1
|
Harastova-Pavlova I, Drazanova E, Kratka L, Amchova P, Hrickova M, Macicek O, Vitous J, Jirik R, Ruda-Kucerova J. Chronic citalopram effects on the brain neurochemical profile and perfusion in a rat model of depression detected by the NMR techniques - spectroscopy and perfusion. Biomed Pharmacother 2024; 181:117656. [PMID: 39486369 DOI: 10.1016/j.biopha.2024.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a mental illness with a high worldwide prevalence and suboptimal pharmacological treatment, which necessitates the development of novel, more efficacious MDD medication. Nuclear magnetic resonance (NMR) can non-invasively provide insight into the neurochemical state of the brain using proton magnetic resonance spectroscopy (1H MRS), and an assessment of regional cerebral blood flow (rCBF) by perfusion imaging. These methods may provide valuable in vivo markers of the pathological processes underlying MDD. METHODS This study examined the effects of the chronic antidepressant medication, citalopram, in a well-validated MDD model induced by bilateral olfactory bulbectomy (OB) in rats. 1H MRS was utilized to assess key metabolite ratios in the dorsal hippocampus and sensorimotor cortex bilaterally, and arterial spin labelling was employed to estimate rCBF in several additional brain regions. RESULTS The 1H MRS data results suggest lower hippocampal Cho/tCr and lower cortical NAA/tCr levels as a characteristic of the OB phenotype. Spectroscopy revealed lower hippocampal Tau/tCr in citalopram-treated rats, indicating a potentially deleterious effect of the drug. However, the significant OB model-citalopram treatment interaction was observed using 1H MRS in hippocampal mI/tCr, Glx/tCr and Gln/tCr, indicating differential treatment effects in the OB and control groups. The perfusion data revealed higher rCBF in the whole brain, hippocampus and thalamus in the OB rats, while citalopram appeared to normalise it without affecting the control group. CONCLUSION Collectively, 1H MRS and rCBF approaches demonstrated their capacity to capture an OB-induced phenotype and chronic antidepressant treatment effect in multiple brain regions.
Collapse
Affiliation(s)
- Iveta Harastova-Pavlova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Drazanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic; Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucie Kratka
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Hrickova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Macicek
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiri Vitous
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic; Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Radovan Jirik
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Russo A, Örzsik B, Yalin N, Simpson I, Nwaubani P, Pinna A, De Marco R, Sharp H, Kartar A, Singh N, Blockley N, Stone AJL, Turkheimer FE, Young AH, Cercignani M, Zelaya F, Asllani I, Colasanti A. Altered oxidative neurometabolic response to methylene blue in bipolar disorder revealed by quantitative neuroimaging. J Affect Disord 2024; 362:790-798. [PMID: 39019231 DOI: 10.1016/j.jad.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Cerebral mitochondrial and hemodynamic abnormalities have been implicated in Bipolar Disorder pathophysiology, likely contributing to neurometabolic vulnerability-leading to worsen clinical outcomes and mood instability. To investigate neurometabolic vulnerability in patients with BD, we combined multi-modal quantitative MRI assessment of cerebral oxygenation with acute administration of Methylene Blue, a neurometabolic/hemodynamic modulator acting on cerebral mitochondria. METHODS Fifteen euthymic patients with chronic BD-type 1, and fifteen age/gender-matched healthy controls underwent two separate MRI sessions in a single-blinded randomized cross-over design, each after intravenous infusion of either MB (0.5 mg/kg) or placebo. MRI-based measures of Cerebral Blood Flow and Oxygen Extraction Fraction were integrated to compute Cerebral Metabolic Rate of Oxygen in Frontal Lobe, Anterior Cingulate, and Hippocampus-implicated in BD neurometabolic pathophysiology. Inter-daily variation in mood rating was used to assess mood instability. RESULTS A decrease in global CBF and CMRO2 was observed after acutely administrating MB to all participants. Greater regional CMRO2 reductions were observed after MB, in patients compared to controls in FL (mean = -14.2 ± 19.5 % versus 2.3 ± 14.8 %), ACC (mean = -14.8 ± 23.7 % versus 2.4 ± 15.7 %). The effects on CMRO2 in those regions were primarily driven by patients with longer disease duration and higher mood instability. LIMITATIONS Sample size; medications potentially impacting on response to MB. CONCLUSIONS An altered neurometabolic response to MB, a mitochondrial/hemodynamic modulator, was observed in patients, supporting the hypothesis of vulnerability to neurometabolic stress in BD. Integrating quantitative imaging of cerebral oxygen metabolism with a mitochondrial-targeting pharmacological challenge could provide a novel biomarker of neurometabolic and cerebrovascular pathophysiology in BD.
Collapse
Affiliation(s)
- Alfonso Russo
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK; Sussex Partnership NHS Foundation Trust, Worthing, UK.
| | - Balázs Örzsik
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK; Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nefize Yalin
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivor Simpson
- School of Engineering and Informatics, University of Sussex, Falmer, Brighton, UK
| | - Prince Nwaubani
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Antonello Pinna
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Riccardo De Marco
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Harriet Sharp
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Amy Kartar
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK
| | - Nisha Singh
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | | | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Mara Cercignani
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Fernando Zelaya
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Iris Asllani
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK; Biomedical Engineering, Rochester Institute of Technology, Rochester, USA
| | - Alessandro Colasanti
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton, UK; Sussex Partnership NHS Foundation Trust, Worthing, UK
| |
Collapse
|
3
|
Sun Q, Xiong N, Wang Y, Xia Z, Chen J, Yan C, Sun H. Shared and distinct aberrations in frontal-striatal system functional patterns among patients with irritable bowel syndrome and major depressive disorder. J Affect Disord 2024; 362:391-403. [PMID: 38986877 DOI: 10.1016/j.jad.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Considering the high comorbidity, shared risk factors, and genetic pathways between irritable bowel syndrome (IBS) and major depressive disorder (MDD), we hypothesized that there would be both shared and disorder-specific alterations in brain function. METHODS A total of 39 IBS patients, 39 MDD patients, and 40 healthy controls (HCs) were enrolled and matched for sex, age, and educational level. All subjects underwent resting-state functional MRI. The clinical variables of anxiety, depression, gastrointestinal symptoms and alexithymia were recorded. The 12 subregions of the striatum were employed as seeds to assess their functional connectivity (FC) with every voxel throughout the whole brain. RESULTS Compared to HC, IBS and MDD patients exhibited aberrant frontal-striatal circuitry. We observed a common decrease in FC between the dorsal striatum and regions of the hippocampus, sensorimotor cortex, and prefrontal cortex (PFC) in both IBS and MDD patients. Patients with IBS exhibited disorder-specific decreases in FC within the striatum, along with reduced connectivity between the ventral striatum and sensorimotor cortex. In contrast, MDD patients showed disorder-specific hyperconnectivity in the medial PFC-limbic system. Receiver operating characteristic curve analysis showed that frontal-striatal FC values could serve as transdiagnostic markers of IBS and MDD. Within the IBS group, striatal connectivity was not only negatively associated with weekly abdominal pain days but also negatively correlated with the levels of anxiety and alexithymia. CONCLUSIONS This exploratory analysis indicated that patients with IBS and MDD exhibited both shared and disorder-specific frontal-striatal circuit impairments, potentially explaining both comorbidity and distinct phenotypes.
Collapse
Affiliation(s)
- Qiqing Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Nana Xiong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yuwei Wang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Xia
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chaogan Yan
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
4
|
Dai K, Liu X, Hu J, Ren F, Jin Z, Xu S, Cao P. Insomnia-related brain functional correlates in first-episode drug-naïve major depressive disorder revealed by resting-state fMRI. Front Neurosci 2024; 18:1290345. [PMID: 39268040 PMCID: PMC11390676 DOI: 10.3389/fnins.2024.1290345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Insomnia is a common comorbidity symptom in major depressive disorder (MDD) patients. Abnormal brain activities have been observed in both MDD and insomnia patients, however, the central pathological mechanisms underlying the co-occurrence of insomnia in MDD patients are still unclear. This study aimed to explore the differences of spontaneous brain activity between MDD patients with and without insomnia, as well as patients with different level of insomnia. Methods A total of 88 first-episode drug-naïve MDD patients including 44 with insomnia (22 with high insomnia and 22 with low insomnia) and 44 without insomnia, as well as 44 healthy controls (HC), were enrolled in this study. The level of depression and insomnia were evaluated by HAMD-17, adjusted HAMD-17 and its sleep disturbance subscale in all subjects. Resting-state functional and structural magnetic resonance imaging data were acquired from all participants and then were preprocessed by the software of DPASF. Regional homogeneity (ReHo) values of brain regions were calculated by the software of REST and were compared. Finally, receiver operating characteristic (ROC) curves were conducted to determine the values of abnormal brain regions for identifying MDD patients with insomnia and evaluating the severity of insomnia. Results Analysis of variance showed that there were significant differences in ReHo values in the left middle frontal gyrus, left pallidum, right superior frontal gyrus, right medial superior frontal gyrus and right rectus gyrus among three groups. Compared with HC, MDD patients with insomnia showed increased ReHo values in the medial superior frontal gyrus, middle frontal gyrus, triangular inferior frontal gyrus, calcarine fissure and right medial superior frontal gyrus, medial orbital superior frontal gyrus, as well as decreased ReHo values in the left middle occipital gyrus, pallidum and right superior temporal gyrus, inferior temporal gyrus, middle cingulate gyrus, hippocampus, putamen. MDD patients without insomnia demonstrated increased ReHo values in the left middle frontal gyrus, orbital middle frontal gyrus, anterior cingulate gyrus and right triangular inferior frontal gyrus, as well as decreased ReHo values in the left rectus gyrus, postcentral gyrus and right rectus gyrus, fusiform gyrus, pallidum. In addition, MDD patients with insomnia had decreased ReHo values in the left insula when compared to those without insomnia. Moreover, MDD patients with high insomnia exhibited increased ReHo values in the right middle temporal gyrus, and decreased ReHo values in the left orbital superior frontal gyrus, lingual gyrus, right inferior parietal gyrus and postcentral gyrus compared to those with low insomnia. ROC analysis demonstrated that impaired brain region might be helpful for identifying MDD patients with insomnia and evaluating the severity of insomnia. Conclusion These findings suggested that MDD patients with insomnia had wider abnormalities of brain activities in the prefrontal-limbic circuits including increased activities in the prefrontal cortex, which might be the compensatory mechanism underlying insomnia in MDD. In addition, decreased activity of left insula might be associated with the occurrence of insomnia in MDD patients and decreased activities of the frontal-parietal network might cause more serious insomnia related to MDD.
Collapse
Affiliation(s)
- Ke Dai
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianwei Liu
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuma Jin
- Department of Psychiatry, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shulan Xu
- Department of Gerontology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Cao
- Department of Radiology, Nanjing Brain Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Cattarinussi G, Di Camillo F, Grimaldi DA, Sambataro F. Diagnostic value of regional homogeneity and fractional amplitude of low-frequency fluctuations in the classification of schizophrenia and bipolar disorders. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01838-4. [PMID: 38914853 DOI: 10.1007/s00406-024-01838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Schizophrenia (SCZ) and bipolar disorders (BD) show significant neurobiological and clinical overlap. In this study, we wanted to identify indexes of intrinsic brain activity that could differentiate these disorders. We compared the diagnostic value of the fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) estimated from resting-state functional magnetic resonance imaging in a support vector machine classification of 59 healthy controls (HC), 40 individuals with SCZ, and 43 individuals with BD type I. The best performance, measured by balanced accuracy (BAC) for binary classification relative to HC was achieved by a stacking model (87.4% and 90.6% for SCZ and BD, respectively), with ReHo performing better than fALFF, both in SCZ (86.2% vs. 79.4%) and BD (89.9% vs. 76.9%). BD were better differentiated from HC by fronto-temporal ReHo and striato-temporo-thalamic fALFF. SCZ were better classified from HC using fronto-temporal-cerebellar ReHo and insulo-tempo-parietal-cerebellar fALFF. In conclusion, we provided evidence of widespread aberrancies of spontaneous activity and local connectivity in SCZ and BD, demonstrating that ReHo features exhibited superior discriminatory power compared to fALFF and achieved higher classification accuracies. Our results support the complementarity of these measures in the classification of SCZ and BD and suggest the potential for multivariate integration to improve diagnostic precision.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), Padova Neuroscience Center (PNC), University of Padova, Azienda Ospedaliera di Padova, Via Giustiniani, 2, Padua, I-35128, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fabio Di Camillo
- Department of Neuroscience (DNS), Padova Neuroscience Center (PNC), University of Padova, Azienda Ospedaliera di Padova, Via Giustiniani, 2, Padua, I-35128, Italy
| | - David Antonio Grimaldi
- Department of Neuroscience (DNS), Padova Neuroscience Center (PNC), University of Padova, Azienda Ospedaliera di Padova, Via Giustiniani, 2, Padua, I-35128, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padova Neuroscience Center (PNC), University of Padova, Azienda Ospedaliera di Padova, Via Giustiniani, 2, Padua, I-35128, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
6
|
Dai P, Shi Y, Lu D, Zhou Y, Luo J, He Z, Chen Z, Zou B, Tang H, Huang Z, Liao S. Classification of recurrent major depressive disorder using a residual denoising autoencoder framework: Insights from large-scale multisite fMRI data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108114. [PMID: 38447315 DOI: 10.1016/j.cmpb.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Recurrent major depressive disorder (rMDD) has a high recurrence rate, and symptoms often worsen with each episode. Classifying rMDD using functional magnetic resonance imaging (fMRI) can enhance understanding of brain activity and aid diagnosis and treatment of this disorder. METHODS We developed a Residual Denoising Autoencoder (Res-DAE) framework for the classification of rMDD. The functional connectivity (FC) was extracted from fMRI data as features. The framework addresses site heterogeneity by employing the Combat method to harmonize feature distribution differences. A feature selection method based on Fisher scores was used to reduce redundant information in the features. A data augmentation strategy using a Synthetic Minority Over-sampling Technique algorithm based on Extended Frobenius Norm measure was incorporated to increase the sample size. Furthermore, a residual module was integrated into the autoencoder network to preserve important features and improve the classification accuracy. RESULTS We tested our framework on a large-scale, multisite fMRI dataset, which includes 189 rMDD patients and 427 healthy controls. The Res-DAE achieved an average accuracy of 75.1 % (sensitivity = 69 %, specificity = 77.8 %) in cross-validation, thereby outperforming comparison methods. In a larger dataset that also includes first-episode depression (comprising 832 MDD patients and 779 healthy controls), the accuracy reached 70 %. CONCLUSIONS We proposed a deep learning framework that can effectively classify rMDD and 33 identify the altered FC associated with rMDD. Our study may reveal changes in brain function 34 associated with rMDD and provide assistance for the diagnosis and treatment of rMDD.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yun Shi
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Da Lu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Zhou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jialin Luo
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhuang He
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zailiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Tang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410083, China
| | - Zhongchao Huang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410083, China
| | - Shenghui Liao
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
7
|
Su S, Zhao J, Dai Y, Lin L, Zhou Q, Yan Z, Qian L, Cui W, Liu M, Zhang H, Yang Z, Chen Y. Altered neurovascular coupling in the children with attention-deficit/hyperactivity disorder: a comprehensive fMRI analysis. Eur Child Adolesc Psychiatry 2024; 33:1081-1091. [PMID: 37222790 DOI: 10.1007/s00787-023-02238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The coupling between resting-state cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) signals reflects the mechanism of neurovascular coupling (NVC), which have not been illustrated in attention-deficit/hyperactivity disorder (ADHD). Fifty ADHD and 42 age- and gender-matched typically developing controls (TDs) were enrolled. The NVC imaging metrics were investigated by exploring the Pearson correlation coefficients between CBF and BOLD-derived quantitative maps (ALFF, fALFF, DCP maps). Three types of NVC metrics (CBF-ALFF, CBF-fALFF, CBF-DCP coupling) were compared between ADHD and TDs group, and the inner association between altered NVC metrics and clinical variables in ADHD group was further analyzed. Compared to TDs, ADHD showed significantly reduced whole-brain CBF-ALFF coupling (P < 0.001). Among regional level (all PFDR < 0.05), ADHD showed significantly lower CBF-ALFF coupling in bilateral thalamus, default-mode network (DMN) involving left anterior cingulate (ACG.L) and right parahippocampal gyrus (PHG.R), execution control network (ECN) involving right middle orbital frontal gyrus (ORBmid.R) and right inferior frontal triangular gyrus (IFGtriang.R), and increased CBF-ALFF coupling in attention network (AN)-related left superior temporal gyrus (STG.L) and somatosensory network (SSN))-related left rolandic operculum (ROL.L). Furthermore, increased CBF-fALFF coupling was found in the visual network (VN)-related left cuneus and negatively correlated with the concentration index of ADHD (R = - 0.299, PFDR = 0.035). Abnormal regional NVC metrics were at widespread neural networks in ADHD, mainly involved in DMN, ECN, SSN, AN, VN and bilateral thalamus. Notably, this study reinforced the insights into the neural basis and pathophysiological mechanism underlying ADHD.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhao
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Zhang T, Zhang Y, Ren J, Zhou H, Yang M, Li L, Lei D, Gong Q, Zhou D, Yang T. Dynamic alterations of striatal-related functional networks in juvenile absence epilepsy. Epilepsy Behav 2023; 149:109506. [PMID: 37925871 DOI: 10.1016/j.yebeh.2023.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE To explore the features of dynamic functional connectivity (dFC) variability of striatal-cortical/subcortical networks in juvenile absence epilepsy (JAE). METHODS We collected resting-state functional magnetic imaging data from 18 JAE patients and 28 healthy controls. The striatum was divided into six pairs of regions: the inferior-ventral striatum (VSi), superior-ventral striatum (VSs), dorsal-caudal putamen, dorsal-rostral putamen, dorsal-caudate (DC) and ventral-rostral putamen. We assessed the dFC variability of each subdivision in the whole brain using the sliding-window method, and correlated altered circuit with clinical variables in JAE patients. RESULTS We found altered dFC variability of striatal-cortical/subcortical networks in patients with JAE. The VSs exhibited decreased dFC variability with subcortical regions, and dFC variability between VSs and thalamus was negatively correlated with epilepsy duration. For the striatal-cortical networks, the dFC variability was decreased in VSi-affective network but increased in DC-executive network. The altered dynamics of striatal-cortical networks involved crucial nodes of the default mode network (DMN). CONCLUSION JAE patients exhibit excessive stability in the striatal-subcortical networks. For striatal-cortical networks in JAE, the striatal-affective circuit was more stable, while the striatal-executive circuit was more variable. Furthermore, crucial nodes of DMN were changed in striatal-cortical networks in JAE.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huanyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Menghan Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhua Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Li D, Hao J, Hao J, Cui X, Niu Y, Xiang J, Wang B. Enhanced Dynamic Laterality Based on Functional Subnetworks in Patients with Bipolar Disorder. Brain Sci 2023; 13:1646. [PMID: 38137094 PMCID: PMC10741828 DOI: 10.3390/brainsci13121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023] Open
Abstract
An ocean of studies have pointed to abnormal brain laterality changes in patients with bipolar disorder (BD). Determining the altered brain lateralization will help us to explore the pathogenesis of BD. Our study will fill the gap in the study of the dynamic changes of brain laterality in BD patients and thus provide new insights into BD research. In this work, we used fMRI data from 48 BD patients and 48 normal controls (NC). We constructed the dynamic laterality time series by extracting the dynamic laterality index (DLI) at each sliding window. We then used k-means clustering to partition the laterality states and the Arenas-Fernandez-Gomez (AFG) community detection algorithm to determine the number of states. We characterized subjects' laterality characteristics using the mean laterality index (MLI) and laterality fluctuation (LF). Compared with NC, in all windows and state 1, BD patients showed higher MLI in the attention network (AN) of the right hemisphere, and AN in the left hemisphere showed more frequent laterality fluctuations. AN in the left hemisphere of BD patients showed higher MLI in all windows and state 3 compared to NC. In addition, in the AN of the right hemisphere in state 1, higher MLI in BD patients was significantly associated with patient symptoms. Our study provides new insights into the understanding of BD neuropathology in terms of brain dynamic laterality.
Collapse
Affiliation(s)
- Dandan Li
- College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong 030600, China; (J.H.)
| | | | | | | | | | | | | |
Collapse
|
10
|
O’Donnell CM, Barrett DW, O’Connor P, Gonzalez-Lima F. Prefrontal photobiomodulation produces beneficial mitochondrial and oxygenation effects in older adults with bipolar disorder. Front Neurosci 2023; 17:1268955. [PMID: 38027522 PMCID: PMC10644301 DOI: 10.3389/fnins.2023.1268955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
There is growing evidence of mitochondrial dysfunction and prefrontal cortex (PFC) hypometabolism in bipolar disorder (BD). Older adults with BD exhibit greater decline in PFC-related neurocognitive functions than is expected for age-matched controls, and clinical interventions intended for mood stabilization are not targeted to prevent or ameliorate mitochondrial deficits and neurocognitive decline in this population. Transcranial infrared laser stimulation (TILS) is a non-invasive form of photobiomodulation, in which photons delivered to the PFC photo-oxidize the mitochondrial respiratory enzyme, cytochrome-c-oxidase (CCO), a major intracellular photon acceptor in photobiomodulation. TILS at 1064-nm can significantly upregulate oxidized CCO concentrations to promote differential levels of oxygenated vs. deoxygenated hemoglobin (HbD), an index of cerebral oxygenation. The objective of this controlled study was to use non-invasive broadband near-infrared spectroscopy to assess if TILS to bilateral PFC (Brodmann area 10) produces beneficial effects on mitochondrial oxidative energy metabolism (oxidized CCO) and cerebral oxygenation (HbD) in older (≥50 years old) euthymic adults with BD (N = 15). As compared to sham, TILS to the PFC in adults with BD increased oxidized CCO both during and after TILS, and increased HbD concentrations after TILS. By significantly increasing oxidized CCO and HbD concentrations above sham levels, TILS has the potential ability to stabilize mitochondrial oxidative energy production and prevent oxidative damage in the PFC of adults with BD. In conclusion, TILS was both safe and effective in enhancing metabolic function and subsequent hemodynamic responses in the PFC, which might help alleviate the accelerated neurocognitive decline and dysfunctional mitochondria present in BD.
Collapse
Affiliation(s)
- Courtney M. O’Donnell
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Douglas W. Barrett
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Patrick O’Connor
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
11
|
Dang Y, He Y, Zheng D, Wang X, Chen J, Zhou Y. Heritability of cerebral blood flow in adolescent and young adult twins: an arterial spin labeling perfusion imaging study. Cereb Cortex 2023; 33:10624-10633. [PMID: 37615361 DOI: 10.1093/cercor/bhad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023] Open
Abstract
Blood perfusion is a fundamental physiological property of all organs and is closely linked to brain metabolism. Genetic factors were reported to have important influences on cerebral blood flow. However, the profile of genetic contributions to cerebral blood flow in adolescents or young adults was underexplored. In this study, we recruited a sample of 65 pairs of same-sex adolescent or young adult twins undergoing resting arterial spin labeling imaging to conduct heritability analyses. Our findings indicate that genetic factors modestly affect cerebral blood flow in adolescents or young adults in the territories of left anterior cerebral artery and right posterior cerebral artery, with the primary contribution being to the frontal regions, cingulate gyrus, and striatum, suggesting a profile of genetic contributions to specific brain regions. Notably, the regions in the left hemisphere demonstrate the highest heritability in most regions examined. These results expand our knowledge of the genetic basis of cerebral blood flow in the developing brain and emphasize the importance of regional analysis in understanding the heritability of cerebral blood flow. Such insights may contribute to our understanding of the underlying genetic mechanism of brain functions and altered cerebral blood flow observed in youths with brain disorders.
Collapse
Affiliation(s)
- Yi Dang
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuwen He
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Center for Cognitive and Brain Sciences, University of Macau, Macao SAR 999078, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR 999078, China
| | - Dang Zheng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- China National Children's Center, Beijing 100035, China
| | - Xiaoming Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
| | - Jie Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing 100101, China
| | - Yuan Zhou
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing 100101, China
- The National Clinical Research Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
12
|
Salman MS, Verner E, Bockholt HJ, Fu Z, Misiura M, Baker BT, Osuch E, Sui J, Calhoun VD. Multi-study evaluation of neuroimaging-based prediction of medication class in mood disorders. Psychiatry Res Neuroimaging 2023; 333:111655. [PMID: 37201216 PMCID: PMC10330565 DOI: 10.1016/j.pscychresns.2023.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/20/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Clinicians often face a dilemma in diagnosing bipolar disorder patients with complex symptoms who spend more time in a depressive state than a manic state. The current gold standard for such diagnosis, the Diagnostic and Statistical Manual (DSM), is not objectively grounded in pathophysiology. In such complex cases, relying solely on the DSM may result in misdiagnosis as major depressive disorder (MDD). A biologically-based classification algorithm that can accurately predict treatment response may help patients suffering from mood disorders. Here we used an algorithm to do so using neuroimaging data. We used the neuromark framework to learn a kernel function for support vector machine (SVM) on multiple feature subspaces. The neuromark framework achieves up to 95.45% accuracy, 0.90 sensitivity, and 0.92 specificity in predicting antidepressant (AD) vs. mood stabilizer (MS) response in patients. We incorporated two additional datasets to evaluate the generalizability of our approach. The trained algorithm achieved up to 89% accuracy, 0.88 sensitivity, and 0.89 specificity in predicting the DSM-based diagnosis on these datasets. We also translated the model to distinguish responders to treatment from nonresponders with up to 70% accuracy. This approach reveals multiple salient biomarkers of medication-class of response within mood disorders.
Collapse
Affiliation(s)
- Mustafa S Salman
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, and Emory University], Atlanta, GA, USA; School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Eric Verner
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, and Emory University], Atlanta, GA, USA
| | - H Jeremy Bockholt
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, and Emory University], Atlanta, GA, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, and Emory University], Atlanta, GA, USA
| | - Maria Misiura
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, and Emory University], Atlanta, GA, USA
| | - Bradley T Baker
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, and Emory University], Atlanta, GA, USA
| | - Elizabeth Osuch
- Lawson Health Research Institute, London Health Sciences Centre, FEMAP, London, Ontario, Canada; Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, and Emory University], Atlanta, GA, USA; Institute of Automation, Chinese Academy of Sciences, and the University of Chinese Academy of Sciences, Beijing, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, and Emory University], Atlanta, GA, USA; School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
13
|
Xue C, Zhang X, Cao P, Yuan Q, Liang X, Zhang D, Qi W, Hu J, Xiao C. Evidence of functional abnormalities in the default mode network in bipolar depression: A coordinate-based activation likelihood estimation meta-analysis. J Affect Disord 2023; 326:96-104. [PMID: 36717032 DOI: 10.1016/j.jad.2023.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND The default mode network (DMN) is thought to be involved in the pathophysiology of bipolar depression (BD). However, the findings of prior studies on DMN alterations in BD are inconsistent. Thus, this study aimed to systematically investigate functional abnormalities of the DMN in BD patients. METHODS We systematically searched PubMed, Ovid, and Web of Science for functional neuroimaging studies on regional homogeneity, amplitude of low frequency fluctuations (ALFF), and functional connectivity of the DMN in BD patients published before March 18, 2022. The stereotactic coordinates of the reported altered brain regions were extracted and incorporated into a brain map using the coordinate-based activation likelihood estimation approach. RESULTS A total of 43 original research studies were included in the meta-analysis. BD patients showed specific changes in the DMN including decreased ALFF/fractional ALFF in the left cingulate gyrus (CG) and bilateral precuneus (PCUN); increased functional connectivity (FC) in the left CG, left posterior CG, left PCUN, bilateral medial frontal gyrus, and bilateral superior frontal gyrus; and decreased FC in the left CG, left PCUN, left inferior parietal lobule, and left postcentral gyrus. LIMITATIONS Conclusions are limited by the small number of studies, additional meta-analyses are needed to obtain more data in BD subgroup. CONCLUSION This meta-analysis supports specific changes in DMN activity and FC in BD patients, which may be powerful biomarkers for the diagnosis of BD. The CG and PCUN were the most affected regions and are thus potential targets for clinical interventions to delay BD progression.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xulian Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Cao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuhong Liang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Da Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
14
|
Jiang J, Li L, Lin J, Hu X, Zhao Y, Sweeney JA, Gong Q. A voxel-based meta-analysis comparing medication-naive patients of major depression with treated longer-term ill cases. Neurosci Biobehav Rev 2023; 144:104991. [PMID: 36476776 DOI: 10.1016/j.neubiorev.2022.104991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Structural neuroimaging studies have identified brain areas implicated in the pathogenesis of major depressive disorder (MDD). However, findings have been inconsistent, potentially due to variable illness duration and effects of antidepressant treatment. Using a meta-analytic approach, we compared gray matter (GM) volumes in patients grouped by medication status (naïve and treated) and illness duration (early course and long-term ill) to identify potential treatment and illness duration effects on brain structure. A total of 70 studies were included, including 3682 patients and 3469 controls. The pooled analysis found frontal, temporal and limbic regions with decreased GM volume in MDD patients. Additional analyses indicated that larger GM volume in the right striatum and smaller GM volume in the right precuneus are likely to be associated with drug effects, while smaller GM volume in the right temporal gyrus may correlate with longer illness duration. Similar GM decreases in bilateral medial frontal cortex between patient subgroups suggest that this alteration may persist over the course of illness and drug treatment.
Collapse
Affiliation(s)
- Jing Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361021, Fujian, China.
| |
Collapse
|
15
|
Zhou Q, Li M, Fan Q, Chen F, Jiang G, Wang T, He Q, Fu S, Yin Y, Lin J, Yan J. Cerebral perfusion alterations in patients with trigeminal neuralgia as measured by pseudo-continuous arterial spin labeling. Front Neurosci 2022; 16:1065411. [PMID: 36601595 PMCID: PMC9807247 DOI: 10.3389/fnins.2022.1065411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Accumulating evidence suggests that trigeminal neuralgia (TN) causes structural and functional alterations in the brain. However, only a few studies have focused on cerebral blood flow (CBF) changes in patients with TN. This study aimed to explore whether altered cerebral perfusion patterns exist in patients with TN and investigate the relationship between abnormal regional CBF (rCBF) and clinical characteristics of TN. Materials and methods This study included 28 patients with TN and 30 age- and sex-matched healthy controls (HCs) who underwent perfusion functional MRI (fMRI) of the brain using pseudo-continuous arterial spin labeling (pCASL) in the resting state. The regions of significantly altered CBF in patients with TN were detected using group comparison analyses. Then, the relationships between the clinical characteristics and abnormal rCBF were further investigated. Results Compared to the control group, patients with TN exhibited increased rCBF, primarily in the thalamus, middle frontal gyrus (MFG), and left insula. Furthermore, the CBF values of the thalamus were negatively correlated with the pain intensity of TN and positively correlated with pain duration in patients with TN. Conclusion Primary alterations in rCBF in patients with TN occurred in different brain regions related to pain, which are involved in cognitive-affective interaction, pain perception, and pain modulation. These results indicate that non-invasive resting cerebral perfusion imaging may contribute complementary information to further understanding the neuropathological mechanism underlying TN.
Collapse
Affiliation(s)
- Qianling Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qisen Fan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tianyue Wang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qinmeng He
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jinzhi Lin
- Department of Neurosurgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianhao Yan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China,*Correspondence: Jianhao Yan,
| |
Collapse
|
16
|
Dimick MK, Toma S, MacIntosh BJ, Grigorian A, Fiksenbaum L, Youngstrom EA, Robertson AD, Goldstein BI. Cerebral Blood Flow and Core Mood Symptoms in Youth Bipolar Disorder: Evidence for Region-Symptom Specificity. J Am Acad Child Adolesc Psychiatry 2022; 61:1455-1465. [PMID: 35487335 DOI: 10.1016/j.jaac.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/03/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Building on prior findings in adults, this study investigated regional cerebral blood flow (CBF) in relation to DSM-5 criterion A symptoms of depression and mania in youth with bipolar disorder (BD). METHOD The study recruited 81 youths with BD and 75 healthy controls 13-20 years old. CBF was ascertained using pseudocontinuous arterial spin labeling magnetic resonance imaging. Region-of-interest analyses examined the amygdala, anterior cingulate cortex (ACC), middle frontal gyrus, and global gray matter CBF. The association of criterion A depression and mania symptoms with CBF was examined dimensionally in youth with BD in regression analyses with continuous symptom severity scores. Age and sex were included as covariates. False discovery rate (FDR) was used to correct for 28 tests (4 regions by 7 symptoms; α < .0017). CBF for BD and healthy control groups was compared to give context for findings. RESULTS In youth with BD, depressed mood inversely correlated with ACC (β = -0.31, puncorrected = .004, pFDR = .056) and global (β = -0.27, puncorrected = .013, pFDR = .09) CBF. The same pattern was observed for anhedonia (ACC CBF: β = -0.33, puncorrected = .004, pFDR = .056; global CBF: β = -0.29, puncorrected = .008, pFDR = .07). There were no significant findings for manic symptoms or in BD vs healthy control contrasts. CONCLUSION The present findings, while not significant after correction for multiple testing, highlight the potential value of focusing on ACC in relation to depressed mood and anhedonia, and demonstrate that CBF is sensitive to depression symptom severity in youth. Lack of findings regarding manic symptoms may relate to the exclusion of fully manic participants in this outpatient sample.
Collapse
Affiliation(s)
- Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health (CAMH), Toronto, Canada; University of Toronto, Canada
| | - Simina Toma
- University of Toronto, Canada; Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bradley J MacIntosh
- University of Toronto, Canada; Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | | | - Eric A Youngstrom
- University of North Carolina at Chapel Hill and Helping Give Away Psychological Science, Inc., Chapel Hill, North Carolina
| | | | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health (CAMH), Toronto, Canada; University of Toronto, Canada.
| |
Collapse
|
17
|
Vigilant Attention, Cerebral Blood Flow and Grey Matter Volume Change after 36 h of Acute Sleep Deprivation in Healthy Male Adults: A Pilot Study. Brain Sci 2022; 12:brainsci12111534. [DOI: 10.3390/brainsci12111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
It is commonly believed that alertness and attention decrease after sleep deprivation (SD). However, there are not enough studies on the changes in psychomotor vigilance testing (PVT) during SD and the corresponding changes in brain function and brain structure after SD. Therefore, we recruited 30 healthy adult men to perform a 36 h acute SD experiment, including the measurement of five indicators of PVT every 2 h, and analysis of cerebral blood flow (CBF) and grey matter volume (GMV) changes, before and after SD by magnetic resonance imaging (MRI). The PVT measurement found that the mean reaction time (RT), fastest 10% RT, minor lapses, and false starts all increased progressively within 20 h of SD, except for major lapses. Subsequently, all indexes showed a significant lengthening or increasing trend, and the peak value was in the range of 24 h-32 h and decreased at 36 h, in which the number of major lapses returned to normal. MRI showed that CBF decreased in the left orbital part of the superior frontal gyrus, the left of the rolandic operculum, the left triangular part, and the right opercular part of the inferior frontal gyrus, and CBF increased in the left lingual gyrus and the right superior gyrus after 36 h SD. The left lingual gyrus was negatively correlated with the major lapses, and both the inferior frontal gyrus and the superior frontal gyrus were positively correlated with the false starts. Still, there was no significant change in GMV. Therefore, we believe that 36 h of acute SD causes alterations in brain function and reduces alert attention, whereas short-term acute SD does not cause changes in brain structure.
Collapse
|
18
|
Delvecchio G, Gritti D, Squarcina L, Brambilla P. Neurovascular alterations in bipolar disorder: A review of perfusion weighted magnetic resonance imaging studies. J Affect Disord 2022; 316:254-272. [PMID: 35940377 DOI: 10.1016/j.jad.2022.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Bipolar Disorder (BD) is a severe chronic psychiatric disorder whose aetiology is still largely unknown. However, increasing literature reported the involvement of neurovascular factors in the pathophysiology of BD, suggesting that a measure of Cerebral Blood Flow (CBF) could be an important biomarker of the illness. Therefore, since, to date, Magnetic Resonance Perfusion Weighted Imaging (PWI) techniques, such as Dynamic Susceptibility Contrast (DSC) and Arterial Spin Labelling (ASL), are the most common approaches that allow non-invasive in-vivo perfusion measurements,this review aims to summarize the results from all PWI studies that evaluated the CBF in BD. METHODS A bibliographic search in PubMed up until May 2021 was performed. 16 PWI studies that used DSC or ASL sequences met our inclusion criteria. RESULTS Overall, the results supported the presence of hyper-perfusion in the cingulate cortex and fronto-temporal regions, as well as the presence of hypo-perfusion in the cerebellum in BD, compared with both healthy controls and patients with unipolar depression. CBF changes after cognitive and aerobic training, as well as in relation with other physiological, clinical, and neurocognitive variables were also reported. LIMITATIONS The heterogeneity across the studies, in terms of experimental designs, sample selection, and methodological approach employed, limited the studies' comparison. CONCLUSIONS These findings showed CBF alterations in the cingulate cortex, fronto-temporal regions, and cerebellum in BD, suggesting that CBF may be an important pathophysiological marker of BD that merits further investigation to clarify the extent of neurovascular alterations.
Collapse
Affiliation(s)
- Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Davide Gritti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Letizia Squarcina
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Chen G, Wang J, Gong J, Qi Z, Fu S, Tang G, Chen P, Huang L, Wang Y. Functional and structural brain differences in bipolar disorder: a multimodal meta-analysis of neuroimaging studies. Psychol Med 2022; 52:2861-2873. [PMID: 36093787 DOI: 10.1017/s0033291722002392] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Numerous studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed differences in specific brain regions of patients with bipolar disorder (BD), but the results have been inconsistent. METHODS A whole-brain voxel-wise meta-analysis was conducted on resting-state functional imaging and VBM studies that compared differences between patients with BD and healthy controls using Seed-based d Mapping with Permutation of Subject Images software. RESULTS A systematic literature search identified 51 functional imaging studies (1842 BD and 2190 controls) and 83 VBM studies (2790 BD and 3690 controls). Overall, patients with BD displayed increased resting-state functional activity in the left middle frontal gyrus, right inferior frontal gyrus (IFG) extending to the right insula, right superior frontal gyrus and bilateral striatum, as well as decreased resting-state functional activity in the left middle temporal gyrus extending to the left superior temporal gyrus and post-central gyrus, left cerebellum, and bilateral precuneus. The meta-analysis of VBM showed that patients with BD displayed decreased VBM in the right IFG extending to the right insula, temporal pole and superior temporal gyrus, left superior temporal gyrus extending to the left insula, temporal pole, and IFG, anterior cingulate cortex, left superior frontal gyrus (medial prefrontal cortex), left thalamus, and right fusiform gyrus. CONCLUSIONS The multimodal meta-analyses suggested that BD showed similar patterns of aberrant brain activity and structure in the insula extending to the temporal cortex, fronto-striatal-thalamic, and default-mode network regions, which provide useful insights for understanding the underlying pathophysiology of BD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
- Department of Radiology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
20
|
Timakum T, Song M, Kim G. Integrated entitymetrics analysis for health information on bipolar disorder using social media data and scientific literature. ASLIB J INFORM MANAG 2022. [DOI: 10.1108/ajim-02-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThis study aimed to examine the mental health information entities and associations between the biomedical, psychological and social domains of bipolar disorder (BD) by analyzing social media data and scientific literature.Design/methodology/approachReddit posts and full-text papers from PubMed Central (PMC) were collected. The text analysis was used to create a psychological dictionary. The text mining tools were applied to extract BD entities and their relationships in the datasets using a dictionary- and rule-based approach. Lastly, social network analysis and visualization were employed to view the associations.FindingsMental health information on the drug side effects entity was detected frequently in both datasets. In the affective category, the most frequent entities were “depressed” and “severe” in the social media and PMC data, respectively. The social and personal concerns entities that related to friends, family, self-attitude and economy were found repeatedly in the Reddit data. The relationships between the biomedical and psychological processes, “afraid” and “Lithium” and “schizophrenia” and “suicidal,” were identified often in the social media and PMC data, respectively.Originality/valueMental health information has been increasingly sought-after, and BD is a mental illness with complicated factors in the clinical picture. This paper has made an original contribution to comprehending the biological, psychological and social factors of BD. Importantly, these results have highlighted the benefit of mental health informatics that can be analyzed in the laboratory and social media domains.
Collapse
|
21
|
Cattarinussi G, Bellani M, Maggioni E, Sambataro F, Brambilla P, Delvecchio G. Resting-state functional connectivity and spontaneous brain activity in early-onset bipolar disorder: A review of functional Magnetic Resonance Imaging studies. J Affect Disord 2022; 311:463-471. [PMID: 35580695 DOI: 10.1016/j.jad.2022.05.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Early-onset bipolar disorder (BD) is a complex psychiatric illness characterized by mood swings, irritability and functional impairments. To improve our understanding of the pathophysiology of the disorder, we collected the existing resting-state functional Magnetic Resonance Imaging (rs-fMRI) studies exploring resting-state functional connectivity (rs-FC) and spontaneous activity alterations in children and adolescents with BD. METHODS A search on PubMed, Web of Science and Scopus was conducted to identify all the relevant rs-fMRI investigations conducted in early-onset BD. A total of 14 studies employing different methodological approaches to explore rs-FC and spontaneous activity in early-onset BD were included (independent component analysis, n = 1; seed-based analysis, n = 7; amplitude of low frequency fluctuations analysis, n = 2; regional homogeneity analysis, n = 4). RESULTS Overall, the studies showed abnormalities within the Default Mode Network (DMN) and between the DMN and the Salience Network (SN). Moreover, widespread alterations in rs-FC and spontaneous brain activity within and between cortico-limbic structures, involving primarily the occipital and frontal lobes, amygdala, hippocampus, insula, thalamus and striatum were also reported. LIMITATIONS The small sample sizes, the use of medications, the presence of comorbidities and the heterogeneity in methods hamper the integration of the study findings. CONCLUSIONS Early-onset BD seems to be characterized by selective rs-FC and spontaneous activity dysfunctions in DMN and SN as well as in the cortico-limbic and cortico-striatal circuits, which could explain the emotive and cognitive deficits observed in this disabling psychiatric illness.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
22
|
Siegel-Ramsay JE, Bertocci MA, Wu B, Phillips ML, Strakowski SM, Almeida JRC. Distinguishing between depression in bipolar disorder and unipolar depression using magnetic resonance imaging: a systematic review. Bipolar Disord 2022; 24:474-498. [PMID: 35060259 DOI: 10.1111/bdi.13176] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) studies comparing bipolar and unipolar depression characterize pathophysiological differences between these conditions. However, it is difficult to interpret the current literature due to differences in MRI modalities, analysis methods, and study designs. METHODS We conducted a systematic review of publications using MRI to compare individuals with bipolar and unipolar depression. We grouped studies according to MRI modality and task design. Within the discussion, we critically evaluated and summarized the functional MRI research and then further complemented these findings by reviewing the structural MRI literature. RESULTS We identified 88 MRI publications comparing participants with bipolar depression and unipolar depressive disorder. Compared to individuals with unipolar depression, participants with bipolar disorder exhibited heightened function, increased within network connectivity, and reduced grey matter volume in salience and central executive network brain regions. Group differences in default mode network function were less consistent but more closely associated with depressive symptoms in participants with unipolar depression but distractibility in bipolar depression. CONCLUSIONS When comparing mood disorder groups, the neuroimaging evidence suggests that individuals with bipolar disorder are more influenced by emotional and sensory processing when responding to their environment. In contrast, depressive symptoms and neurofunctional response to emotional stimuli were more closely associated with reduced central executive function and less adaptive cognitive control of emotionally oriented brain regions in unipolar depression. Researchers now need to replicate and refine network-level trends in these heterogeneous mood disorders and further characterize MRI markers associated with early disease onset, progression, and recovery.
Collapse
Affiliation(s)
- Jennifer E Siegel-Ramsay
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, Texas, USA
| | - Michele A Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bryan Wu
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, Texas, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stephen M Strakowski
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, Texas, USA
| | - Jorge R C Almeida
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas, Austin, Texas, USA
| |
Collapse
|
23
|
Shared and specific characteristics of regional cerebral blood flow and functional connectivity in unmedicated bipolar and major depressive disorders. J Affect Disord 2022; 309:77-84. [PMID: 35452757 DOI: 10.1016/j.jad.2022.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Identifying brain similarities and differences between bipolar disorder (BD) and major depressive disorder (MDD) can help us better understand their pathophysiological mechanisms and develop more effective treatments. However, the features of whole-brain regional cerebral blood flow (CBF) and intrinsic functional connectivity (FC) underlying BD and MDD have not been directly compared. METHODS Eighty-eight unmedicated BD II depression patients, 95 unmedicated MDD patients, and 96 healthy controls (HCs) underwent three-dimensional arterial spin labeling (3D ASL) and resting-state functional MRI (rs-fMRI). The functional properties of whole brain CBF and seed-based resting-state FC further performed based on those regions with changed CBF were analyzed between the three groups. RESULTS The patients with BD and MDD showed commonly increased CBF in the left posterior lobe of the cerebellum and the left middle temporal gyrus (MTG) compared with HCs. The CBF of the left MTG was positively associated with 24-items Hamilton Depression Rating Scale scores in MDD patients. Decreased FC between the left posterior lobe of the cerebellum and the left inferior frontal gyrus (IFG) was observed only in patients with BD compared with HCs. CONCLUSION Patients with BD and those with MDD shared common features of CBF in the posterior lobe of the cerebellum and the MTG. The altered posterior lobe of the cerebellum-IFG FC can be considered as a potential biomarker for the differentiation of patients with BD from those with MDD.
Collapse
|
24
|
Chen G, Hu J, Ran H, Nie L, Tang W, Li X, Li Q, He Y, Liu J, Song G, Xu G, Liu H, Zhang T. Alterations of Cerebral Perfusion and Functional Connectivity in Children With Idiopathic Generalized Epilepsy. Front Neurosci 2022; 16:918513. [PMID: 35769697 PMCID: PMC9236200 DOI: 10.3389/fnins.2022.918513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Studies have demonstrated that adults with idiopathic generalized epilepsy (IGE) have functional abnormalities; however, the neuropathological pathogenesis differs between adults and children. This study aimed to explore alterations in the cerebral blood flow (CBF) and functional connectivity (FC) to comprehensively elucidate the neuropathological mechanisms of IGE in children. Methods We obtained arterial spin labeling (ASL) and resting state functional magnetic resonance imaging data of 28 children with IGE and 35 matched controls. We used ASL to determine differential CBF regions in children with IGE. A seed-based whole-brain FC analysis was performed for regions with significant CBF changes. The mean CBF and FC of brain areas with significant group differences was extracted, then its correlation with clinical variables in IGE group was analyzed by using Pearson correlation analysis. Results Compared to controls, children with IGE had CBF abnormalities that were mainly observed in the right middle temporal gyrus, right middle occipital gyrus (MOG), right superior frontal gyrus (SFG), left inferior frontal gyrus (IFG), and triangular part of the left IFG (IFGtriang). We observed that the FC between the left IFGtriang and calcarine fissure (CAL) and that between the right MOG and bilateral CAL were decreased in children with IGE. The CBF in the right SFG was correlated with the age at IGE onset. FC in the left IFGtriang and left CAL was correlated with the IGE duration. Conclusion This study found that CBF and FC were altered simultaneously in the left IFGtriang and right MOG of children with IGE. The combination of CBF and FC may provide additional information and insight regarding the pathophysiology of IGE from neuronal and vascular integration perspectives.
Collapse
|
25
|
Bertini V, Milone R, Cristofani P, Cambi F, Bosetti C, Barbieri F, Bertelloni S, Cioni G, Valetto A, Battini R. Enhancing DLG2 Implications in Neuropsychiatric Disorders: Analysis of a Cohort of Eight Patients with 11q14.1 Imbalances. Genes (Basel) 2022; 13:genes13050859. [PMID: 35627244 PMCID: PMC9140951 DOI: 10.3390/genes13050859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are considered synaptopathies, as they are due to anomalies in neuronal connectivity during development. DLG2 is a gene involved insynaptic function; the phenotypic effect of itsalterations in NDDs has been underestimated since few cases have been thoroughly described.We report on eight patients with 11q14.1 imbalances involving DLG2, underlining its potential effects on clinical presentation and its contribution to NDD comorbidity by accurate neuropsychiatric data collection. DLG2 is a very large gene in 11q14.1, extending over 2.172 Mb, with alternative splicing that gives rise to numerous isoforms differentially expressed in brain tissues. A thorough bioinformatic analysis of the altered transcripts was conducted for each patient. The different expression profiles of the isoforms of this gene and their influence on the excitatory–inhibitory balance in crucial brain structures could contribute to the phenotypic variability related to DLG2 alterations. Further studies on patients would be helpful to enrich clinical and neurodevelopmental findings and elucidate the molecular mechanisms subtended to NDDs.
Collapse
Affiliation(s)
- Veronica Bertini
- Cytogenetic Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Univeristaria Pisana, Via Roma 57, 56100 Pisa, Italy; (V.B.); (F.C.)
| | - Roberta Milone
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
| | - Paola Cristofani
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
| | - Francesca Cambi
- Cytogenetic Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Univeristaria Pisana, Via Roma 57, 56100 Pisa, Italy; (V.B.); (F.C.)
| | - Chiara Bosetti
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
| | - Filippo Barbieri
- Mental Health Department, ASL Toscana Nordovest, 56100 Pisa, Italy;
| | - Silvano Bertelloni
- Pediatric Endocrinology, Department of Obstetrics, Gynecology and Pediatrics, Azienda Ospedaliero-Universitaria Pisana, Via Roma 57, 56100 Pisa, Italy;
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy
| | - Angelo Valetto
- Cytogenetic Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Univeristaria Pisana, Via Roma 57, 56100 Pisa, Italy; (V.B.); (F.C.)
- Correspondence:
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
26
|
Wang XH, Liu XF, Ao M, Wang T, He J, Gu YW, Fan JW, Yang L, Yu R, Guo S. Cerebral Perfusion Patterns of Anxiety State in Patients With Pulmonary Nodules: A Study of Cerebral Blood Flow Based on Arterial Spin Labeling. Front Neurosci 2022; 16:912665. [PMID: 35615271 PMCID: PMC9125149 DOI: 10.3389/fnins.2022.912665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose The proportion of patients with somatic diseases associated with anxiety is increasing each year, and pulmonary nodules have become a non-negligible cause of anxiety, the mechanism of which is unclear. The study focus on the cerebral blood flow (CBF) of anxiety in patients with pulmonary nodules to explore the cerebral perfusion pattern of anxiety associated with pulmonary nodules, blood perfusion status and mode of pulmonary nodule induced anxiety state. Materials and Methods Patients with unconfirmed pulmonary nodules were evaluated by Hamilton Anxiety Scale (HAMA). The total score > 14 was defined as anxiety group, and the total score ≤ 14 points was defined as non-anxiety group. A total of 38 patients were enrolled, of which 19 patients were the anxiety group and 19 were the non-anxiety group. All subjects underwent arterial spin labeling imaging using a 3.0 T MRI. A two-sample t-test was performed to compare the CBF between the two groups. The CBF was extracted in brain regions with difference, and Spearman correlation was used to analyze the correlation between CBF and HAMA scores; ROC was used to analyze the performance of CBF to distinguish between the anxiety group and the non-anxiety group. Results The CBF in the right insula/Heschl’s cortex of the anxiety group decreased (cluster = 109, peak t = 4.124, and P < 0.001), and the CBF in the right postcentral gyrus increased (cluster = 53, peak t = −3.912, and P < 0.001) in the anxiety group. But there was no correlation between CBF and HAMA score. The ROC analysis of the CBF of the right insula/Heschl’s cortex showed that the AUC was 0.856 (95%CI, 0.729, 0.983; P < 0.001), the optimal cutoff value of the CBF was 50.899, with the sensitivity of 0.895, and specificity of 0.789. The ROC analysis of CBF in the right postcentral gyrus showed that the AUC was 0.845 (95%CI, 0.718, 0.972; P < 0.001), the optimal cutoff value of CBF was 43.595, with the sensitivity of 0.737, and specificity of 0.842. Conclusion The CBF of the right insula/Heschl’s cortex decreased and the CBF of the right postcentral gyrus increased in patients with pulmonary nodules under anxiety state, and the CBF of the aforementioned brain regions can accurately distinguish the anxiety group from the non-anxiety group.
Collapse
Affiliation(s)
- Xiao-Hui Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Fan Liu
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Ao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinglan He
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue-Wen Gu
- Department of Clinical Psychology, Fourth Military Medical University, Xi’an, China
| | - Jing-Wen Fan
- Department of Clinical Psychology, Fourth Military Medical University, Xi’an, China
| | - Li Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Yang,
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Renqiang Yu,
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Shuliang Guo, , orcid.org/0000-0003-3572-7421
| |
Collapse
|
27
|
Chen J, Xue K, Yang M, Wang K, Xu Y, Wen B, Cheng J, Han S, Wei Y. Altered Coupling of Cerebral Blood Flow and Functional Connectivity Strength in First-Episode Schizophrenia Patients With Auditory Verbal Hallucinations. Front Neurosci 2022; 16:821078. [PMID: 35546878 PMCID: PMC9083321 DOI: 10.3389/fnins.2022.821078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Auditory verbal hallucinations (AVHs) are a major symptom of schizophrenia and are connected with impairments in auditory and speech-related networks. In schizophrenia with AVHs, alterations in resting-state cerebral blood flow (CBF) and functional connectivity have been described. However, the neurovascular coupling alterations specific to first-episode drug-naïve schizophrenia (FES) patients with AVHs remain unknown. Methods Resting-state functional MRI and arterial spin labeling (ASL) was performed on 46 first-episode drug-naïve schizophrenia (FES) patients with AVHs (AVH), 39 FES drug-naïve schizophrenia patients without AVHs (NAVH), and 48 healthy controls (HC). Then we compared the correlation between the CBF and functional connection strength (FCS) of the entire gray matter between the three groups, as well as the CBF/FCS ratio of each voxel. Correlation analyses were performed on significant results between schizophrenia patients and clinical measures scale. Results The CBF/FCS ratio was reduced in the cognitive and emotional brain regions in both the AVH and NAVH groups, primarily in the crus I/II, vermis VI/VII, and cerebellum VI. In the AVH group compared with the HC group, the CBF/FCS ratio was higher in auditory perception and language-processing areas, primarily the left superior and middle temporal gyrus (STG/MTG). The CBF/FCS ratio in the left STG and left MTG positively correlates with the score of the Auditory Hallucination Rating Scale in AVH patients. Conclusion These findings point to the difference in neurovascular coupling failure between AVH and NAVH patients. The dysfunction of the forward model based on the predictive and computing role of the cerebellum may increase the excitability in the auditory cortex, which may help to understand the neuropathological mechanism of AVHs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Cui L, Li H, Li JB, Zeng H, Zhang Y, Deng W, Zhou W, Cao L. Altered cerebellar gray matter and cerebellar-cortex resting-state functional connectivity in patients with bipolar disorder Ⅰ. J Affect Disord 2022; 302:50-57. [PMID: 35074460 DOI: 10.1016/j.jad.2022.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar disorder (BP) is a common psychiatric disorder characterized by extreme fluctuations in mood. Recent studies have indicated the involvement of cerebellum in the pathogenesis of BP. However, no study has focused on the precise role of cerebellum exclusively in patients with bipolar I disorder (BP-I). METHODS Forty-five patients with BP-I and 40 healthy controls were recruited. All subjects underwent clinical evaluation and Magnetic Resonance diffusion Tension Imaging scans. For structural images, we used a spatially unbiased infratentorial template toolbox to isolate the cerebellum and then preformed voxel-based morphometry (VBM) analyses to assess the difference in cerebellar gray matter volume (GMV) between the two groups. For the functional images, we chose the clusters that survived from VBM analysis as seeds and performed functional connectivity (FC) analysis. Between-group differences were assessed using the independent Students t test or the nonparametric Mann-Whitney U Test. For multiple comparisons, the results were further corrected with Gaussian random field (GRF) approach (voxel-level P < 0.001, cluster-level P < 0.05). RESULTS Compared with healthy controls, BP-I patients showed significantly decreased GMV in left lobule V and left lobule VI (P < 0.05, GRF corrected). The FC of cerebellum with bilateral superior temporal gyrus, bilateral insula, bilateral rolandic operculum, right putamen, and left precentral gyrus was disrupted in BP-I patients (P < 0.05, GRF corrected). CONCLUSIONS BP-I patients showed decreased cerebellar GMV and disrupted cerebellar-cortex resting-state FC. This suggests that cerebellar abnormalities may play an important role in the pathogenesis of BP-I.
Collapse
Affiliation(s)
- Liqian Cui
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China.
| | - Hao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jin Biao Li
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Huixing Zeng
- Department of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yizhi Zhang
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenhao Deng
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Wenjin Zhou
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China
| | - Liping Cao
- Guangzhou Huiai, Hospital, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510370, China.
| |
Collapse
|
29
|
Pallidal volume reduction and prefrontal-striatal-thalamic functional connectivity disruption in pediatric bipolar disorders. J Affect Disord 2022; 301:281-288. [PMID: 35031334 DOI: 10.1016/j.jad.2022.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND As a crucial node of the corticolimbic model, the striatum has been demonstrated in modulating emotional cues in pediatric bipolar disorders (PBD), the striatal distinction in structure and function between PBD-I and PBD-II remains unclear. METHODS MRI data of 36 patients in PBD-I, 22 patients in PBD-II and 19 age-gender matched healthy controls (HCs) were processed. Here, we investigated structural and functional alterations of 8 subregions of striatum (bilateral nucleus accumbens, caudate, putamen and globus pallidus) by analyzing MRI data. RESULTS We found volume reduction of the right pallidum, the significant positive correlation between the number of episodes and the functional connectivity between left pallidum and right caudate in PBD-I patients, abrupted prefrontal-striatal-thalamic functional connectivity in PBD-I group and decreased functional connectivity in PBD-II relative to HCs and PBD-I. LIMITATIONS Future studies should enroll more subjects and adopt a longitudinal perspective, which could help to discover striatum structural or functional alterations during subject-specific clinical progress in different states. CONCLUSIONS Results of the present study confirmed that structural and functional abnormality of striatum may be helpful in identifying PBD clinical types as distinctive biomarkers. The interruptions of the prefrontal-striatal-thalamic circuits may provide advantageous evidence for expounding the role of striatum in bipolar disorders etiology. Thus, potential mechanisms of dysfunction striatum need to be formulated and reconceptualized with multimodal neuroimaging studies in future.
Collapse
|
30
|
Chen G, Chen P, Gong J, Jia Y, Zhong S, Chen F, Wang J, Luo Z, Qi Z, Huang L, Wang Y. Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders. Psychol Med 2022; 52:747-756. [PMID: 32648539 DOI: 10.1017/s0033291720002378] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Accumulating studies have found structural and functional abnormalities of the striatum in bipolar disorder (BD) and major depressive disorder (MDD). However, changes in intrinsic brain functional connectivity dynamics of striato-cortical circuitry have not been investigated in BD and MDD. This study aimed to investigate the shared and specific patterns of dynamic functional connectivity (dFC) variability of striato-cortical circuitry in BD and MDD. METHODS Brain resting-state functional magnetic resonance imaging data were acquired from 128 patients with unmedicated BD II (current episode depressed), 140 patients with unmedicated MDD, and 132 healthy controls (HCs). Six pairs of striatum seed regions were selected: the ventral striatum inferior (VSi) and the ventral striatum superior (VSs), the dorsal-caudal putamen (DCP), the dorsal-rostral putamen (DRP), and the dorsal caudate and the ventral-rostral putamen (VRP). The sliding-window analysis was used to evaluate dFC for each seed. RESULTS Both BD II and MDD exhibited increased dFC variability between the left DRP and the left supplementary motor area, and between the right VRP and the right inferior parietal lobule. The BD II had specific increased dFC variability between the right DCP and the left precentral gyrus compared with MDD and HCs. The MDD had increased dFC variability between the left VSi and the left medial prefrontal cortex compared with BD II and HCs. CONCLUSIONS The patients with BD and MDD shared common dFC alteration in the dorsal striatal-sensorimotor and ventral striatal-cognitive circuitries. The patients with MDD had specific dFC alteration in the ventral striatal-affective circuitry.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - JiaYing Gong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
31
|
Investigating the association between depression and cerebral haemodynamics-A systematic review and meta-analysis. J Affect Disord 2022; 299:144-158. [PMID: 34800572 DOI: 10.1016/j.jad.2021.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Vascular mechanisms may play a role in depression. The aim of this review is to summarise the evidence on alterations in cerebral haemodynamics in depression. METHODS MEDLINE (1946- present), Embase (1947-present), Web of Science (1970-present), PsycINFO (1984-present), CINAHL (1976-present) and CENTRAL were searched using a predefined search strategy. A meta-analysis was conducted in four groups: 1) global cerebral blood flow (CBF) in ml/min/100 g, 2) CBF velocity (CBFv) in cm/s (maximum flow of left middle cerebral artery, 3) combined CBF and CBFv, 4) Ratio of uptake of Tc 99 m HMPAO (region of interest compared to whole brain). Data are presented as mean difference or standardised mean difference and 95% confidence interval (95% CI). A narrative synthesis of the remaining studies was performed. RESULTS 87 studies were included. CBF was significantly reduced in depressed patients compared to HC [15 studies, 538 patients, 416 HC, MD: -2.24 (95% CI -4.12, -0.36), p = 0.02, I2 = 64%]. There were no statistically significant differences in other parameters. The narrative synthesis revealed variable changes in CBF in depressed patients, particularly affecting the anterior cingulate and prefrontal cortices. LIMITATIONS There were various sources of heterogeneity including the severity of depression, use of antidepressant medication, imaging modality used and reporting of outcomes. All of these factors made direct comparisons between studies difficult. CONCLUSIONS The reduction in CBF in depressed patients compared to HCs may indicate a role for assessment and CBF altering interventions in high-risk groups. However, results were inconsistent across studies, warranting further work to investigate specific subgroups.
Collapse
|
32
|
Sun F, Liu Z, Fan Z, Zuo J, Xi C, Yang J. Dynamical regional activity in putamen distinguishes bipolar type I depression and unipolar depression. J Affect Disord 2022; 297:94-101. [PMID: 34678402 DOI: 10.1016/j.jad.2021.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Intrinsic human brain activity is time-varying and dynamic. However, there is still a lack of knowledge about the dynamic regional activity differences between unipolar depression (UD) and bipolar type I depression (BD-I), and whether their differential pattern can help to distinguish these two patient groups who are prone to misdiagnosis in clinical practice. METHOD In this study, we used the dynamical fractional amplitude of low-frequency fluctuations (dfALFF) to examine the resting-state dynamical regional activity in 40 BD-I, 42 UD, and 44 healthy controls (HCs). Analysis of covariance was applied to explore the shared and distinct dfALFF pattern among three groups, and machine-learning methods were conducted to classify BD-I from UD by using the detected distinct dfALFF pattern. RESULTS Compared with HCs, both BD-I and UD exhibited decreased dfALFF temporal variability in the left inferior temporal gyrus. The BD-I showed significantly decreased dfALFF temporal variability in the left putamen compared to UD. By using the dfALFF variability pattern of the left putamen as features, we achieved the 75.61% accuracy and 0.756 area under curve in classifying BD-I from UD. LIMITATIONS The small sample size of the current study may limit the generalizability of the findings. CONCLUSIONS The current study demonstrated that the dfALFF temporal variability pattern in the putamen may show a promise as future diagnostic aids for BD-I and UD.
Collapse
Affiliation(s)
- Fuping Sun
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhening Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zebin Fan
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Zuo
- Clinical Medical Research Center of Hunan Provincial Mental Behavioral Disorder, Clinical Medical School of Hunan University of Chinese Medicine, Hunan Provincial Brain Hospital, Changsha, Hunan 410007, China
| | - Chang Xi
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jie Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
33
|
Lin H, Xiang X, Huang J, Xiong S, Ren H, Gao Y. Abnormal degree centrality values as a potential imaging biomarker for major depressive disorder: A resting-state functional magnetic resonance imaging study and support vector machine analysis. Front Psychiatry 2022; 13:960294. [PMID: 36147977 PMCID: PMC9486164 DOI: 10.3389/fpsyt.2022.960294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Previous studies have revealed abnormal degree centrality (DC) in the structural and functional networks in the brains of patients with major depressive disorder (MDD). There are no existing reports on the DC analysis method combined with the support vector machine (SVM) to distinguish patients with MDD from healthy controls (HCs). Here, the researchers elucidated the variations in DC values in brain regions of MDD patients and provided imaging bases for clinical diagnosis. METHODS Patients with MDD (N = 198) and HCs (n = 234) were scanned using resting-state functional magnetic resonance imaging (rs-fMRI). DC and SVM were applied to analyze imaging data. RESULTS Compared with HCs, MDD patients displayed elevated DC values in the vermis, left anterior cerebellar lobe, hippocampus, and caudate, and depreciated DC values in the left posterior cerebellar lobe, left insula, and right caudate. As per the results of the SVM analysis, DC values in the left anterior cerebellar lobe and right caudate could distinguish MDD from HCs with accuracy, sensitivity, and specificity of 87.71% (353/432), 84.85% (168/198), and 79.06% (185/234), respectively. Our analysis did not reveal any significant correlation among the DC value and the disease duration or symptom severity in patients with MDD. CONCLUSION Our study demonstrated abnormal DC patterns in patients with MDD. Aberrant DC values in the left anterior cerebellar lobe and right caudate could be presented as potential imaging biomarkers for the diagnosis of MDD.
Collapse
Affiliation(s)
- Hang Lin
- Department of Psychiatry, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazards and Identification, Wuhan University of Science and Technology, Wuhan, China
| | - Xi Xiang
- Department of Spine and Orthopedics, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Junli Huang
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shihong Xiong
- Department of Nephrology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yujun Gao
- Department of Psychiatry, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.,Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Chen Y, Cui Q, Sheng W, Tang Q, Lu F, Pang Y, Nan X, He Z, Li D, Lei T, Chen H. Anomalous neurovascular coupling in patients with generalized anxiety disorder evaluated by combining cerebral blood flow and functional connectivity strength. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110379. [PMID: 34111495 DOI: 10.1016/j.pnpbp.2021.110379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023]
Abstract
Coupling between neuronal activity and blood perfusion is termed neurovascular coupling, and it provides a new mechanistic perspective into understanding numerous brain diseases. Although abnormal brain activity and blood supply have been separately reported in generalized anxiety disorder (GAD), whether anomalous neurovascular coupling would still be presented in such disease is hitherto unknown. In this study, the neuronal activity and blood supply were measured using the functional connectivity strength (FCS) and cerebral blood flow (CBF). The voxel-wise CBF-FCS correlations and CBF/FCS ratio were separately used to assess global and local neurovascular coupling in participants. Patients with GAD showed decreased voxel-wise CBF-FCS correlation, implicating global neurovascular decoupling. They also exhibited increased CBF/FCS ratio in the right superior parietal gyrus (SPG), and the enhanced CBF/FCS ratio in this region was negatively correlated with the self-esteem scores of GAD. The abnormal neurovascular coupling of GAD may indicate the disrupted balance between the intrinsic functional organization of the brain and corresponding blood perfusion of patients, and the abnormally increased local neurovascular coupling of the right SPG may be correlated with the abnormal self in GAD. These findings provide new information in understanding the brain dysfunction and abnormal cognition of GAD from the perspective of neurovascular coupling.
Collapse
Affiliation(s)
- Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Nan
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Lei
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China; Department of Radiology, First Affiliated Hospital to Army Medical University, Chongqing, China.
| |
Collapse
|
35
|
Amiri S, Arbabi M, Kazemi K, Parvaresh-Rizi M, Mirbagheri MM. Characterization of brain functional connectivity in treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110346. [PMID: 33961964 DOI: 10.1016/j.pnpbp.2021.110346] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To characterize the functional connectivity (FC) of target brain regions for deep brain stimulation (DBS) in patients with treatment-resistant depression (TRD), and to evaluate its gender and brain lateralization dependence. METHODS Thirty-one TRD patients and twenty-nine healthy control (HC) subjects participated. FC of subcallosal cingulate gyrus (SCG), ventral caudate (VCa), nucleus accumbens (NAc), lateral habenula (LHb), and inferior thalamic peduncle (ITP) were evaluated using resting-state fMRI. FC was characterized by calculating the nodal 'degree', a major feature of the graph theory. RESULTS The degree measures of the left and right VCa, the left LHb, and the left ITP were significantly greater in the TRD than in the HC group. The degree was greater in females with TRD in all these regions except the right LHb. Finally, the left hemisphere was generally more affected by depression and presented significant degrees in LHb and ITP regions of the patients. CONCLUSION Our findings demonstrate the ability of degree to characterize brain FC and identify the regions with abnormal activities in TRD patients. This implies that the degree may have the potential to be used as an important graph-theoretical feature to further investigate the mechanisms underlying TRD, and consequently along with other diagnostic markers, to assist in the determination of the appropriate target region for DBS treatment in TRD patients.
Collapse
Affiliation(s)
- Saba Amiri
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Arbabi
- Psychiatry, Psychosomatic Medicine Research Center Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Kazemi
- Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Iran.
| | | | - Mehdi M Mirbagheri
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Physical Medicine and Rehabilitation Department, Northwestern University, USA.
| |
Collapse
|
36
|
Zhang Z, Bo Q, Li F, Zhao L, Wang Y, Liu R, Chen X, Wang C, Zhou Y. Increased ALFF and functional connectivity of the right striatum in bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110140. [PMID: 33068681 DOI: 10.1016/j.pnpbp.2020.110140] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/19/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a serious neuropsychiatric disorder characterized by alternating periods of mania, depression, and euthymia. Abnormal spontaneous brain activity within the cortical-striatal neural circuits has been observed in patients with BD. However, whether the abnormality appears in patients with BD while not in a manic mood state is unclear. METHODS This study collected resting-state fMRI data from 65 patients with BD who were not in a manic mood state and 85 matched healthy controls. First, we examined differences in amplitude of low-frequency fluctuations (ALFF) between the patients with BD and the healthy controls to identify regions that show abnormal local spontaneous activity in the patients. Based on the ALFF results, we conducted seed-based resting-state functional connectivity (rsFC) analysis to identify the changes in brain networks that are centered on the regions showing abnormal local spontaneous activity in the patients. Finally, we repeated these analyses in a sub-sample comprising euthymic BD patients (N = 37) and between the euthymic BD patients and all the other patients who had at least mild depressive symptoms. RESULTS BD patients exhibited increased ALFF in the right caudate/putamen and increased rsFC in the right caudate/putamen with the right inferior parietal lobe (cluster-level FWE p < 0.05). Further analyses showed that the euthymic BD patients showed similar abnormalities in ALFF and rsFC maps as found in all patients with BD. And the euthymic BD patients were comparable with all the other patients who had at least mild depressive symptoms in ALFF values. CONCLUSIONS Our results indicated the important role of the right striatum in the baseline brain function of BD patients and suggested that the abnormality of spontaneous brain activity in the cortical-striatal neural circuits may be a trait-like variant in patients with BD. The results deepen our understanding of the neurobiological mechanisms associated with BD etiology.
Collapse
Affiliation(s)
- Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology & Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101,China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Understanding complex functional wiring patterns in major depressive disorder through brain functional connectome. Transl Psychiatry 2021; 11:526. [PMID: 34645783 PMCID: PMC8513388 DOI: 10.1038/s41398-021-01646-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Brain function relies on efficient communications between distinct brain systems. The pathology of major depressive disorder (MDD) damages functional brain networks, resulting in cognitive impairment. Here, we reviewed the associations between brain functional connectome changes and MDD pathogenesis. We also highlighted the utility of brain functional connectome for differentiating MDD from other similar psychiatric disorders, predicting recurrence and suicide attempts in MDD, and evaluating treatment responses. Converging evidence has now linked aberrant brain functional network organization in MDD to the dysregulation of neurotransmitter signaling and neuroplasticity, providing insights into the neurobiological mechanisms of the disease and antidepressant efficacy. Widespread connectome dysfunctions in MDD patients include multiple, large-scale brain networks as well as local disturbances in brain circuits associated with negative and positive valence systems and cognitive functions. Although the clinical utility of the brain functional connectome remains to be realized, recent findings provide further promise that research in this area may lead to improved diagnosis, treatments, and clinical outcomes of MDD.
Collapse
|
38
|
Li S, Teng Z, Qiu Y, Pan P, Wu C, Jin K, Wang L, Chen J, Tang H, Xiang H, De Leon SA, Huang J, Guo W, Wang B, Wu H. Dissociation Pattern in Default-Mode Network Homogeneity in Drug-Naive Bipolar Disorder. Front Psychiatry 2021; 12:699292. [PMID: 34434127 PMCID: PMC8380964 DOI: 10.3389/fpsyt.2021.699292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Default mode network (DMN) plays a key role in the pathophysiology of in bipolar disorder (BD). However, the homogeneity of this network in BD is still poorly understood. This study aimed to investigate abnormalities in the NH of the DMN at rest and the correlation between the NH of DMN and clinical variables in patients with BD. Forty drug-naive patients with BD and thirty-seven healthy control subjects participated in the study. Network homogeneity (NH) and independent component analysis (ICA) methods were used for data analysis. Support vector machines (SVM) method was used to analyze NH in different brain regions. Compared with healthy controls, significantly increased NH in the left superior medial prefrontal cortex (MPFC) and decreased NH in the right posterior cingulate cortex (PCC) and bilateral precuneus were found in patients with BD. NH in the right PCC was positively correlated with the verbal fluency test and verbal function total scores. NH in the left superior MPFC was negatively correlated with triglyceride (TG). NH in the right PCC was positively correlated with TG but negatively correlated with high-density lipoprotein cholesterol (HDL-C). NH in the bilateral precuneus was positively correlated with cholesterol and low-density lipoprotein cholesterol (LDL-C). In addition, NH in the left superior MPFC showed high sensitivity (80.00%), specificity (71.43%), and accuracy (75.61%) in the SVM results. These findings contribute new evidence of the participation of the altered NH of the DMN in the pathophysiology of BD.
Collapse
Affiliation(s)
- Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pan Pan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chujun Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Jin
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sara Arenas De Leon
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
39
|
Cheng X, Chen J, Zhang X, Zhang Y, Wu Q, Ma Q, Sun J, Zou W, Lin T, Zhong L, Deng W, Sun X, Cui L, Cheng X, Chen Y, Cai Y, Zheng C, Cheng D, Yang C, Ye B, Zhang X, Wei X, Cao L. Alterations in resting-state global brain connectivity in bipolar I disorder patients with prior suicide attempt. Bipolar Disord 2021; 23:474-486. [PMID: 32981096 DOI: 10.1111/bdi.13012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Bipolar I disorder (BD-I) is associated with a high risk of suicide attempt; however, the neural circuit dysfunction that confers suicidal vulnerability in individuals with this disorder remains largely unknown. Resting-state functional magnetic resonance imaging (rs-fMRI) allows non-invasive mapping of brain functional connectivity. The current study used an unbiased voxel-based graph theory analysis of rs-fMRI to investigate the intrinsic brain networks of BD-I patients with and without suicide attempt. METHODS A total of 30 BD-I patients with suicide attempt (attempter group), 82 patients without suicide attempt (non-attempter group), and 67 healthy controls underwent rs-fMRI scan, and then global brain connectivity (GBC) was computed as the sum of connections of each voxel with all other gray matter voxels in the brain. RESULTS Compared with the non-attempter group, we found regional differences in GBC values in emotion-encoding circuits, including the left superior temporal gyrus, bilateral insula/rolandic operculum, and right precuneus (PCu)/cuneus in the bipolar disorder (BD) attempter group, and these disrupted hub-like regions displayed fair to good power in distinguishing attempters from non-attempters among BD-I patients. GBC values of the right PCu/cuneus were positively correlated with illness duration and education in the attempter group. CONCLUSIONS Our results indicate that abnormal connectivity patterns in emotion-encoding circuits are associated with the increasing risk of vulnerability to suicide attempt in BD patients, and global dysconnectivity across these emotion-encoding circuits might serve as potential biomarkers for classification of suicide attempt in BD patients.
Collapse
Affiliation(s)
- Xiaofang Cheng
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China.,The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Jianshan Chen
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Yihe Zhang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, PR China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Qiuxia Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Qing Ma
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, PR China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Jiaqi Sun
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Wenjin Zou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Taifeng Lin
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Liangda Zhong
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Wenhao Deng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Xiaoyi Sun
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, PR China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China
| | - Liqian Cui
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | | | - Yingmei Chen
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Yinglian Cai
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Chaodun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Daomeng Cheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Chanjuan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Biyu Ye
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| | - Xiangyang Zhang
- Department of Radiology, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Xinhua Wei
- Jinan University, Guangzhou, Guangdong, PR China.,Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong, PR China
| |
Collapse
|
40
|
Liu X, Eickhoff SB, Caspers S, Wu J, Genon S, Hoffstaedter F, Mars RB, Sommer IE, Eickhoff CR, Chen J, Jardri R, Reetz K, Dogan I, Aleman A, Kogler L, Gruber O, Caspers J, Mathys C, Patil KR. Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate. Neuroimage 2021; 235:118006. [PMID: 33819611 PMCID: PMC8214073 DOI: 10.1016/j.neuroimage.2021.118006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
A wide homology between human and macaque striatum is often assumed as in both the striatum is involved in cognition, emotion and executive functions. However, differences in functional and structural organization between human and macaque striatum may reveal evolutionary divergence and shed light on human vulnerability to neuropsychiatric diseases. For instance, dopaminergic dysfunction of the human striatum is considered to be a pathophysiological underpinning of different disorders, such as Parkinson's disease (PD) and schizophrenia (SCZ). Previous investigations have found a wide similarity in structural connectivity of the striatum between human and macaque, leaving the cross-species comparison of its functional organization unknown. In this study, resting-state functional connectivity (RSFC) derived striatal parcels were compared based on their homologous cortico-striatal connectivity. The goal here was to identify striatal parcels whose connectivity is human-specific compared to macaque parcels. Functional parcellation revealed that the human striatum was split into dorsal, dorsomedial, and rostral caudate and ventral, central, and caudal putamen, while the macaque striatum was divided into dorsal, and rostral caudate and rostral, and caudal putamen. Cross-species comparison indicated dissimilar cortico-striatal RSFC of the topographically similar dorsal caudate. We probed clinical relevance of the striatal clusters by examining differences in their cortico-striatal RSFC and gray matter (GM) volume between patients (with PD and SCZ) and healthy controls. We found abnormal RSFC not only between dorsal caudate, but also between rostral caudate, ventral, central and caudal putamen and widespread cortical regions for both PD and SCZ patients. Also, we observed significant structural atrophy in rostral caudate, ventral and central putamen for both PD and SCZ while atrophy in the dorsal caudate was specific to PD. Taken together, our cross-species comparative results revealed shared and human-specific RSFC of different striatal clusters reinforcing the complex organization and function of the striatum. In addition, we provided a testable hypothesis that abnormalities in a region with human-specific connectivity, i.e., dorsal caudate, might be associated with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xiaojin Liu
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jianxiao Wu
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, Netherlands
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Ji Chen
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany
| | - Renaud Jardri
- Division of Psychiatry, University of Lille, CNRS UMR9193, SCALab & CHU Lille, Fontan Hospital, CURE platform, Lille, France
| | - Kathrin Reetz
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, RWTH Aachen University, Aachen, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Imis Dogan
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, RWTH Aachen University, Aachen, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lydia Kogler
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany
| | - Julian Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany; Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, Oldenburg, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Systems Neuroscience, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
41
|
Quantitative evaluation of brain volumes in drug-free major depressive disorder using MRI-Cloud method. Neuroreport 2021; 32:1027-1034. [PMID: 34075004 DOI: 10.1097/wnr.0000000000001682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Quantitative analysis of the high-resolution T1-weighted images provides useful markers to measure anatomical changes during brain degeneration related to major depressive disorder (MDD). However, there are controversial findings regarding these volume alterations in MDD indicating even to increased volumes in some specific regions in MDD patients. METHODS This study is a case-controlled study including 23 depression patients and 15 healthy subject person and 20-38 years of age, who have been treated at the Neurology and Psychiatry Department here. We compared specific anatomic regions between drug-free MDD patients and control group through MRI-Cloud, which is a novel brain imaging method that enables to analyze multiple brain regions simultaneously. RESULTS We have found that frontal, temporal, and parietal hemispheric volumes and middle frontal gyrus, inferior frontal gyrus, superior parietal gyrus, cingulum-hippocampus, lateral fronto-orbital gyrus, superior temporal gyrus, superior temporal white matter, middle temporal gyrus subanatomic regions were significantly reduced bilaterally in MDD patients compared to the control group, while striatum, amygdala, putamen, and nucleus accumbens bilaterally increased in MDD group compared to the control group suggesting that besides the heterogeneity among studies, also comorbid factors such as anxiety and different personal traits could be responsible for these discrepant results. CONCLUSION Our study gives a strong message that depression is associated with altered structural brain volumes, especially, in drug-free and first-episode MDD patients who present with similar duration and severity of depression while the role of demographic and comorbid risk factors should not be neglected.
Collapse
|
42
|
Canario E, Chen D, Biswal B. A review of resting-state fMRI and its use to examine psychiatric disorders. PSYCHORADIOLOGY 2021; 1:42-53. [PMID: 38665309 PMCID: PMC10917160 DOI: 10.1093/psyrad/kkab003] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 04/28/2024]
Abstract
Resting-state fMRI (rs-fMRI) has emerged as an alternative method to study brain function in human and animal models. In humans, it has been widely used to study psychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders, and attention deficit hyperactivity disorders. In this review, rs-fMRI and its advantages over task based fMRI, its currently used analysis methods, and its application in psychiatric disorders using different analysis methods are discussed. Finally, several limitations and challenges of rs-fMRI applications are also discussed.
Collapse
Affiliation(s)
- Edgar Canario
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ, 07102, US
| | - Donna Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ, 07102, US
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ, 07102, US
| |
Collapse
|
43
|
Lv X, Lu F, Zhang J, Chen H, Zhang L, Wang X, Fan Y, Fang J, Hong L, Wang J, Liu C, Yuan Z, He Z, Wang W. Effects of TIP treatment on brain network topology of frontolimbic circuit in first-episode, treatment-naïve major depressive disorder. J Affect Disord 2021; 279:122-130. [PMID: 33045554 DOI: 10.1016/j.jad.2020.09.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The Low Resistance Thought Induction Psychotherapy (TIP) is a comprehensive psychological treatment which could improve the clinical symptoms of major depressive disorder (MDD). However, the neural mechanisms for TIP treating MDD still remain unclear. This study aimed to investigate the topology of intrinsic connectivity network and the therapeutic effects of TIP in MDD on these topological properties. METHODS Longitudinal study was conducted in 20 first-episode, treatment-naive MDD patients at baseline and after 6 weeks (12 sessions) of TIP treatment based on resting-state functional magnetic resonance image (rsfMRI) in conjunction with graph theoretical analysis. We constructed functional connectivity matrices and extracted the attribute features of the small-world networks in both MDD and age-, education level-, and gender-matched healthy controls (HCs). The global and local small-world network properties were explored and compared between MDD at baseline and HCs. The therapeutic effect of TIP was examined by comparing alterations in global and local network properties between MDD at baseline and after treatment. RESULTS At baseline, MDD showed altered small-worldness and aberrant nodal properties in the frontolimbic circuit particularly in the orbital frontal gyrus, insula, precuneus and middle cingulate gyrus as compared with HCs. Following 6 weeks treatment, the abnormalities in the small-worldness and the nodal metrics were modulated, which were accompanied by a significant improvement in the clinical symptoms. CONCLUSIONS Our findings contributed to the understanding of the abnormal topological patterns in the frontolimbic systems in MDD and implicated that these disruptions may be modified by TIP treatment.
Collapse
Affiliation(s)
- Xueyu Lv
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jinhua Zhang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guizhou, China
| | - Liang Zhang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Xiaoling Wang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Yangyang Fan
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Jiliang Fang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Lan Hong
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Jian Wang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Chunhong Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Weidong Wang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China.
| |
Collapse
|
44
|
Yang Y, Cui Q, Pang Y, Chen Y, Tang Q, Guo X, Han S, Ameen Fateh A, Lu F, He Z, Huang J, Xie A, Li D, Lei T, Wang Y, Chen H. Frequency-specific alteration of functional connectivity density in bipolar disorder depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110026. [PMID: 32621959 DOI: 10.1016/j.pnpbp.2020.110026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/31/2020] [Accepted: 06/21/2020] [Indexed: 11/16/2022]
Abstract
Functional dysconnectivity has been widely reported in bipolar disorder during depressive episodes (BDD). However, the frequency-specific alterations of functional connectivity (FC) in BDD remain poorly understood. To address this issue, the FC patterns across slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) bands were computed using resting-state functional magnetic resonance imaging data from 37 BDD patients and 56 healthy controls (HCs). Short-range (local) FC density (lfcd) and long-range FC density (lrfcd) were calculated, and two-way analysis of variance was performed to ascertain the main effect of diagnosis and interaction effects between diagnosis and frequency. The BDD patients showed increased lfcd in the midline cerebelum. Meanwhile, the BDD patients showed increased lrfcd in the left supplementary motor cortex and right striatum and decreased lrfcd in the bilateral inferior temporal gyrus and left angular gyrus (AG) compared with the HCs. A significant frequency-by-diagnosis interaction was observed. In the slow-4 band, the BDD patients showed increased lfcd in the left pre-/postcentral gyrus and left fusiform gyrus (FG) and increased lrfcd in the left lingual gyrus (LG). In the slow-5 band, the BDD patients showed decreased lrfcd in the left LG. Moreover, the increased lfcd in the left FG in the slow-4 band was correlated with clinical progression and decreased lrfcd in the left AG was correlated with depressive severity. These results suggest that the presence of aberrant communication in the default mode network, sensory network, and subcortical and limbic modulating regions (striatum and midline cerebelum), which may offer a new framework for the understanding of the pathophysiological mechanisms of BDD.
Collapse
Affiliation(s)
- Yang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoqiang Han
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ahmed Ameen Fateh
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ailing Xie
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Di Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Lei
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yifeng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China; Department of Radiology, First Affiliated Hospital to Army Medical University, Chongqing, China.
| |
Collapse
|
45
|
Yoon S, Kim TD, Kim J, Lyoo IK. Altered functional activity in bipolar disorder: A comprehensive review from a large-scale network perspective. Brain Behav 2021; 11:e01953. [PMID: 33210461 PMCID: PMC7821558 DOI: 10.1002/brb3.1953] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/08/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Growing literature continues to identify brain regions that are functionally altered in bipolar disorder. However, precise functional network correlates of bipolar disorder have yet to be determined due to inconsistent results. The overview of neurological alterations from a large-scale network perspective may provide more comprehensive results and elucidate the neuropathology of bipolar disorder. Here, we critically review recent neuroimaging research on bipolar disorder using a network-based approach. METHODS A systematic search was conducted on studies published from 2009 through 2019 in PubMed and Google Scholar. Articles that utilized functional magnetic resonance imaging technique to examine altered functional activity of major regions belonging to a large-scale brain network in bipolar disorder were selected. RESULTS A total of 49 studies were reviewed. Within-network hypoconnectivity was reported in bipolar disorder at rest among the default mode, salience, and central executive networks. In contrast, when performing a cognitive task, hyperconnectivity among the central executive network was found. Internetwork functional connectivity in the brain of bipolar disorder was greater between the salience and default mode networks, while reduced between the salience and central executive networks at rest, compared to control. CONCLUSION This systematic review suggests disruption in the functional activity of large-scale brain networks at rest as well as during a task stimuli in bipolar disorder. Disrupted intra- and internetwork functional connectivity that are also associated with clinical symptoms suggest altered functional connectivity of and between large-scale networks plays an important role in the pathophysiology of bipolar disorder.
Collapse
Affiliation(s)
- Sujung Yoon
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - Tammy D Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul, South Korea.,The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
46
|
Amiri S, Mirbagheri MM, Asadi-Pooya AA, Badragheh F, Ajam Zibadi H, Arbabi M. Brain functional connectivity in individuals with psychogenic nonepileptic seizures (PNES): An application of graph theory. Epilepsy Behav 2021; 114:107565. [PMID: 33243686 DOI: 10.1016/j.yebeh.2020.107565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine brain functional connectivity (FC), based on the graph theory, in individuals with psychogenic nonepileptic seizures (PNES), in order to better understand the mechanisms underlying this disease. METHODS Twenty-three patients with PNES and twenty-five healthy control subjects were examined. Alterations in FC within the whole brain were examined using resting-state functional magnetic resonance imaging (MRI). We calculated measures of the nodal degree, a major feature of the graph theory, for all the cortical and subcortical regions in the brain. Pearson correlation was performed to determine the relationship between nodal degree in abnormal brain regions and patient characteristics. RESULTS The nodal degrees in the right caudate (CAU), left orbital part of the left inferior frontal gyrus (ORBinf), and right paracentral lobule (PCL) were significantly greater (i.e. hyper-connectivity) in individuals with PNES than in healthy control subjects. On the other hand, a lesser nodal degree (i.e. hypo-connectivity) was detected in several other brain regions including the left and right insula (INS), as well as the right putamen (PUT), and right middle occipital gyrus (MOG). CONCLUSION Our findings suggest that the FC of several major brain regions can be altered in individuals with PNES. Areas with hypo-connectivity may be involved in emotion processing (e.g., INS) and movement regulation (e.g., PUT), whereas areas with hyper-connectivity may play a role in the inhibition of unwanted movements and cognitive processes (e.g., CAU).
Collapse
Affiliation(s)
- Saba Amiri
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi M Mirbagheri
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Physical Medicine and Rehabilitation Department, Northwestern University, USA.
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, USA
| | - Fatemeh Badragheh
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamideh Ajam Zibadi
- Department of Psychiatry, Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Iran
| | - Mohammad Arbabi
- Department of Psychiatry, Brain & Spinal Cord Injury Research Centre, Psychosomatic Medicine Research Center, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
47
|
Wei Y, Wu L, Wang Y, Liu J, Miao P, Wang K, Wang C, Cheng J. Disrupted Regional Cerebral Blood Flow and Functional Connectivity in Pontine Infarction: A Longitudinal MRI Study. Front Aging Neurosci 2020; 12:577899. [PMID: 33328960 PMCID: PMC7710811 DOI: 10.3389/fnagi.2020.577899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022] Open
Abstract
Abnormal cerebral blood flow (CBF) and resting-state functional connectivity (rs-FC) are sensitive biomarkers of disease progression and prognosis. This study investigated neural underpinnings of motor and cognitive recovery by longitudinally studying the changes of CBF and FC in pontine infarction (PI). Twenty patients underwent three-dimensional pseudo-continuous arterial spin labeling (3D-pcASL), resting-state functional magnetic resonance imaging (rs-fMRI) scans, and behavioral assessments at 1 week, 1, 3, and 6 months after stroke. Twenty normal control (NC) subjects underwent the same examination once. First, we investigated CBF changes in the acute stage, and longitudinal changes from 1 week to 6 months after PI. Brain regions with longitudinal CBF changes were then used as seeds to investigate longitudinal FC alterations during the follow-up period. Compared with NC, patients in the left PI (LPI) and right PI (RPI) groups showed significant CBF alterations in the bilateral cerebellum and some supratentorial brain regions at the baseline stage. Longitudinal analysis revealed that altered CBF values in the right supramarginal (SMG_R) for the LPI group, while the RPI group showed significantly dynamic changes of CBF in the left calcarine sulcus (CAL_L), middle occipital gyrus (MOG_L), and right supplementary motor area (SMA_R). Using the SMG_R as the seed in the LPI group, FC changes were found in the MOG_L, middle temporal gyrus (MTG_L), and prefrontal lobe (IFG_L). Correlation analysis showed that longitudinal CBF changes in the SMG_R and FC values between the SMG_R and MOG_L were associated with motor and memory scores in the LPI group, and longitudinal CBF changes in the CAL_L and SMA_R were related to memory and motor recovery in the RPI group. These longitudinal CBF and accompany FC alterations may provide insights into the neural mechanism underlying functional recovery after PI, including that of motor and cognitive functions.
Collapse
Affiliation(s)
- Ying Wei
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luobing Wu
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Peifang Miao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- GE Healthcare MR Research, Beijing, China
| | - Caihong Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Levenberg K, Hajnal A, George DR, Saunders EFH. Prolonged functional cerebral asymmetry as a consequence of dysfunctional parvocellular paraventricular hypothalamic nucleus signaling: An integrative model for the pathophysiology of bipolar disorder. Med Hypotheses 2020; 146:110433. [PMID: 33317848 DOI: 10.1016/j.mehy.2020.110433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Approximately 45 million people worldwide are diagnosed with bipolar disorder (BD). While there are many known risk factors and models of the pathologic processes influencing BD, the exact neurologic underpinnings of BD are unknown. We attempt to integrate the existing literature and create a unifying hypothesis regarding the pathophysiology of BD with the hope that a concrete model may potentially facilitate more specific diagnosis, prevention, and treatment of BD in the future. We hypothesize that dysfunctional signaling from the parvocellular neurons of the paraventricular hypothalamic nucleus (PVN) results in the clinical presentation of BD. Functional damage to this nucleus and its signaling pathways may be mediated by myriad factors (e.g. immune dysregulation and auto-immune processes, polygenetic variation, dysfunctional interhemispheric connections, and impaired or overactivated hypothalamic axes) which could help explain the wide variety of clinical presentations along the BD spectrum. The neurons of the PVN regulate ultradian rhythms, which are observed in cyclic variations in healthy individuals, and mediate changes in functional hemispheric lateralization. Theoretically, dysfunctional PVN signaling results in prolonged functional hemispheric dominance. In this model, prolonged right hemispheric dominance leads to depressive symptoms, whereas left hemispheric dominance correlated to the clinical picture of mania. Subsequently, physiologic processes that increase signaling through the PVN (hypothalamic-pituitaryadrenal axis, hypothalamic- pituitary-gonadal axis, and hypothalamic-pituitary-thyroid axis activity, suprachiasmatic nucleus pathways) as well as, neuro-endocrine induced excito-toxicity, auto-immune and inflammatory flairs may induce mood episodes in susceptible individuals. Potentially, ultradian rhythms slowing with age, in combination with changes in hypothalamic axes and maturation of neural circuitry, accounts for BD clinically presenting more frequently in young adulthood than later in life.
Collapse
Affiliation(s)
- Kate Levenberg
- College of Medicine, Penn State University College of Medicine, State College, USA.
| | - Andras Hajnal
- Neural & Behavioral Sciences, Penn State University College of Medicine, State College, USA
| | - Daniel R George
- Department of Humanities, Penn State University College of Medicine, Hershey, USA
| | - Erika F H Saunders
- Psychiatry and Behavioral Health, Penn State University College of Medicine, State College, USA
| |
Collapse
|
49
|
Li H, Cui L, Cao L, Zhang Y, Liu Y, Deng W, Zhou W. Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques. BMC Psychiatry 2020; 20:488. [PMID: 33023515 PMCID: PMC7542439 DOI: 10.1186/s12888-020-02886-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bipolar disorder (BPD) is a common mood disorder that is often goes misdiagnosed or undiagnosed. Recently, machine learning techniques have been combined with neuroimaging methods to aid in the diagnosis of BPD. However, most studies have focused on the construction of classifiers based on single-modality MRI. Hence, in this study, we aimed to construct a support vector machine (SVM) model using a combination of structural and functional MRI, which could be used to accurately identify patients with BPD. METHODS In total, 44 patients with BPD and 36 healthy controls were enrolled in the study. Clinical evaluation and MRI scans were performed for each subject. Next, image pre-processing, VBM and ReHo analyses were performed. The ReHo values of each subject in the clusters showing significant differences were extracted. Further, LASSO approach was recruited to screen features. Based on selected features, the SVM model was established, and discriminant analysis was performed. RESULTS After using the two-sample t-test with multiple comparisons, a total of 8 clusters were extracted from the data (VBM = 6; ReHo = 2). Next, we used both VBM and ReHo data to construct the new SVM classifier, which could effectively identify patients with BPD at an accuracy of 87.5% (95%CI: 72.5-95.3%), sensitivity of 86.4% (95%CI: 64.0-96.4%), and specificity of 88.9% (95%CI: 63.9-98.0%) in the test data (p = 0.0022). CONCLUSIONS A combination of structural and functional MRI can be of added value in the construction of SVM classifiers to aid in the accurate identification of BPD in the clinic.
Collapse
Affiliation(s)
- Hao Li
- grid.412615.5Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China ,grid.484195.5Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Liqian Cui
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Liping Cao
- Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China.
| | - Yizhi Zhang
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Yueheng Liu
- grid.216417.70000 0001 0379 7164Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan China ,Chinese National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan China
| | - Wenhao Deng
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| | - Wenjin Zhou
- grid.452505.30000 0004 1757 6882Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong China
| |
Collapse
|
50
|
Amiri S, Mehvari-Habibabadi J, Mohammadi-Mobarakeh N, Hashemi-Fesharaki SS, Mirbagheri MM, Elisevich K, Nazem-Zadeh MR. Graph theory application with functional connectivity to distinguish left from right temporal lobe epilepsy. Epilepsy Res 2020; 167:106449. [PMID: 32937221 DOI: 10.1016/j.eplepsyres.2020.106449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the application of graph theory with functional connectivity to distinguish left from right temporal lobe epilepsy (TLE). METHODS Alterations in functional connectivity within several brain networks - default mode (DMN), attention (AN), limbic (LN), sensorimotor (SMN) and visual (VN) - were examined using resting-state functional MRI (rs-fMRI). The study accrued 21 left and 14 right TLE as well as 17 nonepileptic control subjects. The local nodal degree, a feature of graph theory, was calculated foreach of the brain networks. Multivariate logistic regression analysis was performed to determine the accuracy of identifying seizure laterality based on significant differences in local nodal degree in the selected networks. RESULTS Left and right TLE patients showed dissimilar patterns of alteration in functional connectivity when compared to control subjects. Compared with right TLE, patients with left TLE exhibited greater nodal degree' (i.e. hyperconnectivity) with right superomedial frontal gyrus (in DMN), inferior frontal gyrus pars triangularis (in AN), right caudate and left superior temporal gyrus (in LN) and left paracentral lobule (in SMN), while showing lesser nodal degree (i.e. hypoconnectivity) with left temporal pole (in DMN), right insula (in LN), left supplementary motor area (in SMN), and left fusiform gyrus (in VN). The LN showed the highest accuracy of 82.9% among all considered networks in determining laterality of the TLE. By combinations of local degree attributes in the DMN, AN, LN, and VN, logistic regression analysis demonstrated an accuracy of 94.3% by comparison. CONCLUSION Our study demonstrates the utility of graph theory application to brain network analysis as a potential biomarker to assist in the determination of TLE laterality and improve the confidence in presurgical decision-making in cases of TLE.
Collapse
Affiliation(s)
- Saba Amiri
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences(TUMS), Tehran, Iran
| | | | - Neda Mohammadi-Mobarakeh
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences(TUMS), Tehran, Iran; Research Center for Molecular and Cellular Imaging, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Mehdi M Mirbagheri
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences(TUMS), Tehran, Iran; Physical Medicine and Rehabilitation Department, Northwestern University, USA.
| | - Kost Elisevich
- Department of Clinical Neurosciences, Spectrum Health, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| | - Mohammad-Reza Nazem-Zadeh
- Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences(TUMS), Tehran, Iran; Research Center for Molecular and Cellular Imaging, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|