1
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Sharma S, Chawla S, Kumar P, Ahmad R, Kumar Verma P. The chronic unpredictable mild stress (CUMS) Paradigm: Bridging the gap in depression research from bench to bedside. Brain Res 2024; 1843:149123. [PMID: 39025397 DOI: 10.1016/j.brainres.2024.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Depression is a complicated neuropsychiatric condition with an incompletely understoodetiology, making the discovery of effective therapies challenging. Animal models have been crucial in improving our understanding of depression and enabling antidepressant medication development. The CUMS model has significant face validity since it induces fundamental depression symptoms in humans, such as anhedonia, behavioral despair, anxiety, cognitive impairments, and changes in sleep, food, and social behavior. Its construct validity is demonstrated by the dysregulation of neurobiological systems involved in depression, including monoaminergic neurotransmission, the hypothalamic-pituitary-adrenal axis, neuroinflammatory processes, and structural brain alterations. Critically, the model's predictive validity is demonstrated by the reversal of CUMS-induced deficits following treatment with clinically effective antidepressants such as selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors. This review comprehensivelyassesses the multifarious depressive-like phenotypes in the CUMS model using behavioral paradigms like sucrose preference, forced swim, tail suspension, elevated plus maze, and novel object recognition tests. It investigates the neurobiological mechanisms that underlie CUMS-induced behaviors, including signaling pathways involving tumor necrosis factor-alpha, brain-derived neurotrophic factor and its receptor TrkB, cyclooxygenase-2, glycogen synthase kinase-3 beta, and the kynurenine pathway. This review emphasizes the CUMS model's importance as a translationally relevant tool for unraveling the complex mechanisms underlying depression and facilitating the development of improved and targeted interventions for this debilitating neuropsychiatric disorder by providing a comprehensive overview of its validity, behavioral assessments, and neurobiological underpinnings.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Pharmacology, School of PharmaceuticalEducation & Research, Jamia Hamdard, New Delhi 110062, India
| | - Shivani Chawla
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, Haryana 124001, India
| | - Praveen Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rizwan Ahmad
- Department of Pharmacology, School of PharmaceuticalEducation & Research, Jamia Hamdard, New Delhi 110062, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| |
Collapse
|
3
|
Cantos AL, Ontiveros G, Dearth RK, O’Leary KD. Hormonal differences in perpetrators of intimate partner violence. Front Psychiatry 2024; 15:1432864. [PMID: 39045548 PMCID: PMC11263019 DOI: 10.3389/fpsyt.2024.1432864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Objective In order to gain a better understanding of the individual and joint impact of testosterone and cortisol on behavior, the present study was developed to test the differences in each hormone alone and conjointly between perpetrators of IPV and non-violent controls. Method Perpetrators of IPV on probation were compared to a control group of non-aggressive males from Hidalgo County in the Rio Grande Valley on baseline testosterone and cortisol, as well as several relevant questionnaires measuring aggression and trait anger. Differences in cortisol following exposure to a stressful event were also examined. Procedures included two laboratory visits consisting of questionnaires, a number of salivary testosterone and cortisol collections, and exposure to a stressor. Results Perpetrators had higher basal testosterone and post stressor cortisol levels than non- violent controls as well as a higher T/C ratio. In addition, trait anger moderated the relationship between both testosterone alone, and the testosterone/cortisol ratio and perpetration of IPV. Conclusion Results are consistent with the hypothesis that testosterone leads to antisocial behavior, including perpetration of violence. The results are also consistent with the dual hormone hypothesis, i.e., that testosterone and cortisol work together to jointly regulate social dominance and aggression. Both the increased freestanding testosterone and the increased cortisol following exposure to stress places these men at risk for perpetrating violence. Clinical implications are discussed.
Collapse
Affiliation(s)
- Arthur L. Cantos
- Department of Psychological Science, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Gabriela Ontiveros
- Department of Psychological Science, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Robert K. Dearth
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - K. Daniel O’Leary
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
4
|
Shemesh Y, Benjamin A, Shoshani-Haye K, Yizhar O, Chen A. Studying dominance and aggression requires ethologically relevant paradigms. Curr Opin Neurobiol 2024; 86:102879. [PMID: 38692167 DOI: 10.1016/j.conb.2024.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Although aggression is associated with several psychiatric disorders, there is no effective treatment nor a rigorous definition for "pathological aggression". Mice make a valuable model for studying aggression. They have a dynamic social structure that depends on the habitat and includes reciprocal interactions between the mice's aggression levels, social dominance hierarchy (SDH), and resource allocation. Nevertheless, the classical behavioral tests for territorial aggression and SDH in mice are reductive and have limited ethological and translational relevance. Recent work has explored the use of semi-natural environments to simultaneously study dominance-related behaviors, resource allocation, and aggressive behavior. Semi-natural setups allow experimental control of the environment combined with manipulations of neural activity. We argue that these setups can help bridge the translational gap in aggression research toward discovering neuronal mechanisms underlying maladaptive aggression.
Collapse
Affiliation(s)
- Yair Shemesh
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaf Benjamin
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel. https://twitter.com/AsafBenj
| | - Keren Shoshani-Haye
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ofer Yizhar
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel. https://twitter.com/OferYizhar
| | - Alon Chen
- Department of Brain Sciences and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Yin X, Zhao Y, Wang S, Feng H, He X, Li X, Liu X, Lu H, Wen D, Shi Y, Shi H. Postweaning stress affects behavior, brain and gut microbiota of adolescent mice in a sex-dependent manner. Neuropharmacology 2024; 248:109869. [PMID: 38354850 DOI: 10.1016/j.neuropharm.2024.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Aggression is an instinctive behavior that has been reported to be influenced by early-life stress. However, the potential effects of acute stress during the postweaning period, a key stage for brain development, on defensive aggression and the associated mechanism remain poorly understood. In the present study, aggressive behaviors were evaluated in adolescent mice exposed to postweaning stress. Serum corticosterone and testosterone levels, neural dendritic spine density, and gut microbiota composition were determined to identify the underlying mechanism. Behavioral analysis showed that postweaning stress reduced locomotor activity in mice and decreased defensive aggression in male mice. ELISA results showed that postweaning stress reduced serum testosterone levels in female mice. Golgi staining analysis demonstrated that postweaning stress decreased neural dendritic spine density in the medial prefrontal cortex of male mice. 16S rRNA sequencing results indicated that postweaning stress altered the composition of the gut microbiota in male mice. Combined, these results suggested that postweaning stress alters defensive aggression in male mice, which may be due to changes in neuronal structure as well as gut microbiota composition. Our findings highlight the long-lasting and sex-dependent effects of early-life experience on behaviors.
Collapse
Affiliation(s)
- Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xincheng Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoyu Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hengtai Lu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Di Wen
- Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang, 050017, China; Nursing School, Hebei Medical University, Shijiazhuang, 050031, China.
| |
Collapse
|
6
|
Al-Juhani A, Alzahrani MJ, Abdullah A Z, Alnefaie AN, Alnowaisser LN, Alhadi W, Alghamdi JK, Bauthman MS. Neuroimaging and Brain-Based Markers Identifying Neurobiological Markers Associated With Criminal Behaviour, Personality Disorders, and Mental Health: A Narrative Review. Cureus 2024; 16:e58814. [PMID: 38784339 PMCID: PMC11113083 DOI: 10.7759/cureus.58814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
We begin the review by pointing to the common stigma associated with mental health issues, which often derives from a lack of understanding or incomplete knowledge. Neurobiological research provides us with a new lens to help challenge and dispel common assumptions and misunderstandings and gives an understanding of sexual behaviours that influence society. As such, it generates substantial evidence for the structural and functional asymmetry of the brains of individuals with mental disorders. However, this type of representation poses many challenges to traditional thinking and constantly provokes change in perspective and empathy towards those individuals. In the review, we go deeper into the effects of neurobiological findings on understanding criminal behaviours and personality disorders, looking further beyond behavioural health. These problems, which were once mainly discussed as moral ones or viewed from the perspective of character flaws, are analysed today through neurological considerations pointing to their complexity. When the root of bipolar disorder is revealed to be neurological, society will react with more information and understanding, hence reducing the stigmatisation and discrimination meted out to people with these problems. At a macro level, findings from neurobiology affect society in ways that go beyond individuals; social attitudes, laws, and policies about the services rendered are influenced. Operating as a catalyst within the community, neurobiological research helps to initiate social change through the creation of an informed, understanding public forum. Thus, it creates broader value for those dealing with behavioural and mental health challenges. The first and most important question of this narrative review is focused on identifying identifiable neurobiological markers that are closely related to criminal conduct, personality disorders, and mental health disorders. Through this review, we aim to present detailed insights into the neurological foundations that anchor these phenomena via a narrative analysis of contemporary literature. The potential implications are finding problems early to apply specific treatment and learning an advanced strategy for social attitudes. This will promote a more humanistic approach based on adequate information on the behavioural and mental health issues involved.
Collapse
Affiliation(s)
| | | | | | | | | | - Wajd Alhadi
- College of Medicine, King Khalid University, Abha, SAU
| | | | - Moayyad S Bauthman
- Internal Medicine, King Abdulaziz University Faculty of Medicine, Rabigh, SAU
| |
Collapse
|
7
|
Weidler C, Hofhansel L, Regenbogen C, Müller D, Clemens B, Montag C, Reif A, Habel U. The influence of the COMT Val158Met polymorphism on prefrontal TDCS effects on aggression. Sci Rep 2024; 14:3437. [PMID: 38341445 PMCID: PMC10858895 DOI: 10.1038/s41598-024-53930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Increasing dorsolateral prefrontal cortex (DLPFC) activity by anodal transcranial direct current stimulation (tDCS) enhances cognitive control and might reduce aggression. The Val158Met polymorphism within the catechol-O-methyltransferase gene (rs4680) plays a pivotal role in prefrontal dopamine signaling, displaying associations with aggressive behavior, and potentially influencing the effects of tDCS. In a double-blind, sham-controlled study, we investigated the influence of rs4680 on tDCS effects on aggression. While undergoing functional magnetic resonance imaging, 89 healthy male participants performed the Taylor aggression paradigm before and immediately after tDCS. Actively stimulated participants (n = 45) received anodal tDCS (1.5 mA) for 20 min targeting the right DLPFC. Carriers of the val-allele (val+; n = 46; active tDCS n = 23) were compared to met-allele homozygotes (val-; n = 43; active tDCS n = 22). Analysis revealed decreased aggressive behavior in the val- group following active tDCS (p < 0.001). The val+ group showed increased aggression during the second session (p < 0.001) with an even higher increase following active as compared to sham tDCS (p < 0.001). No effects of stimulation or rs4680 on brain activation were found. Our study provides evidence for opposite tDCS effects on aggressive behavior in val-carriers and val-noncarriers. By shedding light on genetic factors predicting tDCS responsivity, the study will help to pave the way toward individualized-and thus more effective-tDCS treatment options.
Collapse
Affiliation(s)
- Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Lena Hofhansel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Dario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
8
|
Ai H, Li M, Fang W, Wang X, Liu X, Wu L, Zhang B, Lu W. Disruption of Cdk5-GluN2B complex by a small interfering peptide attenuates social isolation-induced escalated intermale attack behavior and hippocampal oxidative stress in mice. Free Radic Biol Med 2024; 210:54-64. [PMID: 37979890 DOI: 10.1016/j.freeradbiomed.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/04/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Social isolation has emerged as a significant issue during the COVID-19 pandemic that can adversely impact human mental health and potentially lead to pathological aggression. Given the lack of effective therapeutic interventions for aggressive behavior, alternative approaches are necessary. In this study, we utilized a genetic method combined with a pharmacological approach to identify and demonstrate the crucial role of Cdk5 in escalated intermale attack behavior induced by 2-week social isolation. Moreover, we developed a small peptide that effectively disrupts the interaction between Cdk5 and GluN2B, given the known involvement of this complex in various neuropsychiatric disorders. Administration of the peptide, either systemically or via intrahippocampal injection, significantly reduced oxidative stress in the hippocampus and attenuated intermale attack behavior induced by 2-week social isolation. These findings highlight the previously unknown role of the hippocampal Cdk5-GluN2B complex in social isolation-induced aggressive behavior in mice and propose the peptide as a promising therapeutic strategy for regulating attack behavior and oxidative stress.
Collapse
Affiliation(s)
- Heng Ai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Minghao Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiqing Fang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xuemeng Wang
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xinxin Liu
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Lihui Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bin Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China.
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
9
|
Kanarik M, Sakala K, Matrov D, Kaart T, Roy A, Ziegler GC, Veidebaum T, Lesch KP, Harro J. MAOA methylation is associated with impulsive and antisocial behaviour: dependence on allelic variation, family environment and diet. J Neural Transm (Vienna) 2024; 131:59-71. [PMID: 37507512 DOI: 10.1007/s00702-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Congenital absence of monoamine oxidase A (MAO-A) activity predisposes to antisocial impulsive behaviour, and the MAOA uVNTR low-expressing genotype (MAOA-L) together with childhood maltreatment is associated with similar phenotypes in males. A possible explanation of how family environment may lead to such behaviour involves DNA methylation. We have assessed MAOA methylation and impulsive/antisocial behaviour in 121 males from the Estonian Children Personality Behaviour and Health Study. Of the 12 CpG sites measured, methylation levels at the locus designated CpG3 were significantly lower in subjects with antisocial behaviour involving police contact. CpG3 methylation was lower in subjects with alcohol use disorder by age 25, but only in MAOA-H genotype. No correlation between MAOA CpG3 methylation levels and adaptive impulsivity was found at age 15, but in MAOA-L genotype a positive correlation appeared by age 18. By age 25, this positive correlation was no longer observed in subjects with better family relationships but had increased further with experience of adversity within the family. MAOA CpG3 methylation had different developmental dynamics in relation to maladaptive impulsivity. At age 18, a positive correlation was observed in MAOA-L genotype with inferior family relationships and a negative correlation was found in MAOA-H with superior home environment; both of these associations had disappeared by age 25. CpG3 methylation was associated with dietary intake of several micronutrients, most notable was a negative correlation with the intake of zinc, but also with calcium, potassium and vitamin E; a positive correlation was found with intake of phosphorus. In conclusion, MAOA CpG3 methylation is related to both maladaptive and adaptive impulsivity in adolescence in MAOA-L males from adverse home environment. By young adulthood, this relationship with maladaptive impulsivity had disappeared but with adaptive impulsivity strengthened. Thus, MAOA CpG3 methylation may serve as a marker for adaptive developmental neuroplasticity in MAOA-L genotype. The mechanisms involved may include dietary factors.
Collapse
Affiliation(s)
- Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia
| | - Katre Sakala
- National Institute for Health Development, Tallinn, Estonia
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Denis Matrov
- Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
| | - Arunima Roy
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | | | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia.
| |
Collapse
|
10
|
Wei JM, Xia LX. Neural Correlates of Positive Outcome Expectancy for Aggression: Evidence from Voxel-Based Morphometry and Resting-State Functional Connectivity Analysis. Brain Sci 2023; 14:43. [PMID: 38248258 PMCID: PMC10813425 DOI: 10.3390/brainsci14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Positive outcome expectancy is a crucial cognitive factor influencing aggression, yet its neural basis remains unclear. Therefore, the present study combined voxel-based morphometry (VBM) with a resting-state functional connectivity (RSFC) analysis to investigate the brain correlates of positive outcome expectancy in aggression in young people. In the VBM analysis, multiple linear regression was conducted to explore the relationship between individual differences in aggressive positive outcome expectancy and regional gray matter volume (GMV) among 325 undergraduate students. For the RSFC analysis, seed regions were selected based on the results of the VBM analysis. Subsequently, multiple linear regression was employed to examine whether a significant correlation existed between individual differences in aggressive positive outcome expectancy and the RSFC of seed regions with other brain regions in 304 undergraduate students. The findings indicated that aggressive positive outcome expectancy was positively correlated with GMV in the posterior cingulate cortex (PCC), right temporoparietal junction (TPJ), and medial prefrontal cortex (MPFC). Moreover, it was also positively associated with RSFC between the PCC and the left dorsolateral prefrontal cortex (DLPFC). The prediction analysis indicated robust relationships between aggressive positive outcome expectancy and the GMV in the PCC, right TPJ, as well as the RSFC between the PCC and the left DLPFC. Our research provides the initial evidence for the neural basis of positive outcome expectancy in aggression, suggesting the potential role of the PCC as a hub in its neural network.
Collapse
Affiliation(s)
- Jia-Ming Wei
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing 400715, China
| |
Collapse
|
11
|
Kim JH, Kim HK, Son YD, Kim JH. In Vivo Serotonin 5-HT2A Receptor Availability and Its Relationship with Aggression Traits in Healthy Individuals: A Positron Emission Tomography Study with C-11 MDL100907. Int J Mol Sci 2023; 24:15697. [PMID: 37958691 PMCID: PMC10647245 DOI: 10.3390/ijms242115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Serotonergic neurotransmission has been associated with aggression in several psychiatric disorders. Human aggression is a continuum of traits, ranging from normal to pathological phenomena. However, the individual differences in serotonergic neurotransmission and their relationships with aggression traits in healthy individuals remain unclear. In this study, we explored the relationship between 5-HT2A receptor availability in vivo and aggression traits in healthy participants. Thirty-three healthy participants underwent 3-Tesla magnetic resonance imaging and positron emission tomography (PET) with [11C]MDL100907, a selective radioligand for 5-HT2A receptors. To quantify 5-HT2A receptor availability, the binding potential (BPND) was derived using the basis function implementation of the simplified reference tissue model, with the cerebellum as the reference region. The participants' aggression levels were assessed using the Buss-Perry Aggression Questionnaire. The voxel-based correlation analysis with age and sex as covariates revealed that the total aggression score was significantly positively correlated with [11C]MDL100907 BPND in the right middle temporal gyrus (MTG) pole, left fusiform gyrus (FUSI), right parahippocampal gyrus, and right hippocampus. The physical aggression subscale score had significant positive correlations with [11C]MDL100907 BPND in the left olfactory cortex, left orbital superior frontal gyrus (SFG), right anterior cingulate and paracingulate gyri, left orbitomedial SFG, left gyrus rectus, left MTG, left inferior temporal gyrus, and left angular gyrus. The verbal aggression subscale score showed significant positive correlations with [11C]MDL100907 BPND in the bilateral SFG, right medial SFG, left FUSI, and right MTG pole. Overall, our findings suggest the possibility of positive correlations between aggression traits and in vivo 5-HT2A receptor availability in healthy individuals. Future research should incorporate multimodal neuroimaging to investigate the downstream effects of 5-HT2A receptor-mediated signaling and integrate molecular and systems-level information in relation to aggression traits.
Collapse
Affiliation(s)
- Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Biomedical Engineering Research Center, Gachon University, Incheon 21936, Republic of Korea
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
12
|
Antón-Galindo E, Cabana-Domínguez J, Torrico B, Corominas R, Cormand B, Fernàndez-Castillo N. The pleiotropic contribution of genes in dopaminergic and serotonergic pathways to addiction and related behavioral traits. Front Psychiatry 2023; 14:1293663. [PMID: 37937232 PMCID: PMC10627163 DOI: 10.3389/fpsyt.2023.1293663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Co-occurrence of substance use disorders (SUD) and other behavioral conditions, such as stress-related, aggressive or risk-taking behaviors, in the same individual has been frequently described. As dopamine (DA) and serotonin (5-HT) have been previously identified as key neurotransmitters for some of these phenotypes, we explored the genetic contribution of these pathways to SUD and these comorbid phenotypes in order to better understand the genetic relationship between them. Methods We tested the association of 275 dopaminergic genes and 176 serotonergic genes with these phenotypes by performing gene-based, gene-set and transcriptome-wide association studies in 11 genome-wide association studies (GWAS) datasets on SUD and related behaviors. Results At the gene-wide level, 68 DA and 27 5-HT genes were found to be associated with at least one GWAS on SUD or related behavior. Among them, six genes had a pleiotropic effect, being associated with at least three phenotypes: ADH1C, ARNTL, CHRNA3, HPRT1, HTR1B and DRD2. Additionally, we found nominal associations between the DA gene sets and SUD, opioid use disorder, antisocial behavior, irritability and neuroticism, and between the 5-HT-core gene set and neuroticism. Predicted gene expression correlates in brain were also found for 19 DA or 5-HT genes. Discussion Our study shows a pleiotropic contribution of dopaminergic and serotonergic genes to addiction and related behaviors such as anxiety, irritability, neuroticism and risk-taking behavior, highlighting a role for DA genes, which could explain, in part, the co-occurrence of these phenotypes.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Roser Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
13
|
Værøy H, Lahaye E, Dubessy C, Benard M, Nicol M, Cherifi Y, Takhlidjt S, do Rego JL, do Rego JC, Chartrel N, Fetissov SO. Immunoglobulin G is a natural oxytocin carrier which modulates oxytocin receptor signaling: relevance to aggressive behavior in humans. DISCOVER MENTAL HEALTH 2023; 3:21. [PMID: 37983005 PMCID: PMC10587035 DOI: 10.1007/s44192-023-00048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Oxytocin is a neuropeptide produced mainly in the hypothalamus and secreted in the CNS and blood. In the brain, it plays a major role in promoting social interactions. Here we show that in human plasma about 60% of oxytocin is naturally bound to IgG which modulates oxytocin receptor signaling. Further, we found that IgG of violent aggressive inmates were characterized by lower affinity for oxytocin, causing decreased oxytocin carrier capacity and reduced receptor activation as compared to men from the general population. Moreover, peripheral administration of oxytocin together with human oxytocin-reactive IgG to resident mice in a resident-intruder test, reduced c-fos activation in several brain regions involved in the regulation of aggressive/defensive behavior correlating with the attack number and duration. We conclude that IgG is a natural oxytocin carrier protein modulating oxytocin receptor signaling which can be relevant to the biological mechanisms of aggressive behavior.
Collapse
Affiliation(s)
- Henning Værøy
- Department of Psychiatric Research, Akershus University Hospital, 1478, Nordbyhagen, Norway.
| | - Emilie Lahaye
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Christophe Dubessy
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Magalie Benard
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Marion Nicol
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Yamina Cherifi
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Saloua Takhlidjt
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Luc do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Claude do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Nicolas Chartrel
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Sergueï O Fetissov
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France.
| |
Collapse
|
14
|
Wang C, Zhu L, Zheng W, Peng H, Wang J, Cui Y, Liu B, Jiang T. Effects of childhood trauma on aggressive behaviors and hippocampal function: the modulation of COMT haplotypes. PSYCHORADIOLOGY 2023; 3:kkad013. [PMID: 38666110 PMCID: PMC11003423 DOI: 10.1093/psyrad/kkad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 04/28/2024]
Abstract
Background Aggression is a commonly hostile behavior linked to the hippocampal activity. Childhood trauma (CT) exposure has been associated with altered sensitization of the hypothalamic-pituitary-adrenal (HPA) axis and hippocampal volume,which could increase violent aggressive behaviors. Additionally, Catechol-O-methyltransferase (COMT), the major dopamine metabolism enzyme, is implicated in stress responsivity, including aggression. Hence, CT exposure may affect aggression through the effect on the hippocampal function, which might also be modulated by the COMT variations. Objectives This study examined whether both CT and haplotypes of COMT moderate hippocampal function and thus affect human aggressive behavior. Methods We obtained bilateral hippocampal functional connectivity maps using resting state functional magnetic resonance imaging (MRI) data. COMT haplotype estimation was performed using Haploview 4.2 and PHASE 2.1. Then we constructed a moderated mediation model to study the effect of the CTQ × COMT on aggressive behavior. Results Three major haplotypes were generated from thirteen single nucleotide polymorphisms (SNPs) within the COMT gene and formed three haplotypes corresponding to high, medium, and low enzymatic activity of COMT. The results showed interactive relationships between the Childhood Trauma Questionnaire (CTQ) and COMT with respect to the functional connectivity (FC) of the bilateral hippocampus (HIP)-orbital frontal cortex (OFC). Specifically, CT experience predicted lower negative HIP-OFC coupling in the APS and HPS haplotypes corresponding to the medium and high enzymatic activity of COMT, but greater FC in the LPS haplotypes corresponding to the low enzymatic activity. We also observed a conditional mediation effect of the right HIP-OFC coupling in the link between COMT and aggressive behavior that was moderated by CT experience. Conclusions These results suggest that CT and COMT have a combined effect on aggressive behavior through hippocampal function. This mediation analysis sheds light on the influence of childhood experience on aggressive behavior in different genetic backgrounds.
Collapse
Affiliation(s)
- Chao Wang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Linfei Zhu
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Hanyuzhu Peng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yue Cui
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Tianzi Jiang
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Tobore TO. On power and its corrupting effects: the effects of power on human behavior and the limits of accountability systems. Commun Integr Biol 2023; 16:2246793. [PMID: 37645621 PMCID: PMC10461512 DOI: 10.1080/19420889.2023.2246793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Power is an all-pervasive, and fundamental force in human relationships and plays a valuable role in social, political, and economic interactions. Power differences are important in social groups in enhancing group functioning. Most people want to have power and there are many benefits to having power. However, power is a corrupting force and this has been a topic of interest for centuries to scholars from Plato to Lord Acton. Even with increased knowledge of power's corrupting effect and safeguards put in place to counteract such tendencies, power abuse remains rampant in society suggesting that the full extent of this effect is not well understood. In this paper, an effort is made to improve understanding of power's corrupting effects on human behavior through an integrated and comprehensive synthesis of the neurological, sociological, physiological, and psychological literature on power. The structural limits of justice systems' capability to hold powerful people accountable are also discussed.
Collapse
|
16
|
Benítez-Burraco A, Hoshi K, Progovac L. The gradual coevolution of syntactic combinatorics and categorization under the effects of human self-domestication: a proposal. Cogn Process 2023; 24:425-439. [PMID: 37306792 PMCID: PMC10359229 DOI: 10.1007/s10339-023-01140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/15/2023] [Indexed: 06/13/2023]
Abstract
The gradual emergence of syntax has been claimed to be engaged in a feedback loop with Human Self-Domestication (HSD), both processes resulting from, and contributing to, enhanced connectivity in selected cortico-striatal networks, which is the mechanism for attenuating reactive aggression, the hallmark of HSD, but also the mechanism of cross-modality, relevant for syntax. Here, we aim to bridge the gap between these brain changes and further changes facilitated by the gradual complexification of grammars. We propose that increased cross-modality would have enabled and supported, more specifically, a feedback loop between categorization abilities relevant for vocabulary building and the gradual emergence of syntactic structure, including Merge. In brief, an enhanced categorization ability not only brings about more distinct categories, but also a critical number of tokens in each category necessary for Merge to take off in a systematic and productive fashion; in turn, the benefits of expressive capabilities brought about by productive Merge encourage more items to be categorized, and more categories to be formed, thus further potentiating categorization abilities, and with it, syntax again. We support our hypothesis with evidence from the domains of language development and animal communication, but also from biology, neuroscience, paleoanthropology, and clinical linguistics.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain.
| | - Koji Hoshi
- Faculty of Economics, Keio University, Tokyo, Japan
| | | |
Collapse
|
17
|
Biro L, Miskolczi C, Szebik H, Bruzsik B, Varga ZK, Szente L, Toth M, Halasz J, Mikics E. Post-weaning social isolation in male mice leads to abnormal aggression and disrupted network organization in the prefrontal cortex: Contribution of parvalbumin interneurons with or without perineuronal nets. Neurobiol Stress 2023; 25:100546. [PMID: 37323648 PMCID: PMC10265620 DOI: 10.1016/j.ynstr.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023] Open
Abstract
Adverse social experiences during childhood increase the risk of developing aggression-related psychopathologies. The prefrontal cortex (PFC) is a key regulator of social behavior, where experience-dependent network development is tied to the maturation of parvalbumin-positive (PV+) interneurons. Maltreatment in childhood could impact PFC development and lead to disturbances in social behavior during later life. However, our knowledge regarding the impact of early-life social stress on PFC operation and PV+ cell function is still scarce. Here, we used post-weaning social isolation (PWSI) to model early-life social neglect in mice and to study the associated neuronal changes in the PFC, additionally distinguishing between the two main subpopulations of PV+ interneurons, i.e. those without or those enwrapped by perineuronal nets (PNN). For the first time to such detailed extent in mice, we show that PWSI induced disturbances in social behavior, including abnormal aggression, excessive vigilance and fragmented behavioral organization. PWSI mice showed altered resting-state and fighting-induced co-activation patterns between orbitofrontal and medial PFC (mPFC) subregions, with a particularly highly elevated activity in the mPFC. Surprisingly, aggressive interaction was associated with a higher recruitment of mPFC PV+ neurons that were surrounded by PNN in PWSI mice that seemed to mediate the emergence of social deficits. PWSI did not affect the number of PV+ neurons and PNN density, but enhanced PV and PNN intensity as well as cortical and subcortical glutamatergic drive onto mPFC PV+ neurons. Our results suggest that the increased excitatory input of PV+ cells could emerge as a compensatory mechanism for the PV+ neuron-mediated impaired inhibition of mPFC layer 5 pyramidal neurons, since we found lower numbers of GABAergic PV+ puncta on the perisomatic region of these cells. In conclusion, PWSI leads to altered PV-PNN activity and impaired excitatory/inhibitory balance in the mPFC, which possibly contributes to social behavioral disruptions seen in PWSI mice. Our data advances our understanding on how early-life social stress can impact the maturing PFC and lead to the development of social abnormalities in adulthood.
Collapse
Affiliation(s)
- Laszlo Biro
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Christina Miskolczi
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Huba Szebik
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Biborka Bruzsik
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Zoltan Kristof Varga
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Laszlo Szente
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
- Janos Szentagothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Ulloi ut 26., Hungary
| | - Mate Toth
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Jozsef Halasz
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| | - Eva Mikics
- Institute of Experimental Medicine, Laboratory of Translational Behavioural Neuroscience, 1083 Budapest, Szigony utca 43., Hungary
| |
Collapse
|
18
|
Wolfs EML, Klaus J, Schutter DJLG. Cerebellar Grey Matter Volumes in Reactive Aggression and Impulsivity in Healthy Volunteers. CEREBELLUM (LONDON, ENGLAND) 2023; 22:223-233. [PMID: 35247193 PMCID: PMC9985584 DOI: 10.1007/s12311-021-01337-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 01/06/2023]
Abstract
Several lines of evidence point towards the involvement of the cerebellum in reactive aggression. In addition to the posterior cerebellar hemisphere, the vermis has been suggested to play a prominent role in impulse regulation. In the present study, we set out to further examine the relationships between cerebellar grey matter volumes, aggression, and impulsivity in 201 healthy volunteers. 3 T structural magnetic resonance imaging scans were acquired to investigate grey matter volumes of the cerebellar vermis and the anterior and posterior lobules. Aggression was assessed with the Buss-Perry Aggression Questionnaire and impulsivity was measured with the Barratt Impulsiveness Scale-11. Results showed that impulsivity was positively associated with grey matter volumes of the cerebellar vermis and inversely correlated with grey matter volumes of the right posterior lobule. In addition, smaller volumes of the right posterior lobules were associated with higher physical aggression. Exploratory analyses indicated that for the right hemisphere, this association was driven by grey matter volumes of lobules VIIb and VIIIa. Our findings provide correlational evidence in healthy volunteers for the involvement of the cerebellar vermis and posterior lobules in a cortico-limbic-cerebellar circuit of aggression.
Collapse
Affiliation(s)
- Elze M L Wolfs
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.
| | - Jana Klaus
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
19
|
Sakala K, Katus U, Kiive E, Veidebaum T, Harro J. Is low platelet MAO activity associated with antisocial behavior? evidence from representative samples of longitudinally observed birth cohorts. Brain Res 2023; 1804:148249. [PMID: 36682705 DOI: 10.1016/j.brainres.2023.148249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Lower platelet monoamine oxidase (MAO) activity has been associated with problem behaviors, including criminal behavior, but not all studies agree. We have examined platelet MAO activity and antisocial behavior involving police contact in a longitudinal birth cohort study. The sample included both birth cohorts (original n = 1238) of the Estonian Children Personality Behavior and Health Study. Platelet MAO activity was measured at ages 15, 18 and 25 radioenzymatically with β-phenylethylamine as the substrate. Police contacts were self-reported in an interview and drug use in a questionnaire filled in during a laboratory visit. In cross-sectional analyses, males with the record of antisocial behavior had lower platelet MAO activity. In longitudinal mixed-effect regression models, this association was found to be independent of smoking. Furthermore, including smoking in the model revealed lower platelet MAO activity also in females with past antisocial behaviour. A further exploratory regression analysis with antisocial behavior at two levels of frequency and consideration of self-reported use of illicit drugs either in a single occasion or repeatedly demonstrated some "dose-dependency" in the relationship of antisocial behavior and platelet MAO activity. Platelet MAO activity was lower in male but not female subjects with basic education level as compared to secondary and higher education, but it was not related to non-verbal intelligence. Neither was platelet MAO activity associated with socio- economic status. In conclusion, antisocial behavior as occurring in general population is associated with low platelet MAO activity that probably reflects low capacity of the serotonergic system.
Collapse
Affiliation(s)
- Katre Sakala
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Estonia; Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia; School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Urmeli Katus
- Department of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Estonia
| | - Evelyn Kiive
- Division of Special Education, Department of Education, University of Tartu, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia; Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia.
| |
Collapse
|
20
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
21
|
Barreto Meichtry L, Silva da Silva G, Londero L, Munir Mustafa Dahleh M, Cardoso Bortolotto V, Machado Araujo S, Aparecida Musachio E, Trivisiol da Silva D, Emanuelli T, Ricardo Sigal Carriço M, Roehrs R, Petri Guerra G, Prigol M. Exposure to trans fat during the developmental period ofDrosophila melanogasteralters the composition of fatty acids in the head and induces depression-like behavior. Neuroscience 2023; 519:10-22. [PMID: 36933760 DOI: 10.1016/j.neuroscience.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Given the importance of understanding the disorders caused by trans fatty acids (TFAs), this study sought to add different concentrations hydrogenated vegetable fat (HVF) to the diet of Drosophila melanogaster during the developmental period and evaluate the effects on neurobehavioral parameters. Longevity, hatching rate, and behavioral functions were assessed, such as negative geotaxis, forced swimming, light/dark, mating, and aggressiveness. The fatty acids (FAs) present in the heads of the flies were quantified as well as serotonin (5HT) and dopamine (DA) levels. Our findings showed that flies that received HVF at all concentrations during development showed reduced longevity and hatching rates, in addition to increased depression-like, anxious-like, anhedonia-like, and aggressive behaviors. As for the biochemical parameters, there was a more significant presence of TFA in flies exposed to HVF at all concentrations evaluated and lower 5HT and DA levels. This study shows that HVF during the developmental phase can cause neurological changes and consequently induce behavioral disorders, thereby highlighting the importance of the type of FA offered in the early stages of life.
Collapse
Affiliation(s)
- Luana Barreto Meichtry
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Guilherme Silva da Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Larissa Londero
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Elize Aparecida Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Dariane Trivisiol da Silva
- Departamento de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, CEP 97105-900
| | - Tatiana Emanuelli
- Departamento de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, CEP 97105-900
| | - Murilo Ricardo Sigal Carriço
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, Brazil, CEP 97501-970
| | - Rafael Roehrs
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, Brazil, CEP 97501-970
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000.
| |
Collapse
|
22
|
Pishva E, van den Hove DLA, Laroche V, Lvovs A, Roy A, Ortega G, Burrage J, Veidebaum T, Kanarik M, Mill J, Lesch KP, Harro J. Genome-wide DNA methylation analysis of aggressive behaviour: a longitudinal population-based study. J Child Psychol Psychiatry 2023. [PMID: 36929374 DOI: 10.1111/jcpp.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Human aggression is influenced by an interplay between genetic predisposition and experience across the life span. This interaction is thought to occur through epigenetic mechanisms, inducing differential gene expression, thereby moderating neuronal cell and circuit function, and thus shaping aggressive behaviour. METHODS Genome-wide DNA methylation (DNAm) levels were measured in peripheral blood obtained from 95 individuals participating in the Estonian Children Personality Behaviours and Health Study (ECPBHS) at 15 and 25 years of age. We examined the association between aggressive behaviour, as measured by Life History of Aggression (LHA) total score and DNAm levels both assessed at age 25. We further examined the pleiotropic effect of genetic variants regulating LHA-associated differentially methylated positions (DMPs) and multiple traits related to aggressive behaviours. Lastly, we tested whether the DNA methylomic loci identified in association with LHA at age 25 were also present at age 15. RESULTS We found one differentially methylated position (DMP) (cg17815886; p = 1.12 × 10-8 ) and five differentially methylated regions (DMRs) associated with LHA after multiple testing adjustments. The DMP annotated to the PDLIM5 gene, and DMRs resided in the vicinity of four protein-encoding genes (TRIM10, GTF2H4, SLC45A4, B3GALT4) and a long intergenic non-coding RNA (LINC02068). We observed evidence for the colocalization of genetic variants associated with top DMPs and general cognitive function, educational attainment and cholesterol levels. Notably, a subset of the DMPs associated with LHA at age 25 also displayed altered DNAm patterns at age 15 with high accuracy in predicting aggression. CONCLUSIONS Our findings highlight the potential role of DNAm in the development of aggressive behaviours. We observed pleiotropic genetic variants associated with identified DMPs, and various traits previously established to be relevant in shaping aggression in humans. The concordance of DNAm signatures in adolescents and young adults may have predictive value for inappropriate and maladaptive aggression later in life.
Collapse
Affiliation(s)
- Ehsan Pishva
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Valentin Laroche
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Aneth Lvovs
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia.,Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Arunima Roy
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Gabriela Ortega
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Joe Burrage
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | | | - Margus Kanarik
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Jonathan Mill
- College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
23
|
Værøy H, Takhlidjt S, Cherifi Y, Lahaye E, Chartrel N, Fetissov SO. Blood Levels of Neuropeptide 26RFa in Relation to Anxiety and Aggressive Behavior in Humans-An Exploratory Study. Brain Sci 2023; 13:brainsci13020237. [PMID: 36831780 PMCID: PMC9954400 DOI: 10.3390/brainsci13020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
26RFa, also referred to as QRFP, is a hypothalamic neuropeptide mainly known for its role in the regulation of appetite and glucose metabolism. Its possible relevance to emotional regulation is largely unexplored. To address this, in the present exploratory study, we analyzed the plasma concentrations of 26RFa in humans characterized by different levels of anxiety and aggressive behavior. For this purpose, the study included 13 prison inmates who have committed violent crimes and 19 age-matched healthy men from the general population as controls. Anxiety, depression and aggressive behavior were evaluated in both groups using standard questionnaires. The inmate group was characterized by increased aggression and anxiety compared to the controls. We found that the mean plasma levels of 26RFa did not significantly differ between the inmates and the controls. However, several high outliers were present only in the inmate group. The plasma levels of 26RFa correlated positively with the anxiety scores in all the studied subjects and controls. After removing the high outliers in the inmate group, positive correlations of 26RFa with anxiety and a subscale of hostility in the aggression scale were also recorded in this group. No significant correlations of 26RFa with depression scores or other parameters of aggressive behavior were found. Thus, the present results did not support an involvement of 26RFa in aggressive behavior in humans but pointed to a link between this neuropeptide and anxiety. Nevertheless, considering the exploratory nature of the present study, this conclusion should be verified in a larger cohort, including the clinical degree of anxiety.
Collapse
Affiliation(s)
- Henning Værøy
- Department of Psychiatric Research, Akershus University Hospital, N-1478 Nordbyhagen, Norway
| | - Saloua Takhlidjt
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
| | - Yamina Cherifi
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
| | - Emilie Lahaye
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
| | - Nicolas Chartrel
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
| | - Serguei O. Fetissov
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France
- Correspondence:
| |
Collapse
|
24
|
Egger JIM, Verhoeven WMA. Forensically relevant challenging behaviors and the genetics domain. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:65-73. [PMID: 37633719 DOI: 10.1016/b978-0-12-821375-9.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Impulsive and aggressive behaviors along with intellectual disabilities often manifest in the context of genetic disorders and are a persisting challenge to professionals in the forensic psychiatric and psychological setting. The following chapter comprises an overview of relevant factors in the gene-context-behavior interaction such as monoamine oxidase A activity and specific epileptic phenomena. It presents several examples of monogenetic disorders with behaviors from the aggression spectrum and summarizes emerging strategies for treatment and clinical management thereof. The final part focuses on challenges and future developments in this field with relevance for the judicial and forensic systems. It is concluded that the relationship between a genetic syndrome and forensically relevant and/or violent behaviors should typically be addressed within a multidisciplinary framework that also includes the application of modern genetic techniques.
Collapse
Affiliation(s)
- Jos I M Egger
- Donders Institute for Brain, Cognition and Behaviour and Radboudumc Center of Expertise on Rare Congenital Developmental Disorders, Radboud University, Nijmegen, The Netherlands; Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands.
| | - Willem M A Verhoeven
- Centre of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands; Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Wang M, Peng C, Chang H, Yu M, Rong F, Yu Y. Interaction between Sirtuin 1 (SIRT1) polymorphisms and childhood maltreatment on aggression risk in Chinese male adolescents. J Affect Disord 2022; 309:37-44. [PMID: 35427711 DOI: 10.1016/j.jad.2022.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/22/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Aggressive behavior is a highly prevalent and serious public health problem among adolescents. However, the etiology and pathogenesis of aggressive behavior remain unclear. Childhood maltreatment is an acknowledged factor for aggressive behavior. SIRT1 is closely related to the occurrence and development of psychiatric disorders. We aimed to reveal the interactive effect between SIRT1 and childhood maltreatment on aggressive behavior among Chinese adolescents. METHODS Aggressive behavior and childhood maltreatment were evaluated by the Buss and Warren's Aggression Questionnaire (BWAQ) and short form Childhood Trauma Questionnaire (CTQ-SF), respectively. This study comprised 436 aggression cases and 435 controls. Four SIRT1 tagSNPs were selected for genotyping. Interaction between SIRT1 and childhood maltreatment was estimated by logistic regression models. RESULTS Individuals carrying SIRT1 rs4746720 minor allele and TAAC haplotype derived from SIRT1 variants was associated with reduced aggression risk when childhood maltreatment occurred (all P < 0.01). An antagonistic additive interaction between SIRT1 rs4746720 and childhood maltreatment on aggressive behavior (S = 0.421; 95%CI: 0.234 to 0.758) was further testified. No main effect of the SIRT1 SNPs or the haplotype block was observed (all P > 0.05). LIMITATIONS Since participants were only males, our findings were unable to be directly extended to females. Cross-sectional design, self-reported measurements and limited sample size were adopted. CONCLUSION This study provides the first evidence of SIRT1 × childhood maltreatment interaction on aggressive behavior in male adolescents. The minor allele of SIRT1 rs4746720 presents a protective effect on combination with childhood maltreatment on the risk of aggressive behavior.
Collapse
Affiliation(s)
- Mengni Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Peng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjuan Chang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Yu
- Taizhou People's Hospital, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fajuan Rong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhen Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
DiFabio MS, Smith DR, Breedlove KM, Buckley TA, Johnson CL. Relationships between aggression, sensation seeking, brain stiffness, and head impact exposure: Implications for head impact prevention in ice hockey. Brain Behav 2022; 12:e2627. [PMID: 35620849 PMCID: PMC9304837 DOI: 10.1002/brb3.2627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES The objectives of this study were to (1) examine the relationship between the number of head impacts sustained in a season of men's collegiate club ice hockey and behavioral traits of aggression and sensation seeking, and (2) explore the neural correlates of these behaviors using neuroimaging. DESIGN Retrospective cohort study. METHODS Participants (n = 18) completed baseline surveys to quantify self-reported aggression and sensation-seeking tendencies. Aggression related to playing style was quantified through penalty minutes accrued during a season. Participants wore head impact sensors throughout a season to quantify the number of head impacts sustained. Participants (n = 15) also completed baseline anatomical and magnetic elastography neuroimaging scans to measure brain volumetric and viscoelastic properties. Pearson correlation analyses were performed to examine relationships between (1) impacts, aggression, and sensation seeking, and (2) impacts, aggression, and sensation seeking and brain volume, stiffness, and damping ratio, as an exploratory analysis. RESULTS Number of head impacts sustained was significantly related to the number of penalty minutes accrued, normalized to number of games played (r = .62, p < .01). Our secondary, exploratory analysis revealed that number of impacts, sensation seeking, and aggression were related to stiffness or damping ratio of the thalamus, amygdala, hippocampus, and frontal cortex, but not volume. CONCLUSIONS A more aggressive playing style was related to an increased number of head impacts sustained, which may provide evidence for future studies of head impact prevention. Further, magnetic resonance elastography may aid to monitor behavior or head impact exposure. Researchers should continue to examine this relationship and consider targeting behavioral modification programs of aggression to decrease head impact exposure in ice hockey.
Collapse
Affiliation(s)
- Melissa S DiFabio
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA.,Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximillians-Universität München, Munich, Germany
| | - Daniel R Smith
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Katherine M Breedlove
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
27
|
Grabell AS, Santana AM, Thomsen KN, Gonzalez K, Zhang Z, Bivins Z, Rahman T. Prefrontal modulation of frustration-related physiology in preschool children ranging from low to severe irritability. Dev Cogn Neurosci 2022; 55:101112. [PMID: 35576725 PMCID: PMC9118525 DOI: 10.1016/j.dcn.2022.101112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/03/2022] Open
Abstract
Limbic-prefrontal connectivity during negative emotional challenges underpins a wide range of psychiatric disorders, yet the early development of this system is largely unknown due to difficulties imaging young children. Functional Near-Infrared Spectroscopy (fNIRS) has advanced an understanding of early emotion-related prefrontal activation and psychopathology, but cannot detect activation below the outer cortex. Galvanic skin response (GSR) is a sensitive index of autonomic arousal strongly influenced by numerous limbic structures. We recorded simultaneous lateral prefrontal cortex (lPFC) activation via fNIRS and GSR in 73 3- to 5-year-old children, who ranged from low to severe levels of irritability, during a frustration task. The goal of the study was to test how frustration-related PFC activation modulated psychophysiology in preschool children, and whether associations were moderated by irritability severity. Results showed lPFC activation significantly increased, and GSR levels significantly decreased, as children moved from frustration to rest, such that preschoolers with the highest activation had the steepest recovery. Further, this relation was moderated by irritability such that children with severe irritability showed no association between lPFC activation and GSR. Results suggest functional connections between prefrontal and autonomic nervous systems are in place early in life, with evidence of lPFC down-regulation of frustration-based stress that is altered in early psychopathology. Combining fNIRS and GSR may be a promising novel approach for inferring limbic-PFC processes that drive early emotion regulation and psychopathology.
Collapse
|
28
|
Long H, Fan M, Li Q, Yang X, Huang Y, Xu X, Ma J, Xiao J, Jiang T. Structural and functional biomarkers of the insula subregions predict sex differences in aggression subscales. Hum Brain Mapp 2022; 43:2923-2935. [PMID: 35289969 PMCID: PMC9120556 DOI: 10.1002/hbm.25826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/01/2023] Open
Abstract
Aggression is a common and complex social behavior that is associated with violence and mental diseases. Although sex differences were observed in aggression, the neural mechanism for the effect of sex on aggression behaviors remains unclear, especially in specific subscales of aggression. In this study, we investigated the effects of sex on aggression subscales, gray matter volume (GMV), and functional connectivity (FC) of each insula subregion as well as the correlation of aggression subscales with GMV and FC. This study found that sex significantly influenced (a) physical aggression, anger, and hostility; (b) the GMV of all insula subregions; and (c) the FC of the dorsal agranular insula (dIa), dorsal dysgranular insula (dId), and ventral dysgranular and granular insula (vId_vIg). Additionally, mediation analysis revealed that the GMV of bilateral dIa mediates the association between sex and physical aggression, and left dId–left medial orbital superior frontal gyrus FC mediates the relationship between sex and anger. These findings revealed the neural mechanism underlying the sex differences in aggression subscales and the important role of the insula in aggression differences between males and females. This finding could potentially explain sexual dimorphism in neuropsychiatric disorders and improve dysregulated aggressive behavior.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Qiaojun Li
- School of Information Engineering, Tianjin University of Commerce, Tianjin, China
| | - Xuhua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yujiao Huang
- Zhijiang College, Zhejiang University of Technology, Hangzhou, China
| | - Xinli Xu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Ji Ma
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Jie Xiao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,The Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Systematic identification of candidate genes associated with aggressive behavior: A neurogenetic approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Wang X, Wang K, Wu X, Huang W, Yang L. Role of the cAMP-PKA-CREB-BDNF pathway in abnormal behaviours of serotonin transporter knockout mice. Behav Brain Res 2022; 419:113681. [PMID: 34838579 DOI: 10.1016/j.bbr.2021.113681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/02/2022]
Abstract
Serotonin transporter gene-linked polymorphic region polymorphisms are associated with anxiety, neuroticism, affective disorders and vulnerability to stressful life events; however, the relevant physiological mechanisms are not well understood. Serotonin transporter knockout mice have been widely used as a model of allelic variation of serotonin transporter function in humans; herein, wild-type mice and heterozygous and homozygous knockout mice models were established to explore the behavioural changes related to different genotypes and the possible physiological mechanisms. Behavioural changes were assessed using behavioural tests, namely, elevated plus maze, open field, Morris water maze and rotarod tests. Serum indicators were detected using the enzyme-linked immunosorbent assay. Compared with wild-type mice, homozygous mice showed significant anxiety-like behaviours in the plus maze and open field tests; conversely, anxiety-like behaviours in heterozygous mice were less pronounced. Homozygous mice also showed cognitive impairment and motor inhibition in the Morris water maze and rotarod tests. Serotonin levels decreased in both heterozygous and homozygous mice, and 5-hydroxytryptophan, protein kinase A, adenylyl cyclase, cyclic adenosine monophosphate response element-binding protein and brain-derived neurotrophic factor levels were lower in homozygous mice than in wild-type and heterozygous mice, whereas no statistical differences were found between wild-type and heterozygous mice. Additionally, there was a correlation between serological and behavioural indicators. This study provided experimental evidence that the cyclic adenosine monophosphate-protein kinase A-cyclic adenosine monophosphate response element-binding protein-brain-derived neurotrophic factor pathway may be involved in the regulation of polymorphism to stress and enriched the behavioural and physiological characteristics of serotonin transporter knockout mice.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Ke Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Xiangmin Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Wenxiu Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Li Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China.
| |
Collapse
|
31
|
Gou N, Xiang Y, Zhou J, Zhang S, Zhong S, Lu J, Liang X, Liu J, Wang X. Identification of violent patients with schizophrenia using a hybrid machine learning approach at the individual level. Psychiatry Res 2021; 306:114294. [PMID: 34823086 DOI: 10.1016/j.psychres.2021.114294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022]
Abstract
Despite numerous risk factors associated with violence in patients with schizophrenia, predicting and preventing violent behavior is still a challenge. At present, machine learning (ML) has become a promising strategy for guiding individualized assessment. To build an effective model to predict the risk of violence in patients with schizophrenia, we proposed a hybrid ML method to improve the prediction capability in 42 violent offenders with schizophrenia and 33 non-violent patients with schizophrenia. The results revealed that the final model, which combined multimodal data, achieved the highest prediction performance with an accuracy of 90.67%. Specifically, the model, which fused three modalities of neuroimaging data, achieved a better accuracy than other fused models. In addition, the msot discriminative neuroimaging features involved in the prefrontal-temporal cognitive circuit and striatum reward system, indicating that dysfunction in cortical-subcortical circuits might be associated with high risk of violence in patients with schizophrenia. This study provides the first evidence supporting that the combination of specific multimodal neuroimaging and clinical data in ML analysis can effectively identify violent patients with schizophrenia. Furthermore, this work is crucial for the development of neuro-prediction models that could facilitate individualized treatment and interventions for violent behaviors in patients with schizophrenia.
Collapse
Affiliation(s)
- Ningzhi Gou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Yizhen Xiang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jiansong Zhou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Simei Zhang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China
| | - Shaoling Zhong
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Juntao Lu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Xiaoxi Liang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Xiaoping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
32
|
Wang S, Hu BY, LoCasale-Crouch J, Li J. Supportive parenting and social and behavioral development: Does classroom emotional support moderate? JOURNAL OF APPLIED DEVELOPMENTAL PSYCHOLOGY 2021. [DOI: 10.1016/j.appdev.2021.101331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Beckwith TJ, Dietrich KN, Wright JP, Altaye M, Cecil KM. Criminal arrests associated with reduced regional brain volumes in an adult population with documented childhood lead exposure. ENVIRONMENTAL RESEARCH 2021; 201:111559. [PMID: 34181918 PMCID: PMC8478799 DOI: 10.1016/j.envres.2021.111559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 05/11/2023]
Abstract
Childhood lead exposure interferes with brain maturation, which adversely impacts cognitive and behavioral development. Lower intelligence scores, impairments in decision making, and increased rates of delinquent and criminal behavior are adverse outcomes linked to childhood lead absorption. The present study examined the relationships between childhood blood lead concentrations, structural brain volume, and measures of adult criminality. We hypothesized that increased rates of criminal arrests in adulthood would be inversely correlated with regional gray and white matter volumes, especially prefrontal areas responsible for decision making and self-control. We obtained childhood blood lead histories and anatomical magnetic resonance imaging from a subset of the longitudinally followed birth cohort known as the Cincinnati Lead Study. Criminality data for cohort participants were extracted from public databases. Voxel based morphometry was used to examine spatial differences in regional gray and white matter volumes associated with childhood blood lead concentrations and measures of adult criminality, respectively. Conjunction analyses allowed for the exploratory evaluation of common regions of volume change. Childhood blood lead concentrations were inversely associated with gray and white matter volume in the frontal, parietal and temporal lobes. Gray matter volumes were also inversely associated with criminal arrests with key regions within the cingulate, precuneus, several frontal gyri and the supplementary motor area. Conjunction analyses identified regions in the anterior cingulate, frontal gray matter and supplementary motor area associated with childhood lead absorption and criminality. The results from this study suggest that reduced brain volumes in regions responsible for cognition and emotional regulation are associated with childhood lead exposure and criminal arrests.
Collapse
Affiliation(s)
- Travis J Beckwith
- Molecular Epidemiology in Children's Environmental Health Training Program, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kim N Dietrich
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John P Wright
- School of Criminal Justice, University of Cincinnati College of Education, Criminal Justice and Human Services, Cincinnati, OH, USA
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim M Cecil
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
34
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
35
|
Navarro-Pardo E, Suay F, Murphy M. Ageing: Not only an age-related issue. Mech Ageing Dev 2021; 199:111568. [PMID: 34536447 DOI: 10.1016/j.mad.2021.111568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Developments in the last century have led to an unprecedented increase in life expectancy. These changes open opportunities for humans to grow and develop in healthy and adaptive ways, adding life to years as well as years to life. There are also challenges, however - as we live longer, a greater number of people will experience chronic illness and disability, often linked to lifestyle factors. The current paper advances an argument that there are fundamental biological sex differences which, sometimes directly and sometime mediated by lifestyle factors, underpin the marked differences in morbidity and mortality that we find between the sexes. Furthermore, we argue that it is necessary to consider sex as a key factor in research on healthy ageing, allowing for the possibility that different patterns exist between males and females, and that therefore different approaches and interventions are required to optimise healthy ageing in both sexes.
Collapse
Affiliation(s)
- Esperanza Navarro-Pardo
- Department of Developmental and Educational Psychology, Universitat de València, Av. Blasco Ibañez, 21, 46008, València, Spain
| | - Ferran Suay
- Department of Biopsychology, Universitat de València, Av. Blasco Ibañez, 21, 46008, València, Spain
| | - Mike Murphy
- School of Applied Psychology, University College Cork, North Mall Campus, Cork, Ireland.
| |
Collapse
|
36
|
Gonzálvez C, Martín M, Vicent M, Sanmartín R. School Refusal Behavior and Aggression in Spanish Adolescents. Front Psychol 2021; 12:669438. [PMID: 33995227 PMCID: PMC8117223 DOI: 10.3389/fpsyg.2021.669438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
In order to reduce school attendance problems and aggressive behavior, it is essential to determine the relationship between both variables. The aim of this study was twofold: (1) to examine the mean differences in scores on aggression, based on school refusal behavior, and (2) to analyze the predictive capacity of high scores on aggression, based on school refusal behavior factors. The sample consisted of 1455 Spanish secondary school students, aged 13–17 (M = 14.85; SD = 1.56). The School Refusal Assessment Scale-Revised (I. Avoidance of negative affectivity, II. Escape from aversive social and/or evaluative situations, III. Pursuit of attention from significant others, and IV. Pursuit of tangible reinforcement outside of school) and the Aggression Questionnaire (I. Physical Aggression, II. Verbal Aggression, III. Anger, and IV. Hostility) were used. Results indicated that students having high levels of Physical Aggression, Verbal Aggression, Anger, and Hostility received significantly higher scores on school refusal behavior. In most cases, school refusal behavior was found to be a positive and statistically significant predictor of aggression. Students that base their school refusal on the pursuit of tangible reinforcements outside of school earned higher scores, and other functional conditions underlying school refusal behavior were found to be associated with aggression issues. The role of aggression as a risk factor for school refusal behavior is discussed.
Collapse
Affiliation(s)
- Carolina Gonzálvez
- Department of Development Psychology and Teaching, University of Alicante, Alicante, Spain
| | - Miriam Martín
- Department of Development Psychology and Teaching, University of Alicante, Alicante, Spain
| | - María Vicent
- Department of Development Psychology and Teaching, University of Alicante, Alicante, Spain
| | - Ricardo Sanmartín
- Department of Development Psychology and Teaching, University of Alicante, Alicante, Spain
| |
Collapse
|
37
|
Zampatti S, Ragazzo M, Fabrizio C, Termine A, Campoli G, Caputo V, Strafella C, Cascella R, Caltagirone C, Giardina E. Genetic Variants Allegedly Linked to Antisocial Behaviour Are Equally Distributed Across Different Populations. J Pers Med 2021; 11:jpm11030213. [PMID: 33809805 PMCID: PMC8002417 DOI: 10.3390/jpm11030213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Human behaviour is determined by a complex interaction of genetic and environmental factors. Several studies have demonstrated different associations between human behaviour and numerous genetic variants. In particular, allelic variants in SLC6A4, MAOA, DRD4, and DRD2 showed statistical associations with major depressive disorder, antisocial behaviour, schizophrenia, and bipolar disorder; BDNF polymorphic variants were associated with depressive, bipolar, and schizophrenia diseases, and TPH2 variants were found both in people with unipolar depression and in children with attention deficit-hyperactivity disorder (ADHD). Independent studies have failed to confirm polymorphic variants associated with criminal and aggressive behaviour. In the present study, a set of genetic variants involved in serotoninergic, dopaminergic, and neurobiological pathways were selected from those previously associated with criminal behaviour. The distribution of these genetic variants was compared across worldwide populations. While data on single polymorphic variants showed differential distribution across populations, these differences failed to be significant when a comprehensive analysis was conducted on the total number of published variants. The lack of reproducibility of the genetic association data published to date, the weakness of statistical associations, the heterogeneity of the phenotype, and the massive influence of the environment on human behaviour do not allow us to consider these genetic variants as undoubtedly associated with antisocial behaviour. Moreover, these data confirm the absence of ethnic predisposition to aggressive and criminal behaviour.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (A.T.); (G.C.); (C.S.); (R.C.)
| | - Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (A.T.); (G.C.); (C.S.); (R.C.)
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (A.T.); (G.C.); (C.S.); (R.C.)
| | - Giulia Campoli
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (A.T.); (G.C.); (C.S.); (R.C.)
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (A.T.); (G.C.); (C.S.); (R.C.)
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (A.T.); (G.C.); (C.S.); (R.C.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (A.T.); (G.C.); (C.S.); (R.C.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
- Correspondence:
| |
Collapse
|
38
|
Wang M, Chen P, Li H, Kemp AH, Zhang W. Catechol- O-Methyltransferase Gene Val158Met Polymorphism Moderates the Effect of Social Exclusion and Inclusion on Aggression in Men: Findings From a Mixed Experimental Design. Front Psychol 2021; 11:622914. [PMID: 33574784 PMCID: PMC7870491 DOI: 10.3389/fpsyg.2020.622914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
Accumulating research has identified the interactive effects of catechol-O-methyltransferase (COMT) gene Val158Met polymorphism and environmental factors on aggression. However, available evidence was mainly based upon correlational design, which yields mixed findings concerning who (Val vs. Met carriers) are more affected by environmental conditions and has been challenged for the low power of analyses on gene–environment interaction. Drawing on a mixed design, we scrutinized how COMT Val158Met polymorphism (between-group variable) impacts on aggression, assessed by hostility, aggressive motivation, and aggressive behavior, under different social conditions (exclusion vs. inclusion, within-group variable) in a sample of 70 Chinese male undergraduate students. We found that both Val/Val homozygote and Met alleles carriers showed differences in the feelings of hostility and aggressive motivation under conditions of exclusion versus inclusion, but these differences were more pronounced for Met allele carriers. These findings implied that COMT Val158Met polymorphism did not respond to environmental stimuli in an all-or-none way and shed light on the importance of examining the gene–environment interaction using a mixed design.
Collapse
Affiliation(s)
- Meiping Wang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Pian Chen
- School of Psychology, Shandong Normal University, Jinan, China
| | - Hang Li
- School of Psychology, Shandong Normal University, Jinan, China
| | - Andrew Haddon Kemp
- Department of Psychology, College of Human and Health Sciences, Swansea University, Swansea, United Kingdom
| | - Wenxin Zhang
- School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
39
|
Lv W, Feng J, Chen L, Liu S, Qiu X. Behavior Disorder and Social Function Impairment in Children with Basal Ganglia Germ Cell Tumors. Neuropsychiatr Dis Treat 2021; 17:91-98. [PMID: 33469296 PMCID: PMC7813642 DOI: 10.2147/ndt.s287438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Basal ganglia intracranial germ cell tumors (iGCTs) can specifically destroy the basal ganglia network, leading to several cognitive, learning, behavioral, and social impairments. This study aimed to investigate the behavior and social disorders of patients with basal ganglia iGCTs. PATIENTS AND METHODS We recruited 30 newly diagnosed iGCTs patients (and their parents) for the current study. The Child Behavior Checklist/6-18 was used to evaluate emotional and behavioral problems. The Conner's Parent Rating Scales was used to assess symptoms of hyperactivity/impulsivity and conduct problems. The health-related quality of life (HRQoL) was assessed using the Pediatric Quality of Life Inventory 4.0 Generic Core Scale. Performance status was assessed using the Lansky play-performance scale and Karnofsky performance scale. The effects of basal ganglia lesions on these scores were examined. RESULTS Patients with basal ganglia iGCTs (n = 10) had more behavioral problems (attention problems, aggressive behavior, learning problems, hyperactivity index), social function impairment, anxiety/depression, and poorer HRQoL compared to patients with non-basal ganglia iGCTs (n = 20). There was no significant difference in the Lansky play-performance/Karnofsky performance scale scores. CONCLUSION This study demonstrates the effects of basal ganglia lesions on behavioral and emotional outcomes, social functions, and HRQoL of patients with iGCTs. The results may help to understand the function of basal ganglia and provide evidence for the benefit of early psychological intervention to improve the treatment for this rare disease.
Collapse
Affiliation(s)
- Wenyi Lv
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Jin Feng
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Li Chen
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Shuai Liu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Xiaoguang Qiu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
40
|
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by markedly impaired social interaction, impaired communication, and restricted/repetitive patterns of behavior, interests, and activities. In addition to challenges caused by core symptoms, maladaptive behaviors such as aggression can be associated with ASD and can further disrupt functioning and quality of life. For adults with ASD, these behaviors can portend adverse outcomes (e.g., harm to others or to the individual with ASD, hindering of employment opportunities, criminal justice system involvement). This article reviews the scientific literature to provide an update on evidence-based interventions for aggression in adults with ASD. METHOD A search of the electronic databases CINAHL, EMBASE, and PsycINFO was conducted using relevant search terms. After reviewing titles, abstracts, full-length articles, and reference lists, 70 articles were identified and reviewed. RESULTS The strongest (controlled trial) evidence suggests beneficial effects of risperidone, propranolol, fluvoxamine, vigorous aerobic exercise, and dextromethorphan/quinidine for treating aggression in adults with ASD, with lower levels of evidence supporting behavioral interventions, multisensory environments, yokukansan, and other treatments. CONCLUSIONS Additional randomized, controlled trials using consistent methodology that adequately addresses sources of bias are needed to determine which treatments are reliably effective in addressing aggression in adults with ASD. In the meantime, considering efficacy and adverse effect/long-term risk profiles, a practical approach could start with functional assessment-informed behavioral interventions along with encouragement of regular, vigorous aerobic exercise to target aggression in adults with ASD, with pharmacotherapy employed if these interventions are unavailable or inadequate based on symptom acuity.
Collapse
Affiliation(s)
- David S. Im
- From the University of Michigan Hospital, Department of Psychiatry, University of Michigan Medical School
| |
Collapse
|