effects seem to be less neurotoxic and more neuroprotective than those observed with CLZ. Moreover, JNJ partially normalized altered expression levels of glycolytic genes, which could act as a protective factor and be related to its putative neuroprotective effect. More studies are needed to define the mechanisms of action of this GLU modulator and its potential to become a novel therapeutic agent for schizophrenia.
Collapse
|
8
|
Tost M, González-Rodríguez A, Aguayo R, Álvarez A, Montalvo I, Barbero JD, Gabernet R, Izquierdo E, Merodio I, Monreal JA, Palao D, Labad J. Switching from risperidone to paliperidone palmitate in schizophrenia: Changes in social functioning and cognitive performance. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110619. [PMID: 35988848 DOI: 10.1016/j.pnpbp.2022.110619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous studies suggest that paliperidone might show a better profile for social functioning and cognitive abilities than risperidone. We aimed to study whether switching from risperidone to paliperidone palmitate (PP) is associated with improved cognitive abilities at 3 or 6 months after the switch. METHODS Thirty-eight patients with a DSM-IV diagnosis of schizophrenia were studied. All patients were treated with oral risperidone or risperidone long-acting injection (RLAI) and had an indication to be switched to PP by their psychiatrists. Statistical analyses were conducted in a final sample of 27 patients who completed the follow-up visits. Three assessments were completed: 1) baseline (preswitch), 2) 3 months postswitch, and 3) 6 months postswitch. Social functioning at each visit was assessed with the Personal and Social Performance Scale. Cognitive assessment was conducted at each visit with the MATRICS Consensus Cognitive Battery. Statistical analyses were performed with R. Linear mixed models were used to explore longitudinal changes in social functioning and cognitive outcomes. RESULTS PSP scores significantly improved over time after the switch from risperidone to PP. A sensitivity analysis found a significant negative interaction between time and PP maintenance doses (greater improvement in those patients receiving lower doses when compared to higher doses). Regarding longitudinal changes in cognitive functioning, patients improved in 6 out of 10 cognitive tasks involving processing speed, working memory, visual memory, reasoning and problem solving, and attention and vigilance. CONCLUSIONS Our study suggests that switching from risperidone to PP in patients with schizophrenia is associated with an improvement in social functioning and cognitive performance.
Collapse
Affiliation(s)
- Meritxell Tost
- Department of Mental Health, Parc Taulí Hospital Universitari, I3PT. Sabadell, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Raquel Aguayo
- Department of Mental Health, Parc Taulí Hospital Universitari, I3PT. Sabadell, Spain
| | - Aida Álvarez
- Department of Mental Health, Hospital Mútua de Terrassa, Terrassa, Spain
| | - Itziar Montalvo
- Department of Mental Health, Parc Taulí Hospital Universitari, I3PT. Sabadell, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERSAM. Sabadell, Barcelona, Spain
| | - Juan David Barbero
- Department of Mental Health, Parc Taulí Hospital Universitari, I3PT. Sabadell, Spain
| | - Rosa Gabernet
- Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain
| | - Eduard Izquierdo
- Department of Mental Health, Hospital Mútua de Terrassa, Terrassa, Spain
| | - Igor Merodio
- Department of Mental Health, Parc Taulí Hospital Universitari, I3PT. Sabadell, Spain
| | - José Antonio Monreal
- Department of Mental Health, Hospital Mútua de Terrassa, Terrassa, Spain; CIBERSAM. Sabadell, Barcelona, Spain
| | - Diego Palao
- Department of Mental Health, Parc Taulí Hospital Universitari, I3PT. Sabadell, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; CIBERSAM. Sabadell, Barcelona, Spain
| | - Javier Labad
- CIBERSAM. Sabadell, Barcelona, Spain; Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain.
| |
Collapse
|
9
|
Osacka J, Kiss A, Bacova Z, Tillinger A. Effects of antipsychotics, haloperidol and olanzapine, on the expression of apoptosis-related genes in mouse mHippoE-2 cells and rat hippocampus. Endocr Regul 2023; 57:152-161. [PMID: 37561834 DOI: 10.2478/enr-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Objective. Modified levels of pro- (caspase3, Bax) and anti-apoptotic (Bcl-2) regulatory proteins have been detected in certain brain areas of schizophrenic patients indicating a possible dysregulation of apoptosis. In the present study, effects of antipsychotics, haloperidol (HAL) and olanzapine (OLA), on the gene expression of caspase3 (casp3), Bax and Bcl-2 were studied in vitro in mouse hippocampal mHippoE-2 cell line and in vivo in the hippocampus of MK-801 animal schizophrenia model with the aim to provide evidence that antipsychotics may affect the activity of apoptosis-related markers. Methods. mHippoE-2 cells were incubated with MK-801 (20 µM), HAL (10 µM), and OLA (10 µM) alone or combined, MK-801+HAL/OLA, for 24, 48, and 72 h. Male Sprague Dawley rats were injected with saline or MK-801 (0.5 mg/kg) for 6 days and since the 7th day, they were treated with vehicle (VEH), HAL (1 mg/kg) or OLA (2 mg/kg) for the next 7 days. The casp3, Bax and Bcl-2 gene expression in mHippoE-2 cells and rat hippocampus was measured by RT-PCR. Results. In mHippoE-2 cells, casp3 gene expression was increased by MK-801 and OLA treatments alone for 48 h, HAL treatment alone for 24 and 72 h, and co-treatment with MK-801+OLA for 24 and 72 h compared to controls. HAL and OLA suppressed the stimulatory effect of MK-801 on casp3 mRNA levels in cells after 48 h of incubation. Bax mRNA levels in mHippoE-2 cells were decreased after HAL treatment for 24 and 48 h, and also after co-treatment with MK-801+HAL for 72 h. In vivo, MK-801 decreased mRNA levels of both pro-apoptotic markers, casp3 and Bax, in hippocampus of VEH-treated rats and Bax mRNA levels in hippocampus of HAL-treated animals. OLA reversed the inhibitory effect of MK-801 on casp3 expression in the VEH-treated animals. Neither MK-801 nor antipsychotics induced changes in the gene expression of anti-apoptotic marker Bcl-2 in mHippoE-2 cells as well as hippocampus of rats. Conclusions. The results of the present study demonstrate that antipsychotics, HAL and OLA, may affect mRNA levels of pro-apoptotic markers in hippocampal cells in vitro, but not in vivo. The obtained data do not clearly support the assumed potentiating role of MK-801 in inducing apoptosis in specific brain areas and a possible protective role of antipsychotics against induction of apoptosis. The obtained data may contribute to a deeper insight into the neurodevelopmental changes connected with schizophrenia.
Collapse
Affiliation(s)
- Jana Osacka
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander Kiss
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Tillinger
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, Gómez M, Mas S, Gassó P, Parellada E. Systematic Review of the Therapeutic Role of Apoptotic Inhibitors in Neurodegeneration and Their Potential Use in Schizophrenia. Antioxidants (Basel) 2022; 11:2275. [PMID: 36421461 PMCID: PMC9686909 DOI: 10.3390/antiox11112275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/15/2023] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder affecting cognition, emotion and reality perception. The most widely accepted neurochemical-hypothesis is the imbalance of neurotransmitter-systems. Depleted GABAergic-inhibitory function might produce a regionally-located dopaminergic and glutamatergic-storm in the brain. The dopaminergic-release may underlie the positive psychotic-symptoms while the glutamatergic-release could prompt the primary negative symptoms/cognitive deficits. This may occur due to excessive synaptic-pruning during the neurodevelopmental stages of adolescence/early adulthood. Thus, although SZ is not a neurodegenerative disease, it has been suggested that exaggerated dendritic-apoptosis could explain the limited neuroprogression around its onset. This apoptotic nature of SZ highlights the potential therapeutic action of anti-apoptotic drugs, especially at prodromal stages. If dysregulation of apoptotic mechanisms underlies the molecular basis of SZ, then anti-apoptotic molecules could be a prodromal therapeutic option to halt or prevent SZ. In fact, risk alleles related in apoptotic genes have been recently associated to SZ and shared molecular apoptotic changes are common in the main neurodegenerative disorders and SZ. PRISMA-guidelines were considered. Anti-apoptotic drugs are commonly applied in classic neurodegenerative disorders with promising results. Despite both the apoptotic-hallmarks of SZ and the widespread use of anti-apoptotic targets in neurodegeneration, there is a strikingly scarce number of studies investigating anti-apoptotic approaches in SZ. We analyzed the anti-apoptotic approaches conducted in neurodegeneration and the potential applications of such anti-apoptotic therapies as a promising novel therapeutic strategy, especially during early stages.
Collapse
Affiliation(s)
- Constanza Morén
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- U722 Group, Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Nina Treder
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Natàlia Rodríguez
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
| | - Néstor Arbelo
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Santiago Madero
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Gómez
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Psychiatry, Servizo Galego de Saúde (SERGAS), 36001 Pontevedra, Spain
| | - Sergi Mas
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Patricia Gassó
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU), Institute of Neuroscience, Psychiatry and Psychology Service, Hospital Clínic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
- Clinical and Experimental Neuroscience Area, The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Department of Basic Clinical Practice, Pharmacology Unit, University of Barcelona, 08036 Barcelona, Spain
- G04 Group, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
11
|
Zamani E, Ahmadi Shad A, Fatemi H, Mahboubi S, Motavallian A, Evazalipour M. Assessment of Protective Effects of Carvacrol on Haloperidol-Induced Oxidative Stress and Genotoxicity in Human Peripheral Blood Lymphocytes. J Toxicol 2022; 2022:9565881. [PMID: 36329925 PMCID: PMC9626238 DOI: 10.1155/2022/9565881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 08/24/2023] Open
Abstract
Haloperidol is a first-generation antipsychotic drug that has several indications in a wide range of mental conditions. The extensive prescription of haloperidol is correlated with some less-known adverse effects such as genotoxicity. Carvacrol is a monoterpenoid mainly found in oregano and thyme. It has the potential to scavenge free radicals in addition to increasing antioxidant defense enzyme activities and glutathione levels. In this study, we attempted to explore the possible potential of haloperidol in inducing genotoxicity in human peripheral lymphocytes as well as the protective role of carvacrol against this effect. The lymphocytes were divided into separate groups as follows: control group (cosolvent and NS); carvacrol group (5 μM); haloperidol group (25, 50, and 100 ng/ml); haloperidol (25, 50, and 100 ng/ml) + carvacrol (5 μM); positive control (0.8 μg/ml Cisplatin). After 24 hours of treatment, we conducted a cytokinesis-Block micronucleus test and an alkaline comet assay in order to determine genetic damage. Additionally, we measured glutathione and MDA levels as the biomarkers associated with oxidative stress. Significant increases in the levels of genotoxicity biomarkers (micronucleus frequency, DNA percentage in tail and tail moment) were observed in haloperidol-treated cells. The result of our oxidative stress tests also demonstrated that haloperidol had the potential to induce oxidative stress via reducing the levels of glutathione and increasing lipid peroxidation. Treatment with carvacrol significantly decreased the genotoxic events. It can be presumed that the induction of oxidative stress by haloperidol is the critical event associated with haloperidol-mediated genotoxicity. Therefore, using carvacrol as a natural antioxidant protected human lymphocytes against haloperidol genetic damage.
Collapse
Affiliation(s)
- Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Ahmadi Shad
- Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Hediye Fatemi
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Saba Mahboubi
- Student Research Committee, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Azadeh Motavallian
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
12
|
Osacka J, Kiss A, Bacova Z, Tillinger A. Effect of Haloperidol and Olanzapine on Hippocampal Cells’ Proliferation in Animal Model of Schizophrenia. Int J Mol Sci 2022; 23:ijms23147711. [PMID: 35887056 PMCID: PMC9323809 DOI: 10.3390/ijms23147711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
Aberrant neurogenesis in the subventricular zone (SVZ) and hippocampus (HIP) contributes to schizophrenia pathogenesis. Haloperidol (HAL) and olanzapine (OLA), commonly prescribed antipsychotics for schizophrenia treatment, affect neurogenesis too. The effect of HAL and OLA on an mHippoE-2 cell line was studied in vitro where we measured the cell number and projection length. In vivo, we studied the gene expression of DCX, Sox2, BDNF, and NeuN in the SVZ and HIP in an MK-801-induced animal schizophrenia model. Cells were incubated with HAL, OLA, and MK-801 for 24, 48, and 72 h. Animals were injected for 6 days with saline or MK801 (0.5 mg/kg), and from the 7th day with either vehicle HAL (1 mg/kg) or OLA (2 mg/kg), for the next 7 days. In vitro, HAL and OLA dose/time-dependently suppressed cells’ proliferation and shortened their projection length. HAL/OLA co-treatment with MK-801 for 24 h reversed HAL’s/OLA’s inhibitory effect. In vivo, HAL and OLA suppressed DCX and NeuN genes’ expression in the HIP and SVZ. MK-801 decreased DCX and NeuN genes’ expression in the HIP and OLA prevented this effect. The data suggest that subchronic HAL/OLA treatment can inhibit DCX and NeuN expression. In an MK-801 schizophrenia model, OLA reversed the MK-801 inhibitory effect on DCX and NeuN and HAL reversed the effect on DCX expression; however, only in the HIP.
Collapse
|
13
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
14
|
Katz IR, Szymanski BR, Marder SR, Shotwell A, Hein TC, McCarthy JF, Bowersox NW. Comparative risks of all-cause mortality for Veterans with schizophrenia with ongoing receipt of clozapine and other antipsychotic medications. Psychiatry Res 2022; 313:114590. [PMID: 35567853 DOI: 10.1016/j.psychres.2022.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/15/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022]
Abstract
To guide care for patients with schizophrenia, the Veterans Health Administration (VHA) evaluated the associations between current or recent use of clozapine and all-cause mortality and explored associations for other antipsychotic medications. Using a case-control design, patients with schizophrenia who died in fiscal years 2014-2018 were matched on age, sex, race, and VHA facility to up to 10 controls who were alive on the case's date of death (index date). Medication coverage during the 91 days before the index date was classified as none, partial (1-44 days), and consistent (45-91 days). Medication coverage patterns during the index period were compared to coverage patterns during the period of 92-182 days prior to index date with each medication coverage classified as no change, no coverage, increased, or decreased. Conditional logistic regression analyses controlling for patient characteristics identified no associations of consistent or increasing clozapine coverage with mortality; partial and decreasing coverage were associated with greater mortality and these effects did not differ from those of other the medications considered. Exploratory analyses considering non-clozapine antipsychotic agents suggest that consistent coverage by olanzapine may be associated with increased mortality, that mortality associated with olanzapine may be greater than aripiprazole, and that this effect can be attributed primarily to patients with diabetes. Further study of this topic is needed.
Collapse
Affiliation(s)
- Ira R Katz
- Department of Veterans Affairs, VA Office of Mental Health and Suicide Prevention, Washington, DC, USA
| | - Benjamin R Szymanski
- Serious Mental Illness Treatment Resource and Evaluation Center, Office of Mental Health and Suicide Prevention, North Campus Research Complex, 2800 Plymouth Rd, Building 16, Room 016-233W, Ann Arbor, MI 48109, USA
| | - Stephen R Marder
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA; Veterans Affairs Desert Pacific Mental Illness Research, Education, and Clinical Center, Los Angeles, USA
| | - Abigail Shotwell
- Serious Mental Illness Treatment Resource and Evaluation Center, Office of Mental Health and Suicide Prevention, North Campus Research Complex, 2800 Plymouth Rd, Building 16, Room 016-233W, Ann Arbor, MI 48109, USA
| | - Tyler C Hein
- Serious Mental Illness Treatment Resource and Evaluation Center, Office of Mental Health and Suicide Prevention, North Campus Research Complex, 2800 Plymouth Rd, Building 16, Room 016-233W, Ann Arbor, MI 48109, USA; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - John F McCarthy
- Serious Mental Illness Treatment Resource and Evaluation Center, Office of Mental Health and Suicide Prevention, North Campus Research Complex, 2800 Plymouth Rd, Building 16, Room 016-233W, Ann Arbor, MI 48109, USA; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicholas W Bowersox
- Serious Mental Illness Treatment Resource and Evaluation Center, Office of Mental Health and Suicide Prevention, North Campus Research Complex, 2800 Plymouth Rd, Building 16, Room 016-233W, Ann Arbor, MI 48109, USA; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Osacka J, Kiss A, Pirnik Z. Possible involvement of apoptosis in the antipsychotics side effects: A minireview. Clin Exp Pharmacol Physiol 2022; 49:836-847. [PMID: 35575958 DOI: 10.1111/1440-1681.13671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/04/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Antipsychotics are used in the treatment of schizophrenia and other psychiatric disorders. Generally they are divided into typical and atypical ones, according to the fact that atypical antipychotics induce less side effects and are more effective in terms of social and cognitive improvements. Their pharmacological effects are mediated via broad range of receptors that consequently influence different cellular signaling pathways. Antipsychotics produce udesirable side effects that range from relatively minor to life-threatening ones. In vitro and in vivo studies have pointed to neurotoxic effect exerted by some antipsychotics and have shown that apoptosis might play role in some side effects induced by antipsyschotics, including tardive dyskinesia, weight gain, agranulocytosis, osteoporosis, myocarditis, etc. Although cumulative data have suggested safety of atypical antipsychotics use during pregnancy some of them have been shown to induce apoptotic neurodegenerative and structural changes in fetal brains with long-lasting impact on cognitive impairment of offsprings. Typical antipsychotics seem to be more cytotoxic than atypical ones. Recently, epidemiological studies have shown lower incidence of cancer in schizophrenic patients what suggest ability of antipsychotics to suppress risk of cancer development. Some antipsychotics have been reported to inhibit cancer cell proliferation and induce their apoptosis. Thus, antipsychotics apoptotic effect may be used as a tool in the treatmnet of some types of cancer, especially in combinatorial therapies. In this minireview, we focused on pro- and anti-apototic or "Dr. Jekyll and Mr. Hyde" effects of antipsychotics, which can be involved in their side effects, as well as their promising therapeutical indications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jana Osacka
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Dubravska cesta 9, Bratislava, Slovakia
| | - Alexander Kiss
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Dubravska cesta 9, Bratislava, Slovakia
| | - Zdenko Pirnik
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Experimental Endocrinology, Dubravska cesta 9, Bratislava, Slovakia.,Institute of Physiology, Faculty of Medicine Comenius University in Bratislava, Sasinkova 2, Bratislava, Slovakia.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam., 2Prague, Czech Republic
| |
Collapse
|
16
|
Polho GB, Cardillo GM, Kerr DS, Chile T, Gattaz WF, Forlenza OV, Brentani HP, De-Paula VJ. Antipsychotics preserve telomere length in peripheral blood mononuclear cells after acute oxidative stress injury. Neural Regen Res 2022; 17:1156-1160. [PMID: 34558545 PMCID: PMC8552857 DOI: 10.4103/1673-5374.324852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 05/12/2021] [Indexed: 11/04/2022] Open
Abstract
Antipsychotics may prolong or retain telomere length, affect mitochondrial function, and then affect the metabolism of nerve cells. To validate the hypothesis that antipsychotics can prolong telomere length after oxidative stress injury, leukocytes from healthy volunteers were extracted using Ficoll-Histopaque density gradient. The mononuclear cells layer was resuspended in cell culture medium. Oxidative stress was induced with hydrogen peroxide in cultured leukocytes. Four days later, leukocytes were treated with aripiprazole, haloperidol or clozapine for 7 days. Real-time PCR revealed that treatments with aripiprazole and haloperidol increased the telomere length by 23% and 20% in peripheral blood mononuclear cells after acute oxidative stress injury. These results suggest that haloperidol and aripiprazole can reduce the damage to telomeres induced by oxidative stress. The experiment procedure was approved by the Ethics Committee of Faculty of Medicine of the University of São Paulo (FMUSP/CAAE approval No. 52622616.8.0000.0065).
Collapse
Affiliation(s)
- Gabriel B. Polho
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Giancarlo M. Cardillo
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Daniel S. Kerr
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Thais Chile
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Wagner F. Gattaz
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Orestes V. Forlenza
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Helena P. Brentani
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Vanessa J. De-Paula
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| |
Collapse
|
17
|
Parellada E, Gassó P. Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Transl Psychiatry 2021; 11:271. [PMID: 33958577 PMCID: PMC8102516 DOI: 10.1038/s41398-021-01385-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Schizophrenia disorder remains an unsolved puzzle. However, the integration of recent findings from genetics, molecular biology, neuroimaging, animal models and translational clinical research offers evidence that the synaptic overpruning hypothesis of schizophrenia needs to be reassessed. During a critical period of neurodevelopment and owing to an imbalance of excitatory glutamatergic pyramidal neurons and inhibitory GABAergic interneurons, a regionally-located glutamate storm might occur, triggering excessive dendritic pruning with the activation of local dendritic apoptosis machinery. The apoptotic loss of dendritic spines would be aggravated by microglia activation through a recently described signaling system from complement abnormalities and proteins of the MHC, thus implicating the immune system in schizophrenia. Overpruning of dendritic spines coupled with aberrant synaptic plasticity, an essential function for learning and memory, would lead to brain misconnections and synaptic inefficiency underlying the primary negative symptoms and cognitive deficits of schizophrenia. This driving hypothesis has relevant therapeutic implications, including the importance of pharmacological interventions during the prodromal phase or the transition to psychosis, targeting apoptosis, microglia cells or the glutamate storm. Future research on apoptosis and brain integrity should combine brain imaging, CSF biomarkers, animal models and cell biology.
Collapse
Affiliation(s)
- Eduard Parellada
- Barcelona Clínic Schizophrenia Unit (BCSU). Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Catalonia, Spain.
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Patricia Gassó
- Barcelona Clínic Schizophrenia Unit (BCSU). Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Catalonia, Spain
- Department of Basic Clinical Practice, Unit of Pharmacology, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Abstract
Through this brief report, we described our clinical considerations about the treatment of motor fluctuations and psychiatric comorbidities in Huntington's disease, for example, aggressiveness and obsessive-compulsive disorders. Indeed, as classical treatment, for example, olanzapine and risperidone, were inefficient to improve motor disorders in our patient, we postulated that motor fluctuations could be influenced by the pharmacokinetic profile of oral risperidone. So, in line with recent practice in schizophrenia, we proposed empirically paliperidone 1-month long-acting injections hypothesized to improve motor fluctuations, treatment so far reserved to Huntington's disease patients who are noncompliant to oral risperidone. Improvement was soon observed concerning motor fluctuations, but also aggressiveness, supporting our initial hypothesis.
Collapse
|
19
|
Wong MMC, Chung AKK, Yeung TMH, Wong DTW, Lee CK, Lai E, Chan GFY, Mak GKL, Wong JOY, Ng RMK, Mak KY. Guidance on the clinical understanding and use of long-acting injectable antipsychotics in Schizophrenia: Hong Kong Consensus Statements. CNS Neurosci Ther 2021; 27 Suppl 1:5-11. [PMID: 33555614 PMCID: PMC7869935 DOI: 10.1111/cns.13374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIMS There is increasing evidence showing the importance of long-acting injectable antipsychotics in the management of schizophrenia, especially in terms of improving patient medication compliance. A panel of experienced clinicians in Hong Kong mapped out a set of consensus statements with an aim to facilitate the understanding and use of long-acting injectable antipsychotics among local physicians. METHODS Eight discussion areas regarding long-acting injectable antipsychotics were selected by the chairman of the consensus group. A series of meetings were held for the panelists to discuss the published literature and their clinical experience, followed by the drafting of consensus statements. At the final meeting, each consensus statement was voted on anonymously by all members based on its practicability of recommendation in Hong Kong. RESULTS A total of 12 consensus statements on the rational use of long-acting injectable antipsychotics were established and accepted by the consensus group. CONCLUSION The consensus statements aim to provide practical guidance for Hong Kong physicians on the use of long-acting injectable antipsychotics in schizophrenia patients. These statements may also serve as a reference for doctors in other parts of the Asia-Pacific region.
Collapse
Affiliation(s)
| | | | | | | | - Che Kin Lee
- Department of PsychiatryKowloon HospitalKowloonHong Kong
| | - Eric Lai
- Department of Child and Adolescent PsychiatryCastle Peak HospitalTuen MunNew TerritoriesHong Kong
| | | | | | | | | | - Ki Yan Mak
- Private PracticeHong Kong CityHong Kong
- The Mental Health Association of Hong KongPrivate PracticeHong Kong
| |
Collapse
|
20
|
Wysokiński A, Kozłowska E, Szczepocka E, Łucka A, Agier J, Brzezińska-Błaszczyk E, Sobierajska K. Expression of Dopamine D 1-4 and Serotonin 5-HT 1A-3A Receptors in Blood Mononuclear Cells in Schizophrenia. Front Psychiatry 2021; 12:645081. [PMID: 33776821 PMCID: PMC7988204 DOI: 10.3389/fpsyt.2021.645081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 11/14/2022] Open
Abstract
Introduction: The aim of this study was to determine the mRNA expression profile of dopamine D1, D2, D3, D4 and serotonin 5-HT1A, 5-HT2A, and 5-HT3A receptors in peripheral blood mononuclear cells (PBMCs) in schizophrenia and the in vitro effect of antipsychotics on the expression of these receptors in PBMCs of healthy subjects. Materials and Methods: Twenty-seven patients with schizophrenia and 29 healthy controls were recruited for the study. All study subjects underwent thorough clinical assessment, including anthropometric and body composition measurements. The expression of mRNA for dopamine D1-4 and serotonin 5-HT1A-3A receptors was measured using quantitative RT-PCR in peripheral blood mononuclear cells. In vitro mRNA and protein expression of these receptors was measured using quantitative RT-PCR and Western Blotting in PBMCs cultured with quetiapine, haloperidol, aripiprazole, risperidone, olanzapine or clozapine at IC50, half of IC50, and one-quarter of IC50 concentrations. Results: The key finding was that the schizophrenia group demonstrated significantly higher mRNA expression of D1, D2 and D4 receptors (p < 0.001), and significantly lower mRNA expression of 5-HT3A receptors (p < 0.01). After adjusting for smoking, the mRNA expression of D1 lost its significance, while that of D3, 5-HT1A, 5-HT2A became significant (all three were lower in the schizophrenia group). These receptors also demonstrated different ratios of mRNA expression in the schizophrenia group. The in vitro experiments showed that high concentrations of antipsychotics influenced the mRNA and protein expression of all studied receptors. Conclusion: Schizophrenia patients display a distinctive pattern of dopamine and serotonin receptor mRNA expression in blood mononuclear cells. This expression is little affected by antipsychotic treatment and it may therefore serve as a useful diagnostic biomarker for schizophrenia.
Collapse
Affiliation(s)
- Adam Wysokiński
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Ewa Szczepocka
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Anna Łucka
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
21
|
Caruso G, Grasso M, Fidilio A, Tascedda F, Drago F, Caraci F. Antioxidant Properties of Second-Generation Antipsychotics: Focus on Microglia. Pharmaceuticals (Basel) 2020; 13:ph13120457. [PMID: 33322693 PMCID: PMC7764768 DOI: 10.3390/ph13120457] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest a primary role of oxidative stress in an early phase of the pathogenesis of schizophrenia and a strong neurobiological link has been found between dopaminergic system dysfunction, microglia overactivation, and oxidative stress. Different risk factors for schizophrenia increase oxidative stress phenomena raising the risk of developing psychosis. Oxidative stress induced by first-generation antipsychotics such as haloperidol significantly contributes to the development of extrapyramidal side effects. Haloperidol also exerts neurotoxic effects by decreasing antioxidant enzyme levels then worsening pro-oxidant events. Opposite to haloperidol, second-generation antipsychotics (or atypical antipsychotics) such as risperidone, clozapine, and olanzapine exert a strong antioxidant activity in experimental models of schizophrenia by rescuing the antioxidant system, with an increase in superoxide dismutase and glutathione (GSH) serum levels. Second-generation antipsychotics also improve the antioxidant status and reduce lipid peroxidation in schizophrenic patients. Interestingly, second-generation antipsychotics, such as risperidone, paliperidone, and in particular clozapine, reduce oxidative stress induced by microglia overactivation, decreasing the production of microglia-derived free radicals, finally protecting neurons against microglia-induced oxidative stress. Further, long-term clinical studies are needed to better understand the link between oxidative stress and the clinical response to antipsychotic drugs and the therapeutic potential of antioxidants to increase the response to antipsychotics.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Correspondence: or
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Annamaria Fidilio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.); (F.D.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.); (F.D.)
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (F.C.)
- Department of Laboratories, Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
22
|
Rodrigues-Amorim D, Rivera-Baltanás T, Del Carmen Vallejo-Curto M, Rodriguez-Jamardo C, de Las Heras E, Barreiro-Villar C, Blanco-Formoso M, Fernández-Palleiro P, Álvarez-Ariza M, López M, García-Caballero A, Olivares JM, Spuch C. Plasma β-III tubulin, neurofilament light chain and glial fibrillary acidic protein are associated with neurodegeneration and progression in schizophrenia. Sci Rep 2020; 10:14271. [PMID: 32868793 PMCID: PMC7459108 DOI: 10.1038/s41598-020-71060-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/10/2020] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a progressive disorder characterized by multiple psychotic relapses. After every relapse, patients may not fully recover, and this may lead to a progressive loss of functionality. Pharmacological treatment represents a key factor to minimize the biological, psychological and psychosocial impact of the disorder. The number of relapses and the duration of psychotic episodes induce a potential neuronal damage and subsequently, neurodegenerative processes. Thus, a comparative study was performed, including forty healthy controls and forty-two SZ patients divided into first-episode psychosis (FEP) and chronic SZ (CSZ) subgroups, where the CSZ sub group was subdivided by antipsychotic treatment. In order to measure the potential neuronal damage, plasma levels of β-III tubulin, neurofilament light chain (Nf-L), and glial fibrillary acidic protein (GFAP) were performed. The results revealed that the levels of these proteins were increased in the SZ group compared to the control group (P < 0.05). Moreover, multiple comparison analysis showed highly significant levels of β-III tubulin (P = 0.0002), Nf-L (P = 0.0403) and GFAP (P < 0.015) in the subgroup of CSZ clozapine-treated. In conclusion, β-III tubulin, Nf-L and GFAP proteins may be potential biomarkers of neurodegeneration and progression in SZ.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - María Del Carmen Vallejo-Curto
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Cynthia Rodriguez-Jamardo
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Elena de Las Heras
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Carolina Barreiro-Villar
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - María Blanco-Formoso
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - María Álvarez-Ariza
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | - Marta López
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain
| | | | - José Manuel Olivares
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain.
- Hospital Álvaro Cunqueiro, Bloque Técnico, Galicia Sur Health Research Institute - IISGS, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain.
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, University of Vigo, CIBERSAM, Vigo, Spain.
- Hospital Álvaro Cunqueiro, Bloque Técnico, Galicia Sur Health Research Institute - IISGS, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212, Vigo, Spain.
| |
Collapse
|
23
|
Wesołowska A, Jastrzębska-Więsek M, Cios A, Partyka A. The preclinical discovery and development of paliperidone for the treatment of schizophrenia. Expert Opin Drug Discov 2019; 15:279-292. [DOI: 10.1080/17460441.2020.1682994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anna Wesołowska
- Jagiellonian University Medical College, Department of Clinical Pharmacy, Kraków, Poland
| | | | - Agnieszka Cios
- Jagiellonian University Medical College, Department of Clinical Pharmacy, Kraków, Poland
| | - Anna Partyka
- Jagiellonian University Medical College, Department of Clinical Pharmacy, Kraków, Poland
| |
Collapse
|
24
|
Schizophrenia and Parkinson’s disease: Selected therapeutic advances beyond the dopaminergic etiologies. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2013.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Nasrallah HA. Triple advantages of injectable long acting second generation antipsychotics: Relapse prevention, neuroprotection, and lower mortality. Schizophr Res 2018; 197:69-70. [PMID: 29506767 DOI: 10.1016/j.schres.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Henry A Nasrallah
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
26
|
Elmorsy E, Al-Ghafari A, Aggour AM, Khan R, Amer S. The role of oxidative stress in antipsychotics induced ovarian toxicity. Toxicol In Vitro 2017; 44:190-195. [DOI: 10.1016/j.tiv.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/04/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023]
|
27
|
Quintero J, Oyagüez I, González B, Cuervo-Arango I, García I, Casado MA. Cost-Minimisation Analysis of Paliperidone Palmitate Long-Acting Treatment versus Risperidone Long-Acting Treatment for Schizophrenia in Spain. Clin Drug Investig 2016; 36:479-90. [PMID: 27000061 DOI: 10.1007/s40261-016-0393-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Long-acting formulations for paliperidone (PPLAT) and risperidone (RLAT) are effective second-generation antipsychotics. This study aimed to compare treatment costs between PPLAT and RLAT in schizophrenia patients. METHODS A cost-minimization analysis was performed from the perspective of the Spanish National Healthcare System (NHS), in line with the approach accepted by the Scottish Medicine Consortium evaluation. Only direct health costs (€, 2015) were included, i.e. medication (including oral antipsychotic drug supplementation), hospitalization and cost of administration in the community. Two time horizons were used: 1 year (to compare initiation treatment) and 2 years (to compare maintenance treatment). Base-case considered the following assumptions: setting for treatment initiation (50 % hospital and 50 % community); 50 % of patients initiating from a long-acting treatment and 50 % from an oral antipsychotic; no reduction in the length of stay. One-way sensitivity analyses (SA) were performed. RESULTS The estimated costs/patient were €7698 (PPLAT) and €8168 (RLAT) for the first year, and €4314 (PPLAT) and €5003 (RLAT) for the second year. Cost savings related to PPLAT therapy were €470 and €689 for first and second year, respectively. SA results confirmed the robustness of the model results, even in the most conservative scenarios: (1) if 100 % of patients initiate treatment in hospital, the savings could be €454 per patient; (2) if 100 % of patients initiate treatment from an oral antipsychotic, the savings could be €277 per patient/year; and (3) if PPLAT could not reduce the length of stay by approximately one-third, as some studies indicate, the savings could be €470 per patient/year. CONCLUSIONS The use of PPLAT instead of RLAT could be a cost-saving strategy for the Spanish NHS.
Collapse
Affiliation(s)
| | - Itziar Oyagüez
- Pharmacoeconomics & Outcomes Research Iberia, Pº Joaquín Rodrigo 4I, Pozuelo de Alarcón, 28224, Madrid, Spain.
| | | | | | | | - Miguel Angel Casado
- Pharmacoeconomics & Outcomes Research Iberia, Pº Joaquín Rodrigo 4I, Pozuelo de Alarcón, 28224, Madrid, Spain
| |
Collapse
|
28
|
Risk of Mortality Among Patients Treated With Antipsychotic Medications: A Nationwide Population-Based Study in Taiwan. J Clin Psychopharmacol 2016; 36:9-17. [PMID: 26658260 DOI: 10.1097/jcp.0000000000000451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this nationwide population-based study, we examined whether haloperidol exposure is associated with a higher risk of mortality than are other antipsychotic medications. Patients who newly received monotherapy with chlorpromazine (n = 2133), haloperidol (n = 4454), quetiapine (n = 1513), and risperidone (n = 1046) between January 1, 2001, and December 31, 2011, were selected from a random sample of the 1 million enrollees of the Taiwan National Health Insurance Research Database. The association between antipsychotic prescription and mortality was estimated through Cox proportional hazard regression. To examine the mortality rates of antipsychotics at different exposure durations, we compared the differences among short-term (≤30 days), midterm (31-90 days), and long-term (>90 days) antipsychotic use. The mortality rates during the follow-up among the chlorpromazine, haloperidol, quetiapine, and risperidone groups were 17.4%, 45.5%, 26.8%, and 25.9%, respectively. The mortality risk among patients receiving haloperidol was the highest within 30 days of the prescription, after which the risk reduced rapidly. Compared with the patients receiving chlorpromazine, the mortality risk was higher in short-term (adjusted hazard ratio, 2.11; 95% confidence interval, 1.87-2.39) and midterm haloperidol users (1.86; 1.54-2.25) than in long-term users (0.99; 0.61-1.61). In conclusion, haloperidol use is associated with higher mortality risk than other antipsychotic medications. The mortality risk varies according to the duration of drug exposure. Underlying characteristics and medical conditions may influence the estimation of the mortality risk. Clinicians should pay attention to the mortality risk when prescribing antipsychotic medications, particularly for the elderly and critically ill patients.
Collapse
|
29
|
Haloperidol and loss of gray matter in schizophrenia: Reconciling meta-analytical results with molecular pharmacology. Psychiatry Res 2016; 235:209-10. [PMID: 26724909 DOI: 10.1016/j.psychres.2015.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/09/2015] [Indexed: 11/20/2022]
|
30
|
Azorin JM, Simon N, Adida M, Belzeaux R. Pharmacological treatment of schizophrenia with comorbid substance use disorder. Expert Opin Pharmacother 2015; 17:231-53. [DOI: 10.1517/14656566.2016.1114101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Moritz S, Thoering T, Kühn S, Willenborg B, Westermann S, Nagel M. Metacognition-augmented cognitive remediation training reduces jumping to conclusions and overconfidence but not neurocognitive deficits in psychosis. Front Psychol 2015; 6:1048. [PMID: 26283990 PMCID: PMC4522518 DOI: 10.3389/fpsyg.2015.01048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/09/2015] [Indexed: 01/06/2023] Open
Abstract
The majority of patients with schizophrenia display neurocognitive deficits (e.g., memory impairment) as well as inflated cognitive biases (e.g., jumping to conclusions). Both cognitive domains are implicated in the pathogenesis of the disorder and are known to compromise functional outcome. At present, there is a dearth of effective treatment options. A total of 90 patients with schizophrenia were recruited online (a diagnosis of schizophrenia had been confirmed in a large subgroup during a previous hospital admission). Subsequent to a baseline assessment encompassing psychopathology, self-reported cognition as well as objective memory and reasoning tests, patients were randomized to one of three conditions: standard cognitive remediation (mybraintraining), metacognition-augmented cognition remediation (CR) condition (variant of mybraintraining which encouraged patients to reduce speed of decision-making and attenuate response confidence when participants made high-confidence judgements and hasty incorrect decisions) and a waitlist control group. Patients were retested after 6 weeks and again 3 months after the second assessment. Groups did not differ on psychopathology and neurocognitive parameters at any timepoint. However, at follow-up the metacognitive-augmented CR group displayed a significant reduction on jumping to conclusions and overconfidence. Treatment adherence correlated with a reduction of depression; gains in the training exercises from the standard mybraintraining condition were correlated with improved objective memory performance. The study suggests that metacognition-augmented CR may ameliorate cognitive biases but not neurocognition. The study ties in well with prior research showing that neurocognitive dysfunctions are rather resistant to change; the failure to detect significant improvement of CR or metacognition-augmented CR on psychopathology and neurocognition over time may partly be attributed to a number of methodological limitations of our study (low psychopathology and chronicity of participants, low “dosage,” narrow range of tests, self-report psychopathology scales).
Collapse
Affiliation(s)
- Steffen Moritz
- Clinical Neuropsychology, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Teresa Thoering
- Clinical Neuropsychology, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Simone Kühn
- Clinical Neuropsychology, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Center for Lifespan Psychology, Max Planck Institute for Human Development Berlin, Germany
| | - Bastian Willenborg
- Clinical Neuropsychology, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Psychiatry and Psychotherapy, University of Lübeck Lübeck, Germany
| | - Stefan Westermann
- Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Bern Bern, Switzerland
| | - Matthias Nagel
- Department of Psychiatry and Psychotherapy, University of Lübeck Lübeck, Germany ; Asklepios Medical Center Hamburg-North-Wandsbek, Department of Psychiatry and Psychotherapy Hamburg, Germany
| |
Collapse
|
32
|
Batalla A, Bargalló N, Gassó P, Molina O, Pareto D, Mas S, Roca JM, Bernardo M, Lafuente A, Parellada E. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls. Transl Psychiatry 2015; 5:e626. [PMID: 26305477 PMCID: PMC4564572 DOI: 10.1038/tp.2015.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/03/2015] [Accepted: 07/11/2015] [Indexed: 01/22/2023] Open
Abstract
Cultured fibroblasts from first-episode schizophrenia patients (FES) have shown increased susceptibility to apoptosis, which may be related to glutamate dysfunction and progressive neuroanatomical changes. Here we determine whether apoptotic markers obtained from cultured fibroblasts in FES and controls correlate with changes in brain glutamate and N-acetylaspartate (NAA) and regional brain volumes. Eleven antipsychotic-naive FES and seven age- and gender-matched controls underwent 3-Tesla magnetic resonance imaging scanning. Glutamate plus glutamine (Glx) and NAA levels were measured in the anterior cingulate (AC) and the left thalamus (LT). Hallmarks of apoptotic susceptibility (caspase-3-baseline activity, phosphatidylserine externalization and chromatin condensation) were measured in fibroblast cultures obtained from skin biopsies after inducing apoptosis with staurosporine (STS) at doses of 0.25 and 0.5 μM. Apoptotic biomarkers were correlated to brain metabolites and regional brain volume. FES and controls showed a negative correlation in the AC between Glx levels and percentages of cells with condensed chromatin (CC) after both apoptosis inductions (STS 0.5 μM: r = -0.90; P = 0.001; STS 0.25 μM: r = -0.73; P = 0.003), and between NAA and cells with CC (STS 0.5 μM induction r = -0.76; P = 0.002; STS 0.25 μM r = -0.62; P = 0.01). In addition, we found a negative correlation between percentages of cells with CC and regional brain volume in the right supratemporal cortex and post-central region (STS 0.25 and 0.5 μM; P < 0.05 family-wise error corrected (FWEc)). We reveal for the first time that peripheral markers of apoptotic susceptibility may correlate with brain metabolites, Glx and NAA, and regional brain volume in FES and controls, which is consistent with the neuroprogressive theories around the onset of the schizophrenia illness.
Collapse
Affiliation(s)
- A Batalla
- Department of Psychiatry and Psychology, Clinical Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain,Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain,Radboud University Medical Centre, Department of Psychiatry, Nijmegen, The Netherlands,Radboud University, Nijmegen Institute for Scientist-Practitioners in Addiction, Nijmegen, The Netherlands,Radboud University Medical Center, Department of Psychiatry, Reinier Postlaan 10, route 966, Nijmegen 6500 HB, The Netherlands.
| | - N Bargalló
- Medical Image Core facility Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centre de diagnòstic per la Imatge Clínic, Hospital Clinic of Barcelona, Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - P Gassó
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - O Molina
- Department of Psychiatry, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - D Pareto
- Magnetic Resonance Unit, Vall Hebron University Hospital IDI, Barcelona, Spain
| | - S Mas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain,Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - J M Roca
- Department of Psychiatry and Psychology, Clinical Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - M Bernardo
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain,Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Barcelona, Spain
| | - A Lafuente
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain,Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain
| | - E Parellada
- Department of Psychiatry and Psychology, Clinical Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain,Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, Barcelona, Spain,Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Barcelona, Spain,Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Zhu D, Zhang J, Wu J, Li G, Yao W, Hao J, Sun J. Paliperidone Protects SH-SY5Y Cells Against MK-801-Induced Neuronal Damage Through Inhibition of Ca(2+) Influx and Regulation of SIRT1/miR-134 Signal Pathway. Mol Neurobiol 2015; 53:2498-509. [PMID: 26055227 DOI: 10.1007/s12035-015-9217-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
Abstract
Schizophrenia is a serious psychotic disease. Recently, increasing evidences support that neurodegeneration occurs in the brain of schizophrenia patients with progressive morphological changes. Paliperidone, an atypical antipsychotic drug, could attenuate psychotic symptom and protect neurons from different stressors. However, the underlying mechanisms are largely unknown. In this study, we used SH-SY5Y cells to evaluate the neuroprotective capability of paliperidone against the neurotoxicity induced by N-methyl-D-aspartate receptor antagonist, MK-801. And, we also explored the possible molecular mechanism. Neurotoxicity of 100 μM MK-801, which reduced the cell viability, was diminished by 100 μM paliperidone using MTT and LDH assays (both p < 0.05). Analysis with Hoechst 33342/PI double staining demonstrated that exposure to MK-801 (100 μM) for 24 h led to the death of 30 % of cultured cells (p < 0.05). Moreover, the patch clamp technique was employed to detect voltage calcium channel changes; the results showed that paliperidone effectively blocked the Ca(2+) influx through inhibiting the voltage-gated calcium channels (p < 0.05). Furthermore, paliperidone significantly reversed MK-801 induced increase of SIRT1 and decrease of miR-134 expression (both p < 0.05). Finally, SIRT1 inhibitor nicotinamide blocked MK-801 injury effects and suppressed miR-134 expression. Taken together, our results demonstrated that paliperidone could protect SH-SY5Y cells against MK-801 induced neurotoxicity via inhibition of Ca(2+) influx and regulation of SIRT1/miR-134 pathway, providing a promising and potential therapeutic target for schizophrenia.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Anatomy, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Jing Zhang
- Department of Anatomy, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Jintao Wu
- Department of Anatomy, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Guibao Li
- Department of Anatomy, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Wei Yao
- Department of Physiology, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Jing Hao
- Department of Histology and Embryology, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Jinhao Sun
- Department of Anatomy, School of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province, 250012, People's Republic of China.
| |
Collapse
|
34
|
Atypical antipsychotic paliperidone prevents behavioral deficits in mice prenatally challenged with bacterial endotoxin lipopolysaccharide. Eur J Pharmacol 2015; 747:181-9. [DOI: 10.1016/j.ejphar.2014.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/25/2023]
|
35
|
Brissos S, Veguilla MR, Taylor D, Balanzá-Martinez V. The role of long-acting injectable antipsychotics in schizophrenia: a critical appraisal. Ther Adv Psychopharmacol 2014; 4:198-219. [PMID: 25360245 PMCID: PMC4212490 DOI: 10.1177/2045125314540297] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite their widespread use, long-acting injectable (LAI) antipsychotics (APs) are often regarded with some negativity because of the assumption of punishment, control and insufficient evolution towards psychosocial development of patients. However, LAI APs have proved effective in schizophrenia and other severe psychotic disorders because they assure stable blood levels, leading to a reduction of the risk of relapse. Therapeutic opportunities have also arisen after introduction of newer, second-generation LAI APs in recent years. Newer LAI APs are more readily dosed optimally, may be better tolerated and are better suited to integrated rehabilitation programmes. This review outlines the older and newer LAI APs available for the treatment of schizophrenia, with considerations of past and present pharmacological and therapeutic issues. Traditional, evidence-based approaches to systematic reviews and randomized clinical trials are of limited utility in this area so this paper's blending of experimental trials with observational research is particularly appropriate and effective.
Collapse
Affiliation(s)
- Sofia Brissos
- Psychiatrist, Lisbon's Psychiatric Hospitalar Centre, Rua Conde de Redondo, nº 8 3º dt., Lisbon, 1150, Portugal
| | - Miguel Ruiz Veguilla
- Grupo Psicosis y Neurodesarrollo, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio /CSIC/Universidad de Sevilla, Unidad de Hospitalizacion de Salud Mental, Sevilla, Spain
| | - David Taylor
- South London and Maudsley NHS Foundation Trust, Pharmacy Department, Maudsley Hospital, Denmark Hill, London, UK
| | - Vicent Balanzá-Martinez
- Catarroja Mental Health Unit, University Hospital Doctor Peset, FISABIO, Valencia; and Section of Psychiatry, University of Valencia, CIBERSAM, Valencia, Spain
| |
Collapse
|
36
|
Peng L, Zhang X, Cui X, Zhu D, Wu J, Sun D, Yue Q, Li Z, Liu H, Li G, Zhang J, Xu H, Liu F, Qin C, Li M, Sun J. Paliperidone protects SK-N-SH cells against glutamate toxicity via Akt1/GSK3β signaling pathway. Schizophr Res 2014; 157:120-7. [PMID: 24962437 DOI: 10.1016/j.schres.2014.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/21/2014] [Accepted: 05/31/2014] [Indexed: 02/04/2023]
Abstract
Schizophrenia is a heterogeneous psychotic illness and its etiology remains poorly understood. Recent studies have suggested that neurodegeneration is a component of schizophrenia pathology and some atypical antipsychotics appear to slow progressive morphological brain changes. In addition, the atypical antipsychotics were reported to have a superior therapeutic efficacy in treating schizophrenia and have a low incidence of extrapyramidal side effects (EPS) compared to typical antipsychotics. However, the mechanisms of atypical antipsychotics in treating schizophrenia and the basis for differences in their clinical effects were still totally unknown. In the present study, we investigated whether paliperidone shows protective effects on SK-N-SH cells from cell toxicity induced by exposure to glutamate. We examined the effects of the drugs on cell viability (measured by MTT metabolism assay and lactate dehydrogenase (LDH) activity assay), apoptosis rate, ROS levels and gene expression and phosphorylation of Akt1 and GSK3β. The results showed that paliperidone significantly increases the cell viability by MTT and LDH assays (p<0.05), in contrast to the typical antipsychotic (haloperidol), which had little neuroprotective activity. Moreover, paliperidone retarded the glutamate-mediated promotion of ROS and the rate of apoptosis (p<0.05). In addition, paliperidone also effectively reversed glutamate-induced decreases of gene expression and phosphorylation of Akt1 and GSK3β (both p<0.05). Our results demonstrated that paliperidone could effectively protect SK-N-SH cells from glutamate-induced damages via Akt1/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Lei Peng
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xingzhen Zhang
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xianping Cui
- Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, PR China
| | - Dexiao Zhu
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Jintao Wu
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Dong Sun
- Experimental Platform for Medical Function, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Qingwei Yue
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Zeyan Li
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Haili Liu
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Guibao Li
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Jing Zhang
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Hongyan Xu
- Experimental Platform for Medical Function, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Fuchen Liu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chengkun Qin
- Department of General Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, PR China
| | - Mingfeng Li
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jinhao Sun
- Department of Anatomy and Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
37
|
Gajski G, Gerić M, Garaj-Vrhovac V. Evaluation of the in vitro cytogenotoxicity profile of antipsychotic drug haloperidol using human peripheral blood lymphocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:316-324. [PMID: 25036041 DOI: 10.1016/j.etap.2014.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/13/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Haloperidol (HLP) is a potent antipsychotic drug that is commonly used for the treatments of schizophrenia and bipolar disorders but has a tendency to cause adverse effects. In the present study, the cyto/genotoxic potential of clinically relevant concentrations of HLP was evaluated in human peripheral blood lymphocytes (HPBLs) as sensitive biomarkers of exposure. HLP was administered as HLP hydrochloride in the final concentrations of 5, 10 and 20 ng/ml for 4 and 24 h period. Cytotoxicity was determined using differential staining of HPBLs with acridine orange and ethidium bromide while chromosomal aberrations, micronucleus and comet assays were applied to estimate the chromosomal and DNA damage after the treatment. The results of the present study indicate that HLP is capable of inducing cyto/genotoxicity in tested cells. Present study has also confirmed the need for further cytogenetic research and regular patient monitoring to minimize the risk of any possible adverse events.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia.
| |
Collapse
|
38
|
Mishra J, Kumar A. Improvement of Mitochondrial Function by Paliperidone Attenuates Quinolinic Acid-Induced Behavioural and Neurochemical Alterations in Rats: Implications in Huntington’s Disease. Neurotox Res 2014; 26:363-81. [DOI: 10.1007/s12640-014-9469-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
|
39
|
Langballe EM, Engdahl B, Nordeng H, Ballard C, Aarsland D, Selbæk G. Short- and long-term mortality risk associated with the use of antipsychotics among 26,940 dementia outpatients: a population-based study. Am J Geriatr Psychiatry 2014; 22:321-31. [PMID: 24016844 DOI: 10.1016/j.jagp.2013.06.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate short- and long-term mortality risk associated with the use of antipsychotics in dementia outpatients, assessing the risk over specific time frames and quantifying the risk by the individual antipsychotics. METHODS This population-based study used data from the Norwegian Prescription Database. The study sample included 26,940 dementia outpatients aged 65 years or older prescribed antidementia drugs and psychotropics from Norwegian pharmacies between 2004 and 2010. RESULTS Cox survival analyses, adjusted for age, gender, mean daily defined dose, and severe medical conditions, showed that antipsychotic use compared with other psychotropics involved approximately twice the mortality risk in outpatients with dementia. Furthermore, these results are consistent for all investigated time points after first dispensing the drugs (hazard ratio [HR]30 days = 2.1 [95% confidence interval {CI}: 1.6-2.9] to HR 730-2,400 days = 1.7 [95% CI: 1.6-1.9]). Haloperidol was associated with higher mortality risk (HR 30 days = 1.7 [95% CI: 1.0-3.0] to HR 730-2,400 days = 1.4 [95% CI: 1.0-1.9]) than risperidone. CONCLUSION This first study to observe antipsychotic use and mortality in dementia outpatients over more than 6 years clearly shows that antipsychotics involve increased short- and long-term mortality risk. Physicians may justly consider antipsychotics to be the best option for some dementia patients among available nonpharmacologic and pharmacologic treatments. However, although causal conclusions are precluded due to limited adjustments in the analyses, the findings support the current treatment recommendations that antipsychotics should be avoided or used with great caution.
Collapse
Affiliation(s)
| | - Bo Engdahl
- Division of Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hedvig Nordeng
- Division of Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Clive Ballard
- Wolfson Centre for Age Related Disease, King's College London, London, England
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway; Department of Neuroscience, Ward and Society, Karolinska Institutet, Stockholm, Sweden
| | - Geir Selbæk
- Centre for Old Age Psychiatric Research, Innlandet Hospital Trust, Ottestad, Norway; Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
40
|
Gassó P, Mas S, Molina O, Lafuente A, Bernardo M, Parellada E. Increased susceptibility to apoptosis in cultured fibroblasts from antipsychotic-naïve first-episode schizophrenia patients. J Psychiatr Res 2014; 48:94-101. [PMID: 24128664 DOI: 10.1016/j.jpsychires.2013.09.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/12/2013] [Accepted: 09/30/2013] [Indexed: 12/19/2022]
Abstract
Altered apoptosis has been proposed as a potential mechanism involved in the abnormal neurodevelopment and neurodegenerative processes associated with schizophrenia. The aim of this study was to investigate in primary fibroblast cultures whether antipsychotic-naïve patients with first-episode schizophrenia have greater apoptotic susceptibility than healthy controls. Cell growth, cell viability and various apoptotic hallmarks (caspase-3 activity, translocation of phosphatidylserine, chromatin condensation and gene expression of AKT1, BAX, BCL2, CASP3, GSK3B and P53) were measured in fibroblast cultures obtained from skin biopsies of patients (n = 11) and healthy controls (n = 8), both in basal conditions and after inducing apoptosis with staurosporine. Compared to controls, cultured fibroblasts from patients showed higher caspase-3 activity and lower BCL2 expression. When exposed to staurosporine, fibroblasts from patients also showed higher caspase-3 activity; a higher percentage of cells with translocated phosphatidylserine and condensed chromatin; and higher p53 expression compared to fibroblasts from controls. No differences in cell viability or cell growth were detected. These results strongly support the hypothesis that first-episode schizophrenia patients may have increased susceptibility to apoptosis, which may be involved in the onset and progression of the disease.
Collapse
Affiliation(s)
- Patricia Gassó
- Dept. Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
Effects of prenatal exposure to atypical antipsychotics on postnatal development and growth of infants: a case-controlled, prospective study. Psychopharmacology (Berl) 2013; 228:577-84. [PMID: 23559219 DOI: 10.1007/s00213-013-3060-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE This study aims to investigate the developmental effects of atypical antipsychotics on infants who were born to mothers taking an atypical antipsychotic throughout pregnancy. METHOD The developmental progress of 76 infants who experienced fetal exposure to atypical antipsychotics was compared to that of 76 matched control infants who had no fetal exposure to any antipsychotics. Planned assessment included Apgar score, body weight, height, and the cognitive, language, motor, social-emotional, and adaptive behavior composite scores of the Bayley Scales of Infant and Toddler Development, third edition (BSID-III). Student's t test and Chi-square analysis were used as appropriate. Repeated measurements were evaluated by analysis of covariance. RESULTS At 2 months of age, the mean composite scores of cognitive, motor, social-emotional, and adaptive behavior of BSID-III were significantly lower in atypical antipsychotic-exposed infants than the controls. More atypical antipsychotic-exposed infants had delayed development in cognitive, motor, social-emotional, and adaptive behavior domains as defined by the composite score of <85 in these subscales of BSID-III. At 12 months of age, there were no significant differences between the two groups in all mean composite scores of BSID-III. More atypical antipsychotic-exposed infants had low birth weight than the controls (13.2 vs. 2.6 %, P = 0.031), although there were no significant difference in mean birth weight and height between the two groups. CONCLUSION Fetal exposure to atypical antipsychotics may cause short-term delayed development in cognitive, motor, social-emotional, and adaptive behavior, but not in language, body weight, or height.
Collapse
|
42
|
Peng L, Zhu D, Feng X, Dong H, Yue Q, Zhang J, Gao Q, Hao J, Zhang X, Liu Z, Sun J. Paliperidone protects prefrontal cortical neurons from damages caused by MK-801 via Akt1/GSK3β signaling pathway. Schizophr Res 2013; 147:14-23. [PMID: 23583326 DOI: 10.1016/j.schres.2013.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/14/2013] [Accepted: 03/01/2013] [Indexed: 01/26/2023]
Abstract
Recent studies have suggested that neurodegeneration is involved in the pathogenesis of schizophrenia, and some atypical antipsychotics appear to prevent or retard progressive morphological brain changes. However, the underlying molecular mechanisms are largely unknown. Whether changes in intracellular signaling pathways are related to their neuroprotective effects remains undefined. In the present study, we used mouse embryonic prefrontal cortical neurons to examine the neuroprotection of paliperidone against the neuronal damage induced by exposure to the NMDA receptor antagonist, MK-801. Paliperidone inhibited MK-801 induced neurotoxicity both in MTT metabolism assay (p<0.01) and in lactate dehydrogenase (LDH) activity assay (p<0.01). Time course studies revealed that paliperidone effectively attenuated the elevation of intracellular free calcium concentration ([Ca(2+)]i) induced by exposure to MK-801 (p<0.01). Moreover, paliperidone could significantly retard MK-801-mediated inhibition of neurite outgrowth (p<0.01) and reverse MK-801-induced decreases of gene expression and phosphorylation of Akt1 and GSK3β (both p<0.01). Furthermore, these protective effects of paliperidone were blocked by pretreatment with a PI3K inhibitor LY294002. Taking together, our results demonstrated that paliperidone could protect prefrontal cortical neurons from MK-801-induced damages via Akt1/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Lei Peng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Dexiao Zhu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiaowen Feng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Haiman Dong
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Qingwei Yue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jing Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Qing Gao
- Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jing Hao
- Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xingzhen Zhang
- Department of Pharmacy, Shandong University School of Pharmacy, Jinan, Shandong 250012, China
| | - Zengxun Liu
- Department of Psychiatry, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jinhao Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, China.
| |
Collapse
|
43
|
Ahmed AO, Buckley PF, Hanna M. Neuroimaging schizophrenia: a picture is worth a thousand words, but is it saying anything important? Curr Psychiatry Rep 2013; 15:345. [PMID: 23397252 DOI: 10.1007/s11920-012-0345-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schizophrenia is characterized by neurostructural and neurofunctional aberrations that have now been demonstrated through neuroimaging research. The article reviews recent studies that have attempted to use neuroimaging to understand the relation between neurological abnormalities and aspects of the phenomenology of schizophrenia. Neuroimaging studies show that neurostructural and neurofunctional abnormalities are present in people with schizophrenia and their close relatives and may represent putative endophenotypes. Neuroimaging phenotypes predict the emergence of psychosis in individuals classified as high-risk. Neuroimaging studies have linked structural and functional abnormalities to symptoms; and progressive structural changes to clinical course and functional outcome. Neuroimaging has successfully indexed the neurotoxic and neuroprotective effects of schizophrenia treatments. Pictures can inform about aspects of the phenomenology of schizophrenia including etiology, onset, symptoms, clinical course, and treatment effects but this assertion is tempered by the scientific and practical limitations of neuroimaging.
Collapse
Affiliation(s)
- Anthony O Ahmed
- Department of Psychiatry and Health Behavior, Georgia Health Sciences University, 997 Saint Sebastian Way, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
44
|
Wood J, Weiner MF. Pharmacological treatment of behavioral and emotional symptoms of Alzheimer’s disease: a case for polypharmacy. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.12.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Behavioral and emotional symptoms are common in Alzheimer’s disease, but often present treatment dilemmas because there are no US FDA-approved treatments for these symptoms, with the exception of treating depression and mania. A common axiom in geriatric psychopharmacology is to avoid polypharmacy so as to minimize drug–drug interactions and side effects. However, there may be rationale for simultaneous use of one or multiple classes of medications, for example, to minimize side effects by giving two or more medications at lower doses to reduce the potential side effects of larger doses of the individual drugs. Symptom clusters can also be targeted by combining medications such as a cholinesterase inhibitor with an antipsychotic, an antipsychotic with an antidepressant or an antidepressant with a hypnotic drug.
Collapse
Affiliation(s)
- Julie Wood
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Myron F Weiner
- Departments of Psychiatry, Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
45
|
Long-acting injectable antipsychotics in first-episode schizophrenia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2012; 2012:318535. [PMID: 22966433 PMCID: PMC3432356 DOI: 10.1155/2012/318535] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 11/20/2022]
|