1
|
Hanif Z, Dinh DK, Pornea AGM, Yanar N, Kwak MS, Kim J. Protruding Boron Nitride Nanotubes on the Al 2O 3 Surface Enabled by Tannic Acid-Assisted Modification to Fabricate a Thermal Conductive Epoxy/Al 2O 3 Composite. ACS OMEGA 2024; 9:38946-38956. [PMID: 39310162 PMCID: PMC11411694 DOI: 10.1021/acsomega.4c05323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Over the past few years, the ability to efficiently increase boron nitride nanotube (BNNT) production has opened up ample research possibilities. BNNT has garnered significant attention for diversifying its industrial applications. However, the problem of poor processability resulting from agglomeration and uneven distribution has emerged as a major challenge to integrating BNNT into the polymer matrix for composite material formation. Utilizing noncovalently attached molecules with various reactive sites can be a logical method to enhance the compatibility of BNNT with different polymers. The present study explored a simple approach to protruding BNNT onto the surface of Al2O3 through tannic acid (TA)-assisted generation of alkyl chains (octadecylamine, ODA) to fabricate Al2O3@ODA-BNNT. The subsequent compounding of Al2O3@ODA-BNNT with epoxy polymer generates interconnected thermal conduction pathways, thereby improving the thermal conduction and mechanical performance of the composites. The current research approach allows for the even distribution of BNNT throughout the polymer matrix, as demonstrated by optical characterization, mechanical performance analysis, and isotropic thermal conductivity analysis. The fabricated epoxy composite by incorporating a 2 wt % (BNNT = 1.3 wt % and ODA = 0.7 wt %) ODA-BNNT exhibited 5.117 W/mK thermal conductivity and 7.43 MPa mechanical stress. Thermal conductivity improved by 2528, 76.56, and 54.7%, while mechanical stress enhanced by 270, 221, and 34% compared to neat polymers without BNNT and virgin BNNT epoxy composites, respectively.
Collapse
Affiliation(s)
- Zahid Hanif
- R&D
Center, Naieel Technology, 6-2 Yuseong-daero 1205, Second FL, Daejeon 34104, Republic
of Korea
| | - Duy Khoe Dinh
- R&D
Center, Naieel Technology, 6-2 Yuseong-daero 1205, Second FL, Daejeon 34104, Republic
of Korea
| | - Arni Gesselle M. Pornea
- R&D
Center, Naieel Technology, 6-2 Yuseong-daero 1205, Second FL, Daejeon 34104, Republic
of Korea
| | - Numan Yanar
- R&D
Center, Naieel Technology, 6-2 Yuseong-daero 1205, Second FL, Daejeon 34104, Republic
of Korea
| | - Min Seok Kwak
- CMT
Co., Ltd., 322 Teheran-ro,
Hanshin Intervalley 24 Esat Bldg., Gangnam-gu, Seoul 06211, Republic of Korea
| | - Jaewoo Kim
- R&D
Center, Naieel Technology, 6-2 Yuseong-daero 1205, Second FL, Daejeon 34104, Republic
of Korea
| |
Collapse
|
2
|
Dai W, Wang Y, Li M, Chen L, Yan Q, Yu J, Jiang N, Lin CT. 2D Materials-Based Thermal Interface Materials: Structure, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311335. [PMID: 38847403 DOI: 10.1002/adma.202311335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/23/2024] [Indexed: 06/27/2024]
Abstract
The challenges associated with heat dissipation in high-power electronic devices used in communication, new energy, and aerospace equipment have spurred an urgent need for high-performance thermal interface materials (TIMs) to establish efficient heat transfer pathways from the heater (chip) to heat sinks. Recently, emerging 2D materials, such as graphene and boron nitride, renowned for their ultrahigh basal-plane thermal conductivity and the capacity to facilitate cross-scale, multi-morphic structural design, have found widespread use as thermal fillers in the production of high-performance TIMs. To deepen the understanding of 2D material-based TIMs, this review focuses primarily on graphene and boron nitride-based TIMs, exploring their structures, properties, and applications. Building on this foundation, the developmental history of these TIMs is emphasized and a detailed analysis of critical challenges and potential solutions is provided. Additionally, the preparation and application of some other novel 2D materials-based TIMs are briefly introduced, aiming to offer constructive guidance for the future development of high-performance TIMs.
Collapse
Affiliation(s)
- Wen Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yandong Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maohua Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lu Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qingwei Yan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Alfano S, Doineau E, Perdrier C, Preziosi-Belloy L, Gontard N, Martinelli A, Grousseau E, Angellier-Coussy H. Influence of the 3-Hydroxyvalerate Content on the Processability, Nucleating and Blending Ability of Poly(3-Hydroxybutyrate- co-3-hydroxyvalerate)-Based Materials. ACS OMEGA 2024; 9:29360-29371. [PMID: 39005805 PMCID: PMC11238206 DOI: 10.1021/acsomega.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 07/16/2024]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (P(3HB-co-3HV) copolymers are an attractive class of biopolymers whose properties can be tailored by changing the 3-hydroxyvalerate monomer (3HV) concentration, offering the possibility of counteracting problems related to high crystallinity, brittleness, and processability. However, there are few studies about the effects of 3HV content on the processability of copolymers. The present study aims to provide new insights into the effect of 3HV content on the processing step including common practices like compounding, addition of nucleation agents and/or amorphous polymers as plasticizers. P(3HB-co-3HV)-based films containing 3, 18, and 28 mol % 3HV were processed into films by extrusion and subsequent molding. The characterization results confirmed that increasing the 3HV content from 3 to 28 mol % resulted in a decrease in the melting point (from 175 to 100 °C) and an improvement in mechanical properties (i.e., elongation at break from 7 ± 1% to 120 ± 3%). The behavior of P(3HB-co-3HV) in the presence of additives was also investigated. It was shown that an increase in the 3HV content leads to better miscibility with amorphous polymers.
Collapse
Affiliation(s)
- Sara Alfano
- Department
of Chemistry, University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Estelle Doineau
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Coline Perdrier
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Laurence Preziosi-Belloy
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Nathalie Gontard
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Andrea Martinelli
- Department
of Chemistry, University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Estelle Grousseau
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| | - Hélène Angellier-Coussy
- JRU
IATE 1208, INRAE, Montpellier SupAgro, University
of Montpellier, CEDEX 02, 34060 Montpellier, France
| |
Collapse
|
4
|
Wadhwa G, Late DJ, Charhate S, Sankhyan SB. 1D and 2D Boron Nitride Nano Structures: A Critical Analysis for Emerging Applications in the Field of Nanocomposites. ACS OMEGA 2024; 9:26737-26761. [PMID: 38947781 PMCID: PMC11209893 DOI: 10.1021/acsomega.3c10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 07/02/2024]
Abstract
Boron nitride (BN) with its 1D and 2D nano derivatives have gained immense popularity in both the field of research and applications. These nano derivatives have proved to be one of the most promising fillers which can be incorporated in polymers to form nanocomposites with excellent properties. These materials have been around for 25 years whereas significant research has been done in this field for only the past decade. There are many interesting properties which are imparted to the nanocomposites wherein thermal stability, large energy band gap, resistance to oxidation, excellent thermal conductivity, chemical inertness, and exceptional mechanical properties are just a few worthy of mention. Hexagonal boron nitride (h-BN) was selected as the parent material by most researchers reviewed in this paper through which 2D derivative Boron nitride nanosheets (BNNS) and 1D derivative Boron nitride nanotubes (BNNTs) are synthesized. This review will focus on the in-depth properties of h-BN and further will concisely focus on BNNS and BNNTs for their various properties. A detailed discussion of the addition of BNNS and BNNTs into polymers to form nanocomposites, their synthesis, properties, and applications is followed by a summary determining the most suitable synthesizing processes and the materials, keeping in mind the current challenges.
Collapse
Affiliation(s)
- Gunchita
Kaur Wadhwa
- Centre
of Nanoscience and Nanotechnology, Amity School of Engineering and
Technology, Amity University Maharashtra, Panvel, Mumbai, Maharashtra 410206, India
| | - Dattatray J. Late
- Centre
of Nanoscience and Nanotechnology, Amity School of Engineering and
Technology, Amity University Maharashtra, Panvel, Mumbai, Maharashtra 410206, India
| | - Shrikant Charhate
- Amity
School of Engineering and Technology, Amity
University Maharashtra, Panvel, Mumbai, Maharashtra 410206, India
| | - Shashi Bhushan Sankhyan
- Centre
of Nanoscience and Nanotechnology, Amity School of Engineering and
Technology, Amity University Maharashtra, Panvel, Mumbai, Maharashtra 410206, India
| |
Collapse
|
5
|
Hu H, Zhang Y, Hu Y, Xia L, Li G. Silver nanoparticles modified sulfur-containing POSS polymer membrane substrate for adsorption and surface-enhanced Raman scattering analysis of chrysoidine in food samples. Talanta 2024; 271:125653. [PMID: 38218057 DOI: 10.1016/j.talanta.2024.125653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
In analysis of complex samples, the stability and sensitivity of surface-enhanced Raman scattering (SERS) substrates may be compromised by matrix interference. To address this issue, a membrane substrate was prepared for fast enrichment, separation, and detection of chrysoidine all-in-one. The silver nanoparticles modified sulfur-containing POSS polymer (AgNPs/POSS-P-S) SERS membrane substrate was fabricated using polyhedral oligomeric silsesquioxane (POSS) as support materials. Through in-situ growth, AgNPs were uniformly modified on POSS-P-S to ensure the stability and SERS activity of the membrane substrate. The enhancement factor of the malachite green was up to 5.3 × 105. By loading the AgNPs/POSS-P-S on membrane, on the other hand, the SERS membrane substrate can also serve as an adsorption medium for separating chrysoidine from sample matrix. Furthermore, the specific sensing mechanism of AgNPs/POSS-P-S for chrysoidine was investigated and a fast, sensitive, and selective method for its quantification was established, with a linear range of 0.010-2.0 mg/L and the limits of detection at 3.7 μg/L. In addition, the SERS method was successfully applied for the analysis of chrysoidine in beverages and chili products with the recoveries in the range of 83.5%-113.4 % and the relative standard deviations in 3.2%-9.0 %. The proposed AgNPs/POSS-P-S membrane based SRES method has great potential for rapid chrysoidine analysis in food samples.
Collapse
Affiliation(s)
- Hongzhi Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanshu Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Meng Y, Yang D, Jiang X, Bando Y, Wang X. Thermal Conductivity Enhancement of Polymeric Composites Using Hexagonal Boron Nitride: Design Strategies and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:331. [PMID: 38392704 PMCID: PMC10893155 DOI: 10.3390/nano14040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
With the integration and miniaturization of chips, there is an increasing demand for improved heat dissipation. However, the low thermal conductivity (TC) of polymers, which are commonly used in chip packaging, has seriously limited the development of chips. To address this limitation, researchers have recently shown considerable interest in incorporating high-TC fillers into polymers to fabricate thermally conductive composites. Hexagonal boron nitride (h-BN) has emerged as a promising filler candidate due to its high-TC and excellent electrical insulation. This review comprehensively outlines the design strategies for using h-BN as a high-TC filler and covers intrinsic TC and morphology effects, functionalization methods, and the construction of three-dimensional (3D) thermal conduction networks. Additionally, it introduces some experimental TC measurement techniques of composites and theoretical computational simulations for composite design. Finally, the review summarizes some effective strategies and possible challenges for the design of h-BN fillers. This review provides researchers in the field of thermally conductive polymeric composites with a comprehensive understanding of thermal conduction and constructive guidance on h-BN design.
Collapse
Affiliation(s)
- Yuhang Meng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Dehong Yang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xiangfen Jiang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yoshio Bando
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Australian Institute for Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Gadore V, Mishra SR, Singh AK, Ahmaruzzaman M. Advances in boron nitride-based nanomaterials for environmental remediation and water splitting: a review. RSC Adv 2024; 14:3447-3472. [PMID: 38259991 PMCID: PMC10801356 DOI: 10.1039/d3ra08323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Boron nitride has gained wide-spread attention globally owing to its outstanding characteristics, such as a large surface area, high thermal resistivity, great mechanical strength, low density, and corrosion resistance. This review compiles state-of-the-art synthesis techniques, including mechanical exfoliation, chemical exfoliation, chemical vapour deposition (CVD), and green synthesis for the fabrication of hexagonal boron nitride and its composites, their structural and chemical properties, and their applications in hydrogen production and environmental remediation. Additionally, the adsorptive and photocatalytic properties of boron nitride-based nanocomposites for the removal of heavy metals, dyes, and pharmaceuticals from contaminated waters are discussed. Lastly, the scope of future research, including the facile synthesis and large-scale applicability of boron nitride-based nanomaterials for wastewater treatment, is presented. This review is expected to deliver preliminary knowledge of the present state and properties of boron nitride-based nanomaterials, encouraging the future study and development of these materials for their applications in various fields.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Ashish Kumar Singh
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
8
|
Chaurasia A, Kumar K, Harsha SP, Parashar A. Covalently bonded interface in polymer/boron nitride nanosheet composite toward enhanced mechanical and thermal behaviour. Phys Chem Chem Phys 2023; 25:31396-31409. [PMID: 37962035 DOI: 10.1039/d3cp04497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
This experimental study aimed to enhance the mechanical and thermal properties of BN (hexagonal boron nitride) nanosheet-reinforced high-density polyethylene by functionalizing its interface. The challenges associated with this nanocomposites are its poor dispersion and weak interface. Accordingly, to improve the load transfer at the interface, BN nanosheets were chemically modified with silane functional groups ((3-aminopropyl)tri-ethoxy silane), making it possible to form covalent bonds between the maleic anhydride-grafted polyethylene and nanosheet. Consequently, three different types of nanocomposite samples were fabricated based on the covalently bonded or non-bonded interface. Two nanocomposite configurations featured a non-bonded interface between the nanofiller and PE matrix (p-BN/PE and (silane functionalized) s-BN/PE). In contrast, the third configuration had a covalently bonded interface (silane-functionalized h-BN + maleic anhydride-grafted PE, i.e., PE-g-BN). According to the zeta potential analysis, the silane-functionalized BN nanosheets were stable suspensions and uniformly dispersed in the polymer matrix. The tensile and flexure strength of the nanocomposites showed over 100% improvement due to the covalently bonded interface. The lamellae structure of PE in the bonded interface samples was responsible for achieving higher mechanical strength in the nanocomposites. Furthermore, the thermal conductivity of the nanocomposites was significantly affected by the type of interfacial bonding, BN wt%, and operating temperature.
Collapse
Affiliation(s)
- Ankur Chaurasia
- Mechanical Engineering Department, School of Technology Pandit Deendayal Energy University, 382007, India.
| | - Kaushlendra Kumar
- Department of Mechanical & Industrial Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| | - S P Harsha
- Department of Mechanical & Industrial Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| | - Avinash Parashar
- Department of Mechanical & Industrial Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| |
Collapse
|
9
|
Martínez-Jiménez C, Chow A, Smith McWilliams AD, Martí AA. Hexagonal boron nitride exfoliation and dispersion. NANOSCALE 2023; 15:16836-16873. [PMID: 37850487 DOI: 10.1039/d3nr03941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Research on hexagonal boron nitride (hBN) 2-dimensional nanostructures has gained traction due to their unique chemical, thermal, and electronic properties. However, to make use of these exceptional properties and fabricate macroscopic materials, hBN often needs to be exfoliated and dispersed in a solvent. In this review, we provide an overview of the many different methods that have been used for dispersing hBN. The approaches that will be covered in this review include solvents, covalent functionalization, acids and bases, surfactants and polymers, biomolecules, intercalating agents, and thermal expansion. The properties of the exfoliated sheets obtained and the dispersions are discussed, and an overview of the work in the field throughout the years is provided.
Collapse
Affiliation(s)
| | - Alina Chow
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | | | - Angel A Martí
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
10
|
Jurczyková T, Šárovec O, Kačík F, Hájková K, Jurczyk T, Hrčka R. Chromophores' Contribution to Color Changes of Thermally Modified Tropical Wood Species. Polymers (Basel) 2023; 15:4000. [PMID: 37836049 PMCID: PMC10574906 DOI: 10.3390/polym15194000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
This work examines the effect of thermal modification temperature (180, 200, and 220 °C) in comparison with reference (untreated) samples on selected optical properties of six tropical wood species-Sp. cedar (Cedrala odorata), iroko (Chlorophora excelsa), merbau (Intsia spp.), meranti (Shorea spp.), padouk (Pterocarpus soyauxii), and teak (Tectona grandis). The main goal is to expand the existing knowledge in the field of wood thermal modification by understanding the related degradation mechanisms associated with the formation of chromophoric structures and, above all, to focus on the change in the content of extractive substances. For solid wood, the CIELAB color space parameters (L*, a*, b*, and ΔE*), yellowness (Y), ISO brightness, and UV-Vis diffuse reflectance spectra were obtained. Subsequently, these wood samples were extracted into three individual solvents (acetone, ethanol, and ethanol-toluene). The yields of the extracted compounds, their absorption spectra, and again L*, a*, b*, ΔE*, and Yi parameters were determined. With increasing temperatures, the samples lose brightness and darken, while their total color difference grows (except merbau). The highest yield of extractives (mainly phenolic compounds, glycosides, and dyes) from thermally modified samples was usually obtained using ethanol. New types of extractives (e.g., 2-furaldehyde, lactones, formic acid, some monomer derivatives of phenols, etc.) are already created around a temperature of 180 °C and may undergo condensation reactions at higher temperatures. For padouk, merbau, teak, and partially iroko modified at temperatures of 200 and 220 °C, there was a detected similarity in the intensities of their UV-Vis DR spectra at the wavelength regions corresponding to phenolic aldehydes, unsaturated ketones, quinones, stilbenes, and other conjugated carbonyl structures. Overall, a statistical assessment using PCA sorted the samples into five clusters. Cluster 3 consists of almost all samples modified at 200 and 220 °C, and in the other four, the reference and thermally modified samples at 180 °C were distributed. The yellowness of wood (Y) has a very high dependence (r = 0.972) on its brightness (L*) and the yellowness index of the extractives in acetone Yi(Ac), whose relationship was described by the equation Y = -0.0951 × Y(Ac) + 23.3485.
Collapse
Affiliation(s)
- Tereza Jurczyková
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Science Prague, Kamýcká 129, 165 21 Prague, Czech Republic; (O.Š.); (K.H.)
| | - Ondřej Šárovec
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Science Prague, Kamýcká 129, 165 21 Prague, Czech Republic; (O.Š.); (K.H.)
| | - František Kačík
- Department of Chemistry and Chemical Technology, Faculty of Wood Sciences and Technology, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovakia;
| | - Kateřina Hájková
- Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Science Prague, Kamýcká 129, 165 21 Prague, Czech Republic; (O.Š.); (K.H.)
| | - Tomáš Jurczyk
- TIBCO Software s.r.o., Klimentská 1216/46, 110 00 Prague, Czech Republic;
| | - Richard Hrčka
- Department of Wood Science, Faculty of Wood Sciences and Technology, Technical University in Zvolen, T. G. Masaryka 24, 960 01 Zvolen, Slovakia;
| |
Collapse
|
11
|
Zhang L, Zhang X, Wang R, Zhang Y, Wu J, Zhou Z, Yin P. Research Progress in Boron-Modified Phenolic Resin and Its Composites. Polymers (Basel) 2023; 15:3543. [PMID: 37688169 PMCID: PMC10490055 DOI: 10.3390/polym15173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
As one of the most successful modified phenolic resins, boron-modified phenolic resin (BPF) has excellent heat resistance and ablative resistance, good mechanical and wear resistance, and flame retardancy. BPF and its composites can be widely used in areas such as aerospace, weapons and equipment, automobile brakes, and fire retardants. In this review, the current state of development of BPF and its composites is presented and discussed. After introducing various methods to synthesize BPF, functionalization of BPF is briefly summarized. Particular emphasis is placed on general methods used to fabricate BPF-based composites and the heat resistance, ablative resistance, mechanical property, wear resistance, flame retardancy, and water resistance of BPF-based composites. Finally, the challenges of this research area are summarized and its future outlook is prospected.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China; (L.Z.); (X.Z.); (R.W.); (Y.Z.); (P.Y.)
| | - Xueshu Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China; (L.Z.); (X.Z.); (R.W.); (Y.Z.); (P.Y.)
| | - Ruidong Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China; (L.Z.); (X.Z.); (R.W.); (Y.Z.); (P.Y.)
| | - Yifei Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China; (L.Z.); (X.Z.); (R.W.); (Y.Z.); (P.Y.)
| | - Juntao Wu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China; (L.Z.); (X.Z.); (R.W.); (Y.Z.); (P.Y.)
| | - Zhimao Zhou
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Penggang Yin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China; (L.Z.); (X.Z.); (R.W.); (Y.Z.); (P.Y.)
| |
Collapse
|
12
|
Zhong F, Lu M, Chen C, Liu L, Yang X. Phytic acid cross-linked copper ions anchored to BN surface to enhance the fire performance of waterborne epoxy intumescent coatings. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
13
|
Li Z, Zhang X, Li J, Ran Z, Lira SIM, Wang D. Hierarchical engineering of boron nitride nanosheets to reveal ignition mode of action of epoxy. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Zhi Li
- China‐Spain Collaborative Research Center for Advanced Materials (CSCRC), School of Materials Science and Engineering, Chongqing Jiaotong University Chongqing China
- IMDEA Materials Institute Madrid Spain
- Universidad Politécnica de Madrid Madrid Spain
| | - Xiao‐Die Zhang
- China‐Spain Collaborative Research Center for Advanced Materials (CSCRC), School of Materials Science and Engineering, Chongqing Jiaotong University Chongqing China
| | - Jifeng Li
- IMDEA Materials Institute Madrid Spain
| | - Zi‐Mou Ran
- China‐Spain Collaborative Research Center for Advanced Materials (CSCRC), School of Materials Science and Engineering, Chongqing Jiaotong University Chongqing China
| | | | - De‐Yi Wang
- IMDEA Materials Institute Madrid Spain
- Universidad Francisco de Vitoria Pozuelo de Alarcón Madrid Spain
| |
Collapse
|
14
|
Hanif Z, Choi KI, Jung JH, Pornea AGM, Park E, Cha J, Kim HR, Choi JH, Kim J. Dispersion Enhancement of Boron Nitride Nanotubes in a Wide Range of Solvents Using Plant Polyphenol-Based Surface Modification. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zahid Hanif
- R&D Center, Naieel Technology, 6-2 Yuseong-daero 1205, 2nd FL, Daejeon 34104, Republic of Korea
| | - Ki-In Choi
- R&D Center, Naieel Technology, 6-2 Yuseong-daero 1205, 2nd FL, Daejeon 34104, Republic of Korea
| | - Jung-Hwan Jung
- R&D Center, Naieel Technology, 6-2 Yuseong-daero 1205, 2nd FL, Daejeon 34104, Republic of Korea
| | - Arni Gesselle M. Pornea
- R&D Center, Naieel Technology, 6-2 Yuseong-daero 1205, 2nd FL, Daejeon 34104, Republic of Korea
| | - Eunkwang Park
- R&D Center, Naieel Technology, 6-2 Yuseong-daero 1205, 2nd FL, Daejeon 34104, Republic of Korea
| | - Jungho Cha
- R&D Center, Naieel Technology, 6-2 Yuseong-daero 1205, 2nd FL, Daejeon 34104, Republic of Korea
| | - Hyun-Rae Kim
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae-Hak Choi
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jaewoo Kim
- R&D Center, Naieel Technology, 6-2 Yuseong-daero 1205, 2nd FL, Daejeon 34104, Republic of Korea
| |
Collapse
|
15
|
Thomas T, Agarwal A. Corrosion Behavior of 1D and 2D Polymorphs of Boron Nitride Ceramic. ACS OMEGA 2023; 8:3184-3189. [PMID: 36713692 PMCID: PMC9878641 DOI: 10.1021/acsomega.2c06477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
This study reports a fundamental electrochemical study to understand the corrosion behavior of 1D bulk, free-standing 1D boron nanotube (BNNT) buckypaper and compare it with a sintered 2D hBN nanoplatelet (BNNP) pellet. Tafel analysis indicates that 1D BNNT has superior corrosion resistance with a lower corrosion rate of 0.0026 mils per year (mpy). 2D BNNP, although having similar chemistry to 1D BNNT, resulted in an increased (40 times) corrosion rate of 0.107 mpy. The higher surface area and aspect ratio of BNNT drastically influenced the corrosion kinetics. The scientific outcomes will enable the better design of novel hBN-based corrosion-resistant materials.
Collapse
|
16
|
Feng Z, Liu X, Liu J, Chen X, Chen B, Liang L. Liquid crystal epoxy composites based on functionalized boron nitride: Synthesis and thermal properties. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Zhiqiang Feng
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou People's Republic of China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou People's Republic of China
- University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Xiaohong Liu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou People's Republic of China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou People's Republic of China
- University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Jiaming Liu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou People's Republic of China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou People's Republic of China
- University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Xi Chen
- China National Chemistry Southern Construction & Investment Co., Ltd Guangzhou People's Republic of China
| | - Bifang Chen
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou People's Republic of China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou People's Republic of China
- University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Liyan Liang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou People's Republic of China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou People's Republic of China
- University of Chinese Academy of Sciences Beijing People's Republic of China
- CASH GCC Shaoguan Research Institute of Advanced Materials Nanxiong People's Republic of China
| |
Collapse
|
17
|
Jiao L, Zhao X, Guo Z, Chen Y, Wu Z, Yang Y, Wang M, Ge X, Lin M. Effect of γ irradiation on the properties of functionalized carbon-doped boron nitride reinforced epoxy resin composite. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
High barrier and durable self-healing composite coating: Boron nitride combined with cyclodextrin for enhancing the corrosion protection properties of waterborne epoxy coating. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Construction of Photoinitiator Functionalized Spherical Nanoparticles Enabling Favorable Photoinitiating Activity and Migration Resistance for 3D Printing. Polymers (Basel) 2022; 14:polym14214551. [DOI: 10.3390/polym14214551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
A straight-forward method was exploited to construct a multifunctional hybrid photoinitiator by supporting 2-hydroxy-2-methylpropiophenone (HMPP) onto a nano-silica surface through a chemical reaction between silica and HMPP by using (3-isocyanatopropyl)-triethoxysilane (IPTS) as a bridge, and this was noted as silica-s-HMPP. The novel hybrid-photoinitiator can not only initiate the photopolymerization but also prominently improve the dispersion of nanoparticles in the polyurethane acrylate matrix and enhance the filler-elastomer interfacial interaction, which results in excellent mechanical properties of UV-cured nanocomposites. Furthermore, the amount of extractable residual photoinitiators in the UV-cured system of silica-s-HPMM shows a significant decrease compared with the original HPMM system. Since endowing the silica nanoparticle with photo-initiated performance and fairly lower mobility, it may lead to a reduction in environmental contamination compared to traditional photoinitators. In addition, the hybrid-photoinitiator gives rise to an accurate resolution object with a complex construction and favorable surface morphology, indicating that multifunctional nanosilica particles can be applied in stereolithographic 3D printing.
Collapse
|
20
|
Gao K, Huang Y, Han Y, Gao Y, Dong C, Liu J, Li F, Zhang L. Designing Heterogeneous Surfaces of Two-Dimensional Nanosheets to Maximize Mechanical Reinforcing of Polymer Nanocomposites via Molecular Dynamics Simulation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ke Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Yongdi Huang
- Department of Mathematics and Computer Science, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Yue Han
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Caibo Dong
- Institute of Automation, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Fanzhu Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100013, People’s Republic of China
| |
Collapse
|
21
|
Wu X, Yu H, Wang L, Meng X, Keshta BE. A Thermal Conductive Epoxy Composite based on Spherical MgO Particles and Boron Nitride Sheets. J MACROMOL SCI B 2022. [DOI: 10.1080/00222348.2022.2085486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xudong Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Xingguang Meng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Basem E. Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P.R. China
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
He G, Lin Z, Yin X, Feng Y. High orientation structure in
UHMWPE
/
BN
composites continuously obtained by elongational flow field leading to superior thermal conductivity. J Appl Polym Sci 2022. [DOI: 10.1002/app.52640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guangjian He
- Key Laboratory of Polymer Processing Engineering of Ministry of Education South China University of Technology Guangzhou Guangdong China
| | - Zhihao Lin
- Key Laboratory of Polymer Processing Engineering of Ministry of Education South China University of Technology Guangzhou Guangdong China
| | - Xiaochun Yin
- Key Laboratory of Polymer Processing Engineering of Ministry of Education South China University of Technology Guangzhou Guangdong China
| | - Yanhong Feng
- Key Laboratory of Polymer Processing Engineering of Ministry of Education South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
23
|
Wang C, Shen J, Hao Z, Luo Z, Shen Z, Li X, Yang L, Zhou Q. Flexible silicone rubber/carbon fiber/nano-diamond composites with enhanced thermal conductivity via reducing the interface thermal resistance. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Insulating materials with heat dissipation are urgently required for modern electronic devices and systems. In this study, 4,4-methylene diphenyl diisocyanate was used as the coupling agent, and nano-diamond (ND) particles were grafted onto the surface of carbon fibers (CFs) to prepare CF-ND/silicone rubber (SR) composites. The ND acted as a “bridge” among CFs, which can reduce the interface thermal resistance between CFs because the dot-like ND can increase the interfacial area of CFs, making it easier to form heat-conducting networks between SR. When the content of CF-ND (1:6) was 20%, the thermal conductivity of the SR composite was 0.305 W/(m·K), 69% higher than that of pure SR. The ND between CFs can improve the dynamic mechanical properties by acting as a crack pinhole. In addition, the CF-ND/SR composites also exhibited excellent thermal stability. This work has enormous potential for advanced electronic devices.
Collapse
Affiliation(s)
- Chaoyu Wang
- College of Materials and Metallurgy , Guizhou University , Guiyang 550025 , China
| | - Junqi Shen
- College of Materials and Metallurgy , Guizhou University , Guiyang 550025 , China
| | - Zhi Hao
- College of Materials and Metallurgy , Guizhou University , Guiyang 550025 , China
| | - Zhu Luo
- College of Materials and Metallurgy , Guizhou University , Guiyang 550025 , China
| | - Zong Shen
- College of Materials and Metallurgy , Guizhou University , Guiyang 550025 , China
| | - Xiaolong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology , Wuhan 430074 , China
| | - Le Yang
- School of Materials and Energy Engineering, Guizhou Institute of Technology , Guiyang 550025 , China
| | - Qin Zhou
- College of Materials and Metallurgy , Guizhou University , Guiyang 550025 , China
| |
Collapse
|
24
|
The Establishment of Thermal Conductivity Model for Linear Low-Density Polyethylene/Alumina Composites Considering the Interface Thermal Resistance. Polymers (Basel) 2022; 14:polym14051040. [PMID: 35267863 PMCID: PMC8914664 DOI: 10.3390/polym14051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/10/2022] Open
Abstract
An optimized thermal conductivity model of spherical particle-filled polymer composites considering the influence of interface layer was established based on the classic series and parallel models. ANSYS software was used to simulate the thermal transfer process. Meanwhile, linear low-density polyethylene/alumina (LLDPE/Al2O3) composites with different volume fractions and Al2O3 particle sizes were prepared with the continuous mixer, and the effects of Al2O3 particle size and volume fraction on the thermal conductivity of the composites were discussed. Finally, the test result of the thermal conductivity was analyzed and compared with ANSYS simulations and the model prediction. The results proved that the thermal conductivity model considering the influence of the interface layer could predict the thermal conductivity of LLDPE/Al2O3 composites more precisely.
Collapse
|
25
|
Li J, Liu X, Feng Y, Yin J. Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101505] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Guo Y, Xu G, Xu Z, Guo Y. Developing visible light responsive BN/NTCDA heterojunctions with a good degradation performance for tetracycline. NEW J CHEM 2022. [DOI: 10.1039/d2nj04395e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this paper, a series of BN/NTCDA photocatalysts have been prepared using a simple calcination method and their photocatalytic performance under visible light irradiation is studied with tetracycline (TC) as the target pollutant.
Collapse
Affiliation(s)
- Yong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, P. R. China
| | - Guowei Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, P. R. China
| | - Zixuan Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, P. R. China
| | - Ying Guo
- Key Laboratory of Environmental Engineering of Jiangsu Province, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| |
Collapse
|
27
|
Li X, Weng L, Wang H, Wang X. Nanoarchitectonics of BN/AgNWs/Epoxy Composites with High Thermal Conductivity and Electrical Insulation. Polymers (Basel) 2021; 13:polym13244417. [PMID: 34960967 PMCID: PMC8705885 DOI: 10.3390/polym13244417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
To promote the construction of the thermal network in the epoxy resin (EP), a certain proportion of silver nanowires (AgNWs) coupled with the hexagonal boron nitride (BN) nanoplates were chosen as fillers to improve the thermal conductivity of EP resin. Before preparing the composites, BN was treated by silane coupling agent 3-aminopropyltriethoxysilane (KH550), and AgNWs was coated by dopamine hydrochloride. The BN/AgNWs/EP composites were prepared after curing, and the thermal conductivity and dielectric properties of the composites was tested. Results showed that the AgNWs and BN were uniformly dispersed in epoxy resin. It synergistically built a thermal network and greatly increased the thermal conductivity of the composites, which increased 9% after adding AgNWs. Moreover, the electrical property test showed that the addition of AgNWs had little effect on the dielectric constant and dielectric loss of the composites, indicating a rather good electrical insulation of the composites.
Collapse
Affiliation(s)
- Xue Li
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China; (X.L.); (H.W.); (X.W.)
| | - Ling Weng
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China; (X.L.); (H.W.); (X.W.)
- Key Laboratory of Engineering Dielectric and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040, China
- Correspondence: ; Tel./Fax: +86-451-8639-2501
| | - Hebing Wang
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China; (X.L.); (H.W.); (X.W.)
| | - Xiaoming Wang
- College of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China; (X.L.); (H.W.); (X.W.)
| |
Collapse
|
28
|
Wang S, He H, Huang B. Preparation of high‐efficient ethylene‐vinyl acetate‐based thermal management materials by reducing interfacial thermal resistance with the assistance of polydopamine. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shuzhan Wang
- School of Materials Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Hui He
- School of Materials Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Bai Huang
- School of Materials Science and Engineering South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
29
|
Bao D, Xu F, Cui Y, Yuan S, Zhang X, Zhu Y, Gao Y, Wang H. High‐thermal conductivities of epoxy composites via p‐phenylenediamine interfacial modification and process intensification. J Appl Polym Sci 2021. [DOI: 10.1002/app.51218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Di Bao
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing China
| | - Fei Xu
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering Tianjin University Tianjin China
| | - Yexiang Cui
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering Tianjin University Tianjin China
| | - Sicheng Yuan
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering Tianjin University Tianjin China
| | - Xiguang Zhang
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering Tianjin University Tianjin China
| | - Yanji Zhu
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing China
- Tianjin Key Lab Composite & Functional Materials, School of Materials Science and Engineering Tianjin University Tianjin China
| | - Yueyang Gao
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering Tianjin University Tianjin China
| | - Huaiyuan Wang
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing China
- School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering Tianjin University Tianjin China
| |
Collapse
|
30
|
Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S, Saju SK, Tran MK, Sassi LM, Saadi MASR, Lai J, Sahin O, Sajadi SM, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X, Adumbumkulath A, Miller KA, Gayle JM, Ajnsztajn A, Prasankumar T, Harikrishnan VVJ, Ojha V, Kannan H, Khater AZ, Zhu Z, Iyengar SA, Autreto PADS, Oliveira EF, Gao G, Birdwell AG, Neupane MR, Ivanov TG, Taha-Tijerina J, Yadav RM, Arepalli S, Vajtai R, Ajayan PM. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101589. [PMID: 34561916 DOI: 10.1002/adma.202101589] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Indexed: 05/09/2023]
Abstract
Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ashokkumar Meiyazhagan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ganguli Babu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sandhya Susarla
- Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Sreehari K Saju
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Mai Kim Tran
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Lucas M Sassi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jiawei Lai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Onur Sahin
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Seyed Mohammad Sajadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Bhuvaneswari Dharmarajan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Devashish Salpekar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Nithya Chakingal
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Abhijit Baburaj
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xinting Shuai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Aparna Adumbumkulath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jessica M Gayle
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Alec Ajnsztajn
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Thibeorchews Prasankumar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | | | - Ved Ojha
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Harikishan Kannan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ali Zein Khater
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Zhenwei Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sathvik Ajay Iyengar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pedro Alves da Silva Autreto
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001-Bangú, Santo André - SP, Santo André, 09210-580, Brazil
| | - Eliezer Fernando Oliveira
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Applied Physics Department, State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
- Center for Computational Engineering and Sciences (CCES), State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - A Glen Birdwell
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Mahesh R Neupane
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Tony G Ivanov
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Jaime Taha-Tijerina
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Engineering Department, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza Garcí, Monterrey, Nuevo Leon, 66238, Mexico
- Department of Manufacturing and Industrial Engineering, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Ram Manohar Yadav
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Physics, VSSD College, Kanpur, Uttar Pradesh, 208002, India
| | - Sivaram Arepalli
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| |
Collapse
|
31
|
Gautam C, Chelliah S. Methods of hexagonal boron nitride exfoliation and its functionalization: covalent and non-covalent approaches. RSC Adv 2021; 11:31284-31327. [PMID: 35496870 PMCID: PMC9041435 DOI: 10.1039/d1ra05727h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 12/31/2022] Open
Abstract
The exfoliation of two-dimensional (2D) hexagonal boron nitride nanosheets (h-BNNSs) from bulk hexagonal boron nitride (h-BN) materials has received intense interest owing to their fascinating physical, chemical, and biological properties. Numerous exfoliation techniques offer scalable approaches for harvesting single-layer or few-layer h-BNNSs. Their structure is very comparable to graphite, and they have numerous significant applications owing to their superb thermal, electrical, optical, and mechanical performance. Exfoliation from bulk stacked h-BN is the most cost-effective way to obtain large quantities of few layer h-BN. Herein, numerous methods have been discussed to achieve the exfoliation of h-BN, each with advantages and disadvantages. Herein, we describe the existing exfoliation methods used to fabricate single-layer materials. Besides exfoliation methods, various functionalization methods, such as covalent, non-covalent, and Lewis acid-base approaches, including physical and chemical methods, are extensively described for the preparation of several h-BNNS derivatives. Moreover, the unique and potent characteristics of functionalized h-BNNSs, like enhanced solubility in water, improved thermal conductivity, stability, and excellent biocompatibility, lead to certain extensive applications in the areas of biomedical science, electronics, novel polymeric composites, and UV photodetectors, and these are also highlighted.
Collapse
Affiliation(s)
- Chandkiram Gautam
- Advanced Glass and Glass Ceramics Research Laboratory, Department of Physics, University of Lucknow Lucknow 226007 Uttar Pradesh India
| | - Selvam Chelliah
- Department of Pharmaceutical Sciences, Texas Southern University Houston USA
| |
Collapse
|
32
|
Kim KM, Kim H, Kim HJ. Enhancing Thermo-Mechanical Properties of Epoxy Composites Using Fumed Silica with Different Surface Treatment. Polymers (Basel) 2021; 13:polym13162691. [PMID: 34451231 PMCID: PMC8400810 DOI: 10.3390/polym13162691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
The objectives of this study are to improve the thermal and mechanical properties of epoxy/fumed silica composite with different surface treatments of fumed silica. The addition of silica nanoparticles improved the thermal stability of the composite and slowed down the pyrolysis process. The crosslinking density and Tg of the epoxy/fumed silica composites increased because of the interfacial interaction between the PDMS-treated fumed silica particles and the epoxy matrix. The flexural strength of the epoxy nanocomposite was very high even at a low silica content because of the strong interactions between the PDMS-treated fillers and the epoxy matrix. These strong interfacial interactions originate from the attractive forces between the polymer and the filler. Therefore, the polymer nanocomposite containing the PDMS-treated fumed silica is shown to be sufficiently commercially promising.
Collapse
Affiliation(s)
- Kyung-Min Kim
- Laboratory of Adhesion & Bio-Composites, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;
| | - Hoon Kim
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Hyun-Joong Kim
- Laboratory of Adhesion & Bio-Composites, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Korea;
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
- Correspondence: ; Tel.: +82-28804784; Fax: +82-28732318
| |
Collapse
|
33
|
Zhang J, Wang D, Wang L, Zuo W, Ma X, Du S, Zhou L. Thermomechanical properties of silica–epoxy nanocomposite modified by hyperbranched polyester: A molecular dynamics simulation. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211032383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this article, pure epoxy resin and silica–epoxy nanocomposite models were established to investigate the effects of hyperbranched polyester on microstructure and thermomechanical properties of epoxy resin through molecular dynamics simulation. Results revealed that the composite of silica can improve the thermomechanical properties of nanocomposites, including the glass transition temperature, thermal conductivity, and elastic modulus. Moreover, the thermomechanical properties were further enhanced through chemical modification on the silica surface, where the effectiveness was the best through grafting hyperbranched polyester on the silica surface. Compared with pure epoxy resin, the glass transition temperature of silica–epoxy composite modified by silica grafted with hyperbranched polyester increased by 38 K. The thermal conductivity increased with the increase of temperature and thermal conductivity at room temperature increased to 0.4171 W/(m·K)−1 with an increase ratio of 94.3%. Young’s modulus, volume modulus, and shear modulus all fluctuated as temperature rise with a down overall trend. They increased by 44.68%, 29.52%, and 36.65%, respectively, when compared with pure epoxy resin. At the same time, the thermomechanical properties were closely related to the microstructure such as fractional free volume (FFV), mean square displacement (MSD), and binding energy. Silica surface modification by grafting hyperbranched polyester reduced the FFV value and MSD value most and strengthened the combination of silica and epoxy resin matrix the best, resulting in the best thermomechanical properties.
Collapse
Affiliation(s)
- Jianwen Zhang
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China
| | - Dongwei Wang
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China
| | - Lujia Wang
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China
- State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau, China
| | - Wanwan Zuo
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China
| | - Xiaohua Ma
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shuai Du
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, China
| | - Lijun Zhou
- School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
34
|
Yang Z, Xiao G, Chen C, Chen C, Wang M, Zhong F, Zeng S, Lin L. Synergistic decoration of organic titanium and polydopamine on boron nitride to enhance fire resistance of intumescent waterborne epoxy coating. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Wang S, Xue H, Araby S, Demiral M, Han S, Cui C, Zhang R, Meng Q. Thermal conductivity and mechanical performance of hexagonal boron nitride nanosheets-based epoxy adhesives. NANOTECHNOLOGY 2021; 32:355707. [PMID: 34030143 DOI: 10.1088/1361-6528/ac0470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Thermosets possess diverse physical and chemical properties and thus they are widely used in various applications such as electronic packaging, construction, and automotive industries. However, their poor thermal conductivity and weak mechanical performance jeopardize their continual spread in modern industry. In this study, boron nitride nanosheets (BNNSs) were employed to promote both mechanical and thermal properties of epoxy nanocomposites. BNNSs and their epoxy nanocomposites were fabricated usingin situsolvent ultrasonication andin situpolymerization, respectively. Thermal conductivity was enhanced by 153% increment in epoxy/BNNS nanocomposite at 7 wt% in comparison with neat epoxy. In parallel, Young's modulus, lap shear strength, fracture toughness (K1C) and energy release rate (G1C) increased by 69%, 31%, 122% and 118%, respectively at 1 wt% BNNSs. Moreover, fatigue life and strength of lap shear joints were significantly improved upon adding BNNSs. A numerical model of the single lap shear joint was developed to validate the accuracy of the material constants obtained. Epoxy/BNNS nanocomposites exhibited an outstanding mechanical performance as well as high thermal conductivity giving them merits to widen their applications in electronic and automotive industry.
Collapse
Affiliation(s)
- Shuo Wang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Hongqian Xue
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Sherif Araby
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Murat Demiral
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Sensen Han
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Can Cui
- Shenyang Aircraft Design Institute, Shenyang, People's Republic of China
| | - Rui Zhang
- Shenyang Aircraft Design Institute, Shenyang, People's Republic of China
| | - Qingshi Meng
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
- Shenyang Aircraft Design Institute, Shenyang, People's Republic of China
| |
Collapse
|
36
|
Mirizzi L, Carnevale M, D’Arienzo M, Milanese C, Di Credico B, Mostoni S, Scotti R. Tailoring the Thermal Conductivity of Rubber Nanocomposites by Inorganic Systems: Opportunities and Challenges for Their Application in Tires Formulation. Molecules 2021; 26:molecules26123555. [PMID: 34200899 PMCID: PMC8230438 DOI: 10.3390/molecules26123555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Abstract
The development of effective thermally conductive rubber nanocomposites for heat management represents a tricky point for several modern technologies, ranging from electronic devices to the tire industry. Since rubber materials generally exhibit poor thermal transfer, the addition of high loadings of different carbon-based or inorganic thermally conductive fillers is mandatory to achieve satisfactory heat dissipation performance. However, this dramatically alters the mechanical behavior of the final materials, representing a real limitation to their application. Moreover, upon fillers’ incorporation into the polymer matrix, interfacial thermal resistance arises due to differences between the phonon spectra and scattering at the hybrid interface between the phases. Thus, a suitable filler functionalization is required to avoid discontinuities in the thermal transfer. In this challenging scenario, the present review aims at summarizing the most recent efforts to improve the thermal conductivity of rubber nanocomposites by exploiting, in particular, inorganic and hybrid filler systems, focusing on those that may guarantee a viable transfer of lab-scale formulations to technological applicable solutions. The intrinsic relationship among the filler’s loading, structure, morphology, and interfacial features and the heat transfer in the rubber matrix will be explored in depth, with the ambition of providing some methodological tools for a more profitable design of thermally conductive rubber nanocomposites, especially those for the formulation of tires.
Collapse
Affiliation(s)
- Lorenzo Mirizzi
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| | - Mattia Carnevale
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| | - Massimiliano D’Arienzo
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
- Correspondence: ; Tel.: +39-026-448-5023
| | - Chiara Milanese
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Barbara Di Credico
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| | - Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| |
Collapse
|
37
|
Jouyandeh M, Vahabi H, Saeb MR, Serre C. Amine‐functionalized
metal–organic
frameworks/epoxy nanocomposites:
Structure‐properties
relationships. J Appl Polym Sci 2021. [DOI: 10.1002/app.51005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maryam Jouyandeh
- Université de Lorraine, CentraleSupélec, LMOPS, F‐57000, Metz, France
| | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F‐57000, Metz, France
| | | | - Christian Serre
- Institut des Matériaux Poreux de Paris Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University Paris France
| |
Collapse
|
38
|
Dai C, Chen X, Wang Q, Awais M, Zhu G, Shi Y, Paramane A, Tanaka Y. Electrical and thermal performances of epoxy-based micro-nano hybrid composites at different electric fields and temperatures. NANOTECHNOLOGY 2021; 32:315715. [PMID: 33853051 DOI: 10.1088/1361-6528/abf7ec] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
This paper investigates the electrical and thermal properties of pure epoxy resin (EP) and its micro-nano hybrid composites (20 wt% micro-AlN fillers with 1 wt% and 3 wt% nano-Al2O3fillers; 50% micro-AlN with 3% nano-Al2O3fillers) for power electronic packaging applications. Electrical properties such as space charge distribution, electrical conductivity and surface potential decay are measured. The thermal performance of the fabricated samples is estimated using thermal analysis devices. The hybrid composite consisting of 20 wt% micro-AlN and 1 wt% nano-Al2O3fillers exhibits the least space charge accumulation, higher thermal conductivity and better thermal stability. However, the excessive addition adversely affects space charge and electrical conductivity properties. The micro-nano hybrid composites significantly exhibit higher electrical conductivity than pure EP. The microfiller addition from 20 wt% to 50 wt% significantly improves the thermal conductivity of the EP. The reduced space charge injection and accumulation in the hybrid micro-nano composites are attributed to the enhancement of the injection barrier and reduction of the charge carrier traps in these materials. A theoretical mechanism of the charge dynamics inside the samples under different test conditions is proposed to support the experimental results.
Collapse
Affiliation(s)
- Chao Dai
- Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xiangrong Chen
- Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, People's Republic of China
| | - Qilong Wang
- Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Muhammad Awais
- Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Guangyu Zhu
- Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yiwen Shi
- Zhejiang Provincial Key Laboratory of Electrical Machine Systems, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Ashish Paramane
- Electrical Engineering Department, National Institute of Technology, Silchar, Assam 788010, India
| | - Yasuhiro Tanaka
- Measurement and Electric Machine Control Laboratory, Tokyo City University, Tamazutsumi, Setagaya 158-8557, Tokyo, Japan
| |
Collapse
|
39
|
Rational design and fabrication of lightweight porous polyimide composites containing polyaniline modified graphene oxide and multiwalled carbon nanotube hybrid fillers for heat-resistant electromagnetic interference shielding. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Effect of Aminosilane Coupling Agent-Modified Nano-SiO2 Particles on Thermodynamic Properties of Epoxy Resin Composites. Processes (Basel) 2021. [DOI: 10.3390/pr9050771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
From the perspective of improving the thermodynamic properties of epoxy resin, it has become the focus of research to enhance the operational stability of GIS (Gas Insulated Substation) basin insulators for UHV (Ultra-High Voltage) equipment. In this paper, three aminosilane coupling agents with different chain lengths, (3-Aminopropyl)trimethoxysilane (KH550), Aminoethyl)-γ-aminopropyltrimethoxysilane (KH792) and 3-[2-(2-Aminoethylamino)ethylamino]propyl-trimethoxysilane (TAPS), were used to modify nano-SiO2 and doped into epoxy resin, respectively, using a combination of experimental and molecular dynamics simulations. The experimental results showed that the surface-grafted KH792 model of nano-SiO2 exhibited the most significant improvement in thermal properties compared with the undoped nanoparticle model. The storage modulus increased by 276 MPa and the Tg increased by 61 K. The simulation results also showed that the mechanical properties of the nano-SiO2 surface-grafted KH792 model were about 3 times higher than that of the undoped nanoparticle model, the Tg increased by 36.5 K, and the thermal conductivity increased by 24.5%.
Collapse
|
41
|
Moradi S, Román F, Calventus Y, Hutchinson JM. Remarkable Thermal Conductivity of Epoxy Composites Filled with Boron Nitride and Cured under Pressure. Polymers (Basel) 2021; 13:955. [PMID: 33804649 PMCID: PMC8003730 DOI: 10.3390/polym13060955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
This work demonstrates that the application of even moderate pressures during cure can result in a remarkable enhancement of the thermal conductivity of composites of epoxy and boron nitride (BN). Two systems have been used: epoxy-thiol and epoxy-diamine composites, filled with BN particles of different sizes and types: 2, 30 and 180 μm platelets and 120 μm agglomerates. Using measurements of density and thermal conductivity, samples cured under pressures of 175 kPa and 2 MPa are compared with the same compositions cured at ambient pressure. The thermal conductivity increases for all samples cured under pressure, but the mechanism responsible depends on the composite system: For epoxy-diamine composites, the increase results principally from a reduction in the void content; for the epoxy-thiol system with BN platelets, the increase results from an improved matrix-particle interface; for the epoxy-thiol system with BN agglomerates, which has a thermal conductivity greater than 10 W/mK at 44.7 vol.% filler content, the agglomerates are deformed to give a significantly increased area of contact. These results indicate that curing under pressure is an effective means of achieving high conductivity in epoxy-BN composites.
Collapse
Affiliation(s)
| | | | | | - John M. Hutchinson
- Departament de Màquines i Motors Tèrmics, ESEIAAT, Universitat Politècnica de Catalunya, C/Colom 11, 08222 Terrassa, Spain; (S.M.); (F.R.); (Y.C.)
| |
Collapse
|
42
|
Yang J, Shang J, Chen J, Xue F, Ke Z, Zhang X, Ding E. Preparation and characterization of boron nitride nanosheet ferric oxide composite (BNNS@Fe3O4) through the double stabilization of PVP and its adsorption to congo red. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02396-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Harami HR, Amirkhani F, Abedsoltan H, Younas M, Rezakazemi M, Sheikh M, Shirazian S. Mixed Matrix Membranes for Sustainable Electrical Energy‐Saving Applications. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hossein Riasat Harami
- University of Kashan Department of Chemical Engineering P.O. Box 8731753153 Kashan Iran
| | - Farid Amirkhani
- University of Kashan Department of Chemical Engineering P.O. Box 8731753153 Kashan Iran
| | | | - Mohammad Younas
- University of Engineering and Technology, Peshawar Department of Chemical Engineering P.O. Box 814, University Campus 25120 Peshawar Pakistan
| | - Mashallah Rezakazemi
- Shahrood University of Technology Faculty of Chemical and Materials Engineering Shahrood Iran
| | - Mahdi Sheikh
- Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (BarcelonaTECH) Department of Chemical Engineering 08930 Barcelona Spain
| | - Saeed Shirazian
- Duy Tan University Institute of Research and Development 550000 Da Nang Viet Nam
- Duy Tan University The Faculty of Environmental and Chemical Engineering 550000 Da Nang Viet Nam
- South Ural State University 76 Lenin Prospekt 454080 Chelyabinsk Russia
| |
Collapse
|
44
|
Zhang HX, Seo DH, Lee DE, Yoon KB. Fabrication of highly thermal conductive PA6/hBN composites via in-situ polymerization process. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02378-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Imidazole-functionalized nitrogen-rich Mg-Al-CO3 layered double hydroxide for developing highly crosslinkable epoxy with high thermal and mechanical properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
46
|
|
47
|
Gültekin K, Uğuz G, Özel A. Improvements of the structural, thermal, and mechanical properties of structural adhesive with functionalized boron nitride nanoparticles. J Appl Polym Sci 2021. [DOI: 10.1002/app.50491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kürşat Gültekin
- Department of Mechanical Engineering Ondokuz Mayıs University Samsun Turkey
| | - Gediz Uğuz
- Department of Chemical Engineering Ondokuz Mayıs University Samsun Turkey
| | - Adnan Özel
- Department of Mechanical Engineering Erzincan Binali Yıldırım University Erzincan Turkey
| |
Collapse
|
48
|
Patki AM, Goyal RK. Investigation of non-isothermal crystallization, dynamic mechanical and dielectric properties of poly(ether-ketone) matrix composites. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2020.1786583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. M. Patki
- Department of Metallurgy and Materials Science, College of Engineering Pune, Pune, India
| | - R. K. Goyal
- Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, India
| |
Collapse
|
49
|
Isarn I, Ferrando F, Serra À, Urbina C. Novel BN‐epoxy/anhydride composites with enhanced thermal conductivity. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Isaac Isarn
- Department of Mechanical Engineering Universitat Rovira i Virgili Tarragona Spain
| | - Francesc Ferrando
- Department of Mechanical Engineering Universitat Rovira i Virgili Tarragona Spain
| | - Àngels Serra
- Department of Analytical and Organic Chemistry Universitat Rovira i Virgili Tarragona Spain
| | - Cristina Urbina
- Department of Mechanical Engineering Universitat Rovira i Virgili Tarragona Spain
| |
Collapse
|
50
|
Meng Q, Han S, Liu T, Ma J, Ji S, Dai J, Kang H, Ma J. Noncovalent Modification of Boron Nitrite Nanosheets for Thermally Conductive, Mechanically Resilient Epoxy Nanocomposites. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qingshi Meng
- College of Aerospace Engineering, Shenyang Aerospace University, 37 Daoyi South Avenue, Shenyang, Liaoning 110136, China
| | - Sensen Han
- College of Aerospace Engineering, Shenyang Aerospace University, 37 Daoyi South Avenue, Shenyang, Liaoning 110136, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Jian Ma
- Administrative Department, Shenyang Aerospace University, 37 Daoyi South Avenue, Shenyang, Liaoning 110136, China
| | - Shude Ji
- College of Aerospace Engineering, Shenyang Aerospace University, 37 Daoyi South Avenue, Shenyang, Liaoning 110136, China
| | - Jiabin Dai
- University of South Australia, UniSA STEM, Mawson Lakes, SA 5095, Australia
| | - Hailan Kang
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China
| | - Jun Ma
- College of Aerospace Engineering, Shenyang Aerospace University, 37 Daoyi South Avenue, Shenyang, Liaoning 110136, China
- University of South Australia, UniSA STEM, Mawson Lakes, SA 5095, Australia
| |
Collapse
|