1
|
Heidari H, Lawrence DA. An integrative exploration of environmental stressors on the microbiome-gut-brain axis and immune mechanisms promoting neurological disorders. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:233-263. [PMID: 38994870 DOI: 10.1080/10937404.2024.2378406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The microbiome-gut-brain axis is altered by environmental stressors such as heat, diet, and pollutants as well as microbes in the air, water, and soil. These stressors might alter the host's microbiome and symbiotic relationship by modifying the microbial composition or location. Compartmentalized mutualistic microbes promote the beneficial interactions in the host leading to circulating metabolites and hormones such as insulin and leptin that affect inter-organ functions. Inflammation and oxidative stress induced by environmental stressors may alter the composition, distribution, and activities of the microbes in the microbiomes such that the resultant metabolite and hormone changes are no longer beneficial. The microbiome-gut-brain axis and immune adverse changes that may accompany environmental stressors are reviewed for effects on innate and adaptive immune cells, which may make host immunity less responsive to pathogens and more reactive to self-antigens. Cardiovascular and fluid exchanges to organs might adversely alter organ functionality. Organs, especially the brain, need a consistent supply of nutrients and clearance of debris; disruption of these exchanges by stressors, and involvement of gut microbiome are discussed regarding neural dysfunctions with Alzheimer's disease, autistic spectrum disorders, viral infections, and autoimmune diseases. The focus of this review includes the manner in which environmental stressors may disrupt gut microbiota leading to adverse immune and hormonal influences on development of neuropathology related to hyperhomocysteinemia, inflammation, and oxidative stress, and how certain therapeutics may be beneficial. Strategies are explored to lessen detrimental effects of environmental stressors on central and peripheral health navigated toward (1) understanding neurological disorders and (2) promoting environmental and public health and well-being.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
| | - David A Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY, USA
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
2
|
Kanika NH, Hou X, Liu H, Dong Y, Wang J, Wang C. Specific gut microbiome's role in skin pigmentation: insights from SCARB1 mutants in Oujiang colour common carp. J Appl Microbiol 2024; 135:lxae226. [PMID: 39243120 DOI: 10.1093/jambio/lxae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
AIMS Beyond the pivotal roles of the gut microbiome in initiating physiological processes and modulating genetic factors, a query persists: Can a single gene mutation alter the abundance of the gut microbiome community? Not only this, but the intricate impact of gut microbiome composition on skin pigmentation has been largely unexplored. METHODS AND RESULTS Based on these premises, our study examines the abundance of lipase-producing gut microbes about differential gene expression associated with bile acid synthesis and lipid metabolism-related blood metabolites in red (whole wild) and white (whole white wild and SCARB1-/- mutant) Oujiang colour common carp. Following the disruption of the SCARB1 gene in the resulting mutant fish with white body colour (SCARB1-/-), there is a notable decrease in the abundance of gut microbiomes (Bacillus, Staphylococcus, Pseudomonas, and Serratia) associated with lipase production. This reduction parallels the downregulation seen in wild-type white body colour fish (WW), as contrasting to the wild-type red body colour fish (WR). Meanwhile, in SCARB1-/- fish, there was a downregulation noted not only at the genetic and metabolic levels but also a decrease in lipase-producing bacteria. This consistency with WW contrasts significantly with WR. Similarly, genes involved in the bile acid synthesis pathway, along with blood metabolites related to lipid metabolism, exhibited downregulation in SCARB1-/- fish. CONCLUSIONS The SCARB1 knockout gene blockage led to significant alterations in the gut microbiome, potentially influencing the observed reduction in carotenoid-associated skin pigmentation. Our study emphasizes that skin pigmentation is not only impacted by genetic factors but also by the gut microbiome. Meanwhile, the gut microbiome's adaptability can be rapidly shaped and may be driven by specific single-gene variations.
Collapse
Affiliation(s)
- Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Dong
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Xie Y, Zhao Y, Zhou Y, Jiang Y, Zhang Y, Du J, Cai M, Fu J, Liu H. Shared Genetic Architecture Among Gastrointestinal Diseases, Schizophrenia, and Brain Subcortical Volumes. Schizophr Bull 2024; 50:1243-1254. [PMID: 38973257 PMCID: PMC11349026 DOI: 10.1093/schbul/sbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND HYPOTHESIS The gut-brain axis plays important roles in both gastrointestinal diseases (GI diseases) and schizophrenia (SCZ). Moreover, both GI diseases and SCZ exhibit notable abnormalities in brain subcortical volumes. However, the genetic mechanisms underlying the comorbidity of these diseases and the shared alterations in brain subcortical volumes remain unclear. STUDY DESIGN Using the genome-wide association studies data of SCZ, 14 brain subcortical volumes, and 8 GI diseases, the global polygenic overlap and local genetic correlations were identified, as well as the shared genetic variants among those phenotypes. Furthermore, we conducted multi-trait colocalization analyses to bolster our findings. Functional annotations, cell-type enrichment, and protein-protein interaction (PPI) analyses were carried out to reveal the critical etiology and pathology mechanisms. STUDY RESULTS The global polygenic overlap and local genetic correlations informed the close relationships between SCZ and both GI diseases and brain subcortical volumes. Moreover, 84 unique lead-shared variants were identified. The associated genes were linked to vital biological processes within the immune system. Additionally, significant correlations were observed with key immune cells and the PPI analysis identified several histone-associated hub genes. These findings highlighted the pivotal roles played by the immune system for both SCZ and GI diseases, along with the shared alterations in brain subcortical volumes. CONCLUSIONS These findings revealed the shared genetic architecture contributing to SCZ and GI diseases, as well as their shared alterations in brain subcortical volumes. These insights have substantial implications for the concurrent development of intervention and therapy targets for these diseases.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yao Zhao
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujing Zhou
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yurong Jiang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujie Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaojiao Du
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengjing Cai
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaigui Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Costa CFFA, Ferreira-Gomes J, Barbosa F, Sampaio-Maia B, Burnet PWJ. Importance of good hosting: reviewing the bi-directionality of the microbiome-gut-brain-axis. Front Neurosci 2024; 18:1386866. [PMID: 38812976 PMCID: PMC11133738 DOI: 10.3389/fnins.2024.1386866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Gut microorganisms have been shown to significantly impact on central function and studies that have associated brain disorders with specific bacterial genera have advocated an anomalous gut microbiome as the pathophysiological basis of several psychiatric and neurological conditions. Thus, our knowledge of brain-to-gut-to microbiome communication in this bidirectional axis seems to have been overlooked. This review examines the known mechanisms of the microbiome-to-gut-to-brain axis, highlighting how brain-to-gut-to-microbiome signaling may be key to understanding the cause of disrupted gut microbial communities. We show that brain disorders can alter the function of the brain-to-gut-to-microbiome axis, which will in turn contribute to disease progression, while the microbiome-to gut-to brain direction presents as a more versatile therapeutic axis, since current psychotropic/neurosurgical interventions may have unwanted side effects that further cause disruption to the gut microbiome. A consideration of the brain-to-gut-to-microbiome axis is imperative to better understand how the microbiome-gut-brain axis overall is involved in brain illnesses, and how it may be utilized as a preventive and therapeutic tool.
Collapse
Affiliation(s)
- Carolina F. F. A. Costa
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- NanoBiomaterials for Targeted Therapies, INEB-Institute of Biomedical Engineering, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Ferreira-Gomes
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Benedita Sampaio-Maia
- NanoBiomaterials for Targeted Therapies, INEB-Institute of Biomedical Engineering, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
5
|
Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110861. [PMID: 37690584 DOI: 10.1016/j.pnpbp.2023.110861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
There is a lot of evidence establishing that nervous system development is related to the composition and functions of the gut microbiome. In addition, the central nervous system (CNS) controls the imbalance of the intestinal microbiota, constituting a bidirectional communication system. At present, various gut-brain crosstalk routes have been described, including immune, endocrine and neural circuits via the vagal pathway. Several empirical data have associated gut microbiota alterations (dysbiosis) with neuropsychiatric diseases, such as Alzheimer's disease, autism and Parkinson's disease, and with other psychological disorders, like anxiety and depression. Fecal microbiota transplantation (FMT) therapy has shown that the gut microbiota can transfer behavioral features to recipient animals, which provides strong evidence to establish a causal-effect relationship. Interventions, based on prebiotics, probiotics or synbiotics, have demonstrated an important influence of microbiota on neurological disorders by the synthesis of neuroactive compounds that interact with the nervous system and by the regulation of inflammatory and endocrine processes. Further research is needed to demonstrate the influence of gut microbiota dysbiosis on psychiatric and psychological disorders, and how microbiota-based interventions may be used as potential therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Facultad de Psicología, UNED, Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
6
|
Liaghat A, Konsman JP. Methodological advice for the young at heart investigator: Triangulation to build better foundations. Brain Behav Immun 2024; 115:737-746. [PMID: 37972881 DOI: 10.1016/j.bbi.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In medicine and science, one is typically taught the main theories in a discipline or field along with standard models before receiving more instructions on how to apply certain methods. The aim of this work is not to address one method, but rather methodology, the study and evaluation of methods, by taking a philosophy of science detour. In this, a critique of biomedicine will be used as a starting point to address some positions regarding reductionism, specifying notions such as systems and mechanisms, as well as regarding the mind-body problem discussing psychosomatic medicine and psychoneuroimmunology. Some recommendations to make science more pluralistic, robust and translationally-relevant will then be made as a way to foster constructive debates on reductionism and the mind-body problem and, in turn, favor more interdisciplinary research.
Collapse
Affiliation(s)
- Amirreza Liaghat
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France
| | - Jan Pieter Konsman
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
7
|
Levine BH, Hoffman JM. Gut Microbiome Transplants and Their Health Impacts across Species. Microorganisms 2023; 11:1488. [PMID: 37374992 DOI: 10.3390/microorganisms11061488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The human gut, required for ingesting and processing food, extracting nutrients, and excreting waste, is made up of not just human tissue but also trillions of microbes that are responsible for many health-promoting functions. However, this gut microbiome is also associated with multiple diseases and negative health outcomes, many of which do not have a cure or treatment. One potential mechanism to alleviate these negative health effects caused by the microbiome is the use of microbiome transplants. Here, we briefly review the gut's functional relationships in laboratory model systems and humans, with a focus on the different diseases they directly affect. We then provide an overview of the history of microbiome transplants and their use in multiple diseases including Alzheimer's disease, Parkinson's disease, as well as Clostridioides difficile infections, and irritable bowel syndrome. We finally provide insights into areas of research in which microbiome transplant research is lacking, but that simultaneously may provide significant health improvements, including age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin H Levine
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Han K, Ji L, Xie Q, Liu L, Wu X, He L, Shi Y, Zhang R, He G, Dong Z, Yu T. Different roles of microbiota and genetics in the prediction of treatment response in major depressive disorder. J Psychiatr Res 2023; 161:402-411. [PMID: 37023596 DOI: 10.1016/j.jpsychires.2023.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
The roles of gut microbiota and susceptibility genes in patients with major depression disorder (MDD) are not well understood. Examining the microbiome and host genetics might be helpful for clinical decision-making. Patients with MDD were recruited in this study and subsequently treated for eight weeks. We identified the differences between the population with a response after two weeks and those with a response after eight weeks. The factors that were significantly correlated with efficacy were used to predict the treatment response. The differences in the importance of microbiota and genetics in prediction were analyzed. Our study identified rs58010457 as a potentially key locus affecting the treatment effect. Different microbiota and enriched pathways might play different roles in the response after two and eight weeks. We found that the area under the curve (AUC) value was greater than 0.8 for both random forest models. The contribution of different components to the AUC was evaluated by removing genetic information, microbiota abundance, and pathway data. The gut microbiome was an important predictor of the response after eight weeks, while genetics was an important predictor of the response after two weeks. These results suggested a dynamic effect of interaction among genetics and gut microbes on treatment. Furthermore, these results provide new guidance for clinical decisions: in cases of inadequate treatment effects after two weeks, the composition of the intestinal flora can be improved by diet therapy, which could ultimately affect the efficacy.
Collapse
Affiliation(s)
- Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Qinglian Xie
- Out-patient Department of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Rong Zhang
- Shanghai Center for Women and Children's Health, 339 Luding Road, Shanghai, 200062, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China; Shanghai Center for Women and Children's Health, 339 Luding Road, Shanghai, 200062, China.
| |
Collapse
|
9
|
Lee SY, Li SC, Yang CY, Kuo HC, Chou WJ, Wang LJ. Gut Leakage Markers and Cognitive Functions in Patients with Attention-Deficit/Hyperactivity Disorder. CHILDREN 2023; 10:children10030513. [PMID: 36980071 PMCID: PMC10047799 DOI: 10.3390/children10030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a commonly seen mental disorder in children. Intestinal permeability may be associated with the pathogenesis of ADHD. The study herein investigated the role of gut leakage biomarkers in the susceptibility of ADHD. A total of 130 children with ADHD and 73 healthy controls (HC) individuals were recruited. Serum concentrations of zonulin, occludin, and defensin (DEFA1) were determined. Visual attention was assessed with Conners’ continuous performance test (CPT). In order to rate participants’ ADHD core symptoms at home and school, their parents and teachers completed the Swanson, Nolan, and Pelham—Version IV Scale (SNAP-IV), respectively. We found significantly lower DEFA1 levels in the ADHD group compared to that in the HC group (p = 0.008), but not serum levels of zonulin and occludin. The serum levels of DEFA1 showed an inverse correlation with the inattention scores in the SNAP-IV parent form (p = 0.042) and teacher form (p = 0.010), and the hyperactivity/impulsivity scores in the SNAP-IV teacher form (p = 0.014). The serum levels of occludin showed a positive correlation with the subtest of detectability in the CPT (p = 0.020). Our study provides new reference into the relation between gut leakage markers and cognition, which may advance research of the pathophysiology of ADHD.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Yu Yang
- Department of Microbiology and Immunology/Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8753); Fax: +886-7-7326817
| |
Collapse
|
10
|
Charras A, Haldenby S, Smith EMD, Egbivwie N, Olohan L, Kenny JG, Schwarz K, Roberts C, Al-Abadi E, Armon K, Bailey K, Ciurtin C, Gardner-Medwin J, Haslam K, Hawley DP, Leahy A, Leone V, McErlane F, Modgil G, Pilkington C, Ramanan AV, Rangaraj S, Riley P, Sridhar A, Beresford MW, Hedrich CM. Panel sequencing links rare, likely damaging gene variants with distinct clinical phenotypes and outcomes in juvenile-onset SLE. Rheumatology (Oxford) 2023; 62:SI210-SI225. [PMID: 35532072 PMCID: PMC9949710 DOI: 10.1093/rheumatology/keac275] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Juvenile-onset systemic lupus erythematosus (jSLE) affects 15-20% of lupus patients. Clinical heterogeneity between racial groups, age groups and individual patients suggests variable pathophysiology. This study aimed to identify highly penetrant damaging mutations in genes associated with SLE/SLE-like disease in a large national cohort (UK JSLE Cohort Study) and compare demographic, clinical and laboratory features in patient sub-cohorts with 'genetic' SLE vs remaining SLE patients. METHODS Based on a sequencing panel designed in 2018, target enrichment and next-generation sequencing were performed in 348 patients to identify damaging gene variants. Findings were integrated with demographic, clinical and treatment related datasets. RESULTS Damaging gene variants were identified in ∼3.5% of jSLE patients. When compared with the remaining cohort, 'genetic' SLE affected younger children and more Black African/Caribbean patients. 'Genetic' SLE patients exhibited less organ involvement and damage, and neuropsychiatric involvement developed over time. Less aggressive first line treatment was chosen in 'genetic' SLE patients, but more second and third line agents were used. 'Genetic' SLE associated with anti-dsDNA antibody positivity at diagnosis and reduced ANA, anti-LA and anti-Sm antibody positivity at last visit. CONCLUSION Approximately 3.5% of jSLE patients present damaging gene variants associated with younger age at onset, and distinct clinical features. As less commonly observed after treatment induction, in 'genetic' SLE, autoantibody positivity may be the result of tissue damage and explain reduced immune complex-mediated renal and haematological involvement. Routine sequencing could allow for patient stratification, risk assessment and target-directed treatment, thereby increasing efficacy and reducing toxicity.
Collapse
Affiliation(s)
- Amandine Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
| | - Sam Haldenby
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
| | - Eve M D Smith
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Naomi Egbivwie
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Lisa Olohan
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
| | - John G Kenny
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Klaus Schwarz
- Institut for Transfusion Medicine, University Ulm, Ulm
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg—Hessen, Ulm, Germany
| | - Carla Roberts
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
| | - Eslam Al-Abadi
- Department of Rheumatology, Birmingham Children’s Hospital, Birmingham
| | - Kate Armon
- Department of Paediatric Rheumatology, Cambridge University Hospitals, Cambridge
| | - Kathryn Bailey
- Department of Paediatric Rheumatology, Oxford University Hospitals NHS Foundation Trust, Oxford
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology, University College London, London
| | | | - Kirsty Haslam
- Department of Paediatrics, Bradford Royal Infirmary, Bradford
| | - Daniel P Hawley
- Department of Paediatric Rheumatology, Sheffield Children’s Hospital, Sheffield
| | - Alice Leahy
- Department of Paediatric Rheumatology, Southampton General Hospital, Southampton
| | - Valentina Leone
- Department of Paediatric Rheumatology, Leeds Children Hospital, Leeds
| | - Flora McErlane
- Paediatric Rheumatology, Great North Children’s Hospital, Royal Victoria Infirmary, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne
| | - Gita Modgil
- Department of Paediatrics, Musgrove Park Hospital, Taunton
| | | | - Athimalaipet V Ramanan
- University Hospitals Bristol NHS Foundation Trust & Bristol Medical School, University of Bristol, Bristol
| | - Satyapal Rangaraj
- Department of Paediatric Rheumatology, Nottingham University Hospitals, Nottingham
| | - Phil Riley
- Department of Paediatric Rheumatology, Royal Manchester Children’s Hospital, Manchester
| | - Arani Sridhar
- Department of Paediatrics, Leicester Royal Infirmary, Leicester, UK
| | - Michael W Beresford
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences
- Centre for Genomic Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool
| |
Collapse
|
11
|
Han K, Ji L, Wang C, Shao Y, Chen C, Liu L, Feng M, Yang F, Wu X, Li X, Xie Q, He L, Shi Y, He G, Dong Z, Yu T. The host genetics affects gut microbiome diversity in Chinese depressed patients. Front Genet 2023; 13:976814. [PMID: 36699448 PMCID: PMC9868868 DOI: 10.3389/fgene.2022.976814] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
The gut microbiome and host genetics are both associated with major depressive disorder (MDD); however, the molecular mechanisms among the associations are poorly understood, especially in the Asian, Chinese group. Our study applied linear discriminant analysis (LDA) effect size (LEfSe) and genome-wide association analysis in the cohort with both gut sequencing data and genomics data. We reported the different gut microbiota characteristics between MDD and control groups in the Chinese group and further constructed the association between host genetics and the gut microbiome. Actinobacteria and Pseudomonades were found more in the MDD group. We found significant differences in the ACE and Chao indexes of alpha diversity while no discrepancy in beta diversity. We found three associations between host genetics with microbiome features: beta diversity and rs6108 (p = 8.65 × 10-9), Actinobacteria and rs77379751 (p = 8.56 × 10-9), and PWY-5913 and rs1775633082 (p = 4.54 × 10-8). A species of the Romboutsia genus was co-associated with the species of Ruminococcus gnavus in an internetwork through four genes: METTL8, ITGB2, OTULIN, and PROSER3, with a strict threshold (p < 5 × 10-4). Furthermore, our findings suggested that the gut microbiome diversity might affect microRNA expression in the brain and influenced SERPINA5 and other spatially close genes afterward. These findings suggest new linkages between depression and gut microbiome in Asian, Chinese people, which might be mediated by genes and microRNA regulation in space distance.
Collapse
Affiliation(s)
- Ke Han
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Ji
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Chenliu Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Shao
- Asbios (Tianjin) Biotechnology Co., Ltd., Tianjin, China
| | - Changfeng Chen
- School of Mental Health, Jining Medical University, Jining, China
| | - Liangjie Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Yang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qinglian Xie
- Out-patient Department of West China Hospital, Sichuan University, Chengdu, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Tao Yu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Women and Children’s Health, Shanghai, China
| |
Collapse
|
12
|
Zeng S, Wang S, Ross RP, Stanton C. The road not taken: host genetics in shaping intergenerational microbiomes. Trends Genet 2022; 38:1180-1192. [PMID: 35773025 DOI: 10.1016/j.tig.2022.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/09/2023]
Abstract
The early-life gut microbiome is linked to human phenotypes as an imbalanced microbiome of this period is implicated in diseases throughout life. Several determinants of early-life gut microbiome are explored, however, mechanisms of acquisition, colonization, and stability of early-life gut microbiome and their interindividual variability remain elusive. Host genetics play a vital role to shape the gut microbiome and interact with it to modulate individual phenotypes in human studies and animal models. Given the microbial linkage between host generations, we discuss the current state of roles of host genetics in forming intergenerational microbiomes associated with mothers, offspring, and those vertically transmitted, providing a basis for taking into account host genetics in future early-life microbiome research. We further expand our discussion to the bidirectional interactions between host gene expression and microbiome in human health.
Collapse
Affiliation(s)
- Shuqin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Shaopu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
13
|
Pérez-Granado J, Piñero J, Furlong LI. Benchmarking post-GWAS analysis tools in major depression: Challenges and implications. Front Genet 2022; 13:1006903. [PMID: 36276939 PMCID: PMC9579284 DOI: 10.3389/fgene.2022.1006903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Our knowledge of complex disorders has increased in the last years thanks to the identification of genetic variants (GVs) significantly associated with disease phenotypes by genome-wide association studies (GWAS). However, we do not understand yet how these GVs functionally impact disease pathogenesis or their underlying biological mechanisms. Among the multiple post-GWAS methods available, fine-mapping and colocalization approaches are commonly used to identify causal GVs, meaning those with a biological effect on the trait, and their functional effects. Despite the variety of post-GWAS tools available, there is no guideline for method eligibility or validity, even though these methods work under different assumptions when accounting for linkage disequilibrium and integrating molecular annotation data. Moreover, there is no benchmarking of the available tools. In this context, we have applied two different fine-mapping and colocalization methods to the same GWAS on major depression (MD) and expression quantitative trait loci (eQTL) datasets. Our goal is to perform a systematic comparison of the results obtained by the different tools. To that end, we have evaluated their results at different levels: fine-mapped and colocalizing GVs, their target genes and tissue specificity according to gene expression information, as well as the biological processes in which they are involved. Our findings highlight the importance of fine-mapping as a key step for subsequent analysis. Notably, the colocalizing variants, altered genes and targeted tissues differed between methods, even regarding their biological implications. This contribution illustrates an important issue in post-GWAS analysis with relevant consequences on the use of GWAS results for elucidation of disease pathobiology, drug target prioritization and biomarker discovery.
Collapse
Affiliation(s)
- Judith Pérez-Granado
- Research Programme on Biomedical Informatics (GRIB), Hospital Del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Janet Piñero
- Research Programme on Biomedical Informatics (GRIB), Hospital Del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- MedBioinformatics Solutions SL, Barcelona, Spain
| | - Laura I. Furlong
- Research Programme on Biomedical Informatics (GRIB), Hospital Del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
- MedBioinformatics Solutions SL, Barcelona, Spain
- *Correspondence: Laura I. Furlong,
| |
Collapse
|
14
|
Górnicki T, Lambrinow J, Mrozowska M, Podhorska-Okołów M, Dzięgiel P, Grzegrzółka J. Role of RBMS3 Novel Potential Regulator of the EMT Phenomenon in Physiological and Pathological Processes. Int J Mol Sci 2022; 23:ijms231810875. [PMID: 36142783 PMCID: PMC9503485 DOI: 10.3390/ijms231810875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
RNA-binding protein 3 (RBMS3) plays a significant role in embryonic development and the pathogenesis of many diseases, especially cancer initiation and progression. The multiple roles of RBMS3 are conditioned by its numerous alternative expression products. It has been proven that the main form of RBMS3 influences the regulation of microRNA expression or stabilization. The absence of RBMS3 activates the Wnt/β-catenin pathway. The expression of c-Myc, another target of the Wnt/β-catenin pathway, is correlated with the RBMS3 expression. Numerous studies have focused solely on the interaction of RBMS3 with the epithelial-mesenchymal transition (EMT) protein machinery. EMT plays a vital role in cancer progression, in which RBMS3 is a new potential regulator. It is also significant that RBMS3 may act as a prognostic factor of overall survival (OS) in different types of cancer. This review presents the current state of knowledge about the role of RBMS3 in physiological and pathological processes, with particular emphasis on carcinogenesis. The molecular mechanisms underlying the role of RBMS3 are not fully understood; hence, a broader explanation and understanding is still needed.
Collapse
Affiliation(s)
- Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jakub Lambrinow
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
15
|
Hohmann S, Häge A, Millenet S, Banaschewski T. [The Genetic Basis of ADHD - An Update]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2022; 50:203-217. [PMID: 35514173 DOI: 10.1024/1422-4917/a000868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Genetic Basis of ADHD - An Update Abstract. Genetic risks play an important role in the etiology of attention-deficit/hyperactivity disorder (ADHD). This review presents the current state of knowledge concerning the genetic basis of the disorder. It discusses the results of twin- and family-based studies, linkage and association studies as well as recent findings resulting from Genome Wide Association Studies (GWAS). Furthermore, it elaborates on the relevance of polygenic risk scores, rare variants, and epigenetic alterations, especially in light of findings on genetic pleiotropy in the context of frequent psychiatric comorbidities in patients with ADHD.
Collapse
Affiliation(s)
- Sarah Hohmann
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Alexander Häge
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Sabina Millenet
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Tobias Banaschewski
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| |
Collapse
|
16
|
Gut microbiota and plasma cytokine levels in patients with attention-deficit/hyperactivity disorder. Transl Psychiatry 2022; 12:76. [PMID: 35197458 PMCID: PMC8866486 DOI: 10.1038/s41398-022-01844-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood mental disorder with undetermined pathophysiological mechanisms. The gut microbiota and immunological dysfunction may influence brain functions and social behaviours. In the current study, we aimed to explore the correlation of gut microbiome imbalance and inflammation in the pathophysiology of ADHD. Forty-one children with ADHD and thirty-nine healthy-control (HC) individuals were recruited. Faecal samples from all participants were collected and submitted for 16 S rRNA V3-V4 amplicon microbiome sequencing analysis. The plasma levels of 10 cytokines, including TNF-α, IL-6, IL-1β, IL-2, IL-10, IL-13, IL-17A, IFN-α2, IFN-γ, and MCP-1, were determined using a custom-made sandwich enzyme-linked immunosorbent assay (ELISA) developed by Luminex Flowmetrix. There was no significant difference between the ADHD and HC groups in species diversity in the faeces, as determined with α-diversity and β-diversity analysis. In the ADHD group, three differentially abundant taxonomic clades at the genus level were observed, namely Agathobacter, Anaerostipes, and Lachnospiraceae. Top differentially abundant bacteria and representative biological pathways were identified in children with ADHD using linear discriminant analysis (LDA) effect size (LEfSe), and the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis, respectively. The plasma levels of TNF-α were significantly lower in children with ADHD than in HCs. Within the ADHD group, the levels of TNF-α were negatively correlated with ADHD symptoms and diversity of the gut microbiome. Our study provides new insights into the association between gut microbiome dysbiosis and immune dysregulation, which may contribute to the pathophysiology of ADHD.
Collapse
|
17
|
Milone R, Tancredi R, Cosenza A, Ferrari AR, Scalise R, Cioni G, Battini R. 17q12 Recurrent Deletions and Duplications: Description of a Case Series with Neuropsychiatric Phenotype. Genes (Basel) 2021; 12:genes12111660. [PMID: 34828266 PMCID: PMC8620923 DOI: 10.3390/genes12111660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
Syndromic neurodevelopmental disorders are usually investigated through genetics technologies, within which array comparative genomic hybridization (Array-CGH) is still considered the first-tier clinical diagnostic test. Among recurrent syndromic imbalances, 17q12 deletions and duplications are characterized by neurodevelopmental disorders associated with visceral developmental disorders, although expressive variability is common. Here we describe a case series of 12 patients with 17q12 chromosomal imbalances, in order to expand the phenotypic characterization of these recurrent syndromes whose diagnosis is often underestimated, especially if only mild traits are present. Gene content and genotype-phenotype correlations have been discussed, with special regard to neuropsychiatric features, whose impact often requires etiologic analysis.
Collapse
Affiliation(s)
- Roberta Milone
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (R.M.); (R.T.); (A.C.); (A.R.F.); (R.S.); (G.C.)
| | - Raffaella Tancredi
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (R.M.); (R.T.); (A.C.); (A.R.F.); (R.S.); (G.C.)
| | - Angela Cosenza
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (R.M.); (R.T.); (A.C.); (A.R.F.); (R.S.); (G.C.)
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (R.M.); (R.T.); (A.C.); (A.R.F.); (R.S.); (G.C.)
| | - Roberta Scalise
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (R.M.); (R.T.); (A.C.); (A.R.F.); (R.S.); (G.C.)
- Tuscan PhD Program of Neuroscience, University of Florence, Pisa and Siena, 50139 Florence, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (R.M.); (R.T.); (A.C.); (A.R.F.); (R.S.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Calambrone, 56128 Pisa, Italy; (R.M.); (R.T.); (A.C.); (A.R.F.); (R.S.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
18
|
Common and Unique Genetic Background between Attention-Deficit/Hyperactivity Disorder and Excessive Body Weight. Genes (Basel) 2021; 12:genes12091407. [PMID: 34573389 PMCID: PMC8464917 DOI: 10.3390/genes12091407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Comorbidity studies show that children with ADHD have a higher risk of being overweight and obese than healthy children. This study aimed to assess the genetic alternations that differ between and are shared by ADHD and excessive body weight (EBW). The sample consisted of 743 Polish children aged between 6 and 17 years. We analyzed a unique set of genes and polymorphisms selected for ADHD and/or obesity based on gene prioritization tools. Polymorphisms in the KCNIP1, SLC1A3, MTHFR, ADRA2A, and SLC6A2 genes proved to be associated with the risk of ADHD in the studied population. The COMT gene polymorphism was one that specifically increased the risk of EBW in the ADHD group. Using the whole-exome sequencing technique, we have shown that the ADHD group contains rare and protein-truncating variants in the FBXL17, DBH, MTHFR, PCDH7, RSPH3, SPTBN1, and TNRC6C genes. In turn, variants in the ADRA2A, DYNC1H1, MAP1A, SEMA6D, and ZNF536 genes were specific for ADHD with EBW. In this way, we confirmed, at the molecular level, the existence of genes specifically predisposing to EBW in ADHD patients, which are associated with the biological pathways involved in the regulation of the reward system, intestinal microbiome, and muscle metabolism.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Accumulating evidence indicates that there are bidirectional interactions between the gut microbiota and functioning of the central nervous system. Consequently, it has been proposed that gut microbiota alterations might play an important role in the pathophysiology of schizophrenia. Therefore, in this article, we aimed to perform a narrative review of studies addressing gut microbiota alterations in patients with schizophrenia that were published in the years 2019-2020. RECENT FINDINGS Several studies have shown a number of gut microbiota alterations at various stages of schizophrenia. Some of them can be associated with neurostructural abnormalities, psychopathological symptoms, subclinical inflammation and cardiovascular risk. Experimental studies clearly show that transplantation of gut microbiota from unmedicated patients with schizophrenia to germ-free mice results in a number of behavioural impairments accompanied by altered neurotransmission. However, findings from clinical trials do not support the use of probiotics as add-on treatments in schizophrenia. SUMMARY Gut microbiota alterations are widely observed in patients with schizophrenia and might account for various biological alterations involved in the cause of psychosis. However, longitudinal studies are still needed to conclude regarding causal associations. Well designed clinical trials are needed to investigate safety and efficacy of probiotics and prebiotics in schizophrenia.
Collapse
Affiliation(s)
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
20
|
Misiak B, Samochowiec J, Marlicz W, Łoniewski I. Gut microbiota in psychiatric disorders: Better understanding or more complexity to be resolved? Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110302. [PMID: 33713733 DOI: 10.1016/j.pnpbp.2021.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-457 Szczecin, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Igor Łoniewski
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24 Street, 71-460 Szczecin, Poland.
| |
Collapse
|
21
|
Zhou G, Yu R, Ahmed T, Jiang H, Zhang M, Lv L, Alhumaydhi FA, Allemailem KS, Li B. Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children. Front Microbiol 2021; 12:700707. [PMID: 34421854 PMCID: PMC8375032 DOI: 10.3389/fmicb.2021.700707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) seriously affects children’s health, and the gut microbiome has been widely hypothesized to play a role in the regulation of ADHD behavior. The present study aims to the biosynthesize of zinc oxide nanoparticles (ZnONPs) by using Acinetobacter johnsonii strain RTN1, followed by their characterization through state-of-the-art material characterization techniques, viz., UV–vis spectroscopy, Fourier transform infrared spectroscopy, and transmission and scanning electron microscopic analyses with energy dispersive spectrometry. Moreover, we investigated and compared the population composition of gut microbiota and their susceptibility to biogenic ZnONPs between healthy and ADHD children based on the traditional plate method and 16S rRNA amplicon sequence analysis. The antibacterial effect of ZnONPs against gut bacteria was also determined by measurement of live cell number, living/dead bacterial staining test, and flow cytometry observation. The present study revealed that the number of live gut bacteria in healthy children was more than 10-fold higher than that in ADHD children; however, the community structure of gut bacteria has changed, while greater diversity was found in gut bacteria from ADHD children. In addition, we found that the number of live gut bacteria in healthy and ADHD children was reduced by ZnONPs, which shows an increased and reduced effect in composition of gut bacteria from healthy and ADHD children, respectively. It was also noted that the main mechanism of ZnONPs may be to inhibit the growth of gut bacteria rather than to kill them, while the nanoparticle-resistant strains in healthy children is also different from that in ADHD children. Some representative bacteria, in particular nanoparticle-resistant bacteria, were successfully isolated and identified. Overall, this study revealed the potential correlation of ADHD with gut bacteria and provided a new possibility to prevent ADHD by the combination of nanoparticle and its resistant bacteria.
Collapse
Affiliation(s)
- Guoling Zhou
- Hangzhou Seventh People's Hospital (HSPH), Hangzhou, China
| | - Rongrong Yu
- School of Education Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hubiao Jiang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Luqiong Lv
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|