1
|
Yao Y, Yan Y, Wei W, Wang Q. Evaluation of the Effect of Acute Elevated Intraocular Pressure on Retinal and Choroidal Microvasculature in Diabetic Rats. Diabetes Metab Syndr Obes 2025; 18:615-625. [PMID: 40034480 PMCID: PMC11873028 DOI: 10.2147/dmso.s493984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose Understanding the dynamics of blood flow regulation in diabetic conditions is crucial for developing targeted interventions. This study aimed to investigate the impact of acute intraocular pressure (IOP) elevation on retinal and choroidal microvasculature in diabetic and control rats. Methods Male Sprague-Dawley rats were divided into two groups: diabetic and control. Acute IOP elevation was achieved through controlled perfusion pressure. Retinal and choroidal blood flow was measured using Swept-Source Optical Coherence Tomography Angiography (SS-OCT/OCTA). Results At baseline IOP levels, there were no statistically significant differences in perfusion area (PA) between the two groups in all regions of the retina and choroid. During acute IOP elevation, both diabetic and control rats experienced a significant reduction in retinal and choroidal blood flow perfusion. Diabetic rats manifested significantly higher (P<0.05) alterations in PA across nearly all retinal regions compared to the control group, barring specific sub-regions of the outer ring. Concerning choroidal PA, the diabetic group exhibited a more pronounced alteration than the control group across the entire 6-mm region and certain sub-regions of the outer ring. Conclusion Our results demonstrate a clear association between diabetes and impaired choroidal vascular autoregulation during acute IOP elevation. The observed reduction in retinal and choroidal microvasculature in diabetic rats points towards a compromised ability to maintain blood flow homeostasis under stress conditions.
Collapse
Affiliation(s)
- Yao Yao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yanni Yan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Qian Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Chung N, Yang C, Yang H, Shin J, Song CY, Min H, Kim JH, Lee K, Lee JR. Local delivery of platelet-derived factors mitigates ischemia and preserves ovarian function through angiogenic modulation: A personalized regenerative strategy for fertility preservation. Biomaterials 2025; 313:122768. [PMID: 39232332 DOI: 10.1016/j.biomaterials.2024.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).
Collapse
Affiliation(s)
- Nanum Chung
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chungmo Yang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeseon Yang
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Jungwoo Shin
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chae Young Song
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyewon Min
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 13496, Republic of Korea.
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Ryeol Lee
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Horozoglu Ceran T, Sonmez K, Kirtil G. The impact of vitreomacular traction on vitreous vascular endothelial growth factor and placental growth factor levels in neovascular age-related macular degeneration patients. Eye (Lond) 2025; 39:373-378. [PMID: 39528811 PMCID: PMC11750961 DOI: 10.1038/s41433-024-03456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To investigate the effect of vitreomacular traction (VMT) on vitreous vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) levels in patients with active neovascular age-related macular degeneration (nAMD). DESIGN A prospective, interventional, case-control study. METHODS The study included a total of 70 patients from whom vitreous samples were obtained. The patients were categorized into four group: 10 patients with active nAMD accompanying VMT, 17 patients with VMT, 24 patients with active nAMD and 19 healthy patients without any diagnosis other than cataract. VEGF and PlGF levels were measured. RESULTS The mean vitreous VEGF level was 34.7 ± 4.98 pg/ml in the nAMD and VMT group, 32.36 ± 4.55 pg/ml in the VMT group, 34.02 ± 3.79 pg/ml in the nAMD group, and 32.33 ± 2.4 pg/ml in the healthy control group. The mean vitreous PlGF level was 58.92 ± 20.83 pg/ml in the nAMD and VMT group, 46.29 ± 3.45 pg/ml in the VMT group, 54.64 ± 16.88 pg/ml in the nAMD group, and 53.66 ± 19.35 pg/ml in the healthy control group. No significant differences were observed in terms of vitreous VEGF and PlGF concentrations among the groups (p > 0.05 and p > 0.05, respectively). Aqueous humour VEGF and PlGF levels were significantly higher than vitreous levels in nAMD patients (p = 0.005 and p = 0.005, respectively). CONCLUSION The present study found no increases in vitreous VEGF and PlGF levels in both VMT + nAMD and VMT cases. Furthermore, patients with nAMD had significantly higher levels of PlGF and VEGF in aqueous humour compared to vitreous levels.
Collapse
Affiliation(s)
- Tugce Horozoglu Ceran
- Ministry of Health Osmaniye State Hospital, Department of Ophthalmology, Osmaniye, Turkey
| | - Kenan Sonmez
- Ankara Etlik City Hospital, Department of Ophthalmology, Ankara, Turkey.
| | - Gul Kirtil
- Ankara Training and Research Hospital, Department of Medical Biochemistry, Ankara, Turkey
| |
Collapse
|
4
|
Wang K, Liu Y, Li S, Zhao N, Qin F, Tao Y, Song Z. Unveiling the therapeutic potential and mechanisms of stanniocalcin-1 in retinal degeneration. Surv Ophthalmol 2025; 70:106-120. [PMID: 39270826 DOI: 10.1016/j.survophthal.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Retinal degeneration (RD) is a group of ocular diseases characterized by progressive photoreceptor apoptosis and visual impairment. Mitochondrial malfunction, excessive oxidative stress, and chronic activation of neuroglia collectively contribute to the development of RD. Currently, there is a lack of efficacious therapeutic interventions for RD. Stanniocalcin-1 (STC-1) is a promising candidate molecule to decelerate photoreceptor cell death. STC-1 is a secreted calcium/phosphorus regulatory protein that exerts diverse protective effects. Accumulating evidence suggests that STC-1 protects retinal cells from ischemic injury, oxidative stress, and excessive apoptosis through enhancing the expression of uncoupling protein-2 (UCP-2). Furthermore, STC-1 exerts its antiinflammatory effects by inhibiting the activation of microglia and macrophages, as well as the synthesis and secretion of proinflammatory cytokines, such as TNF-α, IL-1, and IL-6. By employing these mechanisms, STC-1 effectively shields the retinal photoreceptors and optic nerve, thereby slowing down the progression of RD. We summarize the STC-1-mediated therapeutic effects on the degenerating retina, with a particular focus on its underlying mechanisms. These findings highlight that STC-1 may act as a versatile molecule to treat degenerative retinopathy. Further research on STC-1 is imperative to establish optimal protocols for its clinical use.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Yashuang Liu
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Fangyuan Qin
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| | - Zongming Song
- Department of Ophthalmology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China.
| |
Collapse
|
5
|
Mori T, Nagaraj NR, Surico PL, Zhou W, Parmar UPS, D’Esposito F, Gagliano C, Musa M, Zeppieri M. The therapeutic potential of targeting Oncostatin M and the interleukin-6 family in retinal diseases: A comprehensive review. Open Life Sci 2024; 19:20221023. [PMID: 39759107 PMCID: PMC11699559 DOI: 10.1515/biol-2022-1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Retinal diseases, which can lead to significant vision loss, are complex conditions involving various cellular and molecular mechanisms. The interleukin-6 (IL-6) family, particularly Oncostatin M (OSM), has garnered attention for their roles in retinal inflammation, angiogenesis, and neuroprotection. This comprehensive review explores the dual nature of OSM and other IL-6 family members in retinal pathophysiology, highlighting their contribution to both degenerative and regenerative processes. The review also examines current research on OSM's interaction with key signaling pathways and discusses the potential of OSM and the IL-6 family as potential therapeutic targets. Understanding these mechanisms could lead to innovative treatments that modulate OSM activity, offering new avenues for managing retinal diseases and contributing to the development of more effective interventions.
Collapse
Affiliation(s)
- Tommaso Mori
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, United States of America
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome, 00128, Italy
| | | | - Pier Luigi Surico
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome, 00128, Italy
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, 02114, United States of America
| | - Wenjing Zhou
- Department of Pathology, University of California, San Diego, La Jolla, CA, 92093, United States of America
| | - Uday Pratap Singh Parmar
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, 02114, United States of America
- Department of Ophthalmology, Government Medical College and Hospital, Chandigarh, 160030, India
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, NW1 5QH, United Kingdom
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100, Enna, EN, Italy
- Eye Clinic Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121, Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City, 300238, Edo State, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100, Udine, Italy
| |
Collapse
|
6
|
Sanders FWB, John R, Jones P, Williams GS. A Novel Optometry-Led Decision-Making Community Referral Refinement Scheme for Neovascular Age-Related Macular Degeneration Screening. CLINICAL OPTOMETRY 2024; 16:293-299. [PMID: 39563963 PMCID: PMC11573688 DOI: 10.2147/opto.s470577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024]
Abstract
Background The prevalence of neovascular age-related macular degeneration (nAMD) continues to increase. Hospital Eye Services are operating above capacity, innovative solutions to minimise the high proportion of false negative referrals, improve the care pathway and increase capacity for those patients who need ongoing care are essential are essential. Methods A two-phase retrospective longitudinal analysis of all patients referred and assessed for nAMD between; April 2019 to March 2020 (Phase 1) n=394, and April 2020 to March 2021 (Phase 2) n= 414, within Swansea Bay University Health Board (SBUHB). All patients with suspect nAMD were referred to the hospital based nAMD clinic in phase 1, and a community optometry nAMD decision making pathway in phase 2. All clinical records were reviewed, and data collated for subsequent analysis. Age, sex, date of referral, diagnosis, and treatment date were all recorded and analysed. Results During phase 1, 104 new nAMD cases needing treatment were diagnosed with 85% (n=88) receiving treatment within 2 weeks of initial referral. During phase 2, 230 new nAMD cases requiring treatment were diagnosed with 94% (n=216) receiving treatment within 2 weeks of initial referral. Both the proportion of nAMD cases diagnosed (χ² = 70.8; p<0.001) and proportion of those treated within 2 weeks of initial diagnosis (χ² = 7.57; p<0.05) were significantly higher during phase 2. Conclusion There are advantages to a community optometry nAMD decision-making pathway with regard to 1) decreasing the number of patients requiring HES attendance, 2) increasing the number of patients able to access treatment for nAMD within 2 weeks of initial referral 3) an increased rate of diagnosis confirmation of nAMD and 4) a decrease in the rate of false-positive referrals.
Collapse
Affiliation(s)
| | - Rebecca John
- Primary Care Services, NHS Wales Shared Services Partnership, Cardiff, UK
| | - Philip Jones
- Optometry Division, Specsavers Opticians, Swansea, UK
| | | |
Collapse
|
7
|
Kwon YS, Han Z. Advanced nanomedicines for the treatment of age-related macular degeneration. NANOSCALE 2024; 16:16769-16790. [PMID: 39177654 DOI: 10.1039/d4nr01917b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The critical and unmet medical need for novel therapeutic advancements in the treatment of age-related macular degeneration (AMD) cannot be overstated, particularly given the aging global population and the increasing prevalence of this condition. Current AMD therapy involves intravitreal treatments that require monthly or bimonthly injections to maintain optimal efficacy. This underscores the necessity for improved approaches, prompting recent research into developing advanced drug delivery systems to prolong the intervals between treatments. Nanoparticle-based therapeutic approaches have enabled the controlled release of drugs, targeted delivery of therapeutic materials, and development of smart solutions for the harsh microenvironment of diseased tissues, offering a new perspective on ocular disease treatment. This review emphasizes the latest pre-clinical treatment options in ocular drug delivery to the retina and explores the advantages of nanoparticle-based therapeutic approaches, with a focus on AMD, the leading cause of irreversible blindness in the elderly.
Collapse
Affiliation(s)
- Yong-Su Kwon
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | - Zongchao Han
- Department of Ophthalmology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Rangaswamy D, Nagaraju SP, Bhojaraja MV, Swaminathan SM, Prabhu RA, Rao IR, Shenoy SV. Ocular and systemic vascular endothelial growth factor ligand inhibitor use and nephrotoxicity: an update. Int Urol Nephrol 2024; 56:2635-2644. [PMID: 38498275 PMCID: PMC11266217 DOI: 10.1007/s11255-024-03990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Tumor growth is intricately linked to the process of angiogenesis, with a key role played by vascular endothelial growth factor (VEGF) and its associated signaling pathways. Notably, these pathways also play a pivotal "housekeeping" role in renal physiology. Over the past decade, the utilization of VEGF signaling inhibitors has seen a substantial rise in the treatment of diverse solid organ tumors, diabetic retinopathy, age-related macular degeneration, and various ocular diseases. However, this increased use of such agents has led to a higher frequency of encountering renal adverse effects in clinical practice. This review comprehensively addresses the incidence, pathophysiological mechanisms, and current evidence concerning renal adverse events associated with systemic and intravitreal antiangiogenic therapies targeting VEGF-A and its receptors (VEGFR) and their associated signaling pathways. Additionally, we briefly explore strategies for mitigating potential risks linked to the use of these agents and effectively managing various renal adverse events, including but not limited to hypertension, proteinuria, renal dysfunction, and electrolyte imbalances.
Collapse
Affiliation(s)
- Dharshan Rangaswamy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ravindra A Prabhu
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
9
|
Zhong C, Shi Z, Binzel DW, Jin K, Li X, Guo P, Li SK. Posterior eye delivery of angiogenesis-inhibiting RNA nanoparticles via subconjunctival injection. Int J Pharm 2024; 657:124151. [PMID: 38657717 PMCID: PMC11221552 DOI: 10.1016/j.ijpharm.2024.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Neovascularization contributes to various posterior eye segment diseases such as age-related macular degeneration and diabetic retinopathy. RNA nanoparticles were demonstrated previously to enter the corneal and retinal cells after subconjunctival injection for ocular delivery. In the present study, antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) were conjugated to RNA nanoparticles. The objectives were to investigate the clearance and distribution of these angiogenesis-inhibiting RNA nanoparticles after subconjunctival injection in vivo and their antiangiogenic effects for inhibiting ocular neovascularization in vitro. The results in the whole-body fluorescence imaging study showed that the clearance of RNA nanoparticles was size-dependent with no significant differences between RNA nanoparticles with and without the aptamers except for pRNA-3WJ. The distribution study of RNA nanoparticles by confocal microscopy of the dissected eye tissues in vivo indicated cell internalization of the larger RNA nanoparticles in the retina and retinal pigment epithelium after subconjunctival injection, and the larger nanoparticles with aptamers showed higher levels of cell internalization than those without. In the cell proliferation assay in vitro, RNA nanoparticles with multiple aptamers had higher antiangiogenic effects. With both longer retention time and high antiangiogenic effect, SQR-VEGF-Ang2 could be a promising RNA nanoparticle for posterior eye delivery.
Collapse
Affiliation(s)
- Cheng Zhong
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Jin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - S Kevin Li
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
10
|
Lin P, Cao W, Chen X, Zhang N, Xing Y, Yang N. Role of mRNA-binding proteins in retinal neovascularization. Exp Eye Res 2024; 242:109870. [PMID: 38514023 DOI: 10.1016/j.exer.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Retinal neovascularization (RNV) is a pathological process that primarily occurs in diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. It is a common yet debilitating clinical condition that culminates in blindness. Urgent efforts are required to explore more efficient and less limiting therapeutic strategies. Key RNA-binding proteins (RBPs), crucial for post-transcriptional regulation of gene expression by binding to RNAs, are closely correlated with RNV development. RBP-RNA interactions are altered during RNV. Here, we briefly review the characteristics and functions of RBPs, and the mechanism of RNV. Then, we present insights into the role of the regulatory network of RBPs in RNV. HuR, eIF4E, LIN28B, SRSF1, METTL3, YTHDF1, Gal-1, HIWI1, and ZFR accelerate RNV progression, whereas YTHDF2 and hnRNPA2B1 hinder it. The mechanisms elucidated in this review provide a reference to guide the design of therapeutic strategies to reverse abnormal processes.
Collapse
Affiliation(s)
- Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Xuemei Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China; Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
11
|
Brito M, Sorbier C, Mignet N, Boudy V, Borchard G, Vacher G. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int J Mol Sci 2024; 25:4099. [PMID: 38612907 PMCID: PMC11012607 DOI: 10.3390/ijms25074099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.
Collapse
Affiliation(s)
- Maëlis Brito
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Capucine Sorbier
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Vincent Boudy
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Gaëlle Vacher
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
12
|
Gandhi P, Wang Y, Li G, Wang S. The role of long noncoding RNAs in ocular angiogenesis and vascular oculopathy. Cell Biosci 2024; 14:39. [PMID: 38521951 PMCID: PMC10961000 DOI: 10.1186/s13578-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are RNA transcripts over 200 nucleotides in length that do not code for proteins. Initially considered a genomic mystery, an increasing number of lncRNAs have been shown to have vital roles in physiological and pathological conditions by regulating gene expression through diverse mechanisms depending on their subcellular localization. Dysregulated angiogenesis is responsible for various vascular oculopathies, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and corneal neovascularization. While anti-VEGF treatment is available, it is not curative, and long-term outcomes are suboptimal, and some patients are unresponsive. To better understand these diseases, researchers have investigated the role of lncRNAs in regulating angiogenesis and models of vascular oculopathies. This review summarizes recent research on lncRNAs in ocular angiogenesis, including the pro-angiogenic lncRNAs ANRIL, HOTAIR, HOTTIP, H19, IPW, MALAT1, MIAT, NEAT1, and TUG1, the anti-angiogenic lncRNAs MEG3 and PKNY, and the human/primate specific lncRNAs lncEGFL7OS, discussing their functions and mechanisms of action in vascular oculopathies.
Collapse
Affiliation(s)
- Pranali Gandhi
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Yuzhi Wang
- Louisiana State University School of Medicine, New Orleans, LA, 70112, USA
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei province, P.R. China.
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA.
- Department of Ophthalmology, Tulane University, New Orleans, LA, 70112, USA.
- Tulane Personalized Health Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
13
|
Zhou D, Hu Y, Qiu Z, Liu Z, Jiang H, Kawasaki R, Liu J. Retinal layers changes in patients with age-related macular degeneration treated with intravitreal anti-VEGF agents. BMC Ophthalmol 2023; 23:451. [PMID: 37953270 PMCID: PMC10642061 DOI: 10.1186/s12886-023-03203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The purpose of this study was to investigate retinal layers changes in patients with age-related macular degeneration (AMD) treated with anti-vascular endothelial growth factor (anti-VEGF) agents and to evaluate if these changes may affect treatment response. METHODS This study included 496 patients with AMD or PCV who were treated with anti-VEGF agents and followed up for at least 6 months. A comprehensive analysis of retinal layers affecting visual acuity was conducted. To eliminate the fact that the average thickness calculated may lead to differences tending to converge towards the mean, we proposed that the retinal layer was divided into different regions and the thickness of the retinal layer was analyzed at the same time. The labeled data will be publicly available for further research. RESULTS Compared to baseline, significant improvement in visual acuity was observed in patients at the 6-month follow-up. Statistically significant reduction in central retinal thickness and separate retinal layer thickness was also observed (p < 0.05). Among all retinal layers, the thickness of the external limiting membrane to retinal pigment epithelium/Bruch's membrane (ELM to RPE/BrM) showed the greatest reduction. Furthermore, the subregional assessment revealed that the ELM to RPE/BrM decreased greater than that of other layers in each region. CONCLUSION Treatment with anti-VEGF agents effectively reduced retinal thickness in all separate retinal layers as well as the retina as a whole and anti-VEGF treatment may be more targeted at the edema site. These findings could have implications for the development of more precise and targeted therapies for AMD treatment.
Collapse
Affiliation(s)
- Dan Zhou
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yan Hu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhongxi Qiu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zirong Liu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Hongyang Jiang
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ryo Kawasaki
- Department of Informatics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jiang Liu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China.
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Yang Z, Ni B, Zhou T, Huang Z, Zhou H, Zhou Y, Lin S, He C, Liu X. HIF-1α Reduction by Lowering Intraocular Pressure Alleviated Retinal Neovascularization. Biomolecules 2023; 13:1532. [PMID: 37892214 PMCID: PMC10605289 DOI: 10.3390/biom13101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Hypoxia-induced retinal neovascularization is a leading cause of blindness worldwide. Oxygen-induced retinopathy (OIR) mouse, a well-established angiogenesis model, has been extensively used to evaluate the effect of anti-angiogenic agents through intravitreal injection. Here, we serendipitously found that the needles used for intravitreal injection caused an unexpected "anti-angiogenic" effect in the OIR mice. To evaluate the effects of various intravitreal puncture sizes on retinal neovascularization and explore the potential underlying mechanism, intravitreal punctures using 0.5 mm (25 G), 0.3 mm (30 G), or 0.21 mm (33 G) needles were performed in OIR mice. Compared with 0.3 mm and 0.21 mm puncture, the 0.5 mm puncture remarkably suppressed the formation of pathological angiogenesis, inhibited vascular leakage, and remodeled the retinal vasculature. Mechanistically, the 0.5 mm puncture induced a substantial reduction in intraocular pressure (IOP), leading to an improvement in oxygen partial pressure (pO2) and significant reduction in Hif1a expression, resulting in resolution of angiogenic and inflammatory responses. Furthermore, IOP-lowering drugs, Travatan or Azarga, also promoted the alleviation of hypoxia and exhibited a potent anti-angiogenesis efficacy. Our study revealed an acute and significant reduction in IOP caused by a large puncture, which could remarkably suppress HIF-1α-mediated retinal neovascularization, indicating that lowering IOP may be a promising therapeutic avenue for treating retinal neovascular diseases.
Collapse
Affiliation(s)
- Ziqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Z.Y.); (B.N.); (T.Z.); (Z.H.); (H.Z.); (Y.Z.); (S.L.)
| | - Biyan Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Z.Y.); (B.N.); (T.Z.); (Z.H.); (H.Z.); (Y.Z.); (S.L.)
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Z.Y.); (B.N.); (T.Z.); (Z.H.); (H.Z.); (Y.Z.); (S.L.)
| | - Zijing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Z.Y.); (B.N.); (T.Z.); (Z.H.); (H.Z.); (Y.Z.); (S.L.)
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Hong Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Z.Y.); (B.N.); (T.Z.); (Z.H.); (H.Z.); (Y.Z.); (S.L.)
| | - Yang Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Z.Y.); (B.N.); (T.Z.); (Z.H.); (H.Z.); (Y.Z.); (S.L.)
| | - Shiya Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Z.Y.); (B.N.); (T.Z.); (Z.H.); (H.Z.); (Y.Z.); (S.L.)
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Z.Y.); (B.N.); (T.Z.); (Z.H.); (H.Z.); (Y.Z.); (S.L.)
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; (Z.Y.); (B.N.); (T.Z.); (Z.H.); (H.Z.); (Y.Z.); (S.L.)
| |
Collapse
|
15
|
Deliyanti D, Figgett WA, Gebhardt T, Trapani JA, Mackay F, Wilkinson-Berka JL. CD8 + T Cells Promote Pathological Angiogenesis in Ocular Neovascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:522-536. [PMID: 36794587 DOI: 10.1161/atvbaha.122.318079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND CD4+ (cluster of differentation) and CD8+ T cells are increased in the ocular fluids of patients with neovascular retinopathy, yet their role in the disease process is unknown. METHODS We describe how CD8+ T cells migrate into the retina and contribute to pathological angiogenesis by releasing cytokines and cytotoxic factors. RESULTS In oxygen-induced retinopathy, flow cytometry revealed the numbers of CD4+ and CD8+ T cells were increased in blood, lymphoid organs, and retina throughout the development of neovascular retinopathy. Interestingly, the depletion of CD8+ T cells but not CD4+ T cells reduced retinal neovascularization and vascular leakage. Using reporter mice expressing gfp (green fluorescence protein) in CD8+ T cells, these cells were localized near neovascular tufts in the retina, confirming that CD8+ T cells contribute to the disease. Furthermore, the adoptive transfer of CD8+ T cells deficient in TNF (tumor necrosis factor), IFNγ (interferon gamma), Prf (perforin), or GzmA/B (granzymes A/B) into immunocompetent Rag1-/- mice revealed that CD8+ T cells mediate retinal vascular disease via these factors, with TNF influencing all aspects of vascular pathology. The pathway by which CD8+ T cells migrate into the retina was identified as CXCR3 (C-X-C motif chemokine receptor 3) with the CXCR3 blockade reducing the number of CD8+ T cells within the retina and retinal vascular disease. CONCLUSIONS We discovered that CXCR3 is central to the migration of CD8+ T cells into the retina as the CXCR3 blockade reduced the number of CD8+ T cells within the retina and vasculopathy. This research identified an unappreciated role for CD8+ T cells in retinal inflammation and vascular disease. Reducing CD8+ T cells via their inflammatory and recruitment pathways is a potential treatment for neovascular retinopathies.
Collapse
Affiliation(s)
- Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences (D.D., J.L.W.-B.), University of Melbourne, Parkville, Victoria, Australia
- Department of Diabetes, Monash University, Melbourne, Victoria, Australia (D.D., J.L.W.-B.)
| | - William A Figgett
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia (W.A.F.)
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (W.A.F., T.G.)
| | - Thomas Gebhardt
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia (W.A.F., T.G.)
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology (J.A.T.), University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia (J.A.T.)
| | - Fabienne Mackay
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (F.M.)
| | - Jennifer L Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences (D.D., J.L.W.-B.), University of Melbourne, Parkville, Victoria, Australia
- Department of Diabetes, Monash University, Melbourne, Victoria, Australia (D.D., J.L.W.-B.)
| |
Collapse
|
16
|
Jin Y, Guo Y, Yang J, Chu X, Huang X, Wang Q, Zeng Y, Su L, Lu S, Wang C, Yang J, Qu J, Yang Y, Wang B. A Novel "Inside-Out" Intraocular Nanomedicine Delivery Mode for Nanomaterials' Biological Effect Enhanced Choroidal Neovascularization Occlusion and Microenvironment Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209690. [PMID: 36527723 DOI: 10.1002/adma.202209690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Photodynamic therapy (PDT) is commonly used in choroidal neovascularization (CNV) treatment due to the superior light transmittance of the eye. However, PDT often leads to surrounding tissue damage and further microenvironmental deterioration, including exacerbated hypoxia, inflammation, and secondary neovascularization. In this work, Pt nanoparticles (NPs) and Au NPs decorated zeolitic imidazolate framework-8 nanoplatform is developed to load indocyanine green for precise PDT and microenvironment amelioration, which can penetrate the internal limiting membrane through Müller cells endocytosis and target to CNV by surface-grafted cyclo(Arg-Gly-Asp-d-Phe-Lys) after intravitreal injection. The excessive H2 O2 in the CNV microenvironment is catalyzed by catalase-like Pt NPs for hypoxia relief and enhanced PDT occlusion of neovascular. Meanwhile, Au NPs show significant anti-inflammatory and anti-angiogenesis properties in regulating macrophages and blocking vascular endothelial growth factor (VEGF). Compared with verteporfin treatment, the mRNA expressions of hypoxia-inducible factor-1α and VEGF in the nanoplatform group are downregulated by 90.2% and 81.7%, respectively. Therefore, the nanoplatform realizes a comprehensive CNV treatment effect based on the high drug loading capacity and biosafety. The CNV treatment mode developed in this work provides a valuable reference for treating other diseases with similar physiological barriers that limit drug delivery and similar microenvironment.
Collapse
Affiliation(s)
- Yingying Jin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Yishun Guo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Jianhua Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Xiaoying Chu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Xiaomin Huang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Qingying Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Yanlin Zeng
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Lili Su
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Si Lu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Chenyang Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
| | - Jie Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
- National Engineering Research Center of Ophthalmology and Optometry, Wenzhou, 325027, P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, P. R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Wenzhou, 325027, P. R. China
| | - Yingwei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130012, P. R. China
| | - Bailiang Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325000, P. R. China
- National Engineering Research Center of Ophthalmology and Optometry, Wenzhou, 325027, P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, P. R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic Diseases, Wenzhou, 325027, P. R. China
| |
Collapse
|
17
|
Jerome JR, Deliyanti D, Suphapimol V, Kolkhof P, Wilkinson-Berka JL. Finerenone, a Non-Steroidal Mineralocorticoid Receptor Antagonist, Reduces Vascular Injury and Increases Regulatory T-Cells: Studies in Rodents with Diabetic and Neovascular Retinopathy. Int J Mol Sci 2023; 24:ijms24032334. [PMID: 36768656 PMCID: PMC9917037 DOI: 10.3390/ijms24032334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Vision loss in diabetic retinopathy features damage to the blood-retinal barrier and neovascularization, with hypertension and the renin-angiotensin system (RAS) having causal roles. We evaluated if finerenone, a non-steroidal mineralocorticoid receptor (MR) antagonist, reduced vascular pathology and inflammation in diabetic and neovascular retinopathy. Diabetic and hypertensive transgenic (mRen-2)27 rats overexpressing the RAS received the MR antagonist finerenone (10 mg/kg/day, oral gavage) or the angiotensin-converting enzyme inhibitor perindopril (10 mg/kg/day, drinking water) for 12 weeks. As retinal neovascularization does not develop in diabetic rodents, finerenone (5 mg/kg/day, i.p.) was evaluated in murine oxygen-induced retinopathy (OIR). Retinal vasculopathy was assessed by measuring gliosis, vascular leakage, neovascularization, and VEGF. Inflammation was investigated by quantitating retinal microglia/macrophages, pro-inflammatory mediators, and anti-inflammatory regulatory T-cells (Tregs). In diabetes, both treatments reduced systolic blood pressure, gliosis, vascular leakage, and microglial/macrophage density, but only finerenone lowered VEGF, ICAM-1, and IL-1ß. In OIR, finerenone reduced neovascularization, vascular leakage, and microglial density, and increased Tregs in the blood, spleen, and retina. Our findings, in the context of the FIDELIO-DKD and FIGARO-DKD trials reporting the benefits of finerenone on renal and cardiovascular outcomes in diabetic kidney disease, indicate the potential of finerenone as an effective oral treatment for diabetic retinopathy.
Collapse
Affiliation(s)
- Jack R. Jerome
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Varaporn Suphapimol
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Jennifer L. Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
18
|
Feng Y, Wang L, Dong C, Yang X, Wang J, Zhang X, Yuan Y, Dai J, Huang J, Yuan F. MicroRNA-376b-3p Suppresses Choroidal Neovascularization by Regulating Glutaminolysis in Endothelial Cells. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 36719700 PMCID: PMC9896860 DOI: 10.1167/iovs.64.1.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Purpose Choroidal neovascularization (CNV) is a common pathological change of various ocular diseases that causes serious damage to central vision. Accumulated evidence shows that microRNAs (miRNAs) are closely related with the regulation of endothelial metabolism, which plays crucial roles in angiogenesis. Here, we investigate the molecular mechanism underlying the regulation of endothelial glutamine metabolism by miR-376b-3p in the progression of CNV. Methods Human retinal microvascular endothelial cells (HRMECs) were transfected with control or miR-376b-3p mimics, and the expression of glutaminase 1 (GLS1), a rate-limiting enzyme in glutaminolysis, was detected by real-time PCR or Western blotting. The biological function and glutamine metabolism of transfected HRMECs were measured by related kits. Luciferase reporter assays were used to validate the CCAAT/enhancer-binding protein beta (CEBPB) was a target of miR-376b-3p. Chromatin immunoprecipitation and RNA immunoprecipitation assays were performed to verify the binding of CEBPB on the promoter region of GLS1. Fundus fluorescein angiography and immunofluorescence detected the effect of miR-376b-3p agomir on rat laser-induced CNV. Results The expression of miR-376b-3p was decreased, whereas GLS1 expression was increased in the retinal pigment epithelial-choroidal complexes of rats with CNV. HRMECs transfected with miR-376b-3p mimic showed inhibition of CEBPB, resulting in the inactivation of GLS1 transcription and glutaminolysis. Moreover, the miR-376b-3p mimic inhibited proliferation, migration and tube formation but promoted apoptosis in HRMECs, whereas these effects counteracted by α-ketoglutarate supplementation or transfection with CEBPB overexpression plasmid. Finally, the intravitreal administration of the miR-376b-3p agomir restrained CNV formation. Conclusions Collectively, miR-376b-3p is a suppressor of glutamine metabolism in endothelial cells that could be expected to become a therapeutic target for the treatment of CNV-related diseases.
Collapse
Affiliation(s)
- Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyang Wang
- Department of Ophthalmology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Chunqiong Dong
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Zhang
- Department of Ophthalmology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Zhang H, Li B, Ding J, Ye R, Xu Z, Zhang Q, Feng S, Jiang Q, Zhu W, Yan B. DCZ19931, a novel multi-targeting kinase inhibitor, inhibits ocular neovascularization. Sci Rep 2022; 12:21539. [PMID: 36513701 PMCID: PMC9747701 DOI: 10.1038/s41598-022-25811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Neovascularization is a prominent cause of irreversible blindness in a variety of ocular diseases. Current therapies for pathological neovascularization are concentrated on the suppression of vascular endothelial growth factors (VEGF). Despite the remarkable efficacy of anti-VEGF drugs, several problems still exist, including ocular complications and drug resistance. Thus, it is still required to design novel drugs for anti-angiogenic treatment. This study aimed to investigate the anti-angiogenic effects of a small molecule multi-target tyrosine kinase inhibitor, DCZ19931, on ocular neovascularization. The results showed that administration of DCZ19931 at the tested concentrations did not cause obvious cytotoxicity and tissue toxicity. DCZ19931 could reduce the size of choroidal neovascularization (CNV) lesions in laser-induced CNV model and suppress ocular neovascularization in oxygen-induced retinopathy (OIR) model. DCZ19931 could suppress VEGF-induced proliferation, migration, and tube formation ability of endothelial cells, exhibiting similar anti-angiogenic effects as Ranibizumab. DCZ19931 could reduce the levels of intercellular cell adhesion molecule-1 (ICAM-1) expression in vivo and in vitro. Network pharmacology prediction and western blots revealed that DCZ19931 exerted its anti-angiogenic effects through the inactivation of ERK1/2-MAPK signaling and p38-MAPK signaling. In conclusion, this study indicates that DCZ19931 is a promising drug for anti-angiogenic therapy for ocular diseases.
Collapse
Affiliation(s)
- Huiying Zhang
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Li
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai, China ,grid.419093.60000 0004 0619 8396Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Jingjuan Ding
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Ye
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Zhijian Xu
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai, China ,grid.419093.60000 0004 0619 8396Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Qiuyang Zhang
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Siguo Feng
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- grid.89957.3a0000 0000 9255 8984The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Weiliang Zhu
- grid.419093.60000 0004 0619 8396State Key Laboratory of Drug Research, Shanghai, China ,grid.419093.60000 0004 0619 8396Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Biao Yan
- grid.8547.e0000 0001 0125 2443Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China ,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Jiang Q, Ma Y, Zhao Y, Yao MD, Zhu Y, Zhang QY, Yan B. tRNA-derived fragment tRF-1001: A novel anti-angiogenic factor in pathological ocular angiogenesis. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:407-420. [DOI: 10.1016/j.omtn.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
|
21
|
Rasoulinejad SA, Sarreshtehdari N, Mafi AR. The crosstalk between VEGF signaling pathway and long non-coding RNAs in neovascular retinal diseases: Implications for anti-VEGF therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Identification of dysregulated pathways and key genes in human retinal angiogenesis using microarray metadata. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Yang H, Yang Q, Wang Y, Zheng L. Inhibition of hypoxia-inducible factor-1 by Salidroside in an in vitro model of choroidal neovascularization. Cutan Ocul Toxicol 2021; 41:203-209. [PMID: 34428999 DOI: 10.1080/15569527.2021.1973023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE As a characteristic of age-related macular degeneration (AMD), choroidal neovascularization (CNV) causes severe vision loss. The current treatment has limited efficacy. This study was to investigate effects of Salidroside against CNV and explore its underlying mechanisms. METHODS RF/6A cells were treated with 200 mM cobalt chloride (CoCl2) for 6 hr to mimic hypoxic condition. Cells were then treated with Salidroside at 10, 30 and 100 µM for 24 hr. Cells treated with DMSO were used as negative control. The cell proliferation was assessed using 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium-bromid assay. The tube formation was investigated on Matrigel. The cell migration was measured by a Transwell assay. RT-qPCR was used to detect the gene expression. Immuohistochemistry and western blot were used to detect the expression of proteins. RESULTS Salidroside significantly inhibited the cell migration and tube formation activity of RF/6A cells under hypoxia. Moreover, Salidroside reduced the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF-1) in RF/6A cells. CONCLUSIONS Our data suggested that Salidroside could be a potential novel therapeutic agent against CNV.
Collapse
Affiliation(s)
- Haitao Yang
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Qingwu Yang
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Yunfeng Wang
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Linfei Zheng
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| |
Collapse
|
24
|
Yao X, Chen C, Zhang J, Xu Y, Xiong S, Gu Q, Xu X, Suo Y. Novel Peptide NT/K-CRS Derived from Kringle Structure of Neurotrypsin Inhibits Neovascularization In Vitro and In Vivo. J Ocul Pharmacol Ther 2021; 37:412-420. [PMID: 34252290 DOI: 10.1089/jop.2020.0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose: To assess the anti-neovascularization effect of a novel peptide NT/K-CRS derived from the kringle domain of neurotrypsin in vitro and in vivo. Methods: Primary human umbilical vein endothelial cells (HUVECs) were treated with vascular endothelial growth factor (VEGF) in advance. Cell migration, lumen formation, and cell proliferation assays were performed to determine the anti-neovascularization effect of NT/K-CRS in HUVECs. TUNEL and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium tests were conducted to evaluate cell viability. Chick chorioallantoic membrane and oxygen-induced retinopathy model were established to assess the anti-angiogenic role of NT/K-CRS in vivo. Results: The in vitro results showed that NT/K-CRS effectively decreased VEGF-induced cell migration and endothelial tube formation, with no significant effect on cell proliferation and cell viability. In addition, NT/K-CRS showed great efficacy in angiogenesis inhibition in chicken embryos. The cytokine release syndrome (CRS) peptide also inhibited retinal neovascularization and improved retinal blood perfusion in oxygen-treated mouse pups through intravitreal injection. Conclusions: NT/K-CRS peptide derived from the kringle domain of neurotrypsin can strongly inhibit neovascularization in vitro and vivo. This novel peptide may become a promising therapeutic agent for neovascular-related ocular diseases.
Collapse
Affiliation(s)
- Xieyi Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuyu Xiong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yan Suo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| |
Collapse
|
25
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
26
|
IL-9 and IL-10 Single-Nucleotide Variants and Serum Levels in Age-Related Macular Degeneration in the Caucasian Population. Mediators Inflamm 2021; 2021:6622934. [PMID: 33953642 PMCID: PMC8057879 DOI: 10.1155/2021/6622934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/01/2021] [Accepted: 04/05/2021] [Indexed: 01/21/2023] Open
Abstract
Considering the immunological impairment in age-related macular degeneration (AMD), we aimed to determine the associations of IL-9 rs1859430, rs2069870, rs11741137, rs2069885, and rs2069884 and IL-10 rs1800871, rs1800872, and rs1800896 polymorphisms and their haplotypes, as well as the serum levels of IL-9 and IL-10 with AMD. 1209 participants were enrolled in our study. SNPs were genotyped using TaqMan SNP genotyping assays by real-time PCR method. IL-9 and IL-10 serum levels were evaluated using ELISA kits. Our study results have shown that haplotypes A-G-C-G-G and G-A-T-A-T of IL-9 SNPs are associated with the decreased odds of early AMD occurrence (p = 0.035 and p = 0.015, respectively). A set of rare haplotypes was associated with the decreased odds of exudative AMD occurrence (p = 0.033). Also, IL-10 serum levels were lower in exudative AMD than in controls (p = 0.049), patients with early AMD (p = 0.017), and atrophic AMD (p = 0.008). Furthermore, exudative AMD patients with IL-10 rs1800896 CT and TT genotypes had lower IL-10 serum concentrations than those with wild-type (CC) genotype (p = 0.048). In conclusion, our study suggests that IL-10 serum levels can be associated with a minor allele at IL-10 rs1800896 and exudative AMD. The haplotypes of IL-9 SNPs were also associated with the decreased odds of early and exudative AMD.
Collapse
|
27
|
Khan HA, Shahzad MA, Iqbal F, Awan MA, Khan QA, Saatci AO, Abbass A, Hussain F, Hussain SA, Ali A, Ali W. Ophthalmological Aspects of von-Hippel-Lindau Syndrome. Semin Ophthalmol 2021; 36:531-540. [PMID: 33780299 DOI: 10.1080/08820538.2021.1897851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: von Hippel-Lindau (VHL) syndrome is a multisystem neoplastic disorder involving eyes, central nervous system, kidneys, spine, and other tissues. A retinal capillary hemangioma (RCH) is the earliest manifestation of the VHL disease in most cases.Areas covered:This paper aims to provide an up-to-date review of the current literature about von Hippel-Lindau syndrome. Molecular background, systemic and ocular features of the diseases as well as the utility of newer imaging modalities in diagnosis and monitoring of ocular VHL disease have been described. Besides, we have discussed newer treatment modalities and therapeutic targets.Conclusion: Modern imaging technologies like optical coherence tomography and optical coherence tomography angiography are tools of the trade, in making an appropriate diagnosis and monitoring disease activity and response to treatment. Peripheral RCH may be treated using laser photocoagulation in tumors up to 3000 µm. Vascular endothelial growth factor suppression can help in reducing tumor activity and stabilize the tumor size; however, it does not regress the RCH.
Collapse
Affiliation(s)
- Hashim Ali Khan
- Ophthalmology department, SEHHAT Foundation Hospital, Danyore, Gilgit, Pakistan.,School of Optometry & Department of Ophthalmology, The University of Faisalabad, Faisalabad, Pakistan
| | | | - Fatima Iqbal
- School of Optometry & Department of Ophthalmology, The University of Faisalabad, Faisalabad, Pakistan.,School of Optometry and Vision Science - University of New South Wale, Sydney, Australia
| | - Muhammad Amer Awan
- Ophthalmology department, Shifa College of Medicine, Islamabad, Pakistan
| | - Qaim Ali Khan
- Ophthalmology department, Punch Medical College, AJK, Pakistan
| | | | - Ahmed Abbass
- Ophthalmology department, Shalamar Medical and Dental College, Lahore, Pakistan
| | - Fazil Hussain
- Department of General Medicine PHQ Hospital, Gilgit, Pakistan
| | - Syed Arif Hussain
- Neurosurgery department, Pakistan Institute of Medical Science (PIMS), Islamabad, Pakistan
| | - Atif Ali
- Department of Acute Medicine, Luton & Dunstable Hospital, Luton, UK
| | - Wajahat Ali
- Department of Internal Medicine, King's Mill Hospital, Sutton-in-Ashfield, Nottinghamshire, UK
| |
Collapse
|
28
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
29
|
Lu C, Zhang Q, Zhang H, Li X, Jiang Q, Yao J. A small molecular multi-targeting tyrosine kinase inhibitor, anlotinib, inhibits pathological ocular neovascularization. Biomed Pharmacother 2021; 138:111493. [PMID: 33740528 DOI: 10.1016/j.biopha.2021.111493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Ocular neovascularization is a devastating pathology observed in numerous ocular diseases and is a major cause of blindness. However, all current treatments have their limitations. Hence, it is important to explore new therapeutic strategies. This study aimed to investigate the role of anlotinib, a small molecular multi-targeting tyrosine kinase inhibitor, in ocular neovascularization. Anlotinib administration did not induce any cytotoxicity and tissue toxicity at the tested concentrations. Cellular functional experiments demonstrated that anlotinib inhibited the viability, proliferation, migration, and tube formation ability of endothelial cells (ECs) and pericytes. Western blot analysis demonstrated that anlotinib significantly inhibited the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and platelet-derived growth factor receptor β (PDGFR-β), as well as their downstream signaling pathways stimulated by VEGF or PDGF-BB, in a concentration-dependent manner in ECs and pericytes. Using an oxygen-induced retinopathy (OIR) model, our results demonstrated that injection of anlotinib reduced avascular areas and pathological neovascular tufts. Furthermore, using a laser-induced choroidal neovascularization (CNV) model, we observed that the combined treatment of anlotinib and Lucentis reduced the size and thickness of CNV lesions compared to Lucentis monotherapy alone. Taken together, our results suggest that anlotinib could be a promising drug candidate for ocular neovascularization.
Collapse
Affiliation(s)
- Chang Lu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qiuyang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Huiying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xiumiao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China.
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing 210029, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
30
|
Elshaer SL, Park HS, Pearson L, Hill WD, Longo FM, El-Remessy AB. Modulation of p75 NTR on Mesenchymal Stem Cells Increases Their Vascular Protection in Retinal Ischemia-Reperfusion Mouse Model. Int J Mol Sci 2021; 22:E829. [PMID: 33467640 PMCID: PMC7830385 DOI: 10.3390/ijms22020829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising therapy to improve vascular repair, yet their role in ischemic retinopathy is not fully understood. The aim of this study is to investigate the impact of modulating the neurotrophin receptor; p75NTR on the vascular protection of MSCs in an acute model of retinal ischemia/reperfusion (I/R). Wild type (WT) and p75NTR-/- mice were subjected to I/R injury by increasing intra-ocular pressure to 120 mmHg for 45 min, followed by perfusion. Murine GFP-labeled MSCs (100,000 cells/eye) were injected intravitreally 2 days post-I/R and vascular homing was assessed 1 week later. Acellular capillaries were counted using trypsin digest 10-days post-I/R. In vitro, MSC-p75NTR was modulated either genetically using siRNA or pharmacologically using the p75NTR modulator; LM11A-31, and conditioned media were co-cultured with human retinal endothelial cells (HREs) to examine the angiogenic response. Finally, visual function in mice undergoing retinal I/R and receiving LM11A-31 was assessed by visual-clue water-maze test. I/R significantly increased the number of acellular capillaries (3.2-Fold) in WT retinas, which was partially ameliorated in p75NTR-/- retinas. GFP-MSCs were successfully incorporated and engrafted into retinal vasculature 1 week post injection and normalized the number of acellular capillaries in p75NTR-/- retinas, yet ischemic WT retinas maintained a 2-Fold increase. Silencing p75NTR on GFP-MSCs coincided with a higher number of cells homing to the ischemic WT retinal vasculature and normalized the number of acellular capillaries when compared to ischemic WT retinas receiving scrambled-GFP-MSCs. In vitro, silencing p75NTR-MSCs enhanced their secretome, as evidenced by significant increases in SDF-1, VEGF and NGF release in MSCs conditioned medium; improved paracrine angiogenic response in HREs, where HREs showed enhanced migration (1.4-Fold) and tube formation (2-Fold) compared to controls. In parallel, modulating MSCs-p75NTR using LM11A-31 resulted in a similar improvement in MSCs secretome and the enhanced paracrine angiogenic potential of HREs. Further, intervention with LM11A-31 significantly mitigated the decline in visual acuity post retinal I/R injury. In conclusion, p75NTR modulation can potentiate the therapeutic potential of MSCs to harness vascular repair in ischemic retinopathy diseases.
Collapse
Affiliation(s)
- Sally L. Elshaer
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hang-soo Park
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Laura Pearson
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
| | - William D. Hill
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304, USA;
| | - Azza B. El-Remessy
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of the Pharmacy, Doctors Hospital of Augusta, Augusta, GA 30909, USA
| |
Collapse
|
31
|
Lymphocytic microparticles suppress retinal angiogenesis via targeting Müller cells in the ischemic retinopathy mouse model. Exp Cell Res 2021; 399:112470. [PMID: 33434529 DOI: 10.1016/j.yexcr.2021.112470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
Retinopathy of prematurity (ROP) is the primary cause of visual impairment and vision loss in premature infants, which results from the formation of aberrant retinal neovascularization (NV). An emerging body of evidence has shown that Müller cells are the predominant source of vascular endothelial growth factor (VEGF), which also serves as a chemoattractant for monocyte/macrophage lineage. The recruitment of macrophages is increased during retinal NV, and they exert a pro-angiogenic role in ROP. We have shown that lymphocytic microparticles (microvesicles; LMPs) derived from apoptotic human T lymphocytes possess strong angiogenesis-inhibiting properties. Here, we investigated the effect of LMPs on the chemotactic capacity of Müller cells in vitro using rat Müller cell rMC-1 and mouse macrophage RAW 264.7. In addition, the impact of LMPs was determined in vivo using a mouse model of oxygen-induced ischemic retinopathy (OIR). The results revealed that LMPs were internalized by rMC-1 and reduced their cell proliferation dose-dependently without inducing cell apoptosis. LMPs inhibited the chemotactic capacity of rMC-1 on RAW 264.7 via reducing the expression of VEGF. Moreover, LMPs attenuated pathological retinal NV and the infiltration of macrophages in vivo. LMPs downregulated ERK1/2 and HIF-1α both in vitro and in vivo. These findings expand our understanding of the effects of LMPs, providing evidence of LMPs as a promising therapeutic approach for the treatment of retinal NV diseases.
Collapse
|
32
|
Yu Y, Huang Y, Feng W, Yang M, Shao B, Li J, Ye F. NIR-triggered upconversion nanoparticles@thermo-sensitive liposome hybrid theranostic nanoplatform for controlled drug delivery. RSC Adv 2021; 11:29065-29072. [PMID: 35478587 PMCID: PMC9038103 DOI: 10.1039/d1ra04431a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
A novel hybrid photothermal theranostic nanoplatform UCNPs@Bi@SiO2@GE HP-lips is developed. Upon NIR irradiation, the nanoplatform could photothermally trigger controlled drug release and present bright upconversion luminescence.
Collapse
Affiliation(s)
- Yibin Yu
- Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou 325001, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Yida Huang
- Institute of Advanced Materials for Nano-bio Applications, Wenzhou Medical University, Wenzhou 325027, China
| | - Wanqian Feng
- Scientific Research Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Mei Yang
- Institute of Advanced Materials for Nano-bio Applications, Wenzhou Medical University, Wenzhou 325027, China
| | - Baiqi Shao
- Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou 325001, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fangfu Ye
- Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou 325001, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| |
Collapse
|
33
|
Ma J, Tang W, Gu R, Hu F, Zhang L, Wu J, Xu G. SHP-2-Induced Activation of c-Myc Is Involved in PDGF-B-Regulated Cell Proliferation and Angiogenesis in RMECs. Front Physiol 2020; 11:555006. [PMID: 33329018 PMCID: PMC7719712 DOI: 10.3389/fphys.2020.555006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Aberrant neovascularization resulting from inappropriate angiogenic signaling is closely related to many diseases, such as cancer, cardiovascular disease, and proliferative retinopathy. Although some factors involved in regulating pathogenic angiogenesis have been identified, the molecular mechanisms of proliferative retinopathy remain largely unknown. In the present study, we determined the role of platelet-derived growth factor-B (PDGF-B), one of the HIF-1-responsive gene products, in cell proliferation and angiogenesis in retinal microvascular endothelial cells (RMECs) and explored its regulatory mechanism. Methods: Cell counting kit-8 (CCK-8), bromodeoxyuridine (BrdU) incorporation, tube formation, cell migration, and Western blot assays were used in our study. Results: Our results showed that PDGF-B promoted cell proliferation and angiogenesis by increasing the activity of Src homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) in RMECs, which was attenuated by the inhibition of PDGF receptor (PDGFR) or SHP-2 knockdown. Moreover, activation of c-Myc was involved in the processes of PDGF-B/SHP-2-driven cell proliferation in RMECs. The promoting effects of PDGF-B/SHP-2 on c-Myc expression were mediated by the Erk pathway. Conclusion: These results indicate that PDGF-B facilitates cell proliferation and angiogenesis, at least in part, via the SHP-2/Erk/c-Myc pathway in RMECs, implying new potential treatment candidates for retinal microangiopathy.
Collapse
Affiliation(s)
- Jun Ma
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Wenyi Tang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Fangyuan Hu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Gezhi Xu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
34
|
Ricci F, Bandello F, Navarra P, Staurenghi G, Stumpp M, Zarbin M. Neovascular Age-Related Macular Degeneration: Therapeutic Management and New-Upcoming Approaches. Int J Mol Sci 2020; 21:ijms21218242. [PMID: 33153227 PMCID: PMC7662479 DOI: 10.3390/ijms21218242] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) constitutes a prevalent, chronic, and progressive retinal degenerative disease of the macula that affects elderly people and cause central vision impairment. Despite therapeutic advances in the management of neovascular AMD, none of the currently used treatments cures the disease or reverses its course. Medical treatment of neovascular AMD experienced a significant advance due to the introduction of vascular endothelial growth factor inhibitors (anti-VEGF), which dramatically changed the prognosis of the disease. However, although anti-VEGF therapy has become the standard treatment for neovascular AMD, many patients do not respond adequately to this therapy or experience a slow loss of efficacy of anti-VEGF agents after repeated administration. Additionally, current treatment with intravitreal anti-VEGF agents is associated with a significant treatment burden for patients, caregivers, and physicians. New approaches have been proposed for treating neovascular AMD. Among them, designed ankyrin repeat proteins (DARPins) seem to be as effective as monthly ranibizumab, but with greater durability, which may enhance patient compliance with needed injections.
Collapse
Affiliation(s)
- Federico Ricci
- Department of Experimental Medicine, University Tor Vergata, Viale Oxford, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-33-5663-3319
| | - Francesco Bandello
- Scientific Institute San Raffaele, University Vita Salute, 20132 Milan, Italy;
| | - Pierluigi Navarra
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Pharmacology, Medical School, Catholic University, 00198 Rome, Italy
| | | | - Michael Stumpp
- Molecular Partners AG—Wagistrasse, 14 8952 Zurich-Schlieren, Switzerland;
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
| |
Collapse
|
35
|
Yan X, Yan Z, Xiong Q, Liu G, Zhu J, Lu P. Extraction, Purification, Characterization, and Antiangiogenic Activity of Acidic Polysaccharide from Buddleja officinalis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5175138. [PMID: 33123208 PMCID: PMC7586156 DOI: 10.1155/2020/5175138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
Firstly, optimal parameters of crude polysaccharide from Buddleja officinalis were obtained as follows: ratio of water to raw material of 26 : 1, ultrasonic power of 240 W, ultrasonic time of 45 min, and ultrasonic temperature of 62°C. Secondly, acidic polysaccharide (APBOM) from Buddleja officinalis was successfully acquired with the yield of 9.57% by using DEAE-52 cellulose and Sephadex G-100 gel column chromatography. Then, we found that total polysaccharide content of APBOM was 94.37% with a sulfuric acid group of 1.68%, uronic acid content of 17.41%, and average molecular weight of 165.4 kDa. Finally, APBOM was confirmed to have significant antiangiogenic effects.
Collapse
Affiliation(s)
- Xiaoteng Yan
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
- Department of Ophthalmology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Zhuan Yan
- Department of Emergency, Huai'an First People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Juanjuan Zhu
- Department of Ophthalmology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
36
|
Liva F, Cuffaro D, Nuti E, Nencetti S, Orlandini E, Vozzi G, Rossello A. Age-related Macular Degeneration: Current Knowledge of Zinc Metalloproteinases Involvement. Curr Drug Targets 2020; 20:903-918. [PMID: 30666909 DOI: 10.2174/1389450120666190122114857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/21/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. The disease is characterized by photoreceptor loss in the macula and reduced Retinal Pigment Epithelium (RPE) function, associated with matrix degradation, cell proliferation, neovascularization and inflammation. Matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play a critical role in the physiology of extracellular matrix (ECM) turnover and, in turn, in ECM pathologies, such as AMD. A balance between the activities of MMPs and Tissue Inhibitors of Metalloproteinase (TIMPs) is crucial for the integrity of the ECM components; indeed, a dysregulation in the ratio of these factors produces profound changes in the ECM, including thickening and deposit formation, which eventually might lead to AMD development. OBJECTIVE This article reviews the relevance and impact of zinc metalloproteinases on the development of AMD and their roles as biomarkers and/or therapeutic targets. We illustrate some studies on several inhibitors of MMPs currently used to dissect physiological properties of MMPs. Moreover, all molecules or technologies used to control MMP and ADAM activity in AMD are analyzed. CONCLUSION This study underlines the changes in the activity of MMPs expressed by RPE cells, highlights the functions of already used MMP inhibitors and consequently suggests their application as therapeutic agents for the treatment of AMD.
Collapse
Affiliation(s)
- Francesca Liva
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy.,Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| | - Giovanni Vozzi
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
37
|
Yao MD, Jiang Q, Ma Y, Liu C, Zhu CY, Sun YN, Shan K, Ge HM, Zhang QY, Zhang HY, Yao J, Li XM, Yan B. Role of METTL3-Dependent N 6-Methyladenosine mRNA Modification in the Promotion of Angiogenesis. Mol Ther 2020; 28:2191-2202. [PMID: 32755566 DOI: 10.1016/j.ymthe.2020.07.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Epigenetic alterations occur in many physiological and pathological processes. N6-methyladenosine (m6A) modification is the most prevalent modification in eukaryotic mRNAs. However, the role of m6A modification in pathological angiogenesis remains elusive. In this study, we showed that the level of m6A modification was significantly upregulated in endothelial cells and mouse retinas following hypoxic stress, which was caused by increased METTL3 levels. METTL3 silencing or METTL3 overexpression altered endothelial cell viability, proliferation, migration, and tube formation in vitro. METTL3 knockout in vivo decreased avascular area and pathological neovascular tufts in an oxygen-induced retinopathy model and inhibited alkali burn-induced corneal neovascularization. Mechanistically, METTL3 exerted its angiogenic role by regulating Wnt signaling through the m6A modification of target genes (e.g., LRP6 and dishevelled 1 [DVL1]). METTL3 enhanced the translation of LRP6 and DVL1 in an YTH m6A RNA-binding protein 1 (YTHDF1)-dependent manner. Collectively, this study suggests that METTL3-mediated m6A modification is an important hypoxic stress-response mechanism. The targeting of m6A through its writer enzyme METTL3 is a promising strategy for the treatment of angiogenic diseases.
Collapse
Affiliation(s)
- Mu-Di Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Ma
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chuan-Yan Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ya-Nan Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Kun Shan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Hui-Min Ge
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Hui-Ying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.
| |
Collapse
|
38
|
Shu-Ya T, Qiu-Yang Z, Jing-Jing L, Jin Y, Biao Y. Suppression of pathological ocular neovascularization by a small molecule, SU1498. Biomed Pharmacother 2020; 128:110248. [PMID: 32454287 DOI: 10.1016/j.biopha.2020.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022] Open
Abstract
Selective inhibition of vascular endothelial growth factor receptor (VEGFR), particularly VEGFR-2, is an efficient method for the treatment of ocular neovascularization. SU1498 is a specific inhibitor of VEGFR-2. In this study, we investigated the role of SU1498 in ocular neovascularization. Administration of SU1498 did not show any cytotoxicity and tissue toxicity at the tested concentrations. Administration of SU1498 reduced the size and thickness of choroidal neovascularization and decreased the mean length and mean number of corneal neovascular vessels induced by alkali burn. Pretreatment of SU1498 significantly reduced the proliferation, migration, and tube formation ability of HUVECs. SU1498 played the anti-angiogenic role through the regulation of p38-MAPK signaling. Taken together, inhibition of VEGFR-2 by SU1498 provides a novel therapeutic approach for ocular neovascularization.
Collapse
Affiliation(s)
- Tao Shu-Ya
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhang Qiu-Yang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Li Jing-Jing
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yao Jin
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Yan Biao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China; National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Han Y, Bing Zhu X, Ye Y, Yu Deng K, Yang Zhang X, Ping Song Y. Ribonuclease attenuates retinal ischemia reperfusion injury through inhibition of inflammatory response and apoptosis in mice. Int Immunopharmacol 2020; 85:106608. [PMID: 32447222 DOI: 10.1016/j.intimp.2020.106608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023]
Abstract
The present study was aimed to reveal the function of extracellular RNAs (exRNAs) in retinal ischemia reperfusion (I/R) injury, and evaluate whether RNase administration can effectivelyreduce I/Rinjury. A retinal I/R injury C57BL/6J wild-type mice model was established by elevating intraocular pressure for 1 h. All mice received 3 doses of RNase or the same dose of normal saline at different time points. After 7 days of reperfusion, retinal damage was quantified by counting retinal ganglion cells and measuring retinal layer thickness. The apoptotic retinal cells were detected by the TUNEL experiment, and the expressions of caspase-3, proinflammatory cytokines in retinal tissues, and glial fibrillary acidic protein (GFAP) protein and mRNA were detected to determine the underlying mechanism. It was found that RNase administration (1) reduced the significant loss of retinal morphology caused by I/R injury; (2) down-regulated the expression of NF-κBp65, IL-6 and GFAP relative to the I/R mice; (3) decreased the apoptosis of retinal cells and the levels of caspase-3; (4) attenuated exRNAs levels in retinal tissues on day 7 after retinal I/R. In short, increased exRNAs may contribute to retinal I/R damages in mice, and RNase therapy can effectively attenuate retinal damage by reducing inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Yun Han
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xiao Bing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhong Shan, Zhong Shan 528400, Guangdong, PR China
| | - Ya Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Kai Yu Deng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xi Yang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| | - Yan Ping Song
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
40
|
Apolipoprotein(a), an enigmatic anti-angiogenic glycoprotein in human plasma: A curse or cure? Pharmacol Res 2020; 158:104858. [PMID: 32430285 DOI: 10.1016/j.phrs.2020.104858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is a finely co-ordinated, multi-step developmental process of the new vascular structure. Even though angiogenesis is regularly occurring in physiological events such as embryogenesis, in adults, it is restricted to specific tissue sites where rapid cell-turnover and membrane synthesis occurs. Both excessive and insufficient angiogenesis lead to vascular disorders such as cancer, ocular diseases, diabetic retinopathy, atherosclerosis, intra-uterine growth restriction, ischemic heart disease, stroke etc. Occurrence of altered lipid profile and vascular lipid deposition along with vascular disorders is a hallmark of impaired angiogenesis. Among lipoproteins, lipoprotein(a) needs special attention due to the presence of a multi-kringle protein subunit, apolipoprotein(a) [apo(a)], which is structurally homologous to many naturally occurring anti-angiogenic proteins such as plasminogen and angiostatin. Researchers have constructed different recombinant forms of apo(a) (rhLK68, rhLK8, RHACK2, KV-11, and AU-6) and successfully exploited its potential to inhibit unwanted angiogenesis during tumor metastasis and retinal neovascularization. Similar to naturally occurring anti-angiogenic proteins, apo(a) can directly interfere with angiogenic signaling pathways. Besides this, apo(a) can also exert its anti-angiogenic effect indirectly by inducing endothelial cell apoptosis, by inhibiting endothelial progenitor cell functions or by upregulating nuclear factors in endothelial cells via apo(a)-bound oxPLs. However, the impact of the anti-angiogenic potential of native apo(a) during physiological angiogenesis in embryos and wounded tissues is not yet explored. In this context, we review the studies so far done to demonstrate the anti-angiogenic activity of apo(a) and the recent developments in using apo(a) as a therapeutic agent to treat impaired angiogenesis during vascular disorders, with emphasis on the gaps in the literature.
Collapse
|
41
|
Hernandez M, Recalde S, Garcia-Garcia L, Bezunartea J, Miskey C, Johnen S, Diarra S, Sebe A, Rodriguez-Madoz JR, Pouillot S, Marie C, Izsvák Z, Scherman D, Kropp M, Prosper F, Thumann G, Ivics Z, Garcia-Layana A, Fernandez-Robredo P. Preclinical Evaluation of a Cell-Based Gene Therapy Using the Sleeping Beauty Transposon System in Choroidal Neovascularization. Mol Ther Methods Clin Dev 2019; 15:403-417. [PMID: 31890733 PMCID: PMC6909167 DOI: 10.1016/j.omtm.2019.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disorder characterized by imbalanced pro- and antiangiogenic signals. The aim of this study was to evaluate the effect of ex vivo cell-based gene therapy with stable expression of human pigment epithelium-derived factor (PEDF) release using the non-viral Sleeping Beauty (SB100X) transposon system delivered by miniplasmids free of antibiotic resistance markers (pFAR4). Retinal pigment epithelial (RPE) cells and iris pigment epithelial (IPE) cells were co-transfected with pFAR4-inverted terminal repeats (ITRs) CMV-PEDF-BGH and pFAR4-CMV-SB100X-SV40 plasmids. Laser-induced choroidal neovascularization (CNV) was performed in rats, and transfected primary cells (transfected RPE [tRPE] and transfected IPE [tIPE] cells) were injected into the subretinal space. The leakage and CNV areas, vascular endothelial growth factor (VEGF), PEDF protein expression, metalloproteinases 2 and 9 (MMP-2/9), and microglial/macrophage markers were measured. Injection with tRPE/IPE cells significantly reduced the leakage area at 7 and 14 days and the CNV area at 7 days. There was a significant increase in PEDF and the PEDF/VEGF ratio with tRPE cells and a reduction in the MMP-2 activity. Our data demonstrated that ex vivo non-viral gene therapy reduces CNV and could be an effective and safe therapeutic option for angiogenic retinal diseases.
Collapse
Affiliation(s)
- Maria Hernandez
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Laura Garcia-Garcia
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Jaione Bezunartea
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich-Institut, 63225 Langen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sabine Diarra
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Attila Sebe
- Division of Medical Biotechnology, Paul Ehrlich-Institut, 63225 Langen, Germany
| | - Juan Roberto Rodriguez-Madoz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona 31008, Spain
| | | | - Corinne Marie
- Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France
- Chimie ParisTech, PSL Research University, F-75005 Paris, France
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Daniel Scherman
- Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Felipe Prosper
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona 31008, Spain
- Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Pamplona 31008, Spain
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich-Institut, 63225 Langen, Germany
| | - Alfredo Garcia-Layana
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| |
Collapse
|
42
|
Qi JH, Bell B, Singh R, Batoki J, Wolk A, Cutler A, Prayson N, Ali M, Stoehr H, Anand-Apte B. Sorsby Fundus Dystrophy Mutation in Tissue Inhibitor of Metalloproteinase 3 (TIMP3) promotes Choroidal Neovascularization via a Fibroblast Growth Factor-dependent Mechanism. Sci Rep 2019; 9:17429. [PMID: 31757977 PMCID: PMC6874529 DOI: 10.1038/s41598-019-53433-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Choroidal neovascularization (CNV) leads to loss of vision in patients with Sorsby Fundus Dystrophy (SFD), an inherited, macular degenerative disorder, caused by mutations in the Tissue Inhibitor of Metalloproteinase-3 (TIMP3) gene. SFD closely resembles age-related macular degeneration (AMD), which is the leading cause of blindness in the elderly population of the Western hemisphere. Variants in TIMP3 gene have recently been identified in patients with AMD. A majority of patients with AMD also lose vision as a consequence of choroidal neovascularization (CNV). Thus, understanding the molecular mechanisms that contribute to CNV as a consequence of TIMP-3 mutations will provide insight into the pathophysiology in SFD and likely the neovascular component of the more commonly seen AMD. While the role of VEGF in CNV has been studied extensively, it is becoming increasingly clear that other factors likely play a significant role. The objective of this study was to test the hypothesis that basic Fibroblast Growth Factor (bFGF) regulates SFD-related CNV. In this study we demonstrate that mice expressing mutant TIMP3 (Timp3S179C/S179C) showed reduced MMP inhibitory activity with an increase in MMP2 activity and bFGF levels, as well as accentuated CNV leakage when subjected to laser injury. S179C mutant-TIMP3 in retinal pigment epithelial (RPE) cells showed increased secretion of bFGF and conditioned medium from these cells induced increased angiogenesis in endothelial cells. These studies suggest that S179C-TIMP3 may promote angiogenesis and CNV via a FGFR-1-dependent pathway by increasing bFGF release and activity.
Collapse
Affiliation(s)
- Jian Hua Qi
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Brent Bell
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rupesh Singh
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Julia Batoki
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alyson Wolk
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alecia Cutler
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Nicholas Prayson
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mariya Ali
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Heidi Stoehr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bela Anand-Apte
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
43
|
George AK, Homme RP, Majumder A, Tyagi SC, Singh M. Effect of MMP-9 gene knockout on retinal vascular form and function. Physiol Genomics 2019; 51:613-622. [PMID: 31709889 DOI: 10.1152/physiolgenomics.00041.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Retinal degeneration from inherited gene mutation(s) is a common cause of blindness because of structural and functional alterations in photoreceptors. Accordingly, various approaches are being tested to ameliorate or even cure neuroretinal blinding conditions in susceptible patients by employing neuroprotective agents, gene therapeutics, optogenetics, regenerative therapies, and retinal prostheses. The FVB/NJ mouse strain inherently has a common Pde6b rd1 homozygous allele that renders its progeny blind by the time pups reach weaning age. To study the role matrix metalloproteinase-9 (MMP-9) in retinal structure and function, we examined a global MMP-9 knockout (KO) mouse model that has been engineered on the same FVB/NJ background to test the hypothesis whether lack of MMP-9 activity diminishes neuroretinal degenerative changes and thus helps improve the vision. We compared side-by-side various aspects of the ocular physiology in the wild-type (WT) C57BL/6J, FVB/NJ, and MMP-9 KO strains of mice. The results suggest that MMP-9 KO mice display subdued changes in their retinae as reflected by both structural and functional enhancement in the overall ocular neurophysiological parameters. Altogether, the findings appear to have clinical relevance for targeting conditions wherein MMPs and their overactivities are suspected to play dominant pathophysiological roles in advancing neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Avisek Majumder
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky.,Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
44
|
Mansoor N, Wahid F, Azam M, Shah K, den Hollander AI, Qamar R, Ayub H. Molecular Mechanisms of Complement System Proteins and Matrix Metalloproteinases in the Pathogenesis of Age-Related Macular Degeneration. Curr Mol Med 2019; 19:705-718. [PMID: 31456517 DOI: 10.2174/1566524019666190828150625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Age-related macular degeneration (AMD) is an eye disorder affecting predominantly the older people above the age of 50 years in which the macular region of the retina deteriorates, resulting in the loss of central vision. The key factors associated with the pathogenesis of AMD are age, smoking, dietary, and genetic risk factors. There are few associated and plausible genes involved in AMD pathogenesis. Common genetic variants (with a minor allele frequency of >5% in the population) near the complement genes explain 40-60% of the heritability of AMD. The complement system is a group of proteins that work together to destroy foreign invaders, trigger inflammation, and remove debris from cells and tissues. Genetic changes in and around several complement system genes, including the CFH, contribute to the formation of drusen and progression of AMD. Similarly, Matrix metalloproteinases (MMPs) that are normally involved in tissue remodeling also play a critical role in the pathogenesis of AMD. MMPs are involved in the degradation of cell debris and lipid deposits beneath retina but with age their functions get affected and result in the drusen formation, succeeding to macular degeneration. In this review, AMD pathology, existing knowledge about the normal and pathological role of complement system proteins and MMPs in the eye is reviewed. The scattered data of complement system proteins, MMPs, drusenogenesis, and lipofusogenesis have been gathered and discussed in detail. This might add new dimensions to the understanding of molecular mechanisms of AMD pathophysiology and might help in finding new therapeutic options for AMD.
Collapse
Affiliation(s)
- Naima Mansoor
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Maleeha Azam
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Khadim Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Raheel Qamar
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
45
|
Hypoxia Induced Heparan Sulfate Primes the Extracellular Matrix for Endothelial Cell Recruitment by Facilitating VEGF-Fibronectin Interactions. Int J Mol Sci 2019; 20:ijms20205065. [PMID: 31614727 PMCID: PMC6829205 DOI: 10.3390/ijms20205065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor-A (VEGF) is critical for the development, growth, and survival of blood vessels. Retinal pigmented epithelial (RPE) cells are a major source of VEGF in the retina, with evidence that the extracellular matrix (ECM)-binding forms are particularly important. VEGF associates with fibronectin in the ECM to mediate distinct signals in endothelial cells that are required for full angiogenic activity. Hypoxia stimulates VEGF expression and angiogenesis; however, little is known about whether hypoxia also affects VEGF deposition within the ECM. Therefore, we investigated the role of hypoxia in modulating VEGF-ECM interactions using a primary retinal cell culture model. We found that retinal endothelial cell attachment to RPE cell layers was enhanced in cells maintained under hypoxic conditions. Furthermore, we found that agents that disrupt VEGF-fibronectin interactions inhibited endothelial cell attachment to RPE cells. We also found that hypoxia induced a general change in the chemical structure of the HS produced by the RPE cells, which correlated to changes in the deposition of VEGF in the ECM, and we further identified preferential binding of VEGFR2 over VEGFR1 to VEGF laden-fibronectin matrices. Collectively, these results indicate that hypoxia-induced HS may prime fibronectin for VEGF deposition and endothelial cell recruitment by promoting VEGF-VEGFR2 interactions as a potential means to control angiogenesis in the retina and other tissues.
Collapse
|
46
|
Coucha M, Shanab AY, Sayed M, Vazdarjanova A, El-Remessy AB. Modulating Expression of Thioredoxin Interacting Protein (TXNIP) Prevents Secondary Damage and Preserves Visual Function in a Mouse Model of Ischemia/Reperfusion. Int J Mol Sci 2019; 20:ijms20163969. [PMID: 31443163 PMCID: PMC6721134 DOI: 10.3390/ijms20163969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Retinal neurodegeneration, an early characteristic of several blinding diseases, triggers glial activation, resulting in inflammation, secondary damage and visual impairment. Treatments that aim only at neuroprotection have failed clinically. Here, we examine the impact of modulating thioredoxin interacting protein (TXNIP) to the inflammatory secondary damage and visual impairment in a model of ischemia/reperfusion (IR). Wild type (WT) and TXNIP knockout (TKO) mice underwent IR injury by increasing intraocular pressure for 40 min, followed by reperfusion. An additional group of WT mice received intravitreal TXNIP-antisense oligomers (ASO, 100 µg/2 µL) 2 days post IR injury. Activation of Müller glial cells, apoptosis and expression of inflammasome markers and visual function were assessed. IR injury triggered early TXNIP mRNA expression that persisted for 14 days and was localized within activated Müller cells in WT-IR, compared to sham controls. Exposure of Müller cells to hypoxia-reoxygenation injury triggered endoplasmic reticulum (ER) stress markers and inflammasome activation in WT cells, but not from TKO cells. Secondary damage was evident by the significant increase in the number of occluded acellular capillaries and visual impairment in IR-WT mice but not in IR-TKO. Intervention with TXNIP-ASO prevented ischemia-induced glial activation and neuro-vascular degeneration, and improved visual function compared to untreated WT. Targeting TXNIP expression may offer an effective approach in the prevention of secondary damage associated with retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Maha Coucha
- Augusta Biomedical Research Corporation, Augusta, GA 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Pharmaceutical Sciences, South University, School of Pharmacy, Savannah, GA 31406, USA
| | - Ahmed Y Shanab
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mohamed Sayed
- Augusta Biomedical Research Corporation, Augusta, GA 30901, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Almira Vazdarjanova
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30901, USA
| | - Azza B El-Remessy
- Augusta Biomedical Research Corporation, Augusta, GA 30901, USA.
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
- Department of Pharmacy, Doctors Hospital of Augusta, Augusta, GA 30909, USA.
| |
Collapse
|
47
|
RAD51B (rs8017304 and rs2588809), TRIB1 (rs6987702, rs4351379, and rs4351376), COL8A1 (rs13095226), and COL10A1 (rs1064583) Gene Variants with Predisposition to Age-Related Macular Degeneration. DISEASE MARKERS 2019; 2019:5631083. [PMID: 31191752 PMCID: PMC6525907 DOI: 10.1155/2019/5631083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Background Age-related macular degeneration (AMD) is a progressive neurodegenerative disease of a central part of the neural retina (macula) and a leading cause of blindness in elderly people. While it is known that the AMD is a multifactorial disease, genetic factors involved in lipid metabolism, inflammation, and neovascularization are currently being widely studied in genome-wide association studies (GWAS). The aim of our study was to evaluate the impact of new single nucleotide polymorphisms (SNPs) in RAD51B, TRIB1, COL8A1, and COL10A1 genes on AMD development. Methods Case-control study involved 254 patients diagnosed with early AMD, 244 patients with exudative AMD, and 942 control subjects. The genotyping of RAD51B (rs8017304 and rs2588809), TRIB1 (rs6987702, rs4351379, and rs4351376), COL8A1 (rs13095226), and COL10A1 (rs1064583) was carried out using TaqMan assays by a real-time polymerase chain reaction (RT-PCR) method. Results Statistically significant difference was found in genotype (TT, TC, and CC) distribution of COL8A1 rs13095226 between exudative AMD and control groups (60.2%, 33.6%, and 6.1% vs. 64.9%, 32.3%, and 2.9%, respectively, p = 0.036). Also, comparing with TT+TC, rs13095226 CC genotype was associated with 3.5-fold increased odds of exudative AMD development (OR = 3.540; 95% CI: 1.415-8.856; p = 0.007). Conclusion Our study revealed a strong association between a variant in COL8A1 (rs13095226) and exudative AMD development.
Collapse
|
48
|
Dahbash M, Sella R, Megiddo-Barnir E, Nisgav Y, Tarasenko N, Weinberger D, Rephaeli A, Livnat T. The Histone Deacetylase Inhibitor AN7, Attenuates Choroidal Neovascularization in a Mouse Model. Int J Mol Sci 2019; 20:ijms20030714. [PMID: 30736437 PMCID: PMC6387404 DOI: 10.3390/ijms20030714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
: Choroidal neovascularization (CNV) is a complication of age-related macular degeneration and a major contributing factor to vision loss. In this paper, we show that in a mouse model of laser-induced CNV, systemic administration of Butyroyloxymethyl-diethyl phosphate (AN7), a histone deacetylase inhibitor (HDACi), significantly reduced CNV area and vascular leakage, as measured by choroidal flatmounts and fluorescein angiography. CNV area reduction by systemic AN7 treatment was similar to that achieved by intravitreal bevacizumab treatment. The expression of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF-2), and the endothelial cells marker CD31, was lower in the AN7 treated group in comparison to the control group at the laser lesion site. In vitro, AN7 facilitated retinal pigmented epithelium (RPE) cells tight junctions' integrity during hypoxia, by protecting the hexagonal pattern of ZO-1 protein in the cell borders, hence reducing RPE permeability. In conclusion, systemic AN7 should be further investigated as a possible effective treatment for CNV.
Collapse
Affiliation(s)
- Mor Dahbash
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
| | - Ruti Sella
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Department of Ophthalmology, Rabin Medical Center, Petach Tikva 49100, Israel.
| | | | - Yael Nisgav
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
| | - Nataly Tarasenko
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Experimental Pharmacology and Oncology, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
| | - Dov Weinberger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
- Department of Ophthalmology, Rabin Medical Center, Petach Tikva 49100, Israel.
| | - Ada Rephaeli
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Experimental Pharmacology and Oncology, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
| | - Tami Livnat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva 49100, Israel.
- National Hemophilia Center, Institute of Thrombosis, and the Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer 52621, Israel.
| |
Collapse
|
49
|
Park B, Corson TW. Soluble Epoxide Hydrolase Inhibition for Ocular Diseases: Vision for the Future. Front Pharmacol 2019; 10:95. [PMID: 30792659 PMCID: PMC6374558 DOI: 10.3389/fphar.2019.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Ocular diseases cause visual impairment and blindness, imposing a devastating impact on quality of life and a substantial societal economic burden. Many such diseases lack universally effective pharmacotherapies. Therefore, understanding the mediators involved in their pathophysiology is necessary for the development of therapeutic strategies. To this end, the hydrolase activity of soluble epoxide hydrolase (sEH) has been explored in the context of several eye diseases, due to its implications in vascular diseases through metabolism of bioactive epoxygenated fatty acids. In this mini-review, we discuss the mounting evidence associating sEH with ocular diseases and its therapeutic value as a target. Substantial data link sEH with the retinal and choroidal neovascularization underlying diseases such as wet age-related macular degeneration, retinopathy of prematurity, and proliferative diabetic retinopathy, although some conflicting results pose challenges for the synthesis of a common mechanism. sEH also shows therapeutic relevance in non-proliferative diabetic retinopathy and diabetic keratopathy, and sEH inhibition has been tested in a uveitis model. Various approaches have been implemented to assess sEH function in the eye, including expression analyses, genetic manipulation, pharmacological targeting of sEH, and modulation of certain lipid metabolites that are upstream and downstream of sEH. On balance, sEH inhibition shows considerable promise for treating multiple eye diseases. The possibility of local delivery of inhibitors makes the eye an appealing target for future sEH drug development initiatives.
Collapse
Affiliation(s)
- Bomina Park
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy W Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
50
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|