1
|
Brefel-Courbon C, Harroch E, Marques A, Devos D, Thalamas C, Rousseau V, Ory-Magne F, Fabbri M, Maltête D, Rouaud T, Drapier S, Tir M, Thobois S, Salhi H, Corvol JC, Castelnovo G, Lagha-Boukbiza O, Fluchère F, Frismand S, Ansquer S, Sommet A, Rascol O. Oxycodone or Higher Dose of Levodopa for the Treatment of Parkinsonian Central Pain: OXYDOPA Trial. Mov Disord 2024; 39:1533-1543. [PMID: 38850081 DOI: 10.1002/mds.29878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Among the different types of pain related to Parkinson's disease (PD), parkinsonian central pain (PCP) is the most disabling. OBJECTIVES We investigated the analgesic efficacy of two therapeutic strategies (opioid with oxycodone- prolonged-release (PR) and higher dose of levodopa/benserazide) compared with placebo in patients with PCP. METHODS OXYDOPA was a randomized, double-blind, double-dummy, placebo-controlled, multicenter parallel-group trial run at 15 centers within the French NS-Park network. PD patients with PCP (≥30 on the Visual Analogue Scale [VAS]) were randomly assigned to receive oxycodone-PR (up to 40 mg/day), levodopa/benserazide (up to 200 mg/day) or matching placebo three times a day (tid) for 8 weeks at a stable dose, in add-on to their current dopaminergic therapy. The primary endpoint was the change in average pain intensity over the previous week rated on VAS from baseline to week-10 based on modified intention-to-treat analyses. RESULTS Between May 2016 and August 2020, 66 patients were randomized to oxycodone-PR (n = 23), levodopa/benserazide (n = 20) or placebo (n = 23). The mean change in pain intensity was -17 ± 18.5 on oxycodone-PR, -8.3 ± 11.1 on levodopa/benserazide, and -14.3 ± 18.9 in the placebo groups. The absolute difference versus placebo was -1.54 (97.5% confidence interval [CI], -17.0 to 13.90; P = 0.8) on oxycodone-PR and +7.79 (97.5% CI, -4.99 to 20.58; P = 0.2) on levodopa/benserazide. Similar proportions of patients in each group experienced all-cause adverse events. Those leading to study discontinuation were most frequently observed with oxycodone-PR (39%) than levodopa/benserazide (5%) or placebo (15%). CONCLUSIONS The present trial failed to demonstrate the superiority of oxycodone-PR or a higher dose of levodopa in patients with PCP, while oxycodone-PR was poorly tolerated. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christine Brefel-Courbon
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre, Centre d'Investigation Clinique CIC1436, University Hospital of Toulouse, NeuroToul COEN Centre, NS-PARK/FCRIN Network, Toulouse, France
- Toulouse Neuroimaging Centre (TONIC), UMR1214 INSERM/UT3, Toulouse, France
| | - Estelle Harroch
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre, Centre d'Investigation Clinique CIC1436, University Hospital of Toulouse, NeuroToul COEN Centre, NS-PARK/FCRIN Network, Toulouse, France
| | - Ana Marques
- Department of Neurology, CHU Clermont-Ferrand, Université Clermont-Auvergne, CNRS, IGCCN, Institut Pascal, NS-PARK/FCRIN Network, Aubière, France
| | - David Devos
- Department of Medical Pharmacology, Expert Centre of Parkinson's Disease, University of Lille, LilNCog, Lille Neuroscience and Cognition, Inserm, INSERM UMR-S1172, CHU de Lille LICEND COEN Center Lille NS-Park Network, Lille, France
| | - Claire Thalamas
- Department of Clinical Pharmacology, Methodology Data management and Statistical Analysis Unit, Centre d'Investigation Clinique CIC1436, University Hospital of Toulouse, Toulouse, France
| | - Vanessa Rousseau
- Department of Clinical Pharmacology, Methodology Data management and Statistical Analysis Unit, Centre d'Investigation Clinique CIC1436, University Hospital of Toulouse, Toulouse, France
| | - Fabienne Ory-Magne
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre, Centre d'Investigation Clinique CIC1436, University Hospital of Toulouse, NeuroToul COEN Centre, NS-PARK/FCRIN Network, Toulouse, France
| | - Margherita Fabbri
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre, Centre d'Investigation Clinique CIC1436, University Hospital of Toulouse, NeuroToul COEN Centre, NS-PARK/FCRIN Network, Toulouse, France
| | - David Maltête
- Department of Neurology, Rouen University Hospital and University of Rouen, Mont-Saint-Aignan, France
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, NS-PARK/FCRIN Network, Mont-Saint-Aignan, France
| | - Tiphaine Rouaud
- Department of Neurology, Nantes University Hospital, NS-PARK/FCRIN Network, Nantes, France
| | - Sophie Drapier
- Department of Neurology, Rennes University Hospital, CIC INSERM 1414, NS-PARK/FCRIN Network, Rennes, France
| | - Melissa Tir
- Department of Neurology, Department of Neurosurgery, Expert Centre for Parkinson's Disease, Amiens University Hospital, EA 4559 Laboratoire de Neurosciences Fonctionnelles et Pathologie (LNFP) Université de Picardie Jules Verne, University of Picardy Jules Verne (UPJV), NS-PARK/FCRIN Network, Amiens, France
| | - Stephane Thobois
- Univ Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux, CNRS, Institut des Sciences Cognitives, UMR 5229, Bron, France
- Centre Expert Parkinson, Hôpital Neurologique "Pierre Wertheimer", Hospices Civils de Lyon, NS-PARK/FCRIN Network, Lyon, France
| | - Hayet Salhi
- Centre Expert Parkinson, Neurologie, and Equipe 01 NPI IMRB; CHU Henri Mondor, AP-HP, INSERM et Faculté de Santé, Université Paris-Est Créteil, Créteil, France
| | - Jean Christophe Corvol
- Département de Neurologie, CIC Neurosciences, Sorbonne Université, Assistance Publique Hôpitaux de Paris, Paris Brain Institute (ICM), Inserm, CNRS, Hôpital Pitié-Salpêtrière, NS-PARK/FCRIN Network, Paris, France
| | | | - Ouhaid Lagha-Boukbiza
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, NS-PARK/FCRIN Network, Strasbourg, France
| | - Fréderique Fluchère
- Service de Neurologie et Pathologie du Mouvement, Aix Marseille Université, AP-HM, Hôpital de La Timone, and UMR CNRS, Marseille, France
| | - Solene Frismand
- Neurology Department, Nancy University Hospital, Nancy, France
| | - Solene Ansquer
- Service de Neurologie, Centre Expert Parkinson, CIC-INSERM 1402, CHU Poitiers, NS-PARK/FCRIN Network, Poitiers, France
| | - Agnes Sommet
- Department of Clinical Pharmacology, Methodology Data management and Statistical Analysis Unit, Centre d'Investigation Clinique CIC1436, University Hospital of Toulouse, Toulouse, France
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre, Centre d'Investigation Clinique CIC1436, University Hospital of Toulouse, NeuroToul COEN Centre, NS-PARK/FCRIN Network, Toulouse, France
- Toulouse Neuroimaging Centre (TONIC), UMR1214 INSERM/UT3, Toulouse, France
| |
Collapse
|
2
|
Barboza VR, Kubota GT, da Silva VA, Barbosa LM, Arnaut D, Rodrigues ALDL, Galhardoni R, Barbosa ER, Brunoni AR, Teixeira MJ, Cury RG, de Andrade DC. Posterior insula repetitive transcranial magnetic stimulation for chronic pain in patients with Parkinson disease - pain type matters: A double-blinded randomized sham-controlled trial. Neurophysiol Clin 2024; 54:102994. [PMID: 39024845 DOI: 10.1016/j.neucli.2024.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVES Altered somatosensory processing in the posterior insula may play a role in chronic pain development and contribute to Parkinson disease (PD)-related pain. Posterior-superior insula (PSI) repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to have analgesic effects among patients with some chronic pain conditions. This study aimed at assessing the efficacy of PSI-rTMS for treating PD-related pain. METHODS This was a double-blinded, randomized, sham-controlled, parallel-arm trial (NCT03504748). People with PD (PwP)-related chronic pain underwent five daily PSI-rTMS sessions for a week, followed by once weekly maintenance stimulations for seven weeks. rTMS was delivered at 10 Hz and 80% of the resting motor threshold. The primary outcome was a ≥ 30% pain intensity reduction at 8 weeks compared to baseline. Functionality, mood, cognitive, motor status, and somatosensory thresholds were also assessed. RESULTS Twenty-five patients were enrolled. Mean age was 55.2 ± 9.5 years-old, and 56% were female. Nociceptive pain accounted for 60%, and neuropathic and nociplastic for 20% each. No significant difference was found for 30% pain reduction response rates between active (42.7%) and sham groups (14.6%, p = 0.26). Secondary clinical outcomes and sensory thresholds also did not differ significantly. In a post hoc analysis, PwP with nociceptive pain sub-type experienced more pain relief after active (85.7%) compared to sham PSI-rTMS (25%, p = 0.032). CONCLUSION Our preliminary results suggest that different types of PD-related pain may respond differently to treatment, and therefore people with PD may benefit from having PD-related pain well characterized in research trials and in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Debora Arnaut
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Galhardoni
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Movement Disorders Group, Department of Neurology, University of São Paulo., Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira Cesar, Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Andre Russowsky Brunoni
- Laboratory of Neuroscience and National Institute of Biomarkers in Psychiatry, Department and Institute of Psychiatry, Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785 - Cerqueira Cesar, Sao Paulo, Sao Paulo 05403-903, Brazil
| | - Manoel Jacobsen Teixeira
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Movement Disorders Group, Department of Neurology, University of São Paulo., Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira Cesar, Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Rubens Gisbert Cury
- Movement Disorders Group, Department of Neurology, University of São Paulo., Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira Cesar, Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Daniel Ciampi de Andrade
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Center for Neuroplasticity and Pain, Department of Health Sciences and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
3
|
Zhang X, Shen ZL, Ji YW, Yin C, Xiao C, Zhou C. Activation and polarization of striatal microglia and astrocytes are involved in bradykinesia and allodynia in early-stage parkinsonian mice. FUNDAMENTAL RESEARCH 2024; 4:806-819. [PMID: 39156564 PMCID: PMC11330119 DOI: 10.1016/j.fmre.2023.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/13/2023] [Accepted: 05/17/2023] [Indexed: 08/20/2024] Open
Abstract
In addition to the cardinal motor symptoms, pain is a major non-motor symptom of Parkinson's disease (PD). Neuroinflammation in the substantia nigra pars compacta and dorsal striatum is involved in neurodegeneration in PD. But the polarization of microglia and astrocytes in the dorsal striatum and their contribution to motor deficits and hyperalgesia in PD have not been characterized. In the present study, we observed that hemiparkinsonian mice established by unilateral 6-OHDA injection in the medial forebrain bundle exhibited motor deficits and mechanical allodynia. In these mice, both microglia and astrocytes in the dorsal striatum were activated and polarized to M1/M2 microglia and A1/A2 astrocytes as genes specific to these cells were upregulated. These effects peaked 7 days after 6-OHDA injection. Meanwhile, striatal astrocytes in parkinsonian mice also displayed hyperpolarized membrane potentials, enhanced voltage-gated potassium currents, and dysfunction in inwardly rectifying potassium channels and glutamate transporters. Systemic administration of minocycline, a microglia inhibitor, attenuated the expression of genes specific to M1 microglia and A1 astrocytes in the dorsal striatum (but not those specific to M2 microglia and A2 astrocytes), attenuated the damage in the nigrostriatal dopaminergic system, and alleviated the motor deficits and mechanical allodynia in parkinsonian mice. By contrast, local administration of minocycline into the dorsal striatum of parkinsonian mice mitigated only hyperalgesia. This study suggests that M1 microglia and A1 astrocytes in the dorsal striatum may play important roles in the development of pathophysiology underlying hyperalgesia in the early stages of PD.
Collapse
Affiliation(s)
- Xue Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Lin Shen
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya-Wei Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
4
|
Gadgaard NR, Veres K, Henderson VW, Pedersen AB. Frozen Shoulder and the Risk of Parkinson's Disease: A Danish Registry-Based Cohort Study. Clin Epidemiol 2024; 16:447-459. [PMID: 38952571 PMCID: PMC11216321 DOI: 10.2147/clep.s463571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Background Frozen shoulder may be an early preclinical symptom of Parkinson's disease (PD). Objective To examine PD risk after frozen shoulder diagnosis and to evaluate this disorder as a possible manifestation of parkinsonism preceding the clinical recognition of PD and possible target for screening. Methods Danish population-based medical registries were used to identify patients aged ≥40 years with a first-time frozen shoulder diagnosis (1995-2016). A comparison cohort was randomly selected from the general population matched on age and sex. To address detection bias and the specificity of frozen shoulder diagnosis, we performed a sensitivity analysis, using similar matching criteria to select a cohort of patients with back pain diagnosis. The outcome was incident PD. Cumulative incidences and adjusted hazard ratios (HRs) were estimated with 95% confidence intervals (CIs). Results We identified 37,041 individuals with frozen shoulder, 370,410 general population comparators, and 111,101 back pain comparators. The cumulative incidence of PD at 0-22 years follow-up was 1.51% in the frozen shoulder cohort, 1.03% in the general population cohort, and 1.32% in the back pain cohort. For frozen shoulder versus general population, adjusted HRs were 1.94 (CI: 1.20-3.13) at 0-1 years and 1.45 (CI: 1.24-1.70) at 0-22 years follow-up. For frozen shoulder versus back pain, adjusted HRs were 0.89 (CI: 0.54-1.46) and 1.01 (CI: 0.84-1.21), respectively. Conclusion Patients with frozen shoulder had an increased PD risk compared with the general population, although the absolute risks were low. Frozen shoulder might sometimes represent early manifestations of PD. Detection bias probably cannot account for the increased PD risk during the long-term follow-up.
Collapse
Affiliation(s)
- Nadia R Gadgaard
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Katalin Veres
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - Victor W Henderson
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alma B Pedersen
- Department of Clinical Epidemiology, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Nardelli D, Gambioli F, De Bartolo MI, Mancinelli R, Biagioni F, Carotti S, Falato E, Leodori G, Puglisi-Allegra S, Vivacqua G, Fornai F. Pain in Parkinson's disease: a neuroanatomy-based approach. Brain Commun 2024; 6:fcae210. [PMID: 39130512 PMCID: PMC11311710 DOI: 10.1093/braincomms/fcae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the deposition of misfolded alpha-synuclein in different regions of the central and peripheral nervous system. Motor impairment represents the signature clinical expression of Parkinson's disease. Nevertheless, non-motor symptoms are invariably present at different stages of the disease and constitute an important therapeutic challenge with a high impact for the patients' quality of life. Among non-motor symptoms, pain is frequently experienced by patients, being present in a range of 24-85% of Parkinson's disease population. Moreover, in more than 5% of patients, pain represents the first clinical manifestation, preceding by decades the exordium of motor symptoms. Pain implies a complex biopsychosocial experience with a downstream complex anatomical network involved in pain perception, modulation, and processing. Interestingly, all the anatomical areas involved in pain network can be affected by a-synuclein pathology, suggesting that pathophysiology of pain in Parkinson's disease encompasses a 'pain spectrum', involving different anatomical and neurochemical substrates. Here the various anatomical sites recruited in pain perception, modulation and processing are discussed, highlighting the consequences of their possible degeneration in course of Parkinson's disease. Starting from peripheral small fibres neuropathy and pathological alterations at the level of the posterior laminae of the spinal cord, we then describe the multifaceted role of noradrenaline and dopamine loss in driving dysregulated pain perception. Finally, we focus on the possible role of the intertwined circuits between amygdala, nucleus accumbens and habenula in determining the psycho-emotional, autonomic and cognitive experience of pain in Parkinson's disease. This narrative review provides the first anatomically driven comprehension of pain in Parkinson's disease, aiming at fostering new insights for personalized clinical diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Domiziana Nardelli
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Francesco Gambioli
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | | | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Roma, Rome 00161, Italy
| | | | - Simone Carotti
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Emma Falato
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Giorgio Leodori
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neuroscience, Sapienza University of Roma, Rome 00185, Italy
| | | | - Giorgio Vivacqua
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Experimental Morphology and Applied Biology, University of Pisa, Pisa 56122, Italy
| |
Collapse
|
6
|
Lei J, Tang LL, You HJ. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment. Neurosci Biobehav Rev 2024; 161:105646. [PMID: 38569983 DOI: 10.1016/j.neubiorev.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
In addition to motor symptoms, non-motor manifestations of Parkinson's disease (PD), i.e. pain, depression, sleep disturbance, and autonomic disorders, have received increasing attention. As one of the non-motor symptoms, pain has a high prevalence and is considered an early pre-motor symptom in the development of PD. In relation to pathological pain and its management in PD, particularly in the early stages, it is hypothesized that the loss of dopaminergic neurons causes a functional deficit in supraspinal structures, leading to an imbalance in endogenous descending modulation. Deficits in dopaminergic-dependent pathways also affect non-dopaminergic neurotransmitter systems that contribute to the pathological processing of nociceptive input, the integration, and modulation of pain in PD. This review examines the onset and progression of pain in PD, with a particular focus on alterations in the central modulation of nociception. The discussion highlights the importance of abnormal endogenous descending facilitation and inhibition in PD pain, which may provide potential clues to a better understanding of the nature of pathological pain and its effective clinical management.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China.
| |
Collapse
|
7
|
Zhang S, Zhang J, Yang Y, Zang W, Cao J. Activation of Pedunculopontine Tegmental Nucleus Alleviates the Pain Induced by the Lesion of Midbrain Dopaminergic Neurons. Int J Mol Sci 2024; 25:5636. [PMID: 38891832 PMCID: PMC11171649 DOI: 10.3390/ijms25115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The loss of midbrain dopaminergic (DA) neurons is the fundamental pathological feature of Parkinson's disease (PD). PD causes chronic pain in two-thirds of patients. Recent studies showed that the activation of the pedunculopontine tegmental nucleus (PPTg) can effectively relieve inflammatory pain and neuropathic pain. The PPTg is located in the pontomesencephalic tegmentum, a target of deep brain stimulation (DBS) treatment in PD, and is involved in motor control and sensory integration. To test whether the lesion of midbrain DA neurons induced pain hypersensitivity, and whether the chemogenetic activation of the PPTg could modulate the pain, the AAV-hM3Dq receptor was transfected and expressed into the PPTg neurons of 6-hydroxydopamine-lesioned mice. In this study, von Frey, open field, and adhesive tape removal tests were used to assess animals' pain sensitivity, locomotor activity, and sensorimotor function and somatosensory perception, respectively. Here, we found that the lesion of midbrain DA neurons induced a minor deficit in voluntary movement but did not affect sensorimotor function and somatosensory perception in the tape removal test. The results showed that lesion led to pain hypersensitivity, which could be alleviated both by levodopa and by the chemogenetic activation of the PPTg. Activating the PPTg may be a potential therapeutic strategy to relieve pain phenotypes in PD.
Collapse
Affiliation(s)
- Shiqiang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Yihao Yang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Weidong Zang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
González-Zamorano Y, José Sánchez-Cuesta F, Moreno-Verdú M, Arroyo-Ferrer A, Fernández-Carnero J, Chaudhuri KR, Fieldwalker A, Romero JP. TDCS for parkinson's disease disease-related pain: A randomized trial. Clin Neurophysiol 2024; 161:133-146. [PMID: 38479239 DOI: 10.1016/j.clinph.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE To evaluate the effects of transcranial direct current stimulation (tDCS) on Parkinson's disease (PD)-related pain. METHODS This triple-blind randomized controlled trial included twenty-two patients (age range 38-85, 10 male) with PD-related pain. Eleven subjects received ten sessions of 20 minutes tDCS over the primary motor cortex contralateral to pain at 2 mA intensity. Eleven subjects received sham stimulation. Outcome measures included changes in the Kinǵs Parkinsońs Pain Scale (KPPS), Brief Pain Inventory (BPI), widespread mechanical hyperalgesia (WMH), temporal summation of pain (TS), and conditioned pain modulation (CPM). RESULTS Significant differences were found in KPPS between groups favoring the active-tDCS group compared to the sham-tDCS group at 15-days follow-up (p = 0.014) but not at 2 days post-intervention (p = 0.059). The active-group showed significant improvements over the sham-group after 15 days (p = 0.017). Significant changes were found in CPM between groups in favor of active-tDCS group at 2 days post-intervention (p = 0.002) and at 15 days (p = 0.017). No meaningful differences were observed in BPI or TS. CONCLUSIONS tDCS of the primary motor cortex alleviates perceived PD-related pain, reduces pain sensitization, and enhances descending pain inhibition. SIGNIFICANCE This is the first study to test and demonstrate the use of tDCS for improving PD-related pain.
Collapse
Affiliation(s)
- Yeray González-Zamorano
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain; Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain.
| | - Francisco José Sánchez-Cuesta
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain.
| | - Marcos Moreno-Verdú
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain
| | - Aida Arroyo-Ferrer
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain.
| | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain; Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain.
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.
| | - Anna Fieldwalker
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Juan Pablo Romero
- Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; Brain Damage Unit, Beata María Ana Hospital, 28007 Madrid, Spain.
| |
Collapse
|
9
|
Morioka N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. High mobility group box-1: A therapeutic target for analgesia and associated symptoms in chronic pain. Biochem Pharmacol 2024; 222:116058. [PMID: 38367818 DOI: 10.1016/j.bcp.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The number of patients with chronic pain continues to increase against the background of an ageing society and a high incidence of various epidemics and disasters. One factor contributing to this situation is the absence of truly effective analgesics. Chronic pain is a persistent stress for the organism and can trigger a variety of neuropsychiatric symptoms. Hence, the search for useful analgesic targets is currently being intensified worldwide, and it is anticipated that the key to success may be molecules involved in emotional as well as sensory systems. High mobility group box-1 (HMGB1) has attracted attention as a therapeutic target for a variety of diseases. It is a very unique molecule having a dual role as a nuclear protein while also functioning as an inflammatory agent outside the cell. In recent years, numerous studies have shown that HMGB1 acts as a pain inducer in primary sensory nerves and the spinal dorsal horn. In addition, HMGB1 can function in the brain, and is involved in the symptoms of depression, anxiety and cognitive dysfunction that accompany chronic pain. In this review, we will summarize recent research and discuss the potential of HMGB1 as a useful drug target for chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
10
|
Meijer LL, Ruis C, Schielen ZA, Dijkerman HC, van der Smagt MJ. CT-optimal touch and chronic pain experience in Parkinson's Disease; An intervention study. PLoS One 2024; 19:e0298345. [PMID: 38394218 PMCID: PMC10890780 DOI: 10.1371/journal.pone.0298345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
One of the most underdiagnosed and undertreated non-motor symptoms of Parkinson's Disease is chronic pain. This is generally treated with analgesics which is not always effective and can cause several side-effects. Therefore, new ways to reduce chronic pain are needed. Several experimental studies show that CT-optimal touch can reduce acute pain. However, little is known about the effect of CT-optimal touch on chronic pain. The aim of the current study is to investigate whether CT-optimal touch can reduce the chronic pain experience in Parkinson patients. In this intervention study, 17 Parkinson patients underwent three conditions; no touch, CT-optimal touch and CT non-optimal touch with a duration of one week each. During each touch week, participants received touch from their partners twice a day for 15 minutes. Results show that both types of touch ameliorate the chronic pain experience. Furthermore, it appears that it is slightly more beneficial to apply CT-optimal touch also because it is perceived as more pleasant. Therefore, we argue that CT-optimal touch might be used when immediate pain relief is needed. Importantly, this study shows that CT-optimal touch can reduce chronic pain in Parkinson's Disease and can be administered by a partner which makes it feasible to implement CT-optimal touch as daily routine.
Collapse
Affiliation(s)
| | - Carla Ruis
- Utrecht University, Utrecht, The Netherlands
- University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
11
|
Al-Wardat M, Grillo P, Schirinzi T, Pavese C, Salimei C, Pisani A, Natoli S. Constipation and pain in Parkinson's disease: a clinical analysis. J Neural Transm (Vienna) 2024; 131:165-172. [PMID: 37897509 PMCID: PMC10791917 DOI: 10.1007/s00702-023-02696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/06/2023] [Indexed: 10/30/2023]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by both motor and non-motor symptoms (NMS). Among NMS, constipation and pain are both highly prevalent and debilitating affecting up to 80% of PD patients and impairing their quality of life. Here, we investigated the relationship between constipation and pain in PD patients. This is a retrospective study assessing the relationship between pain and constipation in a PD patient population from a clinical database of patients attending the outpatient clinic of the movement disorders division, Neurology Unit of Policlinico Tor Vergata, in Rome. Subjects were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS) part III, Hoehn and Yahr (H&Y) stage, King's Parkinson's Disease Pain Scale (KPPS), Brief Pain Inventory (BPI), Non-Motor Symptoms Scale (NMSS) and Beck Depression Inventory (BDI). Patients were further divided in two groups (Group 1, 32 patients with constipation and Group 2, 35 PD patients without constipation) ANOVA and ANCOVA analysis were used to compare the two groups. PD patients with constipation had significantly higher pain severity and pain interference, as measured by the BPI scale and higher total KPPS score, fluctuation-related pain, nocturnal pain, and radicular pain when compared to PD patients without constipation. This study highlights for the first time a possible interplay between constipation and pain in PD that deserves further investigations.
Collapse
Affiliation(s)
- Mohammad Al-Wardat
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Piergiorgio Grillo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Chiara Pavese
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation and Spinal Unit of Pavia Institute, Pavia, Italy
| | - Chiara Salimei
- Deptartment of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Silvia Natoli
- Deptartment of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
12
|
Rukavina K, Mulholland N, Corcoran B, Skoric MK, Staunton J, Rota S, Zinzalias P, Wu K, Fieldwalker A, Bannister K, Rizos A, Chaudhuri KR. Musculoskeletal pain in Parkinson's disease: Association with dopaminergic deficiency in the caudate nucleus. Eur J Pain 2024; 28:244-251. [PMID: 37587725 DOI: 10.1002/ejp.2172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Musculoskeletal (MSK) pain affects over 80% of People with Parkinson's (PD, PwP) and may, in part, be dopaminergic in origin, as dopaminergic medication often leads to its relief. METHODS PwP who underwent striatal dopamine transporter visualization with a radiopharmaceutical DaTscan™ (123 I-Ioflupane Injection) using a single-photon emission computed tomography (SPECT) as a part of their clinical-diagnostic work up were enrolled in the "Non-motor International Longitudinal Study" (NILS; UK National Institute for Health Research Clinical Research Network Number 10084) and included in this cross-sectional analysis. The association between specific DaTscan binding ratios for each striatum, the caudate nucleus and putamen and clinical ratings for MSK pain (assessed using the King's Parkinson's Disease Pain Scale (KPPS)) were analysed. RESULTS 53 PwP (30.2% female; age: 63.79 ± 11.31 years; disease duration (DD): 3.32 (0.31-14.41) years; Hoehn & Yahr stage (H&Y): 2 (1-4); Levodopa Equivalent Daily Dose (LEDD): 543.08 ± 308.94 mg) were assessed and included in this analysis. MSK pain was highly prevalent (71.7% of all participants, mean KPPS Item 1 score 5.34 ± 4.76) and did not correlate with the motor symptoms burden (SCOPA-Motor total score; p = 0.783) but showed a significant correlation with quality of life (PDQ-8, rs = 0.290, p = 0.035). z-scores for the caudate nucleus (Exp (B) = 0.367, 95% CI for Exp (B) 0.148-0.910, p = 0.031) and striatum (Exp (B) = 0.338, 95% CI for Exp (B) 0.123-0.931, p = 0.036), adjusted for DD, H&Y and LEDD, were significant determinants of MSK pain. CONCLUSIONS Our findings suggest an association between MSK pain in PwP and the severity of dopaminergic deficiency in the caudate nucleus. SIGNIFICANCE In People with Parkinson's, musculoskeletal pain does not arise simply as a direct sequel to motor symptoms-instead, it is linked to the severity of dopaminergic depletion in the caudate nucleus.
Collapse
Affiliation(s)
- Katarina Rukavina
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Nicola Mulholland
- Department of Nuclear Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Benjamin Corcoran
- Department of Nuclear Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Magdalena Krbot Skoric
- Laboratory for Cognitive and Experimental Neurophysiology, Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Juliet Staunton
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Silvia Rota
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Pavlos Zinzalias
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Kit Wu
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Anna Fieldwalker
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
| | - Kirsty Bannister
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
| | - Alexandra Rizos
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - K Ray Chaudhuri
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Ouyang H, Li X, Xu H, Zhan Y, Zheng Z, Chen G, Lou Z, Chen H, Zhang J, Mao H, Zhang C, Qin L, Zhao Y, Zhao M. Risk factors of neuropathic pain in multiple sclerosis: a retrospective case-cohort study. Front Immunol 2024; 15:1309583. [PMID: 38352863 PMCID: PMC10863040 DOI: 10.3389/fimmu.2024.1309583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Background Pain is a common symptom in multiple sclerosis (MS), especially neuropathic pain, which has a significant impact on patients' mental and physical health and quality of life. However, risk factors that related to neuropathic pain, still remain unclear. Objective The study aimed to explore the risk factors of neuropathic pain among MS patients. Materials and methods This retrospective study examined the consecutive patients diagnosed with MS in the Department of Neurology of Guangdong Provincial Hospital of Chinese Medicine between August 2011 and October 2022. Neuropathic pain was defined as "pain arising as a direct consequence of a lesion or disease affecting the somatosensory system". Demographic and clinical features were obtained from the electronic system of the hospital. Results Our cohort revealed that the prevalence of patients with neuropathic pain in MS was 34.1%. The results indicated that the longer the spinal lesions, the greater the neuropathic pain risks (2-4: OR, 13.3(2.1-82), >5: OR, 15.2(2.7-86.8), p for tread: 0.037). Meanwhile, multivariate regression analysis showed that cervical and thoracic lesions (OR 4.276, 95% CI 1.366-13.382, P = 0.013), upper thoracic lesions (T1-T6) (OR 3.047, 95% CI 1.018-9.124, P = 0.046) were positively correlated with neuropathic pain, while basal ganglia lesions (OR 0.188, 95% CI 0.044-0.809, P = 0.025) were negatively correlated with neuropathic pain among MS patients. Conclusion Extended spinal lesions (≥3 spinal lesions), cervical and thoracic lesions, upper thoracic lesions were independent risk factors of neuropathic pain among MS patients. Furthermore, our study found that the longer the spinal lesions, the greater the neuropathic pain risks.
Collapse
Affiliation(s)
- Huiying Ouyang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoyou Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yibo Zhan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zequan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guixian Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenzhen Lou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haoxuan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hui Mao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changlin Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lulu Qin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanqi Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Min Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Zhou Z, Chen QY, Zhuo M, Xu PY. Inhibition of calcium-stimulated adenylyl cyclase subtype 1 (AC1) for the treatment of pain and anxiety symptoms in Parkinson's disease mice model. Mol Pain 2024; 20:17448069241266683. [PMID: 38912637 PMCID: PMC11282525 DOI: 10.1177/17448069241266683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024] Open
Abstract
Pain and anxiety are two common and undertreated non-motor symptoms in Parkinson's disease (PD), which affect the life quality of PD patients, and the underlying mechanisms remain unclear. As an important subtype of adenylyl cyclases (ACs), adenylyl cyclase subtype 1 (AC1) is critical for the induction of cortical long-term potentiation (LTP) and injury induced synaptic potentiation in the cortical areas including anterior cingulate cortex (ACC) and insular cortex (IC). Genetic deletion of AC1 or pharmacological inhibition of AC1 improved chronic pain and anxiety in different animal models. In this study, we proved the motor deficit, pain and anxiety symptoms of PD in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice model. As a lead candidate AC1 inhibitor, oral administration (1 dose and seven doses) of NB001 (20 and 40 mg/kg) showed significant analgesic effect in MPTP-treated mice, and the anxiety behavior was also reduced (40 mg/kg). By using genetic knockout mice, we found that AC1 knockout mice showed reduced pain and anxiety symptoms after MPTP administration, but not AC8 knockout mice. In summary, genetic deletion of AC1 or pharmacological inhibition of AC1 improved pain and anxiety symptoms in PD model mice, but didn't affect motor function. These results suggest that NB001 is a potential drug for the treatment of pain and anxiety symptoms in PD patients by inhibiting AC1 target.
Collapse
Affiliation(s)
- Zhaoxiang Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Exercise & Health Science, Xi’an Physical Education University, Xi’an, China
| | - Qi-Yu Chen
- Zhuomin Institute of Brain Research, Qingdao, China
| | - Min Zhuo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Zhuomin Institute of Brain Research, Qingdao, China
| | - Ping-Yi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Guo R, Tian X, Lin H, McKenna S, Li HD, Guo F, Liu J. Graph-Based Fusion of Imaging, Genetic and Clinical Data for Degenerative Disease Diagnosis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:57-68. [PMID: 37991907 DOI: 10.1109/tcbb.2023.3335369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Graph learning methods have achieved noteworthy performance in disease diagnosis due to their ability to represent unstructured information such as inter-subject relationships. While it has been shown that imaging, genetic and clinical data are crucial for degenerative disease diagnosis, existing methods rarely consider how best to use their relationships. How best to utilize information from imaging, genetic and clinical data remains a challenging problem. This study proposes a novel graph-based fusion (GBF) approach to meet this challenge. To extract effective imaging-genetic features, we propose an imaging-genetic fusion module which uses an attention mechanism to obtain modality-specific and joint representations within and between imaging and genetic data. Then, considering the effectiveness of clinical information for diagnosing degenerative diseases, we propose a multi-graph fusion module to further fuse imaging-genetic and clinical features, which adopts a learnable graph construction strategy and a graph ensemble method. Experimental results on two benchmarks for degenerative disease diagnosis (Alzheimers Disease Neuroimaging Initiative and Parkinson's Progression Markers Initiative) demonstrate its effectiveness compared to state-of-the-art graph-based methods. Our findings should help guide further development of graph-based models for dealing with imaging, genetic and clinical data.
Collapse
|
16
|
Parkinson M, Ryan C, Avery L, Hand A, Ramaswamy B, Jones J, Lindop F, Silverdale M, Baker K, Naisby J. What is available to support pain management in Parkinson's: a scoping review protocol. Int J Equity Health 2023; 22:244. [PMID: 37993895 PMCID: PMC10666362 DOI: 10.1186/s12939-023-02046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVE A scoping review will be undertaken to examine and map the available evidence that has been produced in relation to pain management in Parkinson's, with a focus on behavioural interventions, resources and/or how professionals support people with Parkinson's self-management of pain. METHODS This review will be based on the methodological framework given by Arksey and O'Malley's (2005), including enhancements by Levac et al., Peters et al. and the Joanna Briggs Institute. We will include studies from PubMed, SCOPUS, CINAHL, MEDLINE Web of Science, APA PsycINFO and ASSIA from January, 2010 onwards. Both quantitative and qualitative data will be analysed separately to identify the characteristics of support for pain management available, orientation of the approach and any identifiable behaviour change components and their outcomes. The COM-B behaviour change model and Theoretical Domains Framework will provide a theoretical framework for synthesising evidence in this review. CONCLUSION This scoping review will help to explore studies focusing on the evidence supporting a range of interventions relating to the management of pain experienced by people living with Parkinson's. The focus will be on describing what is available to support self-management, identify what behaviour change components have been used and their effectiveness, identify barriers and enablers to pain management and explore gaps in current provision of pain management. This review will identify implications and priorities for the follow-up phases to the larger 'Pain in Parkinson's' Project which is designed to support clinicians and individuals living with Parkinson's.
Collapse
Affiliation(s)
- Mark Parkinson
- Faculty of Health & Life Sciences, Department of Sport, Northumbria University, Exercise & Rehabilitation, Coach Lane Campus, Coach Lane, Newcastle-Upon-Tyne, UK.
| | - Cormac Ryan
- Teesside University, Centre for Rehabilitation, Middlesbrough, Tees Valley, UK
| | - Leah Avery
- Teesside University, Centre for Rehabilitation, Middlesbrough, Tees Valley, UK
| | - Annette Hand
- Faculty of Health & Life Sciences, Department: Nursing, Northumbria University, Midwifery & Health, Coach Lane Campus, Coach Lane, Newcastle-Upon-Tyne, UK
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle-Upon-Tyne, UK
| | | | - Julie Jones
- Robert Gordon University, School of Health Sciences, Garthdee Road, Aberdeen, UK
| | - Fiona Lindop
- University Hospitals of Derby & Burton NHS Foundation Trust, Derby, UK
| | - Monty Silverdale
- Department of Neurology, Manchester University, Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Katherine Baker
- Faculty of Health & Life Sciences, Department of Sport, Northumbria University, Exercise & Rehabilitation, Coach Lane Campus, Coach Lane, Newcastle-Upon-Tyne, UK
| | - Jenni Naisby
- Faculty of Health & Life Sciences, Department of Sport, Northumbria University, Exercise & Rehabilitation, Coach Lane Campus, Coach Lane, Newcastle-Upon-Tyne, UK
| |
Collapse
|
17
|
Lançon K, Séguéla P. Dysregulated neuromodulation in the anterior cingulate cortex in chronic pain. Front Pharmacol 2023; 14:1289218. [PMID: 37954846 PMCID: PMC10634228 DOI: 10.3389/fphar.2023.1289218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Chronic pain is a significant global socioeconomic burden with limited long-term treatment options. The intractable nature of chronic pain stems from two primary factors: the multifaceted nature of pain itself and an insufficient understanding of the diverse physiological mechanisms that underlie its initiation and maintenance, in both the peripheral and central nervous systems. The development of novel non-opioidergic analgesic approaches is contingent on our ability to normalize the dysregulated nociceptive pathways involved in pathological pain processing. The anterior cingulate cortex (ACC) stands out due to its involvement in top-down modulation of pain perception, its abnormal activity in chronic pain conditions, and its contribution to cognitive functions frequently impaired in chronic pain states. Here, we review the roles of the monoamines dopamine (DA), norepinephrine (NE), serotonin (5-HT), and other neuromodulators in controlling the activity of the ACC and how chronic pain alters their signaling in ACC circuits to promote pathological hyperexcitability. Additionally, we discuss the potential of targeting these monoaminergic pathways as a therapeutic strategy for treating the cognitive and affective symptoms associated with chronic pain.
Collapse
Affiliation(s)
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Alan Edwards Centre for Research on Pain, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
18
|
Hsieh LF, Kuo YC, Lin YT, Liu YF, Wang HC. Ultrasonographic imaging findings of the shoulder in patients with Parkinson disease. J Orthop Sci 2023; 28:1004-1010. [PMID: 35945122 DOI: 10.1016/j.jos.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Shoulder disorders, including frozen shoulder, bursitis, and rotator cuff lesions, are common musculoskeletal problems in patients with Parkinson disease (PD). Because musculoskeletal ultrasound (US) can clearly image shoulder joints, we aimed to evaluate shoulder joints using US in patients with PD and healthy participants and correlation between US and PD severity. METHODS This is a prospective case-control study. 50 patients with PD and 50 healthy subjects from the outpatient department were administered US for bilateral shoulders. For data analysis, we chose the more severely affected side in the PD group for matching with the corresponding shoulder in the control group according to age, sex, and body mass index. Pain and disability were measured using the Visual Analogue Scale (VAS) for pain, Shoulder Pain and Disability Index (SPADI), and the Shoulder Disability Questionnaire (SDQ). RESULTS The PD group had higher VAS pain scores during activity (p = 0.003) and rest (p < 0.001), as well as the SPADI and SDQ scores (p < 0.001). In US findings, biceps long head tendon sheath effusion (p = 0.001), humeral head cortical irregularity (p = 0.012), and abnormality in the supraspinatus tendon (p = 0.003) were significantly greater in the PD group. Intra-group analysis in the PD group demonstrated a significant difference in passive flexion (p = 0.019) and supraspinatus tendinopathy (p = 0.033) on US examination during different disease stages. CONCLUSIONS Patients with PD had more supraspinatus tendinopathy on US findings than control subjects. The lesion was significantly associated with disease severity. CLINICAL TRIAL NUMBER NCT02702232.
Collapse
Affiliation(s)
- Lin-Fen Hsieh
- Department of Physical Medicine and Rehabilitation, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ying-Chen Kuo
- Department of Physical Medicine and Rehabilitation, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yu-Ting Lin
- Department of Physical Medicine and Rehabilitation, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ya-Fang Liu
- Department of Research, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Han-Cheng Wang
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Fu Y, Gong C, Zhu C, Zhong W, Guo J, Chen B. Research trends and hotspots of neuropathic pain in neurodegenerative diseases: a bibliometric analysis. Front Immunol 2023; 14:1182411. [PMID: 37503342 PMCID: PMC10369061 DOI: 10.3389/fimmu.2023.1182411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Background Neuropathic pain is caused by a neurological injury or disease and can have a significant impact on people's daily lives. Studies have shown that neuropathic pain is commonly associated with neurodegenerative diseases. In recent years, there has been a lot of literature on the relationship between neuropathic pain and neurodegenerative diseases. However, bibliometrics is rarely used in analyzing the general aspects of studies on neuropathic pain in neurodegenerative diseases. Methods The bibliometric analysis software CiteSpace and VOSviewer were used to analyze the knowledge graph of 387 studies in the Science Citation Index Expanded of the Web of Science Core Collection Database. Results We obtained 2,036 documents through the search, leaving 387 documents after culling. 387 documents were used for the data analysis. The data analysis showed that 330 papers related to neuropathic pain in neurodegenerative diseases were published from 2007-2022, accounting for 85.27% of all published literature. In terms of contributions to the scientific study of neuropathic pain, the United States is in the top tier, with the highest number of publications, citations, and H-indexes. Conclusion The findings in our study may provide researchers with useful information about research trends, frontiers, and cooperative institutions. Multiple sclerosis, Parkinson's disease, and Alzheimer's disease are the three most studied neurodegenerative diseases. Among the pathological basis of neurodegenerative diseases, microglia-regulated neuroinflammation is a hot research topic. Deep brain stimulation and gamma knife radiosurgery are two popular treatments.
Collapse
Affiliation(s)
| | | | | | | | - Jiabao Guo
- *Correspondence: Binglin Chen, ; Jiabao Guo,
| | | |
Collapse
|
20
|
Kang JWM, Keay KA, Kendig MD, Corbit LH, Mor D. Serotonin and Dopamine Show Different Response Profiles to Acute Stress in the Nucleus Accumbens and Medial Prefrontal Cortex of Rats with Neuropathic Pain. Neurochem Res 2023; 48:2265-2280. [PMID: 36941432 PMCID: PMC10182167 DOI: 10.1007/s11064-023-03906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
The ability to adaptively guide behaviour requires the integration of external information with internal motivational factors. Decision-making capabilities can be impaired by acute stress and is often exacerbated by chronic pain. Chronic neuropathic pain patients often present with cognitive dysfunction, including impaired decision-making. The mechanisms underlying these changes are not well understood but may include altered monoaminergic transmission in the brain. In this study we investigated the relationships between dopamine, serotonin, and their metabolites in key brain regions that regulate motivated behaviour and decision-making. The neurochemical profiles of the medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens were analysed using HPLC in rats that received a chronic constriction injury (CCI) of the right sciatic nerve and an acute stress (15-min restraint), prior to an outcome devaluation task. CCI alone significantly decreased dopamine but not serotonin concentrations in the medial prefrontal cortex. By contrast, restraint stress acutely increased dopamine in the medial prefrontal cortex, and the nucleus accumbens; and increased serotonin in the medial prefrontal cortex 2 h later. The sustained dopaminergic and serotonergic responses to acute stress highlight the importance of an animal's ability to mount an effective coping response. In addition, these data suggest that the impact of nerve injury and acute stress on outcome-devaluation occurs independently of dopaminergic and serotonergic transmission in the medial prefrontal cortex, orbital prefrontal cortex and nucleus accumbens of rats.
Collapse
Affiliation(s)
- James W M Kang
- School of Medical Sciences [Neuroscience], The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael D Kendig
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Laura H Corbit
- Department of Psychology, The University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - David Mor
- School of Medical Sciences [Neuroscience], The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
21
|
Jang JH, Kim J, Kwon O, Jung SY, Lee HJ, Cho SY, Park JM, Ko CN, Park SU, Kim H. Effectiveness and Therapeutic Mechanism of Pharmacopuncture for Pain in Parkinson's Disease: A Study Protocol for a Pilot Pragmatic Randomized, Assessor-Blinded, Usual Care-Controlled, Three-Arm Parallel Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1776. [PMID: 36767158 PMCID: PMC9914000 DOI: 10.3390/ijerph20031776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Pain in Parkinson's disease (PD) represents a complex phenotype known to decrease quality of life. This pragmatic randomized, controlled clinical trial evaluated the efficacy of pharmacopuncture (PA) for improving pain symptoms and investigated the corresponding therapeutic mechanisms in patients with PD. Ninety patients with PD-related pain were randomly allocated to receive either PA, manual acupuncture, or usual care in a 1:1:1 ratio; sixty healthy controls were included for comparative analysis of brain imaging data. Over 12 weeks, study treatment provided 2 days per week for 8 weeks with a follow-up period of 4 weeks. The primary outcome measure was the King's Parkinson's Disease Pain Scale score for assessing improvement in PD-related pain, including a sub-analysis to investigate the pattern of changes in pain according to a PD-related pain mechanism-based classification. Secondary outcome measures included a numerical rating scale-based assessment of the intensity and location of pain and changes in pain-associated symptoms, such as depression, anxiety, and sleep disorders. Exploratory outcome measures included structural and functional brain patterns on magnetic resonance imaging, blood molecular signature changes, gait analysis, facial expression and movement assessment in response to emotional stimuli, and a traditional Korean medicine syndrome differentiation questionnaire. The trial findings provided important clinical evidence for the effectiveness of PA in the management of PD-related pain and its associated symptoms, and helped elucidate the mechanism of its therapeutic effect on PD-related pain.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jieun Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Ojin Kwon
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - So Young Jung
- Clinical Research Coordinating Team, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hye-Jin Lee
- Department of Korean Medicine Cardiology and Neurology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Yeon Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jung-Mi Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chang-Nam Ko
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seong-Uk Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyungjun Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
22
|
Cortical Synaptic Mechanism for Chronic Pain and Anxiety in Parkinson's Disease. J Transl Int Med 2023; 10:300-303. [PMID: 36860635 PMCID: PMC9969574 DOI: 10.2478/jtim-2022-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Hornung RS, Kinchington PR, Umorin M, Kramer PR. PAQR8 and PAQR9 expression is altered in the ventral tegmental area of aged rats infected with varicella zoster virus. Mol Pain 2023; 19:17448069231202598. [PMID: 37699860 PMCID: PMC10515525 DOI: 10.1177/17448069231202598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Infection with varicella zoster virus (VZV) results in chicken pox and reactivation of VZV results in herpes zoster (HZ) or what is often referred to as shingles. Patients with HZ experience decreased motivation and increased emotional distress consistent with functions of the ventral tegmental area (VTA) of the brain. In addition, activity within the ventral tegmental area is altered in patients with HZ. HZ primarily affects individuals that are older and the VTA changes with age. To begin to determine if the VTA has a role in HZ symptoms, a screen of 10,000 genes within the VTA in young and old male rats was completed after injecting the whisker pad with VZV. The two genes that had maximal change were membrane progesterone receptors PAQR8 (mPRβ) and PAQR9 (mPRε). Neurons and non-neuronal cells expressed both PAQR8 and PAQR9. PAQR8 and PAQR9 protein expression was significantly reduced after VZV injection of young males. In old rats PAQR9 protein expression was significantly increased after VZV injection and PAQR9 protein expression was reduced in aged male rats versus young rats. Consistent with previous results, pain significantly increased after VZV injection of the whisker pad and aged animals showed significantly more pain than young animals. Our data suggests that PAQR8 and PAQR9 expression is altered by VZV injection and that these changes are affected by age.
Collapse
Affiliation(s)
- Rebecca S Hornung
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Paul R Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Umorin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX, USA
| |
Collapse
|
24
|
Hämäläinen I, Tiihonen M, Hartikainen S, Tolppanen AM. Recent hospitalization and risk of antidepressant initiation in people with Parkinson's disease. BMC Geriatr 2022; 22:974. [PMID: 36528563 PMCID: PMC9758789 DOI: 10.1186/s12877-022-03698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND People with Parkinson's disease (PD) are more likely to be hospitalized and initiate antidepressant use compared to people without PD. It is not known if hospitalization increases the risk of antidepressant initiation. We studied whether a recent hospitalization associates with antidepressant initiation in people with PD. METHODS A nested case-control study within the nationwide register-based FINPARK cohort which includes community-dwelling Finnish residents diagnosed with PD between years 1996 and 2015 (N = 22,189) was conducted. Initiation of antidepressant use after PD diagnosis was identified from Prescription Register with 1-year washout period (cases). One matched non-initiator control for each case was identified (N = 5492 age, sex, and time since PD diagnosis-matched case-control pairs). Hospitalizations within the 14 day-period preceding the antidepressant initiation were identified from the Care Register for Health Care. RESULTS The mean age at antidepressant initiation was 73.5 years with median time since PD diagnosis 2.9 years. Selective serotonin reuptake inhibitors (48.1%) and mirtazapine (35.7%) were the most commonly initiated antidepressants. Recent hospitalization was more common among antidepressant initiators than non-initiators (48.3 and 14.3%, respectively) and was associated with antidepressant initiation also after adjusting for comorbidities and use of medications during the washout (adjusted OR, 95% CI 5.85, 5.20-6.59). The initiators also had longer hospitalizations than non-initiators. PD was the most common main discharge diagnosis among both initiators (54.6%) and non-initiators (28.8%). Discharge diagnoses of mental and behavioral disorders and dementia were more common among initiators. CONCLUSIONS Hospitalisation is an opportunity to identify and assess depressive symptoms, sleep disorders and pain, which may partially explain the association. Alternatively, the indication for antidepressant initiation may have led to hospitalisation, or hospitalisation to aggravation of, e.g., neuropsychiatric symptoms leading to antidepressant initiation.
Collapse
Affiliation(s)
- Iida Hämäläinen
- grid.9668.10000 0001 0726 2490Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland ,grid.9668.10000 0001 0726 2490School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Miia Tiihonen
- grid.9668.10000 0001 0726 2490Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland ,grid.9668.10000 0001 0726 2490School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sirpa Hartikainen
- grid.9668.10000 0001 0726 2490Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland ,grid.9668.10000 0001 0726 2490School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anna-Maija Tolppanen
- grid.9668.10000 0001 0726 2490Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland ,grid.9668.10000 0001 0726 2490School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
25
|
Jia T, Wang YD, Chen J, Zhang X, Cao JL, Xiao C, Zhou C. A nigro-subthalamo-parabrachial pathway modulates pain-like behaviors. Nat Commun 2022; 13:7756. [PMID: 36522327 PMCID: PMC9755217 DOI: 10.1038/s41467-022-35474-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The basal ganglia including the subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr) are involved in pain-related responses, but how they regulate pain processing remains unknown. Here, we identify a pathway, consisting of GABAergic neurons in the SNr (SNrGABA) and glutamatergic neurons in the STN (STNGlu) and the lateral parabrachial nucleus (LPBGlu), that modulates acute and persistent pain states in both male and female mice. The activity of STN neurons was enhanced in acute and persistent pain states. This enhancement was accompanied by hypoactivity in SNrGABA neurons and strengthening of the STN-LPB glutamatergic projection. Reversing the dysfunction in the SNrGABA-STNGlu-LPBGlu pathway attenuated activity of LPBGlu neurons and mitigated pain-like behaviors. Therefore, the SNrGABA-STNGlu-LPBGlu pathway regulates pathological pain and is a potential target for pain management.
Collapse
Affiliation(s)
- Tao Jia
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Ying-Di Wang
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Jing Chen
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Xue Zhang
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Jun-Li Cao
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Cheng Xiao
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Chunyi Zhou
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| |
Collapse
|
26
|
Dexmedetomidine alleviates pain in MPTP-treated mice by activating the AMPK/mTOR/NF-κB pathways in astrocytes. Neurosci Lett 2022; 791:136933. [DOI: 10.1016/j.neulet.2022.136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
|
27
|
Kluger BM, Huang AP, Miyasaki JM. Cannabinoids in movement disorders. Parkinsonism Relat Disord 2022; 102:124-130. [PMID: 36038457 DOI: 10.1016/j.parkreldis.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION On the basis of both scientific progress and popular lore, there is growing optimism in the therapeutic potential of cannabis (marijuana) and cannabinoid-based chemicals for movement disorders. There is also notable skepticism regarding the scientific basis for this therapeutic optimism and significant concerns regarding the safety and regulation of cannabinoid products, particularly those available without prescription. METHODS In recognition of the high interest and controversial nature of this subject, the meeting committee of the International Parkinson and Movement Disorders Society arranged for a talk on cannabis at the 2019 annual meeting's Controversies in Movement Disorders plenary session. This paper summarizes the highlights of this session. RESULTS The endocannabinoid system is strongly tied to motor function and dysfunction, with basic research suggesting several promising therapeutic targets related to cannabinoids for movement disorders. Clinical research on cannabinoids for motor and nonmotor symptoms in Parkinson's disease, Huntington's disease, Tourette's syndrome, dystonia, and other movement disorders to date are promising at best and inconclusive or negative at worst. Research in other populations suggest efficacy for common symptoms like pain. While social campaigns against recreational cannabinoid use focus on cognitive changes in adolescents, the long-term sequelae of regulated medical use in older adults with movement disorders is unknown. The overall risks of cannabinoids may be similar to other commonly used medications and include falls and apathy. CONCLUSION Further research is greatly needed to better understand the actual clinical benefits and long-term side effects of medical cannabis products for movement disorders indications and populations.
Collapse
Affiliation(s)
- Benzi M Kluger
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Huang
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janis M Miyasaki
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Ameenudeen S, Kashif M, Banerjee S, Srinivasan H, Pandurangan AK, Waseem M. Cellular and Molecular Machinery of Neuropathic Pain: an Emerging Insight. CURRENT PHARMACOLOGY REPORTS 2022; 8:227-235. [PMID: 35646513 PMCID: PMC9125010 DOI: 10.1007/s40495-022-00294-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
Purpose of Review Neuropathic pain (NP) has been ubiquitously characterized by lesion and its linked somatosensory system either the central nervous system (CNS) or peripheral nervous system (PNS) This PNS episode is the most prevalent site of NP origin and is found to be associated with afferent nerve fibers carrying pain signals from injured/trauma site to the CNS including the brain. Several kinds of pharmacotherapeutic drugs shuch as analgesics, anti-convulsants, and anti-depressants are being employed for the its possible interventions. The NP has been a great interest to follow different pathophysiological mechanisms which are often considered to correlate with the metabolic pathways and its mediated disease. There is paucity of knowledge to make such mechanism via NP. Recent Finding Most notably, recent pandemic outbreak of COVID-19 has also been reported in chronic pain mediated diabetes, inflammatory disorders, and cancers. There is an increasing incidence of NP and its complex mechanism has now led to identify the possible investigations of responsible genes and proteins via bioinformatics tools. The analysis might be more instrumental as collecting the genes from pain genetic database, analyzing the variants through differential gene expression (DEG) and constructing the protein–protein interaction (PPI) networks and thereby determining their upregulating and downregulating pathways. Summary This review sheds a bright light towards several mechanisms at both cellular and molecular level, correlation of NP-mediated disease mechanism and possible cell surface biomarkers (receptors), and identified genes could be more promising for their pharmacological targets.
Collapse
Affiliation(s)
- Shabnam Ameenudeen
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Mohd. Kashif
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Subhamoy Banerjee
- Department of Basic Science and Humanities, Institute of Engineering and Management, Sector V, Salt Lake, Kolkata, 700091 India
| | - Hemalatha Srinivasan
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Ashok Kumar Pandurangan
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Mohammad Waseem
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| |
Collapse
|
29
|
Crawford LS, Boorman DC, Keay KA, Henderson LA. The pain conductor: brainstem modulation in acute and chronic pain. Curr Opin Support Palliat Care 2022; 16:71-77. [PMID: 35639572 DOI: 10.1097/spc.0000000000000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW It is well established in experimental settings that brainstem circuits powerfully modulate the multidimensional experience of pain. This review summarizes current understanding of the roles of brainstem nuclei in modulating the intensity of pain, and how these circuits might be recruited therapeutically for pain relief in chronic and palliative settings. RECENT FINDINGS The development of ultra-high field magnetic resonance imaging and more robust statistical analyses has led to a more integrated understanding of brainstem function during pain. It is clear that a number of brainstem nuclei and their overlapping pathways are recruited to either enhance or inhibit incoming nociceptive signals. This review reflects on early preclinical research, which identified in detail brainstem analgesic function, putting into context contemporary investigations in humans that have identified the role of specific brainstem circuits in modulating pain, their contribution to pain chronicity, and even the alleviation of palliative comorbidities. SUMMARY The brainstem is an integral component of the circuitry underpinning pain perception. Enhanced understanding of its circuitry in experimental studies in humans has, in recent years, increased the possibility for better optimized pain-relief strategies and the identification of vulnerabilities to postsurgical pain problems. When integrated into the clinical landscape, these experimental findings of brainstem modulation of pain signalling have the potential to contribute to the optimization of pain management and patient care from acute, to chronic, to palliative states.
Collapse
Affiliation(s)
- Lewis S Crawford
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
30
|
Torriani-Pasin C, Domingues VL, de Freitas TB, Silva TAD, Caldeira MF, Júnior RPA, Lara ARF, Antonio BDA, Palma GCDS, Makhoul MP, Mochizuki L. Adherence rate, barriers to attend, safety and overall experience of a physical exercise program via telemonitoring during COVID-19 pandemic for individuals with Parkinson's disease: A feasibility study. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2022; 27:e1959. [PMID: 35633094 PMCID: PMC9348085 DOI: 10.1002/pri.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/30/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Background Telemonitoring can maintain daily exercise routine during the COVID‐19 pandemic of individuals with Parkinson's disease (PD). However, there are barriers to adherence and attendance with remote physical rehabilitation. The main objective of this study was to evaluate adherence rate, barriers to attendance, and safety of a telemonitoring program for individuals with PD; and secondarily to evaluate the individual and their family members perceived overall experience when performing the telemonitoring physical exercise program. Methods This was a phase 1 of a clinical trial, engaging 19 individuals with idiopathic PD of an in‐person community rehabilitation program. For 24 weeks an asynchronous telemonitoring physical exercise program delivered two sessions per week by video including warm‐up, balance, aerobic and resistance exercises, and cool‐down. During the remote program were verified: adherence rate at entrance, attendance rate, barriers to attend, safety, and overall experience of the program. Results and conclusion Only one participant did not perform any session and 18 participants completed between 2 and 34 sessions. Participants with a caregiver showed higher attendance rates. The most frequently cited barriers to attend the program were: pain; lack of motor skills; and reduced physical fitness. In relation to safety of the program, the most frequently reported was fear of falling. Although participants reported the telemonitoring program induced health benefits and they had positive experiences for themselves and for their families, most of participants prefer an in‐person program. In this sense, the asynchronous telemonitoring physical exercise program was safe, showed moderate adherence, with attendance rate depending on the presence of a companion.
Collapse
Affiliation(s)
- Camila Torriani-Pasin
- Laboratory of Motor Behavior, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Vitoria Leite Domingues
- Laboratory of Motor Behavior, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Tatiana Beline de Freitas
- Laboratory of Motor Behavior, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | - Marina Portugal Makhoul
- Laboratory of Motor Behavior, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Luis Mochizuki
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Martin SL, Jones AKP, Brown CA, Kobylecki C, Whitaker GA, El-Deredy W, Silverdale MA. Altered Pain Processing Associated with Administration of Dopamine Agonist and Antagonist in Healthy Volunteers. Brain Sci 2022; 12:brainsci12030351. [PMID: 35326306 PMCID: PMC8946836 DOI: 10.3390/brainsci12030351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Striatal dopamine dysfunction is associated with the altered top-down modulation of pain processing. The dopamine D2-like receptor family is a potential substrate for such effects due to its primary expression in the striatum, but evidence for this is currently lacking. Here, we investigated the effect of pharmacologically manipulating striatal dopamine D2 receptor activity on the anticipation and perception of acute pain stimuli in humans. Participants received visual cues that induced either certain or uncertain anticipation of two pain intensity levels delivered via a CO2 laser. Rating of the pain intensity and unpleasantness was recorded. Brain activity was recorded with EEG and analysed via source localisation to investigate neural activity during the anticipation and receipt of pain. Participants completed the experiment under three conditions, control (Sodium Chloride), D2 receptor agonist (Cabergoline), and D2 receptor antagonist (Amisulpride), in a repeated-measures, triple-crossover, double-blind study. The antagonist reduced an individuals’ ability to distinguish between low and high pain following uncertain anticipation. The EEG source localisation showed that the agonist and antagonist reduced neural activations in specific brain regions associated with the sensory integration of salient stimuli during the anticipation and receipt of pain. During anticipation, the agonist reduced activity in the right mid-temporal region and the right angular gyrus, whilst the antagonist reduced activity within the right postcentral, right mid-temporal, and right inferior parietal regions. In comparison to control, the antagonist reduced activity within the insula during the receipt of pain, a key structure involved in the integration of the sensory and affective aspects of pain. Pain sensitivity and unpleasantness were not changed by D2R modulation. Our results support the notion that D2 receptor neurotransmission has a role in the top-down modulation of pain.
Collapse
Affiliation(s)
- Sarah L. Martin
- Department of Psychology, Manchester Metropolitan University, Manchester M15 6GX, UK
- The Human Pain Research Group, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK; (A.K.P.J.); (C.A.B.)
- Correspondence:
| | - Anthony K. P. Jones
- The Human Pain Research Group, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK; (A.K.P.J.); (C.A.B.)
| | - Christopher A. Brown
- The Human Pain Research Group, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester M13 9PL, UK; (A.K.P.J.); (C.A.B.)
- Department of Psychological Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Christopher Kobylecki
- Salford Royal NHS Foundation Trust, Department of Neurology, Manchester Academic Health Science Centre, Salford M6 8HD, UK; (C.K.); (M.A.S.)
| | - Grace A. Whitaker
- Advanced Center for Electrical and Electronics Engineering, Federico Santa María Technical University, Valparaíso 1680, Chile;
| | - Wael El-Deredy
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaiso 1680, Chile;
| | - Monty A. Silverdale
- Salford Royal NHS Foundation Trust, Department of Neurology, Manchester Academic Health Science Centre, Salford M6 8HD, UK; (C.K.); (M.A.S.)
| |
Collapse
|
32
|
Li J, Zhu BF, Gu ZQ, Zhang H, Mei SS, Ji SZ, Liu SY, Han C, Chen HZ, Chan P. Musculoskeletal Pain in Parkinson's Disease. Front Neurol 2022; 12:756538. [PMID: 35126283 PMCID: PMC8813739 DOI: 10.3389/fneur.2021.756538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Musculoskeletal pain is commonly experienced in patients with Parkinson's disease (PD). Few studies have investigated the clinical characteristics and risk factors associated with musculoskeletal pain. OBJECTIVES To investigate the distribution, clinical characteristics, and factors associated with musculoskeletal pain in a large sample of patients with PD. METHODS We enrolled 452 patients from two clinics and used a standardized questionnaire to collect demographic and clinical information. Musculoskeletal pain was diagnosed based on the Ford Classification System, and pain severity was assessed with the numeric rating scale (NRS). Multivariate regression models explored the association between clinical features of PD and quality of life and pain. RESULTS Two hundred and six patients (45.58%) reported musculoskeletal pain, typically in their lower limbs and backs. Levodopa resulted in a ≥30% reduction in pain intensity scores in 170 subjects. Female sex (odds ratio [OR], 1.57; 95% CI, 1.07-2.29) and Levodopa-equivalent daily doses (LEDDs; OR, 3.35; 95% CI, 1.63-6.59) were associated with an increased risk for musculoskeletal pain. Pain duration (p = 0.017), motor symptoms (p < 0.001), and depression (p < 0.001) were significantly associated with quality of life. CONCLUSIONS The lower limbs and back are common sites of musculoskeletal pain in patients with PD, and up to 82.52% of patients were responsive to Levodopa. Female sex and LEDDs are associated with musculoskeletal pain, suggesting that dopamine deficiencies, and not the motor and non-motor impairment, might be the most critical baseline risk factor of musculoskeletal pain.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China.,Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ben-Fan Zhu
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhu-Qin Gu
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Hui Zhang
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Shan-Shan Mei
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Shao-Zhen Ji
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Shu-Ying Liu
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Chao Han
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Huai-Zhen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Piu Chan
- Department of Neurology, Neurobiology, and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Clinical and Research Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Langlois P, Perrochon A, David R, Rainville P, Wood C, Vanhaudenhuyse A, Pageaux B, Ounajim A, Lavallière M, Debarnot U, Luque-Moreno C, Roulaud M, Simoneau M, Goudman L, Moens M, Rigoard P, Billot M. Hypnosis to manage musculoskeletal and neuropathic chronic pain: a systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 135:104591. [DOI: 10.1016/j.neubiorev.2022.104591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
|
34
|
Alfaro-Rodriguez A, Cortes-Altamirano J, Reyes-Long S, Bandala C, Morraz-Varela A, Bonilla-Jaime H. Neuropathic Pain in Parkinson's Disease. Neurol India 2022; 70:1879-1886. [DOI: 10.4103/0028-3886.359257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Sato F, Nakamura Y, Ma S, Kochi T, Hisaoka-Nakashima K, Wang D, Liu K, Wake H, Nishibori M, Morioka N. Central high mobility group box-1 induces mechanical hypersensitivity with spinal microglial activation in a mouse model of hemi-Parkinson's disease. Biomed Pharmacother 2021; 145:112479. [PMID: 34915668 DOI: 10.1016/j.biopha.2021.112479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) patients often complain of pain, but this problem has been neglected and is poorly understood. High mobility group box-1 (HMGB1), an alarmin/damage-associated molecular patterns protein, is increased in the cerebrospinal fluid in PD patients. However, little is known of the relationship between HMGB1 and pain associated with PD. Here, we investigated the role of central HMGB1 in the regulation of nociceptive hypersensitivity in a mouse model of PD. Male ddY mice were microinjected unilaterally with 6-hydroxydopamine (6OHDA) into the striatum. These hemi-PD mice were treated with anti-HMGB1 neutralizing antibody (nAb; 10 µg in 10 µL) by intranasal (i.n.) administration. The mechanical hypersensitivity of the hind paws was evaluated with the von Frey test. Spinal microglial activity was analyzed by immunostaining for ionized calcium-binding adapter molecule 1. The 6OHDA-administered mice displayed unilateral loss of dopamine neurons in the substantia nigra and mechanical hypersensitivity in both hind paws. Moreover, spinal microglia were activated in these hemi-PD mice. Twenty-eight days after the 6OHDA injections, repeated i.n., but not systemic, treatment with anti-HMGB1 nAb inhibited the bilateral mechanical hypersensitivity and spinal microglial activation. However, the anti-HMGB1 nAb did not ameliorate the dopamine neuron loss. Moreover, intracerebroventricular injection with recombinant HMGB1 induced mechanical hypersensitivity. These findings indicate that HMGB1 is involved in the maintenance of nociceptive symptoms in hemi-PD mice via spinal microglial activation. Therefore, central HMGB1 may have potential as a therapeutic target for pain associated with PD.
Collapse
Affiliation(s)
- Fumiaki Sato
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Simeng Ma
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Takahiro Kochi
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
36
|
Elshennawy M, Ouachikh O, Aissouni Y, Youssef S, Zaki SS, Durif F, Hafidi A. Behavioral, Cellular and Molecular Responses to Cold and Mechanical Stimuli in Rats with Bilateral Dopamine Depletion in the Mesencephalic Dopaminergic Neurons. Neuroscience 2021; 479:107-124. [PMID: 34748858 DOI: 10.1016/j.neuroscience.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023]
Abstract
Pain is the major non-motor symptom in Parkinson's disease (PD). Preclinical studies have mostly investigated mechanical pain by considering the decrease in a nociceptive threshold. Only a few studies have focused on thermal pain in animal models of PD. Therefore, the goal of this study was to assess the thermal nociceptive behavior of rats subjected to 6-hydroxydopamine (6-OHDA) administration, which constitutes an animal model of PD. Thermal plate investigation demonstrated significant thermal sensitivity to cold temperatures of 10 °C and 15 °C, and not to higher temperatures, in 6-OHDA-lesioned rats when compared with sham. 6-OHDA-lesioned rats also showed cold allodynia as demonstrated by a significant difference in the number of flinches, latency and reaction time to acetone stimulus. Ropinirole administration, a dopamine receptor 2 (D2R) agonist, blocked the acetone-induced cold allodynia in 6-OHDA-lesioned rats. In addition, mechanical hypersensitivity and static allodynia, as demonstrated by a significant difference in the vocalization threshold and pain score respectively, were noticed in 6-OHDA-lesioned rats. Acetone stimulus induced a significant increase in extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation, a pain process molecular marker, in the spinal dorsal horn (SDH), the insular and cingulate cortices in 6-OHDA-lesioned rats when compared to sham. In 6-OHDA-lesioned rats, there was a significant augmentation in the expression of both protein kinase C gamma (PKCγ) and glutamate decarboxylase 67 (GAD67) in the SDH. This highlighted an increase in excitation and a decrease in inhibition in the SDH. Overall, the present study demonstrated a clear cold thermal hypersensitivity, in addition to a mechanical one, in 6-OHDA-lesioned rats.
Collapse
Affiliation(s)
- Mennatallah Elshennawy
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| | - Omar Ouachikh
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| | - Youssef Aissouni
- Université Clermont Auvergne, INSERM, NeuroDol U1107, 63000 Clermont-Ferrand, France.
| | - Shahira Youssef
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Shahira S Zaki
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Franck Durif
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| | - Aziz Hafidi
- Université Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, 63000 Clermont-Ferrand, France.
| |
Collapse
|
37
|
Roversi K, Callai-Silva N, Roversi K, Griffith M, Boutopoulos C, Prediger RD, Talbot S. Neuro-Immunity and Gut Dysbiosis Drive Parkinson's Disease-Induced Pain. Front Immunol 2021; 12:759679. [PMID: 34868000 PMCID: PMC8637106 DOI: 10.3389/fimmu.2021.759679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 1-2% of the population aged 65 and over. Additionally, non-motor symptoms such as pain and gastrointestinal dysregulation are also common in PD. These impairments might stem from a dysregulation within the gut-brain axis that alters immunity and the inflammatory state and subsequently drives neurodegeneration. There is increasing evidence linking gut dysbiosis to the severity of PD's motor symptoms as well as to somatosensory hypersensitivities. Altogether, these interdependent features highlight the urgency of reviewing the links between the onset of PD's non-motor symptoms and gut immunity and whether such interplays drive the progression of PD. This review will shed light on maladaptive neuro-immune crosstalk in the context of gut dysbiosis and will posit that such deleterious interplays lead to PD-induced pain hypersensitivity.
Collapse
Affiliation(s)
- Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada.,Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Natalia Callai-Silva
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Karine Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Christos Boutopoulos
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
38
|
van Reij RRI, Salmans MMA, Eijkenboom I, van den Hoogen NJ, Joosten EAJ, Vanoevelen JM. Dopamine-neurotransmission and nociception in zebrafish: An anti-nociceptive role of dopamine receptor drd2a. Eur J Pharmacol 2021; 912:174517. [PMID: 34555394 DOI: 10.1016/j.ejphar.2021.174517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Dopamine (DA) is an important modulator in nociception and analgesia. Spinal DA receptors are involved in descending modulation of the nociceptive transmission. Genetic variations within DA neurotransmission have been associated with altered pain sensitivity and development of chronic pain syndromes. The variant rs6277 in dopamine receptor 2 a (drd2a) has been associated with a decreased D2 receptor availability and increased nociception. The aim of this study is to further characterize the role of DA neurotransmission in nociception and the anti-nociceptive function of drd2a. The phenotype caused by rs6277 was modelled in zebrafish larvae using morpholino's and the effect on nociception was tested using a validated behavioural assay. The anti-nociceptive role of drd2a was tested using pharmacological intervention of D2 agonist Quinpirole. The experiments demonstrate that a decrease in drd2a expression results in a pro-nociceptive behavioural phenotype (P = 0.016) after a heat stimulus. Furthermore, agonism of drd2a with agonist Quinpirole (0.2 μM) results in dose-dependent anti-nociception (P = 0.035) after a heat stimulus. From these results it is concluded that the dopamine receptor drd2a is involved in anti-nociceptive behaviour in zebrafish. The model allows further screening and testing of genetic variation and treatment involved in nociception.
Collapse
Affiliation(s)
- Roel R I van Reij
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Center(+), Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands
| | - Maud M A Salmans
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Center(+), Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands
| | - Ivo Eijkenboom
- School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands; Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, the Netherlands
| | - Nynke J van den Hoogen
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Center(+), Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands
| | - Elbert A J Joosten
- Department of Anaesthesiology and Pain Management, Maastricht University Medical Center(+), Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, the Netherlands
| | - Jo M Vanoevelen
- Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands; GROW-school for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
39
|
Lançon K, Qu C, Navratilova E, Porreca F, Séguéla P. Decreased dopaminergic inhibition of pyramidal neurons in anterior cingulate cortex maintains chronic neuropathic pain. Cell Rep 2021; 37:109933. [PMID: 34852233 PMCID: PMC8728690 DOI: 10.1016/j.celrep.2021.109933] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/02/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Pyramidal neurons in the anterior cingulate cortex (ACC), a prefrontal region involved in processing the affective components of pain, display hyperexcitability in chronic neuropathic pain conditions, and their silencing abolishes hyperalgesia. We show that dopamine, through D1 receptor (D1R) signaling, inhibits pyramidal neurons of mouse ACC by modulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Activation of Gs-coupled D1R by dopamine induces the opening of HCN channels at physiological membrane potentials, driving a significant decrease in input resistance and excitability. Systemic L-DOPA in chronic neuropathic mice rescues HCN channel activity, normalizes pyramidal excitability in ACC, and blocks mechanical and thermal allodynia. Moreover, microinjection of a selective D1R agonist in the ACC relieves the aversiveness of ongoing neuropathic pain, while an ACC D1R antagonist blocks gabapentin- and lidocaine-evoked antinociception. We conclude that dopaminergic inhibition via D1R in ACC plays an analgesic role in physiological conditions and is decreased in chronic pain.
Collapse
Affiliation(s)
- Kevin Lançon
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 2B4, Canada
| | - Chaoling Qu
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Philippe Séguéla
- Montréal Neurological Institute, Department of Neurology & Neurosurgery, Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
40
|
Zhou Z, Ye P, Li XH, Zhang Y, Li M, Chen QY, Lu JS, Xue M, Li Y, Liu W, Lu L, Shi W, Xu PY, Zhuo M. Synaptic potentiation of anterior cingulate cortex contributes to chronic pain of Parkinson's disease. Mol Brain 2021; 14:161. [PMID: 34742316 PMCID: PMC8572509 DOI: 10.1186/s13041-021-00870-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson’s disease (PD) is a multi-system neurodegenerative disorder. Patients with PD often suffer chronic pain. In the present study, we investigated motor, sensory and emotional changes in three different PD mice models. We found that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treatment caused significant changes in all measurements. Mechanical hypersensitivity of PD model induced by MPTP peaked at 3 days and persisted for at least 14 days. Using Fos transgenic mice, we found that neurons in the anterior cingulate cortex (ACC) were activated after MPTP treatment. Inhibiting ACC by bilateral microinjection of muscimol significantly reduced mechanical hypersensitivity and anxiety-like responses. By contrast, MPTP induced motor deficit was not affected, indicating ACC activity is mostly responsible for sensory and emotional changes. We also investigated excitatory synaptic transmission and plasticity using brain slices of MPTP treated animals. While L-LTP was blocked or significantly reduced. E-LTP was not significantly affected in slices of MPTP treated animals. LTD induced by repetitive stimulation was not affected. Furthermore, we found that paired-pulse facilitation and spontaneous release of glutamate were also altered in MPTP treated animals, suggesting presynaptic enhancement of excitatory transmission in PD. Our results suggest that ACC synaptic transmission is enhanced in the animal model of PD, and cortical excitation may play important roles in PD related pain and anxiety.
Collapse
Affiliation(s)
- Zhaoxiang Zhou
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Penghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Yuxiang Zhang
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Muhang Li
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Qi-Yu Chen
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Man Xue
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanan Li
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China
| | - Weiqi Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ping-Yi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China. .,Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
41
|
Tsuboi Y, Koebis M, Kogo Y, Ishida T, Suzuki I, Nomoto M, Hattori N. Effects of safinamide adjunct therapy on pain in patients with Parkinson's disease: Post hoc analysis of a Japanese phase 2/3 study. J Neurol Sci 2021; 429:118070. [PMID: 34509801 DOI: 10.1016/j.jns.2021.118070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The non-dopaminergic and dopaminergic actions of safinamide may alleviate pain in patients with Parkinson's disease (PD). We investigated the efficacy of safinamide for pain when administered as an adjunct to levodopa in Japanese patients with PD. METHODS This was a post hoc analysis of a phase 2/3 clinical study of safinamide in Japanese patients with PD who were experiencing wearing-off. Pain was assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) Part II 'sensory symptoms' item 17, on a scale of 0-4, and the 39-item Parkinson's Disease Questionnaire (PDQ-39) 'bodily discomfort' domain score. Subgroup analyses, according to baseline symptoms and concomitant medications, were also performed. RESULTS Least square (LS) mean changes in the UPDRS item 17 score from baseline to Week 24 in the placebo, safinamide 50-mg and safinamide 100-mg groups during the OFF phase were 0.08, -0.15 (p = 0.0133 vs placebo) and -0.18 (p = 0.0054), respectively, and during the ON phase were 0.04, -0.08 (p = 0.0529) and -0.08 (p = 0.0505), respectively. Changes from baseline to Week 24 in PDQ-39 'bodily discomfort' scores were not significantly different in safinamide groups vs placebo. The presence of moderate-to-severe bradykinesia or early-morning dystonia at baseline resulted in numerically greater effect sizes in UPDRS item 17 scores during the OFF phase. CONCLUSIONS Safinamide 50 mg and 100 mg reduced the UPDRS item 17 score in patients with PD, especially during the OFF phase. Patients with moderate-to-severe bradykinesia and early-morning dystonia may benefit from safinamide treatment.
Collapse
Affiliation(s)
- Yoshio Tsuboi
- Department of Neurology, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Michinori Koebis
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan.
| | - Yuki Kogo
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan.
| | - Takayuki Ishida
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan.
| | - Ippei Suzuki
- Medicine Development Center, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo 112-8088, Japan.
| | - Masahiro Nomoto
- Saiseikai Imabari Center for Health and Welfare, 7-6-1 Kitamura, Imabari, Ehime 799-1592, Japan.
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan.
| |
Collapse
|
42
|
Diao Y, Bai Y, Hu T, Yin Z, Liu H, Meng F, Yang A, Zhang J. A Meta-Analysis of the Effect of Subthalamic Nucleus-Deep Brain Stimulation in Parkinson's Disease-Related Pain. Front Hum Neurosci 2021; 15:688818. [PMID: 34276330 PMCID: PMC8281028 DOI: 10.3389/fnhum.2021.688818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Pain from Parkinson's disease (PD) is a non-motor symptom affecting the quality of life and has prevalence of 20–80%. However, it is unclear whether subthalamic nucleus deep brain stimulation (STN–DBS), a well-established treatment for PD, is effective forPD-related pain. Thus, the objective of this meta-analysis was to investigate the efficacy of STN-DBS on PD-related pain and explore how its duration affects the efficacy of STN-DBS. A systematic search was performed using PubMed, Embase, and the Cochrane Library. Nine studies included numerical rating scale (NRS), visual analog scale (VAS), or non-motor symptom scale (NMSS) scores at baseline and at the last follow-up visit and therefore met the inclusion criteria of the authors. These studies exhibited moderate- to high-quality evidence. Two reviewers conducted assessments for study eligibility, risk of bias, data extraction, and quality of evidence rating. Random effect meta-analysis revealed a significant change in PD-related pain as assessed by NMSS, NRS, and VAS (P <0.01). Analysis of the short and long follow-up subgroups indicated delayed improvement in PD-related pain. These findings (a) show the efficacy of STN-DBS on PD-related pain and provide higher-level evidence, and (b) implicate delayed improvement in PD-related pain, which may help programming doctors with supplement selecting target and programming. Systematic Review Registration: This study is registered in Open Science Framework (DOI: 10.17605/OSF.IO/DNM6K).
Collapse
Affiliation(s)
- Yu Diao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huangguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
43
|
Li X, Wang W, Yan J, Zeng F. Glutamic Acid Transporters: Targets for Neuroprotective Therapies in Parkinson's Disease. Front Neurosci 2021; 15:678154. [PMID: 34220434 PMCID: PMC8242205 DOI: 10.3389/fnins.2021.678154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly individuals. At present, no effective drug has been developed to treat PD. Although a variety of drugs exist for the symptomatic treatment of PD, they all have strong side effects. Most studies on PD mainly focus on dopaminergic neurons. This review highlights the function of glutamic acid transporters (GLTs), including excitatory amino acid transporters (EAATs) and vesicular glutamate transporters (VGLUTs), during the development of PD. In addition, using bioinformatics, we compared the expression of different types of glutamate transporter genes in the cingulate gyrus of PD patients and healthy controls. More importantly, we suggest that the functional roles of glutamate transporters may prove beneficial in the treatment of PD. In summary, VGLUTs and EAATs may be potential targets in the treatment of PD. VGLUTs and EAATs can be used as clinical drug targets to achieve better efficacy. Through this review article, we hope to enable future researchers to improve the condition of PD patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jianghong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
44
|
Pagonabarraga J, Tinazzi M, Caccia C, Jost WH. The role of glutamatergic neurotransmission in the motor and non-motor symptoms in Parkinson's disease: Clinical cases and a review of the literature. J Clin Neurosci 2021; 90:178-183. [PMID: 34275546 DOI: 10.1016/j.jocn.2021.05.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and, as such, many brain regions, including the basal ganglia, are rich in glutamatergic neurons. The importance of the basal ganglia in the control of voluntary movement has long been recognised, with the effect of dysfunction of the region exemplified by the motor symptoms seen in Parkinson's disease (PD). However, the basal ganglia and the associated glutamatergic system also play a role in the modulation of emotion, nociception and cognition, dysregulation of which result in some of the non-motor symptoms of PD (depression/anxiety, pain and cognitive deficits). Thus, while the treatment of PD has traditionally been approached from the perspective of dopaminergic replacement, using agents such as levodopa and dopamine receptor agonists, the glutamatergic system offers a novel treatment target for the disease. Safinamide has been approved in over 20 countries globally for fluctuating PD as add-on therapy to levodopa regimens for the management of 'off' episodes. The drug has both dopaminergic and non-dopaminergic pharmacological effects, the latter including inhibition of abnormal glutamate release. The effect of safinamide on the glutamatergic system might present some advantages over dopamine-based therapies for PD by providing efficacy for motor (levodopa-induced dyskinesia) as well as non-motor (anxiety, mood disorders, pain) symptoms. In this article, we discuss the potential role of glutamatergic inhibition on these symptoms, using illustrative real-world examples of patients we have treated with safinamide.
Collapse
Affiliation(s)
- Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Michele Tinazzi
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
| | - Carla Caccia
- CNS Preclinical Pharmacology, Independent Advisor, Milan, Italy.
| | | |
Collapse
|
45
|
Bouali-Benazzouz R, Benazzouz A. Covid-19 Infection and Parkinsonism: Is There a Link? Mov Disord 2021; 36:1737-1743. [PMID: 34080714 PMCID: PMC8242862 DOI: 10.1002/mds.28680] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is an opportunistic pathogen that infects the upper respiratory tract in humans and causes serious illness, including fatal pneumonia and neurological disorders. Several studies have reported that SARS‐CoV‐2 may worsen the symptoms of Parkinson's disease (PD), with the potential to increase mortality rates in patients with advanced disease. The potential risk of SARS‐CoV‐2 to induce PD has also been suggested because the virus can enter the brain, where it can trigger cellular processes involved in neurodegeneration. In this review, we will discuss the potential of SARS‐CoV‐2 to exacerbate and cause certain neurological disorders, including PD. We will then elucidate its impact on the brain while examining its pathways and mechanisms of action. © 2021 International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des maladies neurodégénératives, Bordeaux, France.,CNRS, Institut des maladies neurodégénératives, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des maladies neurodégénératives, Bordeaux, France.,CNRS, Institut des maladies neurodégénératives, Bordeaux, France
| |
Collapse
|
46
|
Rukavina K, Cummins TM, Chaudhuri KR, Bannister K. Pain in Parkinson's disease: Mechanism-based treatment strategies. Curr Opin Support Palliat Care 2021; 15:108-115. [PMID: 33782333 DOI: 10.1097/spc.0000000000000546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Chronic pain, highly prevalent throughout the course of Parkinson's disease (PD), has been ranked as one of the top ten most bothersome symptoms people with Parkinson's (PwP) are experiencing. Yet, robust evidence-based treatment strategies are lacking. This unmet need is partly attributable to the multifaceted nature of PD-related pain, which results in part from a complex and poorly understood interplay involving a range of neurotransmitter pathways. Degeneration of nigrostriatal dopaminergic pathways and alterations of central nervous system extra-striatal dopaminergic, noradrenergic, serotoninergic, glutamatergic, opioidergic and endocannabinoid circuits may all promote a heightened experience of pain in PwP. Thus, the potential targets for mechanism-based pain-relieving strategies in PwP are several. These targets are discussed herein. RECENT FINDINGS An increasing number of clinical trials and experimental studies in animal models of PD are being designed with the aim of addressing the pathophysiological mechanism(s) underlying PD-related pain. Overall, recent research findings highlight the analgesic effects of dopaminergic and opioidergic medication for certain subtypes of pain in PwP, whereas proposing novel strategies that involve targeting other neurotransmitter pathways. SUMMARY The origin of pain in PwP remains under investigation. Although our understanding of the mechanisms underpinning persistent pain in PD has improved in recent years, this has not yet translated to clinical alleviation of this most troublesome nonmotor symptom. Patient stratification linked with evidence-based personalized pain-treatment plans for optimal analgesic relief will rely on advances in our understanding of the dopaminergic and nondopaminergic targets outlined in this review.
Collapse
Affiliation(s)
- Katarina Rukavina
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Tatum M Cummins
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Kirsty Bannister
- Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
47
|
Bak MS, Park H, Kim SK. Neural Plasticity in the Brain during Neuropathic Pain. Biomedicines 2021; 9:624. [PMID: 34072638 PMCID: PMC8228570 DOI: 10.3390/biomedicines9060624] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
Neuropathic pain is an intractable chronic pain, caused by damage to the somatosensory nervous system. To date, treatment for neuropathic pain has limited effects. For the development of efficient therapeutic methods, it is essential to fully understand the pathological mechanisms of neuropathic pain. Besides abnormal sensitization in the periphery and spinal cord, accumulating evidence suggests that neural plasticity in the brain is also critical for the development and maintenance of this pain. Recent technological advances in the measurement and manipulation of neuronal activity allow us to understand maladaptive plastic changes in the brain during neuropathic pain more precisely and modulate brain activity to reverse pain states at the preclinical and clinical levels. In this review paper, we discuss the current understanding of pathological neural plasticity in the four pain-related brain areas: the primary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray, and the basal ganglia. We also discuss potential treatments for neuropathic pain based on the modulation of neural plasticity in these brain areas.
Collapse
Affiliation(s)
- Myeong Seong Bak
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; (M.S.B.); (H.P.)
| | - Haney Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; (M.S.B.); (H.P.)
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; (M.S.B.); (H.P.)
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
48
|
Meijer LL, Ruis C, van der Smagt MJ, Scherder EJA, Dijkerman HC. Neural basis of affective touch and pain: A novel model suggests possible targets for pain amelioration. J Neuropsychol 2021; 16:38-53. [PMID: 33979481 PMCID: PMC9290016 DOI: 10.1111/jnp.12250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/09/2021] [Indexed: 01/03/2023]
Abstract
Pain is one of the most common health problems and has a severe impact on quality of life. Yet, a suitable and efficient treatment is still not available for all patient populations suffering from pain. Interestingly, recent research shows that low threshold mechanosensory C‐tactile (CT) fibres have a modulatory influence on pain. CT‐fibres are activated by slow gentle stroking of the hairy skin, providing a pleasant sensation. Consequently, slow gentle stroking is known as affective touch. Currently, a clear overview of the way affective touch modulates pain, at a neural level, is missing. This review aims to present such an overview. To explain the interaction between affective touch and pain, first the neural basis of the affective touch system and the neural processing of pain will be described. To clarify these systems, a schematic illustration will be provided in every section. Hereafter, a novel model of interactions between affective touch and pain systems will be introduced. Finally, since affective touch might be suitable as a new treatment for chronic pain, possible clinical implications will be discussed.
Collapse
Affiliation(s)
| | - Carla Ruis
- Utrecht University, The Netherlands.,University Medical Centre Utrecht, The Netherlands
| | | | | | | |
Collapse
|
49
|
Huang S, Zhang Z, Gambeta E, Xu SC, Thomas C, Godfrey N, Chen L, M'Dahoma S, Borgland SL, Zamponi GW. Dopamine Inputs from the Ventral Tegmental Area into the Medial Prefrontal Cortex Modulate Neuropathic Pain-Associated Behaviors in Mice. Cell Rep 2021; 31:107812. [PMID: 32579938 DOI: 10.1016/j.celrep.2020.107812] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023] Open
Abstract
The medial prefrontal cortex (mPFC) is a brain region involved in the affective components of pain and undergoes plasticity during the development of chronic pain. Dopamine (DA) is a key neuromodulator in the mesocortical circuit and modulates working memory and aversion. Although DA inputs into the mPFC are known to modulate plasticity, whether and how these inputs affect pain remains incompletely understood. By using optogenetics, we find that phasic activation of DA inputs from the ventral tegmental area (VTA) into the mPFC reduce mechanical hypersensitivity during neuropathic pain states. Mice with neuropathic pain exhibit a preference for contexts paired with photostimulation of DA terminals in the mPFC. Fiber photometry-based calcium imaging reveals that DA increases the activity of mPFC neurons projecting to the ventrolateral periaqueductal gray (vlPAG). Together, our findings indicate an important role of mPFC DA signaling in pain modulation.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Eder Gambeta
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shi Chen Xu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Catherine Thomas
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nathan Godfrey
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Said M'Dahoma
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
50
|
Chidambaran V, Zhang X, Pilipenko V, Chen X, Wronowski B, Geisler K, Martin LJ, Barski A, Weirauch MT, Ji H. Methylation quantitative trait locus analysis of chronic postsurgical pain uncovers epigenetic mediators of genetic risk. Epigenomics 2021; 13:613-630. [PMID: 33820434 DOI: 10.2217/epi-2020-0424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Overlap of pathways enriched by single nucleotide polymorphisms and DNA-methylation underlying chronic postsurgical pain (CPSP), prompted pilot study of CPSP-associated methylation quantitative trait loci (meQTL). Materials & methods: Children undergoing spine-fusion were recruited prospectively. Logistic-regression for genome- and epigenome-wide CPSP association and DNA-methylation-single nucleotide polymorphism association/mediation analyses to identify meQTLs were followed by functional genomics analyses. Results: CPSP (n = 20/58) and non-CPSP groups differed in pain-measures. Of 2753 meQTLs, DNA-methylation at 127 cytosine-guanine dinucleotides mediated association of 470 meQTLs with CPSP (p < 0.05). At PARK16 locus, CPSP risk meQTLs were associated with decreased DNA-methylation at RAB7L1 and increased DNA-methylation at PM20D1. Corresponding RAB7L1/PM20D1 blood eQTLs (GTEx) and cytosine-guanine dinucleotide-loci enrichment for histone marks, transcription factor binding sites and ATAC-seq peaks suggest altered transcription factor-binding. Conclusion: CPSP-associated meQTLs indicate epigenetic mechanisms mediate genetic risk. Clinical trial registration: NCT01839461, NCT01731873 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Wronowski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristie Geisler
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Artem Barski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Hong Ji
- Department of Anatomy, Physiology & Cell biology, California National Primate Research Center, University of California, Davis, CA 95616, USA
| |
Collapse
|