1
|
Setia M, Suvas PK, Rana M, Chakraborty A, Suvas S. Herpes stromal keratitis erodes the establishment of tissue-resident memory T cell pool in HSV-1 infected corneas. Mucosal Immunol 2024:S1933-0219(24)00111-9. [PMID: 39581232 DOI: 10.1016/j.mucimm.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The recurrent herpes simplex virus-1 (HSV-1) infection of the cornea can cause the development of herpes stromal keratitis (HSK). This chronic immunoinflammatory condition is a major cause of infection-induced vision loss. The previous episodes of HSK increase the risk of future recurrences in the same cornea. However, not all HSV-1 infected corneas that shed infectious virus at the ocular surface develop HSK, suggesting that corneal HSV-1 infection may cause an establishment of protective immunity in HSV-1 infected corneas. However, upon recurrent corneal HSV-1 infection, the established protective immunity can get compromised, resulting in the development of HSK. In this study, we compared the quantity and quality of tissue-resident memory T (TRM) cells in HSV-1 infected corneas that did or did not develop HSK. Our results showed the predominance of TRM cell in the epithelium than in stroma of HSV-1 infected corneas. Furthermore, HSV-1 infected non-HSK corneas exhibited more CD4 and CD8 TRM cells than HSK corneas. The TRM cells in non-HSK than in HSK corneas were more effective in clearing the infectious virus upon secondary corneal HSV-1 infection. Our results demonstrate the differential quantity and quality of TRM cells in HSV-1 infected corneas that did or did not develop HSK.
Collapse
Affiliation(s)
- Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States; Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, United States
| | - Pratima Krishna Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States.
| |
Collapse
|
2
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Letafati A, Jazayeri SM, Atwan H, Mahmoudi MK, Sarrafzadeh S, Ardekani OS, Norouzi M, Ghaziasadi A. Utilization of multiplex polymerase chain reaction for simultaneous and rapid detection of viral infections from different ocular structures. Sci Rep 2024; 14:17997. [PMID: 39097632 PMCID: PMC11297968 DOI: 10.1038/s41598-024-68171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
The impact of viral keratitis (VK) on individuals and society is notable. Early diagnosis and treatment are crucial in managing viral keratitis effectively. Timely intervention with antiviral medications and supportive care can help mitigate the severity of the infection and improve visual outcomes. We examined the prevalence of varicella-zoster virus (VZV), herpes simplex virus type 1 (HSV-1), adenovirus (AdV) and herpes simplex virus type 2 (HSV-2) in patients suspected for ocular infections. Patients included in the study exhibited various clinical manifestations indicative of ocular pathology, such as infectious keratitis, corneal scar, endogenous endophthalmitis, panuveitis, endothelitis, stromal edema, and other relevant conditions. Four different types of tear fluid, corneal samples epithelium, aqueous humor and vitreous humor were taken. After genome extraction, multiplex real-time PCR was used for diagnosis of viruses. 48 (29.6%) out of the total of 162 (100%) eye specimen were positive. The dominant prevalence was VZV (12.3%) and HSV-1 (11.7%) followed by AdV (4.9%) and HSV-2 (0.6%). There were 4 (8.3%) coinfections within the samples (HSV-1 and VZV). Aqueous humor samples demonstrated superior virus detection ability and our only HSV-2 positive sample was from aqueous humor. The utilization of multiplex real-time PCR assays in differential diagnosis of VK holds promise for expeditious diagnoses while also preventing unwarranted antibiotic prescriptions. Moreover, the aqueous humor appears to be a more sensitive site for detecting viral keratitis.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mohammad Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Hossein Atwan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Karkhaneh Mahmoudi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Sarrafzadeh
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Epidemiology and statistics Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Azam Ghaziasadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Rangu N, Dang DH, Riaz KM. Current trends in the management of corneal neovascularization. Curr Opin Ophthalmol 2024; 35:329-342. [PMID: 38813739 DOI: 10.1097/icu.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW The aim of this study was to highlight recent developments in the medical and surgical management of corneal neovascularization (NV). RECENT FINDINGS Improved understanding and diagnostic criteria among clinicians have led to advancements in the characterization of corneal NV and objective assessment of treatment response through ancillary imaging devices. Developments in corneal NV treatments, such as antivascular endothelial growth factor, fine needle diathermy, and photodynamic therapy, have improved treatment success rates and visual outcomes. More recent surgical treatment advancements include corneal cross-linking, endothelial keratoplasty, and mitomycin intravascular chemoembolization. Finally, a greater appreciation of the molecular pathogenesis and angiogenic factors involved in corneal NV has identified numerous potential targeted therapies in the future. SUMMARY The management of corneal NV has evolved to include several standalone and combination medical and surgical options. Additionally, improvements in quantifying corneal NV and understanding its molecular basis have contributed to new management strategies with improved outcomes.
Collapse
Affiliation(s)
- Neal Rangu
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Deanna H Dang
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center
| | - Kamran M Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center
| |
Collapse
|
5
|
Cui YH, Liu CQ, Song XL, Yi WZ, Liu Q, Liu JM, Wu YN, Chen JY, Yang LJ, He HY, Meng J, Pan HW. Integrative Analysis of miRNA and circRNA Expression Profiles and Interaction Network in HSV-1-Infected Primary Corneal Epithelial Cells. Curr Eye Res 2024; 49:368-379. [PMID: 38164922 DOI: 10.1080/02713683.2023.2297345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Circular RNAs (circRNAs) are products of alternative splicing with roles as competitive endogenous RNAs or microRNA sponges, regulating gene expression and biological processes. However, the involvement of circRNAs in herpes simplex keratitis remains largely unexplored. METHODS This study examines circRNA and miRNA expression profiles in primary human corneal epithelial cells infected with HSV-1, compared to uninfected controls, using microarray analysis. Bioinformatic analysis predicted the potential function of the dysregulated circRNAs and microRNA response elements (MREs) in these circRNAs, forming an interaction network between dysregulated circRNAs and miRNAs. RESULTS A total of 332 circRNAs and 16 miRNAs were upregulated, while 80 circRNAs and six miRNAs were downregulated (fold change ≥2.0 and p < 0.05). Gene ontology (GO) and KEGG pathway analyses were performed on parental genes of dysregulated circRNAs to uncover potential functions in HSV-1 infection. Notably, miR-181b-5p, miR-338-3p, miR-635, and miR-222-3p emerged as pivotal miRNAs interacting with multiple dysregulated circRNAs. CONCLUSIONS This comprehensive study offers insights into differentially expressed circRNAs and miRNAs during HSV-1 infection in corneal epithelial cells, shedding light on circRNA-miRNA interactions' potential role in herpes simplex keratitis pathogenesis.
Collapse
Affiliation(s)
- Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chao-Qun Liu
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi-Ling Song
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wan-Zhao Yi
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qi Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing-Min Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ya-Ni Wu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian-Ying Chen
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lv-Jun Yang
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui-Ying He
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Meng
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Zhou N, Zheng D, You Q, Chen T, Jiang J, Shen W, Zhang D, Liu J, Chen D, Hu K. Therapeutic Potential of Biochanin A in Herpes Simplex Keratitis. Pharmaceuticals (Basel) 2023; 16:1240. [PMID: 37765049 PMCID: PMC10536220 DOI: 10.3390/ph16091240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Herpes simplex keratitis (HSK) is a blinding eye disease that is initiated by the herpes simplex virus type 1 (HSV-1). Resistance to acyclovir (ACV) and the side effects of corticosteroid drugs have become concerning issues, so it is crucial to develop new antivirals for treating HSK. In this study, we report that biochanin A (BCA), a naturally occurring flavonoid compound, provides multifaceted protective effects with anti-viral, anti-inflammatory, anti-oxidative stress and anti-apoptotic activities to alleviate HSK. The results show that BCA significantly inhibited HSV-1 replication in vitro and further proved that BCA principally influenced the early stage of virus infection. We reveal that BCA downregulated the expression of pro-inflammatory factors triggered by HSV-1, including TNF-α, RANTES, IL-1β and IL-6. Furthermore, BCA treatment alleviated oxidative stress and apoptotic arising from HSV-1 infection. Lastly, we induced HSK in male C57BL/6 mice and treated them with either BCA or phosphate buffer solution (PBS) eye drops. We observed the ocular surface lesions; determined the virus load in the tear fluid, corneas as well as trigeminal ganglions (TGs); and detected the levels of inflammation and apoptosis in the corneas simultaneously. These results show that BCA inhibits HSV-1 and alleviates the corneal lesion degree. Our study illustrates that BCA is a promising therapeutic approach for application in treating HSK.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Deyuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Taige Chen
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Jiaxuan Jiang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Wenhao Shen
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Di Zhang
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| | - Junpeng Liu
- Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing 210093, China
| | - Kai Hu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (N.Z.)
| |
Collapse
|
7
|
Dempsey MP, Conrady CD. The Host-Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms 2023; 11:2074. [PMID: 37630634 PMCID: PMC10460047 DOI: 10.3390/microorganisms11082074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular infectious diseases are an important cause of potentially preventable vision loss and blindness. In the following manuscript, we will review ocular immunology and the pathogenesis of herpesviruses and Pseudomonas aeruginosa infections of the cornea and posterior segment. We will highlight areas of future research and what is currently known to promote bench-to-bedside discoveries to improve clinical outcomes of these debilitating ocular diseases.
Collapse
Affiliation(s)
- Michael P. Dempsey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Antony F, Pundkar C, Sandey M, Mishra A, Suryawanshi A. Role of IL-27 in HSV-1-Induced Herpetic Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:474-485. [PMID: 37326494 PMCID: PMC10495105 DOI: 10.4049/jimmunol.2200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Herpetic stromal keratitis (HSK) is a painful and vision-impairing disease caused by recurrent HSV-1 infection of the cornea. The virus replication in the corneal epithelium and associated inflammation play a dominant role in HSK progression. Current HSK treatments targeting inflammation or virus replication are partially effective and promote HSV-1 latency, and long-term use can cause side effects. Thus, understanding molecular and cellular events that control HSV-1 replication and inflammation is crucial for developing novel HSK therapies. In this study, we report that ocular HSV-1 infection induces the expression of IL-27, a pleiotropic immunoregulatory cytokine. Our data indicate that HSV-1 infection stimulates IL-27 production by macrophages. Using a primary corneal HSV-1 infection mouse model and IL-27 receptor knockout mice, we show that IL-27 plays a critical role in controlling HSV-1 shedding from the cornea, the optimum induction of effector CD4+ T cell responses, and limiting HSK progression. Using in vitro bone marrow-derived macrophages, we show that IL-27 plays an antiviral role by regulating macrophage-mediated HSV-1 killing, IFN-β production, and IFN-stimulated gene expression after HSV-1 infection. Furthermore, we report that IL-27 is critical for macrophage survival, Ag uptake, and the expression of costimulatory molecules involved in the optimum induction of effector T cell responses. Our results indicate that IL-27 promotes endogenous antiviral and anti-inflammatory responses and represents a promising target for suppressing HSK progression.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| |
Collapse
|
9
|
Wang W, Ye W, Chen S, Tang Y, Chen D, Lu Y, Wu Z, Huang Z, Ge Y. METTL3-mediated m 6A RNA modification promotes corneal neovascularization by upregulating the canonical Wnt pathway during HSV-1 infection. Cell Signal 2023:110784. [PMID: 37356601 DOI: 10.1016/j.cellsig.2023.110784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Corneal neovascularization (CNV) is a symptom of herpes simplex keratitis (HSK), which can result in blindness. The corneal angiogenesis brought on by herpes simplex virus type 1 (HSV-1) is strongly affected by vascular endothelial growth factor A (VEGFA). The N6-methyladenosine (m6A) modification catalyzed by methyltransferase-like 3 (METTL3) is a crucial epigenetic regulatory process for angiogenic properties. However, the roles of METTL3 and m6A in HSK-induced CNV remain unknown. Here, we investigated these roles in vitro and in vivo. METHODS A PCR array in HSV-1-infected human umbilical vein endothelial cells (HUVECs) was used to screen for METTL3 among the epitranscriptomic genes. Tube formation and scratch assays were conducted to investigate cell migration capacity. The global mRNA m6A abundance was evaluated using a dot blot assay. Gene expression was assessed by RT-qPCR, western blotting, and fluorescence immunostaining. In addition, bioinformatic analysis was conducted to identify the downstream molecules of METTL3 in HUVECs. METTL3 knockdown and STM2457 treatment clarified the specific underlying molecular mechanisms affecting HSV-1-induced angiogenesis in vitro. An acute HSK mouse model was established to examine the effects of METTL3 knockdown or inhibition using STM2457 on pathological angiogenic development in vivo. RESULTS METTL3 was highly upregulated in HSV-1-infected HUVECs and led to increased m6A levels. METTL3 knockdown or inhibition by STM2457 further reduced m6A levels and VEGFA expression and impaired migration and tube formation capacity in HUVECs after HSV-1 infection. Mechanistically, METTL3 regulated LRP6 expression through post-transcriptional mRNA modification in an m6A-dependent manner, increasing its stability, upregulating VEGFA expression, and promoting angiogenesis in HSV-1-infected HUVECs. Furthermore, METTL3 knockdown or inhibition by STM2457 reduced CNV in vivo. CONCLUSION Our findings revealed that METTL3 promotes pathological angiogenesis through canonical Wnt and VEGF signaling in vitro and in vivo, providing potential pharmacological targets for preventing the progression of CNV in HSK.
Collapse
Affiliation(s)
- Wenzhe Wang
- Medical School, Nanjing University, Nanjing 210093, China; Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Wei Ye
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Si Chen
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; School of Medicine, Southeast University, 210009, China
| | - Yun Tang
- Medical School, Nanjing University, Nanjing 210093, China; Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Deyan Chen
- Center for Public Health Research, Nanjing University Medical School, Nanjing 210093, China
| | - Yan Lu
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhiwei Wu
- Center for Public Health Research, Nanjing University Medical School, Nanjing 210093, China
| | - Zhenping Huang
- Medical School, Nanjing University, Nanjing 210093, China; Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yirui Ge
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
10
|
Setia M, Suvas PK, Suvas S. Flow cytometry protocol to quantify immune cells in the separated epithelium and stroma of herpes simplex virus-1-infected mouse cornea. STAR Protoc 2023; 4:102056. [PMID: 36790766 PMCID: PMC9898781 DOI: 10.1016/j.xpro.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Existing flow cytometry approaches identify immune cells using the whole infected/inflamed cornea, which limits its ability to distinguish the immune cells infiltrating the corneal epithelium from the corneal stroma. Here, we present a protocol to analyze immune cells in the separated epithelium and stroma from naïve and herpes simplex virus-1 (HSV-1)-infected mouse corneas. We describe steps for viral infection, separation of corneal epithelium from stroma, preparation of a single-cell suspension of the individual epithelium and stroma, and flow cytometry assay.
Collapse
Affiliation(s)
- Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Pratima Krishna Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
11
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Patnam M, Dommaraju SR, Masood F, Herbst P, Chang JH, Hu WY, Rosenblatt MI, Azar DT. Lymphangiogenesis Guidance Mechanisms and Therapeutic Implications in Pathological States of the Cornea. Cells 2023; 12:319. [PMID: 36672254 PMCID: PMC9856498 DOI: 10.3390/cells12020319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Corneal lymphangiogenesis is one component of the neovascularization observed in several inflammatory pathologies of the cornea including dry eye disease and corneal graft rejection. Following injury, corneal (lymph)angiogenic privilege is impaired, allowing ingrowth of blood and lymphatic vessels into the previously avascular cornea. While the mechanisms underlying pathological corneal hemangiogenesis have been well described, knowledge of the lymphangiogenesis guidance mechanisms in the cornea is relatively scarce. Various signaling pathways are involved in lymphangiogenesis guidance in general, each influencing one or multiple stages of lymphatic vessel development. Most endogenous factors that guide corneal lymphatic vessel growth or regression act via the vascular endothelial growth factor C signaling pathway, a central regulator of lymphangiogenesis. Several exogenous factors have recently been repurposed and shown to regulate corneal lymphangiogenesis, uncovering unique signaling pathways not previously known to influence lymphatic vessel guidance. A strong understanding of the relevant lymphangiogenesis guidance mechanisms can facilitate the development of targeted anti-lymphangiogenic therapeutics for corneal pathologies. In this review, we examine the current knowledge of lymphatic guidance cues, their regulation of inflammatory states in the cornea, and recently discovered anti-lymphangiogenic therapeutic modalities.
Collapse
Affiliation(s)
- Mehul Patnam
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil R. Dommaraju
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Faisal Masood
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Innate immunity dysregulation in aging eye and therapeutic interventions. Ageing Res Rev 2022; 82:101768. [PMID: 36280210 DOI: 10.1016/j.arr.2022.101768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
The prevalence of eye diseases increases considerably with age, resulting in significant vision impairment. Although the pathobiology of age-related eye diseases has been studied extensively, the contribution of immune-related changes due to aging remains elusive. In the eye, tissue-resident cells and infiltrating immune cells regulate innate responses during injury or infection. But due to aging, these cells lose their protective functions and acquire pathological phenotypes. Thus, dysregulated ocular innate immunity in the elderly increases the susceptibility and severity of eye diseases. Herein, we emphasize the impact of aging on the ocular innate immune system in the pathogenesis of infectious and non-infectious eye diseases. We discuss the role of age-related alterations in cellular metabolism, epigenetics, and cellular senescence as mechanisms underlying altered innate immune functions. Finally, we describe approaches to restore protective innate immune functions in the aging eye. Overall, the review summarizes our current understanding of innate immune functions in eye diseases and their dysregulation during aging.
Collapse
|
14
|
Matundan HH, Jaggi U, Ghiasi H. Herpes Simplex Virus 1 Glycoproteins Differentially Regulate the Activity of Costimulatory Molecules and T Cells. mSphere 2022; 7:e0038222. [PMID: 36094100 PMCID: PMC9599263 DOI: 10.1128/msphere.00382-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Over the past 70 years, multiple approaches to develop a prophylactic or therapeutic vaccine to control herpes simplex virus (HSV) infection have failed to protect against primary infection, reactivation, or reinfection. In contrast to many RNA viruses, neither primary HSV infection nor repeated clinical recurrence elicits immune responses capable of completely preventing virus reactivation; yet the 12 known HSV-1 glycoproteins are the major inducers and targets of humoral and cell-mediated immune responses following infection. While costimulatory molecules and CD4/CD8 T cells both contribute significantly to HSV-1-induced immune responses, the specific effects of individual HSV-1 glycoproteins on CD4, CD8, CD80, and CD86 activities are not known. To determine how nine major HSV-1 glycoproteins affect T cells and costimulatory molecule function, we tested the independent effects of gB, gC, gD, gE, gG, gH, gI, gK, and gL on CD4, CD8, CD80, and CD86 promoter activities in vitro. gD, gK, and gL had a suppressive effect on CD4, CD8, CD80, and CD86 promoter activities, while gG and gH specifically suppressed CD4 promoter activity. In contrast, gB, gC, gE, and gI stimulated CD4, CD8, CD80, and CD86 promoter activities. Luminex analysis of splenocytes and bone-marrow-derived dendritic cells (BMDCs) transfected with each glycoprotein showed differing cytokine/chemokine milieus with higher responses in splenocytes than in BMDCs. Our results with the tested major HSV-1 glycoproteins suggest that costimulatory molecules and T cell responses to the nine glycoproteins can be divided into (i) stimulators (i.e., gB, gC, gE, and gI), and (ii) nonstimulators (i.e., gD, gK, and gL). Thus, consistent with our previous studies, a cocktail of select HSV-1 viral genes may induce a wider spectrum of immune responses, and thus protection, than individual genes. IMPORTANCE Currently no effective vaccine is available against herpes simplex virus (HSV) infection. Thus, there is a critical need to develop a safe and effective vaccine to prevent and control HSV infection. The development of such approaches will require an advanced understanding of viral genes. This study provides new evidence supporting an approach to maximize vaccine efficacy by using a combination of HSV genes to control HSV infection.
Collapse
Affiliation(s)
- Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, Los Angeles, California, USA
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC – SSB3, Los Angeles, California, USA
| |
Collapse
|
15
|
Gmyrek GB, Berube AN, Sjoelund VH, Carr DJJ. HSV-1 0∆NLS vaccine elicits a robust B lymphocyte response and preserves vision without HSV-1 glycoprotein M or thymidine kinase recognition. Sci Rep 2022; 12:15920. [PMID: 36151255 PMCID: PMC9508094 DOI: 10.1038/s41598-022-20180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Effective experimental prophylactic vaccines against viral pathogens such as herpes simplex virus type 1 (HSV-1) have been shown to protect the host through T and/or B lymphocyte-driven responses. Previously, we found a live-attenuated HSV-1 mutant, 0ΔNLS used as a prophylactic vaccine, provided significant protection against subsequent ocular HSV-1 challenge aligned with a robust neutralizing antibody response. Yet, how the virus mutant elicited the humoral immune response relative to parental virus was unknown. Herein, we present the characterization of B cell subsets in vaccinated mice at times after primary vaccination and following boost compared to the parental virus, termed GFP105. We found that 0∆NLS-vaccinated mice possessed more CD4+ follicular helper T (TFH) cells, germinal B cells and class-switched B cells within the first 7 days post-vaccination. Moreover, 0∆NLS vaccination resulted in an increase in plasmablasts and plasma cells expressing amino-acid transporter CD98 along with an elevated titer of HSV-1-specific antibody compared to GFP105-vaccinated animals. Furthermore, O∆NLS-vaccine-induced CD4+ (TFH) cells produced significantly more IL-21 compared to mice immunized with the parental HSV-1 strain. In contrast, there were no differences in the number of regulatory B cells comparing the two groups of immunized mice. In comparing sera recognition of HSV-1-encoded proteins, it was noted antiserum from GFP105-vaccinated mice immunoprecipitated HSV-1 thymidine kinase (TK) and glycoprotein M (gM) whereas sera from 0∆NLS-immunized mice did not even though both groups of vaccinated mice displayed similar neutralizing antibody titers to HSV-1 and were highly resistant to ocular HSV-1 challenge. Collectively, the results suggest (1) the live-attenuated HSV-1 mutant 0∆NLS elicits a robust B cell response that drives select B cell responses greater than the parental HSV-1 and (2) HSV-1 TK and gM are likely expendable components in efficacy of a humoral response to ocular HSV-1 infection.
Collapse
Affiliation(s)
- Grzegorz B. Gmyrek
- grid.266902.90000 0001 2179 3618Departments of Ophthalmology, The University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd, DMEI PA415, Oklahoma City, OK 73104 USA
| | - Amanda N. Berube
- grid.266902.90000 0001 2179 3618Departments of Ophthalmology, The University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd, DMEI PA415, Oklahoma City, OK 73104 USA
| | - Virginie H. Sjoelund
- grid.266902.90000 0001 2179 3618Laboratory for Molecular Biology and Cytometry Research, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Daniel J. J. Carr
- grid.266902.90000 0001 2179 3618Departments of Ophthalmology, The University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd, DMEI PA415, Oklahoma City, OK 73104 USA ,grid.266902.90000 0001 2179 3618Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
16
|
Rana M, Setia M, Suvas PK, Chakraborty A, Suvas S. Diphenyleneiodonium Treatment Inhibits the Development of Severe Herpes Stromal Keratitis Lesions. J Virol 2022; 96:e0101422. [PMID: 35946937 PMCID: PMC9472634 DOI: 10.1128/jvi.01014-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in tissue inflammation. In this study, we measured the intracellular level of ROS in herpes stromal keratitis (HSK) corneas and determined the outcome of manipulating ROS level on HSK severity. Our results showed the predominance of ROS generation in neutrophils but not CD4 T cells in HSK corneas. NADPH oxidase 2 (NOX2) enzyme is known to generate ROS in myeloid cells. Our results showed baseline expression of different NOX2 subunits in uninfected corneas. After corneal herpes simplex virus-1 (HSV-1) infection, an enhanced expression of NOX2 subunits was detected in infected corneas. Furthermore, flow cytometry results showed a higher level of gp91 (Nox2 subunit) protein in neutrophils from HSK corneas, suggesting the involvement of NOX2 in generating ROS. However, no significant decrease in ROS level was noticed in neutrophils from HSV-1-infected gp91-/- mice than in C57BL/6J (B6) mice, suggesting NOX2 is not the major contributor in generating ROS in neutrophils. Next, we used diphenyleneiodonium (DPI), a flavoenzyme inhibitor, to pharmacologically manipulate the ROS levels in HSV-1-infected mice. Surprisingly, the neutrophils from peripheral blood and corneas of the DPI-treated group exhibited an increased level of ROS than the vehicle-treated group of infected B6 mice. Excessive ROS is known to cause cell death. Accordingly, DPI treatment resulted in a significant decrease in neutrophil frequency in peripheral blood and corneas of infected mice and was associated with reduced corneal pathology. Together, our results suggest that regulating ROS levels in neutrophils can ameliorate HSK severity. IMPORTANCE Neutrophils are one of the primary immune cell types involved in causing tissue damage after corneal HSV-1 infection. This study demonstrates that intracellular ROS production in the neutrophils in HSK lesions is not NOX2 dependent. Furthermore, manipulating ROS levels in neutrophils ameliorates the severity of HSK lesions. Our findings suggest that excessive intracellular ROS in neutrophils disrupt redox homeostasis and affect their survival, resulting in a decrease in HSK lesion severity.
Collapse
Affiliation(s)
- Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pratima K. Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
17
|
Zannella C, Chianese A, De Bernardo M, Folliero V, Petrillo F, De Filippis A, Boccia G, Franci G, Rosa N, Galdiero M. Ophthalmic Solutions with a Broad Antiviral Action: Evaluation of Their Potential against Ocular Herpetic Infections. Microorganisms 2022; 10:microorganisms10091728. [PMID: 36144330 PMCID: PMC9506079 DOI: 10.3390/microorganisms10091728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
HSV-1 can be associated with severe and recurrent eye infections characterized by a strong inflammatory response that leads to blepharoconjunctivitis, epithelial and stromal keratitis, and retinal necrosis. The incidence of HSV-1 keratitis is 1.5 million every year worldwide, including more than 40,000 new cases exhibiting serious visual failures. Generally, the therapy uses antiviral drugs to promote healing; however, there are currently no compounds that are able to completely eradicate the virus. In addition, the phenomenon of resistance is rapidly spreading among HSV-1 strains, creating mutants developing resistance to the common antiviral drugs; therefore, deep research on this issue is warranted. The efficacy of different ophthalmic solutions already on the market was evaluated for reducing HSV-1 infection. Different plaque assays were set up on epithelial cells, revealing that two ophthalmic solutions were able to inhibit viral replication in the early stages of infection. The data were further confirmed by molecular tests analyzing the expression levels of the principal genes involved in HSV-1 infection, and a strong reduction was observed after only 1 min of eye-drop treatment. Collectively, these results suggested the use of ophthalmic solutions as potential antiviral options for the treatment of ocular herpetic infection.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maddalena De Bernardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Veronica Folliero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesco Petrillo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Boccia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Nicola Rosa
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (N.R.); (M.G.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (N.R.); (M.G.)
| |
Collapse
|
18
|
Shi H, Zhu Y, Xing C, Li S, Bao Z, Lei L, Lin D, Wang Y, Chen H, Xu X. An injectable thermosensitive hydrogel for dual delivery of diclofenac and Avastin® to effectively suppress inflammatory corneal neovascularization. Int J Pharm 2022; 625:122081. [PMID: 35934166 DOI: 10.1016/j.ijpharm.2022.122081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
Abstract
Corneal neovascularization (CNV) is a sequela of anterior segment inflammation, which could lead to vision impairment and even blindness. In the present study, the dual delivery of anti-inflammatory agent (i.e., diclofenac; DIC) and anti-VEGF antibody (i.e., Avastin®; Ava) by the thermosensitive hydrogel (Poly(dl-lactide)-poly(ethylene glycol)-poly(dl-lactide); PDLLA-PEG-PDLLA) is expected to effectively inhibit CNV via their synergistic effects. The optimal DIC micelles were formulated and then mixed with Ava and PDLLA-PEG-PDLLA aqueous solution to generate various DIC@Ava-loaded hydrogels. The co-encapsulation of DIC micelles and Ava did not influence the gelling behavior of the system, and the resulting DIC@Ava-loaded hydrogel provided sustained drug release of both DIC and Ava without compromising their pharmacological activity over 19 days. As indicated by in vitro cytotoxicity and in vivo ocular biocompatibility test, the proposed PDLLA-PEG-PDLLA hydrogel caused minimal cytotoxicity against all tested cell lines at a polymeric concentration ranging from 0.05 mg/mL to 0.8 mg/mL and demonstrated good ocular biocompatibility after a single subconjunctival injection. Using the rabbit CNV model, we documented the superior anti-angiogenic effects of the DIC@Ava-loaded hydrogel over Ava alone medication (treatment with Ava solution and Ava-loaded hydrogel) due to synergistic effects of anti-VEGF and anti-inflammatory action. Overall, the proposed DIC@Ava-loaded hydrogel might be a powerful strategy to reduce CNV.
Collapse
|
19
|
Guo H, Koehler HS, Dix RD, Mocarski ES. Programmed Cell Death-Dependent Host Defense in Ocular Herpes Simplex Virus Infection. Front Microbiol 2022; 13:869064. [PMID: 35464953 PMCID: PMC9023794 DOI: 10.3389/fmicb.2022.869064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV1) remains one of the most ubiquitous human pathogens on earth. The classical presentation of HSV1 infection occurs as a recurrent lesions of the oral mucosa commonly refer to as the common cold sore. However, HSV1 also is responsible for a range of ocular diseases in immunocompetent persons that are of medical importance, causing vision loss that may result in blindness. These include a recurrent corneal disease, herpes stromal keratitis, and a retinal disease, acute retinal necrosis, for which clinically relevant animal models exist. Diverse host immune mechanisms mediate control over herpesviruses, sustaining lifelong latency in neurons. Programmed cell death (PCD) pathways including apoptosis, necroptosis, and pyroptosis serve as an innate immune mechanism that eliminates virus-infected cells and regulates infection-associated inflammation during virus invasion. These different types of cell death operate under distinct regulatory mechanisms but all server to curtail virus infection. Herpesviruses, including HSV1, have evolved numerous cell death evasion strategies that restrict the hosts ability to control PCD to subvert clearance of infection and modulate inflammation. In this review, we discuss the key studies that have contributed to our current knowledge of cell death pathways manipulated by HSV1 and relate the contributions of cell death to infection and potential ocular disease outcomes.
Collapse
Affiliation(s)
- Hongyan Guo
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Heather S. Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Biotechnology Life Sciences, Pullman, WA, United States
| | - Richard D. Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, United States
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Grinage E, Shukla D. Optineurin in ocular herpes infection. Exp Eye Res 2022; 219:109059. [PMID: 35390332 DOI: 10.1016/j.exer.2022.109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Herpes Simplex Virus-1 (HSV-1) is a neurotropic virus that can infect humans in the eye and travel to the trigeminal ganglion to establish latency. HSV-1 causes various disease states in both the primary and secondary sites of infection including the eye and the nervous system. This DNA virus exploits various adaptive measures to infect host cells, hijack host cell proteins, evade host immune response and spread from cell-to-cell to avoid immune detection. Recent data suggest that Optineurin (OPTN), a host protein, is a key restriction factor that prevents cell-to-cell spread of HSV-1 and guards against serious damage to the nervous system during infection. In recent years OPTN has gained increased attention because of its involvement in cellular mechanisms that promote homeostasis and prevent neurodegeneration. At the center of it all is the role OPTN plays as a receptor for selective autophagy. This review summarizes our latest understanding of the viral lifecycle, disease pathologies, and OPTN-mediated protective mechanisms during HSV-1 infection of the eye and the nervous system. We specifically highlight recent discoveries that implicate OPTN as crucial in the prevention of ocular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Earon Grinage
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, IL, USA.
| |
Collapse
|
21
|
Kim YJ, Yeon Y, Lee WJ, Shin YU, Cho H, Lim HW, Kang MH. Analysis of MicroRNA Expression in Tears of Patients with Herpes Epithelial Keratitis: A Preliminary Study. Invest Ophthalmol Vis Sci 2022; 63:21. [PMID: 35475887 PMCID: PMC9055549 DOI: 10.1167/iovs.63.4.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Herpes epithelial keratitis (HEK) is the most common form of herpes simplex virus (HSV) eye involvement, and understanding the molecular mechanisms underlying HEK is important. We investigated the expression of microRNAs (miRNAs) in the tears of patients with HEK. Methods Tear samples from eight patients with HEK and seven age-matched controls were evaluated. Clinical ophthalmologic evaluation was performed, and an anterior segment photograph was obtained after fluorescence staining. Dendritic or geographic ulcer areas were measured using ImageJ software. The expression of 43 different miRNAs in tears was measured using real-time polymerase chain reaction and compared between patients with HEK and controls. Differences in miRNA expression between the dendritic and geographic ulcer groups and correlations involving miRNA expression and ulcer area were evaluated. Results Of the 43 miRNAs, 23 were upregulated in patients with HEK compared to normal controls. MiR-15b-5p, miR-16-5p, miR-20b-5p, miR-21-5p, miR-23b-3p, miR-25-3p, miR-29a-3p, miR-30a-3p, miR-30d-5p, miR-92a-3p, miR-124-3p, miR-127-3p, miR-132-3p, miR-142-3p, miR-145-5p, miR-146a-5p, miR-146b-5p, miR-155-5p, miR-182-5p, miR-183-5p, miR-221-3p, miR-223-3p, and miR-338-5p were significantly upregulated in patients with HEK. MiR-29a-3p exhibited significant differences between the dendritic and geographic ulcer groups. All 23 miRNAs with significant differences between patients with HEK and the control group were not significantly correlated with ulcer area. Conclusions Twenty-three miRNAs were significantly upregulated in the tears of patients with HEK, and the expression of miRNAs may play important roles in herpes infection in relation to host immunity.
Collapse
Affiliation(s)
- Yu Jeong Kim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yeji Yeon
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Won June Lee
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yong Un Shin
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Heeyoon Cho
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Han Woong Lim
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Min Ho Kang
- Department of Ophthalmology, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Tripartite-Motif 21 (TRIM21) Deficiency Results in a Modest Loss of Herpes Simplex Virus (HSV)-1 Surveillance in the Trigeminal Ganglia Following Cornea Infection. Viruses 2022; 14:v14030589. [PMID: 35336995 PMCID: PMC8951137 DOI: 10.3390/v14030589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Tripartite-motif 21 (TRIM21) is thought to regulate the type I interferon (IFN) response to virus pathogens and serve as a cytosolic Fc receptor for immunoglobulin. Since herpes simplex virus (HSV)-1 is sensitive to type I IFN and neutralizing antibody, we investigated the role of TRIM21 in response to ocular HSV-1 infection in mice. In comparison to wild type (WT) mice, TRIM21 deficient (TRIM21 KO) mice were found to be no more susceptible to ocular HSV-1 infection than WT animals, in terms of infectious virus recovered in the cornea. Similar pathology, in terms of neovascularization, opacity, and loss of peripheral vision function, was observed in both WT and TRIM21 KO mice. However, TRIM21 KO mice did possess a significant increase in infectious virus recovered in the trigeminal ganglia, in comparison to the WT animals. The increased susceptibility was not due to changes in HSV-1-specific CD4+ or CD8+ T cell numbers or functional capabilities, or in changes in type I IFN or IFN-inducible gene expression. In summary, the absence of TRIM21 results in a modest, but significant, increase in HSV-1 titers recovered from the TG of TRIM21 KO mice during acute infection, by a mechanism yet to be determined.
Collapse
|
23
|
Almeida I, Dias L, Jesus J, Fonseca I, Matias MJ, Pedro JC. Optical coherence tomography angiography in herpetic leucoma. BMC Med Imaging 2022; 22:17. [PMID: 35114961 PMCID: PMC8812036 DOI: 10.1186/s12880-022-00747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) keratitis remains a leading infectious cause of blindness worldwide. Although all forms of HSV keratitis are commonly recurrent, the risk is greatest in stromal keratitis, which is the most likely to result in corneal scarring, thinning, and neovascularization. Recent studies showed the ability of Optical Coherence Tomography Angiography (OCTA) to detect and study vascular abnormalities in the anterior segment, including abnormal corneal vessels. This study intends to investigate the potential of OCTA device to image and describe quantitatively the vascularization in eyes diagnosed with herpetic leucoma and to discuss and review the usefulness of this technique in this pathology. METHODS A Cross-sectional study was made, including 17 eyes of 15 patients with leucoma secondary to herpetic keratitis. All eyes underwent anterior segment Slit-Lamp photography (SLP), and OCTA with en-face, b-scans and c-scans imaging. The vessel density (VD) was analyzed in the inferior, nasal and temporal corneal margin in all patients, and in the central area, in eyes with central corneal neovascularization (CoNV). The measurements were calculated after binarization with ImageJ software, using OCTA scans with 6 × 6 mm in a depth of 800 μm. RESULTS Patients included had a mean age 53.267 ± 21.542 (years ± SD). The mean total vessel area was 50.907% ± 3.435%. VD was higher in the nasal quadrant (51.156% ± 4.276%) but there were no significant differences between the three analyzed areas (p = 0.940). OCTA was able to identify abnormal vessels when SLP apparently showed no abnormal vessels; OCTA was able to distinguish between larger and smaller vessels even in central cornea; OCTA scans allowed the investigation of several corneal planes and the relation of them with clinical findings. CONCLUSIONS OCTA can be useful in both qualitative and quantitative follow-up of patients and may become a non-invasive alternative to objectively monitor treatment response in eyes with corneal vascularization due to herpetic infection.
Collapse
Affiliation(s)
- Inês Almeida
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal.
| | - Libânia Dias
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal.,Department of Orthoptics, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Jeniffer Jesus
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal
| | - Inês Fonseca
- Department of Orthoptics, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria João Matias
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal
| | - João Carlos Pedro
- Department of Ophthalmology, Centro Hospitalar Entre Douro e Vouga, Rua Dr. Cândido de Pinho, 4520-211, Santa Maria da Feira, Portugal
| |
Collapse
|
24
|
Shukla SD, Valyi-Nagy T. Host Molecules That Promote Pathophysiology of Ocular Herpes. Front Microbiol 2022; 13:818658. [PMID: 35145504 PMCID: PMC8822155 DOI: 10.3389/fmicb.2022.818658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) is a human virus that causes lifelong infections in a large population worldwide. Recurrence of HSV-1 from latency in trigeminal ganglion (TG) is the trigger of the morbidities seen with this virus. In addition to causing fever blisters and cold sores, occasionally the virus can also cause corneal lesions resulting in blindness in untreated individuals. Several host cell proteins play important roles in HSV-1 infection of the eye. HSV-1 enters into the corneal epithelial cells via its interactions with cell surface receptors. In parallel, the Toll-like receptors sense viral invasion and activate defense mechanisms to fight the infection. New data shows that Optineurin, a host autophagy receptor is also activated to degrade viral particles. In contrast, activation of heparanase, a host enzyme, induces an immune-inflammatory response, which triggers pro-inflammatory and pro-angiogenic environment and ultimately results in many of the clinical features seen with HSV-1 infection of the cornea. Rarely, HSV-1 can also spread to the central nervous system causing serious diseases. In this review, we summarize the latest knowledge on host molecules that promote pathophysiological aspects of ocular herpes.
Collapse
Affiliation(s)
- Sajal Deea Shukla
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Illinois Mathematics and Science Academy, Aurora, IL, United States
| | - Tibor Valyi-Nagy
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Tibor Valyi-Nagy,
| |
Collapse
|
25
|
Carr DJJ, Berube A, Gershburg E. The Durability of Vaccine Efficacy against Ocular HSV-1 Infection Using ICP0 Mutants 0∆NLS and 0∆RING Is Lost over Time. Pathogens 2021; 10:1470. [PMID: 34832625 PMCID: PMC8618588 DOI: 10.3390/pathogens10111470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Vaccines to viral pathogens in experimental animal models are often deemed successful if immunization enhances resistance of the host to virus challenge as measured by cumulative survival, reduction in virus replication and spread and/or lessen or eliminate overt tissue pathology. Furthermore, the duration of the protective response against challenge is another important consideration that drives a vaccination regimen. In the current study, we assessed the durability of two related vaccines, 0∆NLS and 0∆RING, against ocular herpes simplex virus type 1 (HSV-1) challenge in mice thirty days (short-term) and one year (long-term) following the vaccine boost. The short-term vaccine efficacy study found the 0∆RING vaccine to be nearly equivalent to the 0∆NLS vaccine in comparison to vehicle-vaccinated mice in terms of controlling virus replication and preserving the visual axis. By comparison, the long-term assessment of the two vaccines found notable differences and less efficacy overall as noted below. Specifically, the results show that in comparison to vehicle-vaccinated mice, the 0∆NLS and 0∆RING vaccinated groups were more resistant in terms of survival and virus shedding following ocular challenge. Moreover, 0∆NLS vaccinated mice also possessed significantly less infectious virus in the peripheral and central nervous systems but not the cornea compared to mice vaccinated with vehicle or 0∆RING which had similar levels. However, all vaccinated groups showed similar levels of blood and lymphatic vessel genesis into the central cornea 30 days post infection. Likewise, corneal opacity was also similar among all groups of vaccinated mice following infection. Functionally, the blink response and visual acuity were 25-50% lower in vaccinated mice 30 days post infection compared to measurements taken prior to infection. The results demonstrate a dichotomy between resistance to infection and functional performance of the visual axis that collectively show an overall loss in vaccine efficacy long-term in comparison to short-term studies in a conventional prime-boost protocol.
Collapse
Affiliation(s)
- Daniel J. J. Carr
- Department of Ophthalmology, Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | | |
Collapse
|
26
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Jaggi U, Matundan HH, Yu J, Hirose S, Mueller M, Wormley FL, Ghiasi H. Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLoS Pathog 2021; 17:e1009999. [PMID: 34653236 PMCID: PMC8550391 DOI: 10.1371/journal.ppat.1009999] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation. Macrophages circulating in the blood or present in different tissues constitute an important barrier against infection. We previously showed that the absence of M2 macrophages does not impact HSV-1 infectivity in vivo. However, in this study we demonstrated an essential role of M1 macrophages in protection from primary HSV-1 replication, death, and eye disease but not in latency-reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Jack Yu
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Antony F, Pundkar C, Sandey M, Jaiswal AK, Mishra A, Kumar A, Channappanavar R, Suryawanshi A. IFN-λ Regulates Neutrophil Biology to Suppress Inflammation in Herpes Simplex Virus-1-Induced Corneal Immunopathology. THE JOURNAL OF IMMUNOLOGY 2021; 206:1866-1877. [PMID: 33811102 DOI: 10.4049/jimmunol.2000979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
HSV-1 infection of the cornea causes a severe immunoinflammatory and vision-impairing condition called herpetic stromal keratitis (SK). The virus replication in corneal epithelium followed by neutrophil- and CD4+ T cell-mediated inflammation plays a dominant role in SK. Although previous studies demonstrate critical functions of type I IFNs (IFN-α/β) in HSV-1 infection, the role of recently discovered IFN-λ (type III IFN), specifically at the corneal mucosa, is poorly defined. Our study using a mouse model of SK pathogenesis shows that HSV-1 infection induces a robust IFN-λ response compared with type I IFN production at the corneal mucosal surface. However, the normal progression of SK indicates that the endogenous IFN responses are insufficient to suppress HSV-1-induced corneal pathology. Therefore, we examined the therapeutic efficacy of exogenous rIFN-λ during SK progression. Our results show that rIFN-λ therapy suppressed inflammatory cell infiltration in the cornea and significantly reduced the SK pathologic condition. Early rIFN-λ treatment significantly reduced neutrophil and macrophage infiltration, and IL-6, IL-1β, and CXCL-1 production in the cornea. Notably, the virucidal capacity of neutrophils and macrophages measured by reactive oxygen species generation was not affected. Similarly, ex vivo rIFN-λ treatment of HSV-1-stimulated bone marrow-derived neutrophils significantly promoted IFN-stimulated genes without affecting reactive oxygen species production. Collectively, our data demonstrate that exogenous topical rIFN-λ treatment during the development and progression of SK could represent a novel therapeutic approach to control HSV-1-induced inflammation and associated vision impairment.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Anil K Jaiswal
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201; and
| | | | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849;
| |
Collapse
|
29
|
An intact complement system dampens cornea inflammation during acute primary HSV-1 infection. Sci Rep 2021; 11:10247. [PMID: 33986436 PMCID: PMC8119410 DOI: 10.1038/s41598-021-89818-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Corneal transparency is an essential characteristic necessary for normal vision. In response to microbial infection, the integrity of the cornea can become compromised as a result of the inflammatory response and the ensuing tissue pathology including neovascularization (NV) and collagen lamellae destruction. We have previously found complement activation contributes to cornea pathology-specifically, denervation in response to HSV-1 infection. Therefore, we investigated whether the complement system also played a role in HSV-1-mediated neovascularization. Using wild type (WT) and complement component 3 deficient (C3 KO) mice infected with HSV-1, we found corneal NV was accelerated associated with an increase in inflammatory monocytes (CD11b+CCR2+CD115+/-Ly6G-Ly6Chigh), macrophages (CD11b+CCR2+CD115+Ly6G-Ly6Chigh) and a subpopulation of granulocytes/neutrophils (CD11b+CCR2-CD115+Ly6G+Ly6Clow). There were also increases in select pro-inflammatory and pro-angiogenic factors including IL-1α, matrix metalloproteinases (MMP)-2, MMP-3, MMP-8, CXCL1, CCL2, and VEGF-A that coincided with increased inflammation, neovascularization, and corneal opacity in the C3 KO mice. The difference in inflammation between WT and C3 KO mice was not driven by changes in virus titer. However, viral antigen clearance was hindered in C3 KO mouse corneas suggesting the complement system has a dynamic regulatory role within the cornea once an inflammatory cascade is initiated by HSV-1.
Collapse
|
30
|
Liu X, Xu S, Wang Y, Jin X, Shi Y, Zhang H. Bilateral Limbal Stem Cell Alterations in Patients With Unilateral Herpes Simplex Keratitis and Herpes Zoster Ophthalmicus as Shown by In Vivo Confocal Microscopy. Invest Ophthalmol Vis Sci 2021; 62:12. [PMID: 33974047 PMCID: PMC8114006 DOI: 10.1167/iovs.62.6.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose The purpose of this study was to investigate the limbal changes in the palisades of Vogt (POV) in patients with herpes simplex keratitis (HSK) and herpes zoster ophthalmicus (HZO) with the application of in vivo confocal microscopy (IVCM). Methods We enrolled 35 eyes of 35 consecutive patients with HSK and 4 patients with HZO in this observational study. Thirty-five participants were also recruited from a healthy population as the control group. All subjects were examined by IVCM in addition to routine slit-lamp biomicroscopy. The IVCM images of the corneal basal epithelial cells, corneal nerve, and the corneoscleral limbus were acquired and then were analyzed semiquantitatively. Results The rate of absent and atypical POV was significantly higher in the affected eyes of patients with HSK than in the contralateral eyes and eyes of controls (88.57% vs. 65.71% vs. 17.14%, P < 0.01). In the HZO group, the rate of absent and atypical POV was 100% in the affected eyes and 50% in the contralateral eyes. When compared to the contralateral unaffected eyes and control eyes, the average density of the central basal epithelial cells and the sub-basal nerve plexus density and the total number of nerves in the central area of the affected eyes were significantly lower in the HSK group (1541 ± 704.4 vs. 2510 ± 746.8 vs. 3650 ± 746.1 cells/mm2, P < 0.0001). Spearman's rank correlation showed that the presence of absent and atypical POV had a significant negative correlation with central corneal basal epithelial cells (rs = −0.44979, P < 0.0001), the density of total nerves (rs = −0.49742, P < 0.0001), and the total nerve numbers (rs = −0.48437, P < 0.0001). A significant positive correlation was established between the presence of absent and atypical POV and HSK severity in affected eyes in the superior, inferior, nasal, and temporal quadrants (rs = 0.68940, rs = 0.78715, rs = 0.65591, and rs = 0.75481, respectively, P < 0.0001) and the contralateral eyes (rs = 0.51636, rs = 0.36207, rs = 0.36990, rs = 0.51241, correspondingly, P < 0.0001). Conclusions Both eyes of patients with unilateral HSK and HZO demonstrated a profound and significant loss of limbal stem cells, which may explain the fact that HSK and HZO are risk factors for limbal stem cell deficiency (LSCD) in both eyes. The loss of LSCs was strongly correlated with the sub-basal nerve plexus and central basal epithelial cell alterations as shown by IVCM.
Collapse
Affiliation(s)
- Xintian Liu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Shuo Xu
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Yingbin Wang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Xin Jin
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Yan Shi
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| | - Hong Zhang
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, No.143, Yiman Street, Harbin City, Nangang District, Heilongjiang Province, China
| |
Collapse
|
31
|
Carr DJJ, Berube AN, Filiberti A, Gmyrek GB. Lack of neonatal Fc receptor does not diminish the efficacy of the HSV-1 0ΔNLS vaccine against ocular HSV-1 challenge. Vaccine 2021; 39:2526-2536. [PMID: 33814229 DOI: 10.1016/j.vaccine.2021.03.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
The neonatal Fc receptor (FcRn) is constitutively expressed in the cornea and is up-regulated in response to herpes simplex virus type 1 (HSV-1). Previously, we found targeting cornea FcRn expression by small interfering RNA-mediated knockdown reduced the local efficacy of HSV-1 0ΔNLS vaccinated C57BL/6 mice against ocular challenge with HSV-1. The current study was undertaken to evaluate the HSV-1 0ΔNLS vaccine efficacy in FcRn deficient (FcRn KO) mice challenged with HSV-1. Whereas there was little neutralizing antibody detected in the serum of HSV-1 0ΔNLS vaccinated FcRn KO mice, these mice exhibited the same degree of protection against ocular challenge with HSV-1 as wild type (WT) C57BL/6 mice as measured by cumulative survival, infectious virus shed or retained in tissue, and corneal pathology including opacity and neovascularization. Mock-vaccinated FcRn KO mice were found to be more sensitive to ocular HSV-1 infection compared to mock-vaccinated (WT) mice in terms of cumulative survival and virus shedding. In addition, the FcRn KO mice generated significantly fewer effector (CD3+CD44+CD62L-) and central (CD3+CD44+CD62L+) memory CD8+ T cells compared to the WT mice 7 days post infection. Collectively, mock-vaccinated FcRn KO mice are susceptible to ocular HSV-1 infection but HSV-1 0ΔNLS vaccinated FcRn KO mice are resistant suggesting that in addition to the FcRn, other pathways are involved in mediating the protective effect of the HSV-1 0ΔNLS vaccine against subsequent HSV-1 challenge.
Collapse
Affiliation(s)
- Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Amanda N Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
32
|
Arshad S, Petsoglou C, Lee T, Al-Tamimi A, Carnt NA. 20 years since the Herpetic Eye Disease Study: Lessons, developments and applications to clinical practice. Clin Exp Optom 2021; 104:396-405. [PMID: 33689622 DOI: 10.1080/08164622.2021.1877531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Herpes Simplex Virus (HSV) is the most common virus that causes eye disease. Although around 60% of the world's population are seropositive for HSV antigens, fortunately, it is estimated that only 1% of seropositive individuals develop eye disease. The most common ocular manifestation of HSV is keratitis, while uveitis and retinal necrosis occur in a small number of cases. HSV keratitis is a debilitating disease, for several reasons: pain , photophobia, and vision loss in acute disease, latency of the virus which leads to infection reactivation from various triggers, scarring, and neovascularisation, leading to permanent vision loss with poor visual rehabilitation prospects. The Herpetic Eye Disease Study (HEDS) was a landmark series of randomised controlled trials in the 1990s that set the benchmark for evidence-based treatment guidelines for anterior eye herpetic disease. Since this time, there has been a change in the distribution of seroprevalence of herpes in the community, a simplified diagnostic classification, advances in treatment options, an emergence of new and a better understanding of risk factors, and discoveries in science that show promise for vaccine and novel future treatments. However, many of the principles of the HEDS study remain rightly entrenched in clinical practice. In this article, the HEDS study is revisited 20 years on through the lens of published literature, to determine current best practise and look towards the future.
Collapse
Affiliation(s)
- Sana Arshad
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Centre for Vision Research, Westmead Institute for Medical Research, Sydney, Australia
| | | | - Taehwan Lee
- Faculty of Medicine and Health, UNSW, Sydney, Australia
| | | | - Nicole A Carnt
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Centre for Vision Research, Westmead Institute for Medical Research, Sydney, Australia.,Faculty of Medicine and Health, UNSW, Sydney, Australia.,Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
33
|
O’Neil TR, Hu K, Truong NR, Arshad S, Shacklett BL, Cunningham AL, Nasr N. The Role of Tissue Resident Memory CD4 T Cells in Herpes Simplex Viral and HIV Infection. Viruses 2021; 13:359. [PMID: 33668777 PMCID: PMC7996247 DOI: 10.3390/v13030359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory T cells (TRM) were first described in 2009. While initially the major focus was on CD8+ TRM, there has recently been increased interest in defining the phenotype and the role of CD4+ TRM in diseases. Circulating CD4+ T cells seed CD4+ TRM, but there also appears to be an equilibrium between CD4+ TRM and blood CD4+ T cells. CD4+ TRM are more mobile than CD8+ TRM, usually localized deeper within the dermis/lamina propria and yet may exhibit synergy with CD8+ TRM in disease control. This has been demonstrated in herpes simplex infections in mice. In human recurrent herpes infections, both CD4+ and CD8+ TRM persisting between lesions may control asymptomatic shedding through interferon-gamma secretion, although this has been more clearly shown for CD8+ T cells. The exact role of the CD4+/CD8+ TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent herpetic keratitis is unknown. In HIV, CD4+ TRM have now been shown to be a major target for productive and latent infection in the cervix. In HSV and HIV co-infections, CD4+ TRM persisting in the dermis support HIV replication. Further understanding of the role of CD4+ TRM and their induction by vaccines may help control sexual transmission by both viruses.
Collapse
Affiliation(s)
- Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sana Arshad
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
34
|
Moein HR, Sendra VG, Jamali A, Kheirkhah A, Harris DL, Hamrah P. Herpes simplex virus-1 KOS-63 strain is virulent and causes titer-dependent corneal nerve damage and keratitis. Sci Rep 2021; 11:4267. [PMID: 33608598 PMCID: PMC7895966 DOI: 10.1038/s41598-021-83412-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
To investigate the acute clinical, immunological, and corneal nerve changes following corneal HSV-1 KOS-63 strain inoculation. Corneas of C57BL/6 mice were inoculated with either low dose (Ld) or high dose (Hd) HSV-1 KOS-63 or culture medium. Clinical evaluation was conducted up to 7 days post inoculation (dpi). Viral titers were assessed by standard plaque assay. Excised corneas were stained for CD45 and beta-III tubulin. Corneal flow cytometry was performed to assess changes in leukocyte subpopulations. Corneal sensation was measured using a Cochet-Bonnet esthesiometer. Naïve, sham-infected (post scarification), and McKrae-infected C57BL/6 corneas served as two negative and positive controls, respectively. Compared to Ld infected mice, Hd HSV-1 KOS-63 demonstrated higher incidence of corneal opacity (1.5 ×) and neovascularization (2.6 × ; p < 0.05). At 7 dpi Hd infected mice showed more severe corneal opacity (2.23 vs. 0.87; p = 0.0003), neovascularization (6.00 vs. 0.75; p < 0.0001), and blepharitis (3.11 vs. 2.06; p = 0.001) compared to the Ld group. At 3 dpi epitheliopathy was significantly larger in the Hd group (23.59% vs. 3.44%; p = 0.001). Similarly, corneal opacity was significantly higher in Hd McKrae-infected corneas as compared with Ld McKrae-infected corneas at 3 and 5 dpi. No significant corneal opacity, neovascularization, blepharitis, and epitheliopathy were observed in naïve or sham-infected mice. Higher viral titers were detected in corneas (1 and 3 dpi) and trigeminal ganglia (TG) (3 and 5 dpi) in Hd versus Ld KOS-63 groups (p < 0.05). Leukocyte density showed a gradual increase over time from 1 to 7 dpi in both KOS-63 and McKrae-infected corneas. Corneal flow cytometric analysis (3 dpi) demonstrated a higher percentage of Gr-1 + (71.6 vs. 26.3) and CD11b + (90.6 vs. 41.1) cells in Hd versus Ld KOS-63 groups. Corneal nerve density significantly decreased in both Hd KOS-63 and Hd McKrae infected corneas in comparison with naïve and sham-infected corneas. At 3 dpi corneal nerve density was lower in the Hd versus Ld KOS-63 groups (16.79 vs. 57.41 mm/mm2; p = 0.004). Corneal sensation decreased accordingly at 5 and 7 dpi in both Ld and Hd KOS-63-infected mice. Corneal inoculation with HSV-1 KOS-63 strain shows acute keratitis and nerve degeneration in a dose-dependent fashion, demonstrating virulence of this strain.
Collapse
Affiliation(s)
- Hamid-Reza Moein
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Victor G. Sendra
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Arsia Jamali
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Ahmad Kheirkhah
- grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Deshea L. Harris
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Pedram Hamrah
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA ,grid.67033.310000 0000 8934 4045Cornea Service, New England Eye Center, Tufts Medical Center, Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
35
|
Kwon HJ, Chung HS, Lee YM, Kim YJ, Ko BY, Kim HS, Chung TY, Hyon JY, Tchah H. Patients at High Risk for Failure of Penetrating Keratoplasty. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2021. [DOI: 10.3341/jkos.2021.62.1.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Poon SHL, Wong WHL, Lo ACY, Yuan H, Chen CF, Jhanji V, Chan YK, Shih KC. A systematic review on advances in diagnostics for herpes simplex keratitis. Surv Ophthalmol 2020; 66:514-530. [PMID: 33186564 DOI: 10.1016/j.survophthal.2020.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
Herpes simplex keratitis (HSK) is a significant cause of vision impairment worldwide. Currently, there are no set diagnostic criteria, and popular diagnostic methods, including clinical examination of the eye via slit lamp examination, could lead to false-negatives and misdiagnoses. Molecular testing with polymerase chain reaction (PCR) may lack concordance with clinical findings, posing a great challenge to ophthalmologists. We evaluate recent studies on techniques for the diagnosis of HSK. We included a total of 23 studies published between 2010 and 2020 in English on diagnostic techniques, including in vivo confocal microscopy, polymerase PCR testing, protein detection in tear film with enzyme-linked immunosorbent assay, and various other protein assays. Although PCR has been widely used as one of the current diagnostic methods for HSK, most studies evaluated its efficacy after including alterations to its normal protocol. Tear sample analysis was performed using multiple tools, although corneal scrapings demonstrated a higher positive detection rate. Diagnostic tools identified were able to detect HSK with varying accuracy. Newer diagnostic techniques like multiplex dot hybridization assay and immunochromatographic assays may be considered as the point-of-care preliminary diagnostic tools. More reliable results may be generated by developing a standardized diagnostic protocol.
Collapse
Affiliation(s)
- Stephanie Hiu Ling Poon
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR
| | - William Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Hao Yuan
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR.
| |
Collapse
|
37
|
Carr DJJ, Gmyrek GB, Filiberti A, Berube AN, Browne WP, Gudgel BM, Sjoelund VH. Distinguishing Features of High- and Low-Dose Vaccine against Ocular HSV-1 Infection Correlates with Recognition of Specific HSV-1-Encoded Proteins. Immunohorizons 2020; 4:608-626. [PMID: 33037098 DOI: 10.4049/immunohorizons.2000060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The protective efficacy of a live-attenuated HSV type 1 (HSV-1) vaccine, HSV-1 0∆ nuclear location signal (NLS), was evaluated in mice prophylactically in response to ocular HSV-1 challenge. Mice vaccinated with the HSV-1 0∆NLS were found to be more resistant to subsequent ocular virus challenge in terms of viral shedding, spread, the inflammatory response, and ocular pathology in a dose-dependent fashion. Specifically, a strong neutralizing Ab profile associated with low virus titers recovered from the cornea and trigeminal ganglia was observed in vaccinated mice in a dose-dependent fashion with doses ranging from 1 × 103 to 1 × 105 PFU HSV-1 0∆NLS. This correlation also existed in terms of viral latency in the trigeminal ganglia, corneal neovascularization, and leukocyte infiltration and expression of inflammatory cytokines and chemokines in infected tissue with the higher doses (1 × 104-1 × 105 PFU) of the HSV-1 0∆NLS-vaccinated mice, displaying reduced viral latency, ocular pathology, or inflammation in comparison with the lowest dose (1 × 103 PFU) or vehicle vaccine employed. Fifteen HSV-1-encoded proteins were uniquely recognized by antisera from high-dose (1 × 105 PFU)-vaccinated mice in comparison with low-dose (1 × 103 PFU)- or vehicle-vaccinated animals. Passive immunization using high-dose-vaccinated, but not low-dose-vaccinated, mouse sera showed significant efficacy against ocular pathology in HSV-1-challenged animals. In summary, we have identified the minimal protective dose of HSV-1 0∆NLS vaccine in mice to prevent HSV-mediated disease and identified candidate proteins that may be useful in the development of a noninfectious prophylactic vaccine against the insidious HSV-1 pathogen.
Collapse
Affiliation(s)
- Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Amanda N Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William P Browne
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Brett M Gudgel
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Virginie H Sjoelund
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
38
|
Jaggi U, Yang M, Matundan HH, Hirose S, Shah PK, Sharifi BG, Ghiasi H. Increased phagocytosis in the presence of enhanced M2-like macrophage responses correlates with increased primary and latent HSV-1 infection. PLoS Pathog 2020; 16:e1008971. [PMID: 33031415 PMCID: PMC7575112 DOI: 10.1371/journal.ppat.1008971] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
After HSV-1 infection, macrophages infiltrate early into the cornea, where they play an important role in HSV-1 infection. Macrophages are divided into M1 or M2 groups based on their activation. M1 macrophages are pro-inflammatory, while M2 macrophages are anti-inflammatory. Macrophage phenotypes can shift between M1 or M2 in vitro and in vivo following treatment with specific cytokines. In this study we looked at the effect of M2 macrophages on HSV-1 infectivity using mice either lacking M2 (M2-/-) or overexpressing M2 (M2-OE) macrophages. While presence or absence of M2 macrophages had no effect on eye disease, we found that over expression of M2 macrophages was associated with increased phagocytosis, increased primary virus replication, increased latency, and increased expression of pro- and anti-inflammatory cytokines. In contrast, in mice lacking M2 macrophages following infection phagocytosis, replication, latency, and cytokine expression were similar to wild type mice. Our results suggest that enhanced M2 responses lead to higher phagocytosis, which affected both primary and latent infection but not reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| | - Mingjie Yang
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Smidt Heart Institute, and Department of Surgery, Los Angeles, CA United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Smidt Heart Institute, and Department of Surgery, Los Angeles, CA United States of America
| | - Behrooz G. Sharifi
- Oppenheimer Atherosclerosis Research Center, Cedars-Sinai Smidt Heart Institute, and Department of Surgery, Los Angeles, CA United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, CA, United States of America
| |
Collapse
|
39
|
Filiberti A, Gmyrek GB, Montgomery ML, Sallack R, Carr DJJ. Loss of Osteopontin Expression Reduces HSV-1-Induced Corneal Opacity. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 32785676 PMCID: PMC7441335 DOI: 10.1167/iovs.61.10.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Corneal opacity and neovascularization (NV) are often described as outcomes of severe herpes simplex virus type 1 (HSV-1) infection. The current study investigated the role of colony-stimulating factor 1 receptor (CSF1R)+ cells and soluble factors in the progression of HSV-1-induced corneal NV and opacity. Methods MaFIA mice were infected with 500 plaque-forming units of HSV-1 in the cornea following scarification. From day 10 to day 13 post-infection (pi), mice were treated with 40 µg/day of AP20187 (macrophage ablation) or vehicle intraperitoneally. For osteopontin (OPN) neutralization experiments, C57BL/6 mice were infected as above and treated with 2 µg of goat anti-mouse OPN or isotypic control IgG subconjunctivally every 2 days from day 4 to day 12 pi. Mice were euthanized on day 14 pi, and tissue was processed for immunohistochemistry to quantify NV and opacity by confocal microscopy and absorbance or detection of pro- and anti-angiogenic and inflammatory factors and cells by suspension array analysis and flow cytometry, respectively. Results In the absence of CSF1R+ cells, HSV-1-induced blood and lymphatic vessel growth was muted. These results correlated with a loss in fibroblast growth factor type 2 (FGF-2) and an increase in OPN expression in the infected cornea. However, a reduction in OPN expression in mice did not alter corneal NV but significantly reduced opacity. Conclusions Our data suggest that CSF1R+ cell depletion results in a significant reduction in HSV-1-induced corneal NV that correlates with the loss of FGF-2 expression. A reduction in OPN expression was aligned with a significant drop in opacity associated with reduced corneal collagen disruption.
Collapse
Affiliation(s)
- Adrian Filiberti
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Grzegorz B Gmyrek
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Micaela L Montgomery
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Renee Sallack
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma, Oklahoma City, Oklahoma, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
40
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
41
|
Rao P, Suvas PK, Jerome AD, Steinle JJ, Suvas S. Role of Insulin-Like Growth Factor Binding Protein-3 in the Pathogenesis of Herpes Stromal Keratitis. Invest Ophthalmol Vis Sci 2020; 61:46. [PMID: 32106295 PMCID: PMC7329945 DOI: 10.1167/iovs.61.2.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose The goal of this study was to determine the role of insulin-like growth factor-binding protein-3 (IGFBP-3) in the pathogenesis of herpes stromal keratitis (HSK). Methods In an unbiased approach, a membrane-based protein array was carried out to determine the level of expression of pro- and anti-angiogenic molecules in uninfected and HSV-1 infected corneas. Quantitative RT-PCR and ELISA assays were performed to measure the amounts of IGFBP-3 at mRNA and protein levels. Confocal microscopy documented the localization of IGFBP-3 in uninfected and infected corneal tissue. Flow cytometry assay showed the frequency of immune cell types in infected corneas from C57BL/6J (B6) and IGFBP-3 knockout (IGFBP-3-/-) mice. Slit-lamp microscopy was used to quantitate the development of opacity and neovascularization in infected corneas from both groups of mice. Results Quantitation of protein array dot blot showed an increased level of IGFBP-3 protein in HSV-1 infected than uninfected corneas and was confirmed with ELISA and quantitative RT-PCR assays. Cytosolic and nuclear localization of IGFBP-3 were detected in the cells of corneal epithelium, whereas scattered IGFBP-3 staining was evident in the stroma of HSK developing corneas. Increased opacity and hemangiogenesis were noted in the corneas of IGFBP-3-/- than B6 mice during the clinical period of HSK. Furthermore, an increased number of leukocytes comprising of neutrophils and CD4 T cells were found in HSK developing corneas of IGFBP-3-/- than B6 mice. Conclusions Our data showed that lack of IGFBP-3 exacerbates HSK, suggesting the protective effect of IGFBP-3 protein in regulating the severity of HSK.
Collapse
|
42
|
Kasiri A, Mirdehghan MS, Farrahi F, Ostadian F, Feghhi M, Ghomi MR, Mohammad Jafari A, Mahdian Rad A, Kasiri N. Prevention of Corneal Neovascularization; a Preliminary Experimental Study in Rabbits. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2020; 9:47-55. [PMID: 31976343 PMCID: PMC6969563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to compare the effects of propranolol, timolol and bevacizumab with betamethasone to prevent corneal neovascularization (CNV) in rabbits. This study was performed on 28 male rabbits. CNV was induced by three 7-0 silk sutures 2 mm long and 1 mm distal to the limbus. Animals were randomly divided into 4 groups of propranolol + betamethasone, timolol + betamethasone and bevacizumab + betamethasone and betamethasone alone. Eye drops were started from the first day of study. On 7th, 14th, 21st, 28th, 35th and 42nd days, vascular progression, time of neovascularization and vascular area were evaluated and compared with the control group (betamethasone alone). There was a significant reduction in the area of neovascularization in the timolol and bevacizumab groups compared to the control group (P-value = 0.05, P=0.047, respectively). Also, regarding vascular progression, there was a significant decrease in the timolol and bevacizumab groups (P-value = 0.014, P=0.002, respectively). Regarding delayed onset of neovascularization, there was a significant difference in the timolol and bevacizumab group in rabbits (P-value = 0.04, P=0.00, respectively). In conclusion, the use of timolol and bevacizumab drops besides betamethasone can delay neovascularization and decrease the length of corneal vascularization in rabbits.
Collapse
Affiliation(s)
- Ali Kasiri
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sadegh Mirdehghan
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereydoun Farrahi
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshad Ostadian
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Feghhi
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Reza Ghomi
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aram Mohammad Jafari
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Atefeh Mahdian Rad
- Department of Ophthalmology, Faculty of Medicine, Infectious Ophthalmic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niusha Kasiri
- Medical Student, Ahvaz Jundishapur University of Medical Sciences Ahvaz, Iran
| |
Collapse
|
43
|
Sarkar R, Mathew A, Sehrawat S. Myeloid-Derived Suppressor Cells Confer Infectious Tolerance to Dampen Virus-Induced Tissue Immunoinflammation. THE JOURNAL OF IMMUNOLOGY 2019; 203:1325-1337. [DOI: 10.4049/jimmunol.1900142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/24/2019] [Indexed: 11/19/2022]
|
44
|
Human antigen R protein modulates vascular endothelial growth factor expression in human corneal epithelial cells under hypoxia. J Formos Med Assoc 2019; 119:359-366. [PMID: 31262614 DOI: 10.1016/j.jfma.2019.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/20/2019] [Accepted: 06/14/2019] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Corneal avascularity is critical for corneal transparency; therefore, a tailored process has been presumed to minimize corneal neovascularization (NV). In most cell types, the transcription of vascular endothelial growth factor (VEGF) is up-regulated, and the stability of VEGF mRNA is sustained by human antigen R (HuR) during hypoxia; however, whether such response applies to corneal epithelial cells is unclear. METHODS Human corneal epithelial cells (HCECs) and MCF-7 cells that serves as the control were incubated under 0.5% oxygen, and the levels of VEGF and HuR were examined time-dependently. The alteration of HuR was also examined in vivo using the closed-eye contact lens-induced corneal neovascularization rabbit model and immunohistochemistry. Additionally, the expression of HuR was modulated by transfection of plasmids encoding HuR or siRNA targeting HuR to validate the role of HuR in VEGF expression. RESULTS We found that, unlike in control cells, the level of VEGF was not up-regulated, and the HuR expression was declined in HCECs following hypoxia. The HuR immunostaining intensities were decreased in corneal epithelial cells of rabbits wearing contact lenses. In addition, HuR overexpression restored the ability of HCECs to up-regulate VEGF under hypoxia; however, knockdown of HuR suppressed hypoxia-induced VEGF in control cells but did not further decrease VEGF in HCECs. These findings suggest that HCECs may modulate HuR to suppress hypoxia-mediated up-regulation of VEGF. CONCLUSION Our study revealed a distinct regulation of VEGF via HuR in HCECs following hypoxia, which likely contributes to minimizing corneal NV and/or maintenance of corneal avascularity.
Collapse
|
45
|
Foulsham W, Dohlman TH, Mittal SK, Taketani Y, Singh RB, Masli S, Dana R. Thrombospondin-1 in ocular surface health and disease. Ocul Surf 2019; 17:374-383. [PMID: 31173926 DOI: 10.1016/j.jtos.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Thrombospondin 1 (TSP-1) is an extracellular matrix protein that interacts with a wide array of ligands including cell receptors, growth factors, cytokines and proteases to regulate various physiological and pathological processes. Constitutively expressed by certain ocular surface tissues (e.g. corneal and conjunctival epithelium), TSP-1 expression is modulated during ocular surface inflammation. TSP-1 is an important activator of latent TGF-β, serving to promote the immunomodulatory and wound healing functions of TGF-β. Mounting research has deepened our understanding of how TSP-1 expression (and lack thereof) contributes to ocular surface homeostasis and disease. Here, we review current knowledge of the function of TSP-1 in dry eye disease, ocular allergy, angiogenesis/lymphangiogenesis, corneal transplantation, corneal wound healing and infectious keratitis.
Collapse
Affiliation(s)
- William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Thomas H Dohlman
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Yukako Taketani
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
46
|
Long non-coding RNA H19 promotes corneal neovascularization by targeting microRNA-29c. Biosci Rep 2019; 39:BSR20182394. [PMID: 30948500 PMCID: PMC6499455 DOI: 10.1042/bsr20182394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNA (lncRNA) H19 has been implicated in tumor angiogenesis. However, whether H19 regulates the progression of corneal neovascularization (CNV) is unclear. The present study aimed to determine the function of H19 in CNV and its possible molecular mechanism. Here, we found that the H19 levels were remarkably increased in vascularized corneas and basic fibroblast growth factor (bFGF)-treated human umbilical vein endothelial cells (HUVECs). In vitro, H19 up-regulation promoted proliferation, migration, tube formation and vascular endothelial growth factor A (VEGFA) expression in HUVECs, and it was found to down-regulate microRNA-29c (miR-29c) expression. Bioinformatics analysis revealed that H19 mediated the above effects by binding directly to miR-29c. In addition, miR-29c expression was markedly reduced in vascularized corneas and its expression also decreased in bFGF-treated HUVECs in vitro. MiR-29c targeted the 3′ untranslated region (3′-UTR) of VEGFA and decreased its expression. These data suggest that H19 can enhance CNV progression by inhibiting miR-29c, which negatively regulates VEGFA. This novel regulatory axis may serve as a potential therapeutic target for CNV.
Collapse
|
47
|
Rajasagi NK, Rouse BT. The Role of T Cells in Herpes Stromal Keratitis. Front Immunol 2019; 10:512. [PMID: 30941142 PMCID: PMC6433787 DOI: 10.3389/fimmu.2019.00512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/26/2019] [Indexed: 12/23/2022] Open
Abstract
The blinding inflammatory lesion stromal keratitis (SK), which occurs in some patients in response to ocular herpes simplex virus (HSV) infection, represents mainly an immune cell mediated inflammatory response to the virus infection. The principal orchestrators of the immunopathological lesions are T cells although additional events participate that include the extent of recruitment of non-lymphoid cells, the extent of neoangiogenesis, and the extent of damage to nerve function. This review focuses on evidence that the balance of the functional subsets of T cells has a major impact on lesion severity and duration. Accordingly, if proinflammatory Th1 and Th17 CD4 T cells, and perhaps in some cases CD8 T cells, predominate lesions occur earlier and are more severe. Lesions are diminished when cells with regulatory function predominate. Moreover, when regulatory cells acquire the property to produce Amphiregulin this may facilitate lesion resolution. An objective to controlling lesions is to learn how to manipulate the balance of T cells to favor the representation and function of regulatory T cells and their products over proinflammatory cells. In this review we emphasize how exploiting the differential metabolic requirements of immune cells could be a valuable approach to control SK.
Collapse
Affiliation(s)
- Naveen K Rajasagi
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Barry T Rouse
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
48
|
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17:40-49. [PMID: 30317007 PMCID: PMC6340725 DOI: 10.1016/j.jtos.2018.10.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus type 1 (HSV) keratitis is a leading cause of infectious blindness. Clinical disease occurs variably throughout the cornea from epithelium to endothelium and recurrent HSV stromal keratitis is associated with corneal scarring and neovascularization. HSV keratitis can be associated with ocular pain and subsequent neutrophic keratopathy. Host cell interactions with HSV trigger an inflammatory cascade responsible not only for clearance of virus but also for progressive corneal opacification due to inflammatory cell infiltrate, angiogenesis, and corneal nerve loss. Current antiviral therapies target viral replication to decrease disease duration, severity and recurrence, but there are limitations to these agents. Therapies directed towards viral entry into cells, protein synthesis, inflammatory cytokines and vascular endothelial growth factor pathways in animal models represent promising new approaches to the treatment of recurrent HSV keratitis.
Collapse
Affiliation(s)
- Ann-Marie Lobo
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alex M Agelidis
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
49
|
Rao P, Suvas S. Development of Inflammatory Hypoxia and Prevalence of Glycolytic Metabolism in Progressing Herpes Stromal Keratitis Lesions. THE JOURNAL OF IMMUNOLOGY 2018; 202:514-526. [PMID: 30530484 DOI: 10.4049/jimmunol.1800422] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022]
Abstract
Chronic inflammation in tissues often causes the development of hypoxia. Herpes stromal keratitis (HSK) is a corneal chronic inflammatory condition that develops in response to recurrent HSV-1 infection. In this study, we investigated the development of hypoxia, the expression of hypoxia-associated glycolytic genes in HSV-1 infected corneas, and the outcome of blocking hypoxia-inducible factor (HIF) dimerization on the severity of HSK. Our results showed the development of hypoxia, an elevated expression of hypoxia-associated glycolytic genes, and an increased level of lactate in corneas with progressing HSK lesions. The magnitude of hypoxia correlated with the extent of neutrophils infiltrating the infected corneas, and the depletion of neutrophils reduced the development of hypoxia in infected corneas. Additionally, in progressing HSK lesions, nuclear localization of HIF-2α protein was detected in corneal epithelial cells, whereas HIF-1α protein stabilization was observed in infiltrating immune cells. Administration of acriflavine drug to HSV-1-infected mice inhibited nuclear accumulation of HIF-1α and HIF-2α protein in immune cell types and epithelial cells, respectively, in infected corneas. As a result, a decreased influx of CD4 T cells and nongranulocytic myeloid cells, but an increased influx of neutrophils, was noted in developing HSK lesions. Interestingly, acriflavine treatment given during the clinical disease period decreased neovascularization but increased the opacity in HSV-1-infected corneas. Taken together, the results of our study lay the foundation to dissect the role of inflammatory hypoxia and hypoxia-associated genes in the pathogenesis of HSK.
Collapse
Affiliation(s)
- Pushpa Rao
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201; and .,Kresge Eye Institute, Detroit, MI 48201
| |
Collapse
|
50
|
Pennington MR, Grenier JK, Van de Walle GR. Transcriptome profiling of alphaherpesvirus-infected cells treated with the HIV-integrase inhibitor raltegravir reveals profound and specific alterations in host transcription. J Gen Virol 2018; 99:1115-1128. [PMID: 29916804 DOI: 10.1099/jgv.0.001090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anti-microbial compounds typically exert their action by directly interfering with one or more stages of the pathogen's life cycle. However, some compounds also have secondary effects on the host that aid in pathogen clearance. Raltegravir is a human immunodeficiency virus (HIV)-integrase inhibitor that has been shown to alter the host immune response to HIV in addition to its direct antiviral effect. Interestingly, raltegravir can also directly inhibit the replication of various herpesviruses. However, the host-targeted effects of this drug in the context of a herpesvirus infection have not been explored. Here, we used felid alphaherpesvirus 1 (FHV-1), a close relative of human alphaherpesvirus 1 (HHV-1) that similarly causes ocular herpes, to characterize the host-targeted effects of raltegravir on corneal epithelial cells during an alphaherpesvirus infection. Using RNA deep sequencing, we found that raltegravir specifically boosts the expression of anti-angiogenic factors and promotes metabolic homeostasis in FHV-1-infected cells. In contrast, few changes in host gene transcription were found in uninfected cells. Importantly, we were able to demonstrate that these effects were specific to raltegravir and independent of the direct-acting antiviral effect of the drug, since treatment with the DNA polymerase inhibitor phosphonoacetic acid did not induce these host-targeted effects. Taken together, these results indicate that raltegravir has profound and specific effects on the host transcription profile of herpesvirus-infected cells that may contribute to the overall antiviral activity of the drug and could provide therapeutic benefits in vivo. Furthermore, this study provides a framework for future efforts evaluating the host-targeted effects of anti-microbial compounds.
Collapse
Affiliation(s)
- Matthew R Pennington
- 1Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer K Grenier
- 2Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R Van de Walle
- 1Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|