1
|
Boughbina-Portolés A, Campíns-Falcó P. Assessing the size transformation of nanoplastics in natural water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176225. [PMID: 39270873 DOI: 10.1016/j.scitotenv.2024.176225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Understanding the stability of NPs in different aqueous environments, related with their size is crucial for assessing their potential risks. This is influenced by several factors, including pH, ionic strength, and the presence of biomolecules, or dissolved organic matter (DOM). In this study, dispersions of NPs derived from common plastic waste materials, including polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), and polycarbonate (PC), were synthesized by a nanoprecipitation method with sizes: 189 ± 7, 58 ± 3, 123 ± 4, 151 ± 7 and 182 ± 6 nm, respectively. Stability for a period of 14 days of these NPs was assessed in various natural water matrices. Different analytical techniques were used, including Asymmetric Flow Field-Flow Fractionation (AF4) coupled with UV-Vis and Dynamic Light Scattering (DLS) in series, batch DLS, Fourier-Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR), and Transmission Electron Microscopy (TEM). None of the studied NPs was stable in seawater and NPs were transformed in microplastics (MPs) by aggregation. PET was more prone to aggregation in all waters and PS was the most stable followed for PC, PVC and PMMA. However, bottle and tap waters maintained better the original size of NPs. For the most stable dispersion PS, the influence of heteroaggregation in tap and lagoon waters and aging from exposure to UV light in sea water were tested. In both cases, the stability over time was worse for PS. The results can contribute to a more comprehensive understanding of the fate and behaviour of NPs in natural aquatic environments, emphasizing the importance of studying a wide range of polymers.
Collapse
Affiliation(s)
- Aaron Boughbina-Portolés
- MINTOTA research group, Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Pilar Campíns-Falcó
- MINTOTA research group, Departament de Química Analítica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
2
|
Aniśko J, Kosmela P, Cichocka J, Andrzejewski J, Barczewski M. How the Dimensions of Plant Filler Particles Affect the Oxidation-Resistant Characteristics of Polyethylene-Based Composite Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4825. [PMID: 39410396 PMCID: PMC11478149 DOI: 10.3390/ma17194825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
This study analyzed the possibility of using plant-originated waste materials (black and green tea dust) as functional polyethylene fillers. The dependence between the size of the filler particles and their antioxidant potential is discussed. Six fractions were selected: below 50 µm, 50-100 µm, 100-200 µm, 200-400 µm, 400-630 µm and 630-800 µm. Significant differences between the effect of particle size and the antioxidant properties of black and green tea were found using the extraction method to analyze antioxidant activity (DPPH method) and total phenolic content (Folin-Ciocalteu method), suggesting a higher potential for using green tea as a filler with antioxidant properties, as well as the benefits of finer active filler distribution. Biomass waste fillers were mixed with low-density polyethylene LDPE SEB 853 I'm Green®, Braskem. Those samples were oxidized at 100 °C for 5 and 15 days to investigate the radical scavenging properties of fillers in composites. Fourier transform infrared spectroscopic studies show that the addition of both types of filler prevents the thermo-oxidation of polyethylene for 5 days. After 15 days, all samples except the BTW 400-630 and 630-800 µm exhibited oxidation. The mechanical properties of the LDPE and its' composites were tested, and we noted an increased brittleness of neat LDPE after thermal oxidation. The addition of black tea particles above 100 µm in size prevents this behavior.
Collapse
Affiliation(s)
- Joanna Aniśko
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (J.A.); (M.B.)
| | - Paulina Kosmela
- Department of Polymer Technology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Joanna Cichocka
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Jacek Andrzejewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (J.A.); (M.B.)
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland; (J.A.); (M.B.)
| |
Collapse
|
3
|
Jung JW, Xing Q, Park JS, Yarish C, Kim JK. Physiological responses of Grateloupia turuturu and Chondrus ocellatus to nano-plastics. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106742. [PMID: 39265326 DOI: 10.1016/j.marenvres.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
The objective of this study is to investigate the effect of nano-plastics (NPs) on the growth, photosynthesis, oxidative stress and antioxidant enzymes in Grateloupia turuturu and Chondrus ocellatus. Difference of surface characteristics between G. turuturu and C. ocellatus may affect adherence of plastics to their surface. The seaweed samples were cultivated at 5 different NP concentrations (0, 20, 200, 2000, 20000 ng/L) for 21 days. The accumulation of nano-plastics on surface of C. ocellatus was higher than that of G. turuturu. The highest concentration of NPs (20000 ng/L) inhibited the growth and photosynthesis activity of C. ocellatus. At the same concentrations, oxidative stress was caused with increase of antioxidant enzyme activities. G. turuturu was not affected by NPs at all tested concentrations. Based on these results, toxic effects of nano-plastics may be species specific. Toxicity is dependent on the capacity of macroalgae to accumulate nano-plastics on their surface.
Collapse
Affiliation(s)
- Jae Woo Jung
- Department of Marine Science, Incheon National University, Incheon, 22012, South Korea
| | - Qikun Xing
- Research Institution of Basic Sciences, Incheon National University, Incheon, 22012, South Korea
| | - Ji-Sook Park
- Research Institution of Basic Sciences, Incheon National University, Incheon, 22012, South Korea
| | - Charles Yarish
- Department of Ecology & Evolutionary Biology, University of Connecticut, Stamford, CT, 06901-2315, USA
| | - Jang Kyun Kim
- Department of Marine Science, Incheon National University, Incheon, 22012, South Korea; Research Institution of Basic Sciences, Incheon National University, Incheon, 22012, South Korea.
| |
Collapse
|
4
|
Keyes P, Halimah N, Xiong B. Deciphering polymer degradation chemistry via integrating new database construction into suspect screening analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1184-1197. [PMID: 38804611 DOI: 10.1039/d4em00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Water-soluble synthetic polymers and their environmental degradation products are overlooked but important industrial pollutants in wastewater. However, the detection of degradation products is limited to bulk solution chemistry and molecular-level analysis remains unreachable. In this work, we assessed the feasibility of current suspect screening and nontarget workflow using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to elucidate molecular level information about polyacrylamide (PAM) and its degraded products by free radicals. Radical chain scission of PAM (10 kDa) using heat-activated persulfate was conducted to simulate hydraulic fracturing conditions in the deep subsurface. We found that the current workflows in the commercial software generated predicted formulae with low accuracy, due to limited capability of peak picking and formula prediction for high mass and charge features. By modeling literature-reported degradation pathways, we constructed a degradation product database of over 463 000 unique formulae, which improved the accuracy of the predicted formula. For the matched features, the ratio of aldehyde/ketone terminating molecule abundance was found to increase over 24 h degradation time, suggesting increasing content of aldehydes by radical-induced oxidative chain scission of PAM. This is contradictory to previously proposed ratios of carbon-centered radical position on polymer backbone initiated by hydroxyl radicals. Using in silico fragmentation of MS1 features, we identified 11 structures with confidence levels 2b and 3 using their MS2 information. This is the first attempt to resolve complex polymer degradation chemistry using HRMS that can advance our ability to detect water-soluble polymer pollutants and their transformation products in environmental samples.
Collapse
Affiliation(s)
- Phoebe Keyes
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| | - Noor Halimah
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| | - Boya Xiong
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, USA.
| |
Collapse
|
5
|
Lu B, Takahashi K, Zhou J, Nakagawa S, Yamamoto Y, Katashima T, Yoshie N, Nozaki K. Mild Catalytic Degradation of Crystalline Polyethylene Units in a Solid State Assisted by Carboxylic Acid Groups. J Am Chem Soc 2024; 146:19599-19608. [PMID: 38952064 DOI: 10.1021/jacs.4c07458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Crystalline polyethylenes bearing carboxylic acid groups in the main chain were successfully degraded with a Ce catalyst and visible light. The reaction proceeds in a crystalline solid state without swelling in acetonitrile or water at a reaction temperature as low as 60 or 80 °C, employing dioxygen in air as the only stoichiometric reactant with nearly quantitative recovery of carbon atoms. Heterogeneous features of the reaction allowed us to reveal a dynamic morphological change of polymer crystals during the degradation.
Collapse
Affiliation(s)
- Bin Lu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Takahashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jian Zhou
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Yuta Yamamoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Huang G, Lv W, Zhu Y, Zhang Z, Jin X, Liu H, Zhang T, Yang F, Lu M, Zhao Y. Investigation of the effects of irradiation and aging on the tribological behavior of ultra-high molecular weight polyethylene/graphene oxide composites under water lubrication. RSC Adv 2024; 14:18161-18170. [PMID: 38854822 PMCID: PMC11155443 DOI: 10.1039/d4ra01156b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Ultra-high molecular weight polyethylene/graphene oxide (PE-UHMW/GO) composites have demonstrated potential in artificial joint applications. The tribological behavior of irradiated PE-UHMW/GO composites under water lubrication remained unclear, which limited their application range. In this study, the PE-UHMW/GO composites were gamma irradiated at 100 KGy in a vacuum and subsequently aged at 80 °C for 21 days in air. We assessed their water absorption, and mechanical and tribological properties post-treatment. Notably, gamma irradiation markedly enhanced the mechanical and tribological performance of PE-UHMW/GO composites. Irradiated composites had a 6.11% increase in compressive strength and a 25.72% increase in yield strength compared to unirradiated composites. Additionally, under water lubrication, the irradiated composites showed improved wear resistance and a reduced friction coefficient. The irradiation enhancement can be attributed to the irradiation-induced strengthening of the interface bonding between GO and PE-UHMW. Conversely, accelerated aging led to oxidative degradation, negatively impacting these properties. Aged composites exhibited lower compressive and yield strengths, higher friction coefficients, and diminished anti-wear properties compared to the irradiated composites. The wear mechanism evolved from predominantly fatigue wear in irradiated PE-UHMW/GO to a mix of abrasive and fatigue wear post-aging. While GO and aging influenced water absorption, irradiation had a minimal effect. These insights significantly contribute to the application potential of irradiated PE-UHMW/GO composites in artificial joints.
Collapse
Affiliation(s)
- Guodong Huang
- School of Mechanical Engineering, Wuxi Institute of Technology Wuxi 214121 Jiangsu China
| | - Weiwen Lv
- School of Mechanical Engineering, Wuxi Institute of Technology Wuxi 214121 Jiangsu China
| | - Yaowu Zhu
- School of Mechanical Engineering, Wuxi Institute of Technology Wuxi 214121 Jiangsu China
| | - Zhigang Zhang
- School of Mechanical Engineering, Wuxi Institute of Technology Wuxi 214121 Jiangsu China
| | - Xuxing Jin
- School of Mechanical Engineering, Wuxi Institute of Technology Wuxi 214121 Jiangsu China
| | - Haowu Liu
- School of Mechanical Engineering, Wuxi Institute of Technology Wuxi 214121 Jiangsu China
| | - Tao Zhang
- School of Mechanical Engineering, Wuxi Institute of Technology Wuxi 214121 Jiangsu China
| | - Fei Yang
- School of Mechanical Engineering, Wuxi Institute of Technology Wuxi 214121 Jiangsu China
| | - Min Lu
- School of Mechanical Engineering, Wuxi Institute of Technology Wuxi 214121 Jiangsu China
| | - Yongwu Zhao
- School of Mechanical Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| |
Collapse
|
7
|
Smak TJ, de Peinder P, Van der Waal JC, Altink R, Vollmer I, Weckhuysen BM. Oxidative Conversion of Polyethylene Towards Di-Carboxylic Acids: A Multi-Analytical Approach. CHEMSUSCHEM 2024; 17:e202301198. [PMID: 38009265 DOI: 10.1002/cssc.202301198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 11/28/2023]
Abstract
To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di-carboxylic acids as reaction products. A multi-analytical approach including gas chromatography-mass spectrometry, gas chromatography-flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in-situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di-carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ-lactones, γ-ketones and esters. An intra-molecular hydrogen shift seemed key in the cleavage step and the formation of late-stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di-carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste.
Collapse
Affiliation(s)
- Tom J Smak
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Peter de Peinder
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | - Rinke Altink
- TNO, Brightsite, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| | - Ina Vollmer
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
8
|
Zaharescu T, Mirea R, Borbath T, Borbath I. Stability Qualification of Resins/Metallic Oxide Composites for Surface Oxidative Protection. Polymers (Basel) 2024; 16:333. [PMID: 38337222 DOI: 10.3390/polym16030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The accelerated degradation of alkyd resins via γ-irradiation is investigated using non-isothermal chemiluminescence. The stability qualification is possible through the comparison of emission intensities on a temperature range starting from 100 °C up to 250 °C under accelerated degradation caused by radiolysis scission. The measurements achieved in the samples of cured state resin modified by various inorganic oxides reveal the influence of metallic traces on the aging amplitude, when the thermal resistance increases as the irradiation dose is augmented. Even though the unirradiated samples present a prominent chemiluminescence intensity peak at 80 °C, the γ-processed specimens show less intense spectra under the pristine materials and the oxidation starts smoothly after 75 °C. The values of activation energies required for oxidative degradation of the sample subjected to 100 kGy are significantly higher in the composite states than in the neat resin. The degradation mechanism of polymerized resins is discussed taking into account the effects of fillers on the stability of studied epoxy resin at various temperatures when the degradation and crosslinking are in competition for the decay of free radical.
Collapse
Affiliation(s)
- Traian Zaharescu
- INCDIE-ICPE CA, Radiochemical Center, 313 Splaiul Unirii, Ro 030138 Bucharest, Romania
- ROSEAL SA, 5A Nicolae Bălcescu, Harghita District, Ro 535600 Odorheiu Secuiesc, Romania
| | - Radu Mirea
- Romanian Research and Development Institute for Gas Turbines-COMOTI, 220D Iuliu Maniu Bd., Ro 061125 Bucharest, Romania
| | - Tunde Borbath
- ROSEAL SA, 5A Nicolae Bălcescu, Harghita District, Ro 535600 Odorheiu Secuiesc, Romania
| | - Istvan Borbath
- ROSEAL SA, 5A Nicolae Bălcescu, Harghita District, Ro 535600 Odorheiu Secuiesc, Romania
| |
Collapse
|
9
|
Zhang J, Hao M, Zhang D, Zhang X, Guo S, Wang B, Xiao J, Gao Y, Li X. Enhanced Polyacrylamide Degradation via OH Radical-Initiated Single-Electron Transfer. ACS OMEGA 2023; 8:46589-46597. [PMID: 38107970 PMCID: PMC10720005 DOI: 10.1021/acsomega.3c05548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023]
Abstract
Hydroxyl (OH) radicals, as common radicals in aqueous environments, play an important role in inducing the degradation reactions of polymers. However, understanding the fundamental mechanisms of radical-induced degradation of polymers at the atomic level remains a formidable challenge. In this study, we employ density functional theory to investigate the geometric and electronic structural properties of polyacrylamide (PAM) in (-CH2CHCONH2-)n (n = 2-6) complexes. Additionally, we explore the degradation mechanism of the n = 4 complex induced by the OH radical. The results indicate that there are three sites for the initial reaction (R1 and R2 are at the ends and R3 is in the middle). The OH radical removes a H atom from the PAM main chain and simultaneously triggers a single-electron-transfer process on the same chain. This process significantly reduces the dissociation energy barrier of the C-C bond in the PAM chain, from ∼90 to ∼20 kcal/mol. Specifically, when the induced reaction occurs at the end of the chain, a series of broken bonds will appear only along the main chain. While it happens in the middle, the broken bonds will exist simultaneously along both the main and side chains. Our results reveal the importance of OH radicals in polymer dissociation, particularly in PAM, and emphasize the degradation mechanism of SET.
Collapse
Affiliation(s)
- Jun Zhang
- The
Key Laboratory of Enhanced Oil and Gas Recovery of Educational Ministry, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
- Liaohe
Operation Service Company of Liaohe Oilfield Company, Panjin, Liaoning 124100, China
| | - Ming Hao
- The
Key Laboratory of Enhanced Oil and Gas Recovery of Educational Ministry, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
- Post-doctoral
Working Station of Liaohe Oil Field, Panjin 124010, Liaoning, China
| | - Depeng Zhang
- Normal
School, Shenyang University, Shenyang 110044, China
| | - Xuesong Zhang
- The
Key Laboratory of Enhanced Oil and Gas Recovery of Educational Ministry, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Shijun Guo
- College
of Chemical Engineering, Daqing Normal University, Daqing 163712, Heilongjiang, China
| | - Bo Wang
- College
of
Science, Northeast Electric Power University, No. 169 Changchun Road, Jilin City 132012, P. R. China
| | - Junping Xiao
- College
of Physics and Electronic Information, Baicheng
Normal University, Baicheng, Jilin 137000, China
| | - Yang Gao
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xiaoan Li
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| |
Collapse
|
10
|
Melekhina VY, Vlasova AV, Ilyin SO. Asphaltenes from Heavy Crude Oil as Ultraviolet Stabilizers against Polypropylene Aging. Polymers (Basel) 2023; 15:4313. [PMID: 37959994 PMCID: PMC10648154 DOI: 10.3390/polym15214313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The destruction of polymers under the influence of ultraviolet (UV) radiation is the cause of their aging and deterioration of strength properties. Asphaltenes are low-value waste products after the refining and deasphalting of heavy crude oil, which absorb UV radiation well. Asphaltenes require rational utilization, which suggests their use as UV stabilizing agents for polymers. In this work, asphaltenes were used to prevent UV aging of polypropylene (PP) by adding them in a mass fraction from 5% to 30% within an asphaltene/PP composite material. Rheometry, calorimetry, X-ray diffraction analysis, and tensile strength of PP films containing asphaltenes were performed before and after their intense UV irradiation for accelerated aging. Asphaltenes slightly reduce the viscosity, crystallinity, and mechanical strength of the initial PP due to their plasticizing effect. However, this deterioration in properties is more than compensated when studying UV-aged samples. Intense UV aging causes multiple catastrophic drops in the viscosity and strength of pure PP with the preservation of crystallinity due to the break of polymer chains and a decrease in molecular weight by approximately eight times. Asphaltenes suppress the destruction of PP, which is expressed in a significantly smaller decline in its viscosity and strength due to UV aging. The most optimal content of asphaltenes is 20%, which suppresses UV destruction by six times and best preserves the strength properties of PP.
Collapse
Affiliation(s)
| | | | - Sergey O. Ilyin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| |
Collapse
|
11
|
Wang Z, Wang Z, Liu D, Wang Q. Peculiarity of the Mechanism of Early Stages of Photo-Oxidative Degradation of Linear Low-Density Polyethylene Films in the Presence of Ferric Stearate. Polymers (Basel) 2023; 15:3672. [PMID: 37765527 PMCID: PMC10535957 DOI: 10.3390/polym15183672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Ferric stearate (FeSt3) is very efficient in accelerating polyethylene (PE) degradation, but there is a lack of exploration of its role in accelerating the early stages of polyethylene photo-oxidative degradation. This study aimed to investigate the effect of FeSt3 on the photo-oxidative degradation of PE films, especially in the early stages of photo-oxidative degradation. The results show that FeSt3 not only promotes the oxidative degradation of PE but also contributes significantly to the early behavior of photo-oxidative degradation. Moreover, the results of the density functional theory (DFT) calculations proved that the C-H in the FeSt3 ligand was more easily dissociated compared with the PE matrix. The generated H radicals participate in the coupling reaction of the primary alkyl macro radicals leading to the molecular weight reduction, thus significantly increasing the initial rate of molecular weight reduction of PE. Meanwhile, the transfer reaction of the dissociation-generated C-centered radicals induced the PE matrix to produce more secondary alkyl macroradicals, which shortened the time to enter the oxidative degradation stage. This finding reveals the mechanism by which FeSt3 promotes the degradation of PE at the early stage of photo-oxidative degradation. It provides guiding significance for the in-depth study of the early degradation behavior in photo-oxidative degradation on polyolefin/FeSt3 films.
Collapse
Affiliation(s)
- Zhiming Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhongwei Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266042, China
| | - Dayong Liu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 466300, China
| | - Qingzhao Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
12
|
Wu X, Tan Z, Liu R, Liao Z, Ou H. Gaseous products generated from polyethylene and polyethylene terephthalate during ultraviolet irradiation: Mechanism, pathway and toxicological analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162717. [PMID: 36907426 DOI: 10.1016/j.scitotenv.2023.162717] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The generation of various degradation products from microplastics (MPs) has been confirmed under ultraviolet (UV) irradiation. The gaseous products, primarily volatile organic compounds (VOCs), are usually overlooked, leading to potential unknown risks to humans and the environment. In this study, the generation of VOCs from polyethylene (PE) and polyethylene terephthalate (PET) under UV-A (365 nm) and UV-C (254 nm) irradiation in water matrixes were compared. More than 50 different VOCs were identified. For PE, UV-A-derived VOCs mainly included alkenes and alkanes. On this basis, UV-C-derived VOCs included various oxygen-containing organics, such as alcohols, aldehydes, ketones, carboxylic acid and even lactones. For PET, both UV-A and UV-C irradiation induced the generation of alkenes, alkanes, esters, phenols, etc., and the differences between these two reactions were insignificant. Toxicological prioritization prediction revealed that these VOCs have diverse toxicological profiles. The VOCs with the highest potential toxicity were dimethyl phthalate (CAS: 131-11-3) from PE and 4-acetylbenzoate (3609-53-8) from PET. Furthermore, some alkane and alcohol products also presented high potential toxicity. The quantitative results indicated that the yield of these toxic VOCs from PE could reach 102 μg g-1 under UV-C treatment. The degradation mechanisms of MPs included direct scission by UV irradiation and indirect oxidation induced by diverse activated radicals. The former mechanism was dominant in UV-A degradation, while UV-C included both mechanisms. Both mechanisms contributed to the generation of VOCs. Generally, MPs-derived VOCs can be released from water to the air after UV irradiation, posing a potential risk to ecosystems and human beings, especially for UV-C disinfection indoors in water treatments.
Collapse
Affiliation(s)
- Xinni Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Zongyi Tan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Ruijuan Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China
| | - Zhianqi Liao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou 511443, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Center for Environmental Microplastics Studies, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
13
|
Tian R, Li K, Lin Y, Lu C, Duan X. Characterization Techniques of Polymer Aging: From Beginning to End. Chem Rev 2023; 123:3007-3088. [PMID: 36802560 DOI: 10.1021/acs.chemrev.2c00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Wang Z, Chen H, Zhang Y, Wang Q. Study on the Mechanism of Molecular Weight Reduction of Polyethylene Based on Fe-Montmorillonite and Its Potential Application. Polymers (Basel) 2023; 15:polym15061429. [PMID: 36987210 PMCID: PMC10057148 DOI: 10.3390/polym15061429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The reactions occurring in the oxidative degradation phase during the photo-oxidative degradation of polyethylene (PE) are the factors leading to molecular weight reduction. However, the mechanism of molecular weight reduction before oxidative degradation has not been clarified. The present study aims to investigate the photodegradation of PE/Fe-montmorillonite (Fe-MMT) films, especially molecular weight change. The results show the rate of photo-oxidative degradation of each PE/Fe-MMT film is much faster than that of the pure linear low-density polyethylene (LLDPE) film. A decrease in the molecular weight of polyethylene was also found in the photodegradation phase. Based on this, it was found that the transfer and coupling of primary alkyl radicals originating from photoinitiation lead to a decrease in the molecular weight of polyethylene, and the kinetic results validate this new mechanism well. This new mechanism is an improvement on the existing mechanism of molecular weight reduction during the photo-oxidative degradation of PE. In addition, Fe-MMT can greatly accelerate the reduction of PE molecular weight into small oxygen-containing molecules as well as induce cracks on the surface of polyethylene films, all of which can accelerate the biodegradation process of polyethylene microplastics. The excellent photodegradation properties of PE/Fe-MMT films will be useful in the design of more environmentally friendly degradable polymers.
Collapse
Affiliation(s)
- Zhiming Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huimin Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yunpeng Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qingzhao Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Correspondence:
| |
Collapse
|
15
|
Molecular Pathways for Polymer Degradation during Conventional Processing, Additive Manufacturing, and Mechanical Recycling. Molecules 2023; 28:molecules28052344. [PMID: 36903589 PMCID: PMC10004996 DOI: 10.3390/molecules28052344] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The assessment of the extent of degradation of polymer molecules during processing via conventional (e.g., extrusion and injection molding) and emerging (e.g., additive manufacturing; AM) techniques is important for both the final polymer material performance with respect to technical specifications and the material circularity. In this contribution, the most relevant (thermal, thermo-mechanical, thermal-oxidative, hydrolysis) degradation mechanisms of polymer materials during processing are discussed, addressing conventional extrusion-based manufacturing, including mechanical recycling, and AM. An overview is given of the most important experimental characterization techniques, and it is explained how these can be connected with modeling tools. Case studies are incorporated, dealing with polyesters, styrene-based materials, and polyolefins, as well as the typical AM polymers. Guidelines are formulated in view of a better molecular scale driven degradation control.
Collapse
|
16
|
Krieg D, Sergeieva O, Jungkind S, Rennert M, Nase M. Influence of E‐beam irradiation on compounds from linear low density polyethylene and thermoplastic vulcanized rubber consisting of a polypropylene and ethylene propylene diene monomer rubber phase. J Appl Polym Sci 2023. [DOI: 10.1002/app.53765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- David Krieg
- Institute for Biopolymers (ibp) at Hof University of Applied Sciences Hof Germany
| | - Olena Sergeieva
- Institute for Biopolymers (ibp) at Hof University of Applied Sciences Hof Germany
| | - Sabine Jungkind
- Institute for Biopolymers (ibp) at Hof University of Applied Sciences Hof Germany
| | - Mirko Rennert
- Institute for Biopolymers (ibp) at Hof University of Applied Sciences Hof Germany
| | - Michael Nase
- Institute for Biopolymers (ibp) at Hof University of Applied Sciences Hof Germany
| |
Collapse
|
17
|
Gao Z, Chou PI, Liu J, Zhu Y, Jun YS. Oxidative Roles of Polystyrene-Based Nanoplastics in Inducing Manganese Oxide Formation under Light Illumination. ACS NANO 2022; 16:20238-20250. [PMID: 36441924 DOI: 10.1021/acsnano.2c05803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Every year, large quantities of plastics are produced and used for diverse applications, growing concerns about the waste management of plastics and their release into the environment. Plastic debris can break down into millions of pieces that adversely affect natural organisms. In particular, the photolysis of micro/nanoplastics can generate reactive oxygen species (ROS). However, their oxidative roles in initiating redox chemical reactions with heavy and transition metals have received little attention. In this study, we investigated whether the photolysis of polystyrene (PS) nanoplastics can induce the oxidation of Mn2+(aq) to Mn oxide solids. We found that PS nanoplastics not only produced peroxyl radicals (ROO•) and superoxide radicals (O2•-) by photolysis, which both play a role in unexpected Mn oxidation, but also served as a substrate for facilitating the heterogeneous nucleation and growth of Mn oxide solids and controlling the formation rate and crystalline phases of Mn oxide solids. These findings help us to elucidate the oxidative roles of nanoplastics in the oxidation of redox-active metal ions. The production of ROS from nanoplastics in the presence of light can endanger marine life and human health, and affect the mobility of the nanoplastics in the environment via redox reactions, which in turn may negatively impact their environmental remediation.
Collapse
Affiliation(s)
- Zhenwei Gao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ping-I Chou
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jing Liu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
18
|
Andrady AL, Barnes PW, Bornman JF, Gouin T, Madronich S, White CC, Zepp RG, Jansen MAK. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158022. [PMID: 35970458 PMCID: PMC9765214 DOI: 10.1016/j.scitotenv.2022.158022] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 05/26/2023]
Abstract
Understanding the fate of plastics in the environment is of critical importance for the quantitative assessment of the biological impacts of plastic waste. Specially, there is a need to analyze in more detail the reputed longevity of plastics in the context of plastic degradation through oxidation and fragmentation reactions. Photo-oxidation of plastic debris by solar UV radiation (UVR) makes material prone to subsequent fragmentation. The fragments generated following oxidation and subsequent exposure to mechanical stresses include secondary micro- or nanoparticles, an emerging class of pollutants. The paper discusses the UV-driven photo-oxidation process, identifying relevant knowledge gaps and uncertainties. Serious gaps in knowledge exist concerning the wavelength sensitivity and the dose-response of the photo-fragmentation process. Given the heterogeneity of natural UV irradiance varying from no exposure in sediments to full UV exposure of floating, beach litter or air-borne plastics, it is argued that the rates of UV-driven degradation/fragmentation will also vary dramatically between different locations and environmental niches. Biological phenomena such as biofouling will further modulate the exposure of plastics to UV radiation, while potentially also contributing to degradation and/or fragmentation of plastics independent of solar UVR. Reductions in solar UVR in many regions, consequent to the implementation of the Montreal Protocol and its Amendments for protecting stratospheric ozone, will have consequences for global UV-driven plastic degradation in a heterogeneous manner across different geographic and environmental zones. The interacting effects of global warming, stratospheric ozone and UV radiation are projected to increase UV irradiance at the surface in localized areas, mainly because of decreased cloud cover. Given the complexity and uncertainty of future environmental conditions, this currently precludes reliable quantitative predictions of plastic persistence on a global scale.
Collapse
Affiliation(s)
- A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - P W Barnes
- Biological Sciences and Environmental Program, Loyola University New Orleans, New Orleans, LA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | - T Gouin
- TG Environmental Research, Sharnbrook, Bedfordshire, UK
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | | | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - M A K Jansen
- School of BEES, Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
19
|
Bellare A, Carvalho BL. The role of lamellar morphology on the post-irradiation oxidative degradation of ultra-high molecular weight polyethylene. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Padermshoke A, Kajiwara T, An Y, Takigawa M, Van Nguyen T, Masunaga H, Kobayashi Y, Ito H, Sasaki S, Takahara A. Characterization of photo-oxidative degradation process of polyolefins containing oxo-biodegradable additives. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Enhancing the durability and performance of radiation-induced grafted low-density polyethylene-based anion-exchange membranes by controlling irradiation conditions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Ahn Y, Roma G, Colin X. Elucidating the Role of Alkoxy Radicals in Polyethylene Radio-Oxidation Kinetics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yunho Ahn
- CEA, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Guido Roma
- CEA, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, 91191 Gif sur Yvette, France
| | - Xavier Colin
- PIMM, Arts et Metiers Institute of Technology, CNRS, CNAM, HESAM University, 151 Boulevard de L’Hôpital, 75013 Paris, France
| |
Collapse
|
24
|
Lewandowska H, Sadło J. Radical Composition and Radical Reaction Kinetics in the Probe-Irradiated XLPE Samples as a Potential Source of Information on Their Aging Degree. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5723. [PMID: 36013865 PMCID: PMC9414847 DOI: 10.3390/ma15165723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene is a model polyolefin, and a widely used material for the manufacture of many products, including cable sheaths. Understanding degradation mechanisms at the atomic scale leading to oxidation during aging is crucial for many long-term applications. The concentrations of radicals derived from oxidation and chain scission during radio-oxidation, as well as their ratio, are important parameters controlling the predominance of chain scission or crosslinking of the polymer. In this work, we propose a cryogenic EPR technique for measuring oxidation- and fragmentation-derived radicals as a less-destructive method for the evaluation of cable insulation aging and performance capability. We investigate the effect of the low-dose and high-dose radiation aging on the formation of free radicals in the polymer matrix that are both unprotected and protected by antioxidants. The stability of radicals after aging is a determinant of macroscopic processes and structural changes during aging. Under the conditions of the higher dose rate, the peroxy radical buildup is lower per dose. Peroxy radical buildup is followed by decay during aging, in accordance with POOH content. Our results allow the prediction of the capability of the antioxidant to protect the XLPE material in the function of dose and time.
Collapse
|
25
|
Osório Brandão JA, Morisso FDP, Francisquetti EL, Campomanes Santana RM. Influence of the nature of pro-oxidants on the photooxidation of polyethylene blown films. Heliyon 2022; 8:e10217. [PMID: 36033264 PMCID: PMC9404358 DOI: 10.1016/j.heliyon.2022.e10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/25/2022] [Accepted: 08/03/2022] [Indexed: 10/28/2022] Open
Abstract
In an attempt to reduce the accumulation of polymeric waste in the environment, such as plastic bags, the use of pro-oxidants has been adopted in polyolefins, including polyethylene (PE), which is one of the most used polymers in film production. The incorporation of this additive to PE film aims to accelerate its oxidation in the process of abiotic degradation, generating oxygenated groups that can facilitate the biotic degradation. Commercial pro-oxidants are commonly organic salts of transition metals. However, their use can lead to a secondary problem, the inappropriate accumulation of transition metals at the site where the polymeric waste was deposited and, for this reason, it has been sought pro-oxidants metals free and that can also be biodegraded. In this context, this work aimed to evaluate the photodegradation of PE blown films obtained by extrusion using a commercial pro-oxidant, d2w™, an alternative organic pro-oxidant, benzoin, and also a standard film, without pro-oxidant. After undergoing 96 and 144 h of UV light exposure, the blown films were evaluated by dilute solution viscometry, FTIR and SEM analysis. The results showed that the pro-oxidants lead to the formation of more macromolecular fragments containing carbonyl groups than in the standard PE film. The film extruded with benzoin showed greater fragmentation, which may be associated with a greater reduction in the average viscosimetric molar mass, therefore, this additive being a promising organic substance in the induction of photooxidation, as demonstrated by the other results obtained by FTIR and SEM.
Collapse
Affiliation(s)
- João Augusto Osório Brandão
- Federal University of Rio Grande do Sul (UFRGS), Engineering School, Laboratory of Polymeric Materials (LAPOL), Bento Gonçalves Ave, 9500, 91501-970, Porto Alegre, Brazil
| | - Fernando Dal Pont Morisso
- Feevale Universtiy, Laboratory for Advanced Materials Studies, ERS-239, 2755, 93525-075, Novo Hamburgo, Brazil
| | - Edson Luiz Francisquetti
- Federal Institute of Rio Grande do Sul, Materials Department, São Vicente Ave, 785, 95174-274, Farroupilha, Brazil
| | - Ruth Marlene Campomanes Santana
- Federal University of Rio Grande do Sul (UFRGS), Engineering School, Laboratory of Polymeric Materials (LAPOL), Bento Gonçalves Ave, 9500, 91501-970, Porto Alegre, Brazil
| |
Collapse
|
26
|
Song I, Lee T, Ryu K, Kim YJ, Kim MS, Park JW, Kim JH. Effects of heat and Gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
Andrady AL. Weathering and fragmentation of plastic debris in the ocean environment. MARINE POLLUTION BULLETIN 2022; 180:113761. [PMID: 35665618 DOI: 10.1016/j.marpolbul.2022.113761] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 05/15/2023]
Abstract
Fragmentation of plastic macro-debris into secondary microplastics [MPs] is primarily the result of their extensive oxidation under exposure to solar UV radiation. The heterogeneity in the marine zones with respect to their oxidative potential for plastics, introduces a marked zonal bias in their ability to carry out weathering and fragmentation. Comparing the oxidative environments of the beach zone and the upper pelagic zone with floating plastics, it is argued that the latter tends to preclude photooxidative fragmentation. Abundant MPs found in seawater are therefore more likely to have originated on beaches or land and subsequently transferred to the water, as opposed to being generated by weathering of floating plastic stock. Laboratory-accelerated weathering of plastics in seawater obtains efficient micro-fragmentation and in some instances photo- dissolution of the plastic debris, but these results cannot be reliably extrapolated to natural weathering conditions in the ocean environment.
Collapse
Affiliation(s)
- Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606.
| |
Collapse
|
28
|
Zhang Y, Luo Y, Yu X, Huang D, Guo X, Zhu L. Aging significantly increases the interaction between polystyrene nanoplastic and minerals. WATER RESEARCH 2022; 219:118544. [PMID: 35537370 DOI: 10.1016/j.watres.2022.118544] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
With the massive use and discarding of plastic products, plastic particles, including nanoplastics (NPs), which are continuously released under the action of environmental factors, are posing greater risk to the ecosystem and human health. NPs exposed to the environment experience aging, which can significantly change their physical and chemical properties and affect their environmental behavior. Here, we examined the adsorption behavior of polystyrene nanoplastic (PSNP) aging by ultraviolet (UV) exposure on different minerals (goethite, magnetite, kaolinite and montmorillonite). Aging not only changes the surface morphology of PSNP, but also increases the surface negative charge and produces a large number of oxygen-containing functional groups (OFGs). Incubation of aged PSNP with minerals indicated that iron oxides (goethite and magnetite) showed stronger interactions with aged PSNP than pristine PSNP, and there was an interaction between clay minerals and aged PSNP. The adsorption experiments and scanning electron microscopy (SEM) suggested that the higher adsorption capacity of a mineral surface to aged PSNP may be related to electrostatic attraction and ligand exchange. The Fourier transform infrared (FTIR) spectra after adsorption showed that the adsorption affinity between the functional groups was different, and two-dimensional correlation spectroscopy (2D-COS) analysis further indicated that the mineral preferentially adsorbed the aged PSNP in accordance with the order of OFGs. The findings provide a theoretical basis for scientific evaluation of ecological risks of NPs in the environment.
Collapse
Affiliation(s)
- Yangyang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daofen Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
29
|
Zhang H, Guo Y, Tian F, Qiao Y, Tang Z, Zhu C, Xu J. Discussion of Orientation and Performance of Crosslinked Ultrahigh-Molecular-Weight Polyethylene Used for Artificial Joints. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29230-29237. [PMID: 35700194 DOI: 10.1021/acsami.2c05549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previously, the orientation structure of ultrahigh-molecular-weight polyethylene (UHMWPE) for artificial joints was considered to be unchanged after irradiation crosslinking. Therefore, much of the research related to the long-term failure of artificial joints has focused on material improvements. In this study, ultrasmall-angle X-ray scattering (USAXS) and the small/wide-angle X-ray scattering (SAXS-WAXS) combined technique reveal that the orientation structures of UHMWPE materials at all scales (nanoscale to microscale) are responsible for the long-term failure of artificial joints. To further illustrate the formation of these hierarchical oriented structures, a simple model is presented. In this model, first, the migration of free radicals plays a vital role, and the different steric hindrances in different directions directly lead to uneven migration behavior of free radicals. Second, the uneven migration of free radicals contributes to an inhomogeneous concentration of free radicals, thus resulting in observable crosslinking nonuniformities. Finally, all the hierarchical structural nonuniformities promote long-term failure of artificial joints after long-term wear.
Collapse
Affiliation(s)
- Hao Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Yuhai Guo
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Feng Tian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yongna Qiao
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Zheng Tang
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
30
|
Blivet C, Larché JF, Israëli Y, Bussière PO. Non-Arrhenius behavior: influence of antioxidants on lifetime predictions for materials used in the cable and wire industries. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Mousavi-Fakhrabadi SH, Ahmadi S, Arabi H. Mixing of hindered amine-grafted polyolefin elastomers with LDPE to enhance its long-term weathering and photo-stability. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Yadegari A, Gohs U, Khonakdar HA, Wagenknecht U. Influence of post-irradiation conditions on crosslinking and oxidation of microporous polyethylene membrane. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Andrady AL, Lavender Law K, Donohue J, Koongolla B. Accelerated degradation of low-density polyethylene in air and in sea water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151368. [PMID: 34732340 DOI: 10.1016/j.scitotenv.2021.151368] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Accelerated weathering of LDPE laminates, with samples exposed to ultraviolet radiation (UVR) in air and while floating in seawater at the same temperature, was investigated in this study. The depth profiles of the concentrations of oxidation products in the two sets of samples was assessed by FTIR (Fourier Transform Infrared Spectroscopy) and suggest the oxidation on weathering to be diffusion-controlled in both air and in seawater, localizing the reaction to a thin surface layer. While the thickness of this layer is several hundred microns in air-weathered samples it is too small to be discernible by FTIR spectroscopy in sea water-weathered samples. A naturally weathered polyethylene microplastic pellet from floating ocean debris was also similarly studied by FTIR and the depth profile compared with that from accelerated weathering of LDPE laminates. Tensile properties of the LDPE weathered in air and in sea water were also compared to better understand the impact of diffusion-controlled oxidation on their mechanical integrity. How the origin of apparent retardation of the rate of weathering degradation of LDPE in seawater relative to that in air, is related diffusion-controlled oxidation due to the low concentrations of dissolved oxygen in seawater, is also discussed.
Collapse
Affiliation(s)
- Anthony L Andrady
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States of America.
| | | | - Jessica Donohue
- Sea Education Association, Woods Hole, MA, United States of America
| | - Bimali Koongolla
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
34
|
Migration testing of metallized polypropylene films treated with ionizing radiation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
|
36
|
Al-Ghamdi H, Farah K, Almuqrin A, Hosni F. FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2021.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Jiang T, Mao Z, Qi Y, Wu Y, Zhang J. The effect of two different
UV
absorbers combined with antioxidants on
UV
resistance of
HDPE. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tiankai Jiang
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
- Jiangsu Vocational Institute of Commerce Nanjing China
| | - Zepeng Mao
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing China
| | - Yanli Qi
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing China
| | - Yuchen Wu
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
| | - Jun Zhang
- College of Materials Science and Engineering Nanjing Tech University Nanjing China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites Nanjing China
| |
Collapse
|
38
|
Binda G, Spanu D, Monticelli D, Pozzi A, Bellasi A, Bettinetti R, Carnati S, Nizzetto L. Unfolding the interaction between microplastics and (trace) elements in water: A critical review. WATER RESEARCH 2021; 204:117637. [PMID: 34536685 DOI: 10.1016/j.watres.2021.117637] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/13/2021] [Accepted: 09/02/2021] [Indexed: 05/21/2023]
Abstract
Plastic and microplastic pollution is an environmental and societal concern. The interaction of plastic with organic chemicals in the environment has attracted scientific interest. New evidences have highlighted an unexpectedly high affinity of environmental plastics also for metal ions. The degree and typology of plastic ageing (including from mechanical, UV and biological degradations) appear as a pivotal factor determining such an interaction. These earlier evidences recently opened a new research avenue in the plastic pollution area. This review is the first to organize and critically discuss knowledge developed so far. Results from field and laboratory studies of metal accumulation on plastic are presented and the environmental factors most likely to control such an interaction are discussed. On the light of this knowledge, a generalist conceptual model useful for building hypotheses on the mechanisms at stake and directing future studies was elaborated and presented here. Furthermore, all available data on the thermodynamics of the plastic-metal interaction obtained from laboratory experiments are inventoried and discussed here, highlighting methodological and technical challenges that can potentially affect cross-comparability of data and their relevance for environmental settings. Finally, insights and recommendations on experimental approaches and analytical techniques that can help overtaking current limitations and knowledge gaps are proposed.
Collapse
Affiliation(s)
- Gilberto Binda
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway.
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Damiano Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Andrea Pozzi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Arianna Bellasi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Roberta Bettinetti
- Department of Human and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Stefano Carnati
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway; RECETOX, Masarik University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
39
|
Wang T, Ma Y, Ji R. Aging Processes of Polyethylene Mulch Films and Preparation of Microplastics with Environmental Characteristics. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:736-740. [PMID: 32833072 DOI: 10.1007/s00128-020-02975-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/13/2020] [Indexed: 05/21/2023]
Abstract
In this study, we explored the aging processes of a commercial polyethylene (PE) mulch film under UV irradiation and compared the laboratory aged films with films aged in nature. Overall, the aged films obtained from laboratory conditions were similar with that from natural conditions. Among the investigated factors, UV irradiation was crucial in the aging of the films, producing cracks and oxygen-containing functional groups on the films surface, constantly with natural aging. The formation of cracks induced a decrease of mechanical strength as well as the formation of MPs on the surface. The chemical oxidations detected by Fourier-transform infrared spectroscopy (FTIR) usually happened after the observed physical changes during aging. Moreover, a protocol was developed for laboratory preparation of MPs with characteristics similar with that from environmental aging and PE MPs with sizes of 2-400 μm could be produced in large amounts at relatively short period of time.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yini Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
40
|
Chen X, Wang X, Cao C, Yuan Z, Yu D, Li F, Chen X. Elongational Flow Field Processed Ultrahigh Molecular Weight Polyethylene/Polypropylene Blends with Distinct Interlayer Phase for Enhanced Tribological Properties. Polymers (Basel) 2021; 13:1933. [PMID: 34200942 PMCID: PMC8230468 DOI: 10.3390/polym13121933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023] Open
Abstract
Herein, we produced a series of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blends by elongational-flow-field dominated eccentric rotor extruder (ERE) and shear-flow-field dominated twin screw extruder (TSE) respectively and presented a detailed comparative study on microstructures and tribological properties of UHMWPE/PP by different processing modes. Compared with the shear flow field in TSE, the elongational flow field in ERE facilitates the dispersion of PP in the UHMWPE matrix and promotes the interdiffusion of UHMWPE and PP molecular chains. For the first time, we discovered the presence of the interlayer phase in blends with different processing modes by using Raman mapping inspection. The elongational flow field introduces strong interaction to enable excellent compatibility of UHMWPE and PP and induces more pronounced interlayer phase with respect to the shear flow field, eventually endowing UHMWPE/PP with improved wear resistance. The optimized UHMWPE/PP (85/15) blend processed by ERE displayed higher tensile strength (25.3 MPa), higher elongation at break (341.77%) and lower wear loss of ERE-85/15 (1.5 mg) compared to the blend created by TSE. By systematically investigating the microstructures and mechanical properties of blends, we found that with increased content of PP, the wear mechanism of blends varies from abrasive wear, fatigue wear, to adhesion wear as the dominant mechanism for two processing modes.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (X.C.); (X.W.); (Z.Y.)
- Key Laboratory of High Performance Polymerbased Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (X.C.); (X.W.); (Z.Y.)
- Key Laboratory of High Performance Polymerbased Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Changlin Cao
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China;
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Zhongke Yuan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (X.C.); (X.W.); (Z.Y.)
- Key Laboratory of High Performance Polymerbased Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (X.C.); (X.W.); (Z.Y.)
- Key Laboratory of High Performance Polymerbased Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fei Li
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China;
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; (X.C.); (X.W.); (Z.Y.)
- Key Laboratory of High Performance Polymerbased Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
41
|
Wang Y, Wu J, Liu B, Xia Y, Lin Q. Migration of polymer additives and radiolysis products from irradiated PET/PE films into a food simulant. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Salehi A, Pircheraghi G. Thermo‐oxidative degradation during sintering of polyethylene particles. J Appl Polym Sci 2021. [DOI: 10.1002/app.50373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amirmehdi Salehi
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering Sharif University of Technology Tehran Iran
| | - Gholamreza Pircheraghi
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering Sharif University of Technology Tehran Iran
| |
Collapse
|
43
|
Influence of SBF-induced degradation on surface and tribological properties of irradiated GO/UHMWPE nanocomposites. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-020-00886-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Lu S, Wu J, Xia Y, Hu C. Effect of ionising irradiation on silver release from polyolefin/silver nanocomposite films into food simulants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:681-690. [PMID: 33625955 DOI: 10.1080/19440049.2021.1878284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two types of nanocomposite films, polyethylene/silver (PE/Ag) and polypropylene/silver (PP/Ag), were prepared and characterised. Assessment of silver released under the effect of ionising irradiation was performed on the nanocomposite films. The release experiment was carried out by immersing the nanocomposite films in water, 3% acetic acid or 95% ethanol as food simulants and measuring the Ag release from nanocomposite films treated with and without gamma or electron beam irradiation at a dose of 10 kGy. In general, irradiation treatment increased the Ag release regardless of the type of polymer and food simulant. One reason could be radiation-induced metal oxidation at the surface which in turn promoted ion release into food simulants. The oxidising radicals produced by radiation in solution could be another factor speeding up metal oxidation and subsequent ion release. When comparisons were made between the two types of irradiation, greater Ag release into water and 3% acetic acid was observed after electron beam irradiation, while gamma irradiation was likely to induce greater Ag release into 95% ethanol. Such phenomena reveal the influence of different types of radiation on the solutions which in turn affect the Ag release.
Collapse
Affiliation(s)
- Shan Lu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Food Science & Engineering, Jinan University, Guangzhou, China
| | - Jingjie Wu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yining Xia
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changying Hu
- Department of Food Science & Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Wang L, Wu WM, Bolan NS, Tsang DCW, Li Y, Qin M, Hou D. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123415. [PMID: 32763705 PMCID: PMC7345412 DOI: 10.1016/j.jhazmat.2020.123415] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 05/19/2023]
Abstract
Tiny plastic particles considered as emerging contaminants have attracted considerable interest in the last few years. Mechanical abrasion, photochemical oxidation and biological degradation of larger plastic debris result in the formation of microplastics (MPs, 1 μm to 5 mm) and nanoplastics (NPs, 1 nm to 1000 nm). Compared with MPs, the environmental fate, ecosystem toxicity and potential risks associated with NPs have so far been less explored. This review provides a state-of-the-art overview of current research on NPs with focus on currently less-investigated fields, such as the environmental fate in agroecosystems, migration in porous media, weathering, and toxic effects on plants. The co-transport of NPs with organic contaminants and heavy metals threaten human health and ecosystems. Furthermore, NPs may serve as a novel habitat for microbial colonization, and may act as carriers for pathogens (i.e., bacteria and viruses). An integrated framework is proposed to better understand the interrelationships between NPs, ecosystems and the human society. In order to fully understand the sources and sinks of NPs, more studies should focus on the total environment, including freshwater, ocean, groundwater, soil and air, and more attempts should be made to explore the aging and aggregation of NPs in environmentally relevant conditions. Considering the fact that naturally-weathered plastic debris may have distinct physicochemical characteristics, future studies should explore the environmental behavior of naturally-aged NPs rather than synthetic polystyrene nanobeads.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Muhan Qin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
46
|
Thermal initiation of the oxidation of thermoplastic polymers (Polyamides, Polyesters and UHMwPE). Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
|
48
|
Decay behavior and stability of free radicals of silk fibroin with alkali/urea pretreatment induced by electron beam irradiation. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Patel K, Chikkali SH, Sivaram S. Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101290] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Teng F, Wu X, Libera M. Chemical Orthogonality in Surface-Patterned Poly(ethylene glycol) Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10622-10627. [PMID: 32787029 DOI: 10.1021/acs.langmuir.0c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of its widely known antifouling properties, a variety of lithographic approaches has been used to pattern surfaces with poly(ethylene glycol) (PEG) to control surface interactions with biomolecules and cells over micro- and nanolength scales. Often, however, particular applications need additional functions within PEG-patterned surfaces. Monofunctional films can be generated using PEG modified to include a chemically functional group. We show that patterning with focused electron beams, in addition to cross-linking a monofunctional PEG homopolymer thin-film precursor and grafting the resulting patterned microgels to an underlying substrate, induces additional chemical functionality by radiation chemistry along the polymer main chain and that this second functionality can be orthogonal to the initial one. Specifically, we explore the reactivity of biotin-terminated PEG (PEG-B) as a function of electron dose using 2 keV electrons. At low doses (∼4-10 μC/cm2), the patterned PEG-B microgels are reactive with streptavidin (SA). As dose increases, the SA reactivity decays as biotin is damaged by the incident electrons. Independently, amine reactivity appears at higher doses (∼150-500 μC/cm2). At both extremes, the patterned PEG microgels retain their ability to resist fibronectin adsorption. We confirm that the amine reactivity derives from the PEG main chain by demonstrating similar dose response in hydroxy-terminated PEG (PEG-OH), and we attribute this behavior to the formation of ketones, aldehydes, and/or carboxylic acids during and after electron-beam (e-beam) patterning. Based on relative fluorescent intensities, we estimate that the functional contrast between the differentially patterned areas is about a factor of six or more. This approach provides the ability to easily pattern biospecific functionality while preserving the ability to resist nonspecific adsorption at length scales relevant to controlling protein and cell interactions.
Collapse
Affiliation(s)
- Feiyue Teng
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Xinpei Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|