1
|
Taner AF, Hanson JVM, Weber C, Bassler D, McCulloch DL, Gerth-Kahlert C. Flicker electroretinogram in preterm infants. Eye (Lond) 2024; 38:2768-2774. [PMID: 38783086 PMCID: PMC11427446 DOI: 10.1038/s41433-024-03127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Infants born prematurely are at risk of developing retinopathy of prematurity, which is associated with abnormalities in retinal function as measured using electroretinography. The aim of this study was to record non-invasive flicker electroretinograms (ERGs) in preterm infants and compare function of moderate and very or extremely preterm infants. METHODS In this non-randomized, cross-sectional study, 40 moderate preterm (gestational age (GA) 34 0/7 to 36 6/7 weeks, Group A) and 40 very or extremely preterm infants (GA ≤ 31 weeks, Group B) were recruited for flicker ERG recording through closed eyelids using the RETeval® device and skin electrodes. Group A was tested within the first week of life and Group B between 34th and 37th week postmenstrual age. Flicker stimuli were presented at 28.3 Hz with stimulus levels of 3, 6, 12, 30 and 50 cd•s/m2. Primary endpoints were peak time (ms) and amplitude (µV). RESULTS Flicker ERGs were recordable in most infants with the highest proportion of reproducible ERGs at 30 cd•s/m2. Amplitudes increased with stronger flicker stimulation, while peak times did not differ significantly between stimulus levels nor groups. Amplitudes were significantly greater in Group B at the strongest stimulus level (Mann-Whitney-U-Test=198.00, Z = 4.097, p = <0.001). CONCLUSIONS Feasibility of collecting flicker ERG data in most preterm infants was confirmed. We found no evidence of reduced retinal responses to flicker stimuli associated with extreme prematurity. Higher amplitudes in very and extremely preterm infants could indicate acceleration of retinal development following birth, triggered by visual stimulation.
Collapse
Affiliation(s)
- Aylin F Taner
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - James V M Hanson
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Caroline Weber
- Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Daphne L McCulloch
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
| | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Luo S, Alwattar B, Li Q, Bora K, Blomfield AK, Lin J, Fulton A, Chen J, Agrawal PB. HBS1L deficiency causes retinal dystrophy in a child and in a mouse model associated with defective development of photoreceptor cells. Dis Model Mech 2024; 17:dmm050557. [PMID: 38966981 DOI: 10.1242/dmm.050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Inherited retinal diseases encompass a genetically diverse group of conditions caused by variants in genes critical to retinal function, including handful of ribosome-associated genes. This study focuses on the HBS1L gene, which encodes for the HBS1-like translational GTPase that is crucial for ribosomal rescue. We have reported a female child carrying biallelic HBS1L variants, manifesting with poor growth and neurodevelopmental delay. Here, we describe the ophthalmologic findings in the patient and in Hbs1ltm1a/tm1a hypomorph mice and describe the associated microscopic and molecular perturbations. The patient has impaired visual function, showing dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound thinning of the entire retina, specifically of the outer photoreceptor layer, due to extensive photoreceptor cell apoptosis. Loss of Hbs1l resulted in comprehensive proteomic alterations by mass spectrometry analysis, with an increase in the levels of 169 proteins and a decrease in the levels of 480 proteins, including rhodopsin (Rho) and peripherin 2 (Prph2). Gene Ontology biological process and gene set enrichment analyses reveal that the downregulated proteins are primarily involved in phototransduction, cilium assembly and photoreceptor cell development. These findings underscore the importance of ribosomal rescue proteins in maintaining retinal health, particularly in photoreceptor cells.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bilal Alwattar
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra K Blomfield
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine Lin
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Fulton
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Wang X, Wang T, Kaneko S, Kriukov E, Lam E, Szczepan M, Chen J, Gregg A, Wang X, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S, Baranov P, Sun Y. Photoreceptors inhibit pathological retinal angiogenesis through transcriptional regulation of Adam17 via c-Fos. Angiogenesis 2024; 27:379-395. [PMID: 38483712 PMCID: PMC11303108 DOI: 10.1007/s10456-024-09912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/11/2024]
Abstract
Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianxi Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Kaneko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emil Kriukov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Enton Lam
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manon Szczepan
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasmine Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin Gregg
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xingyan Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Petr Baranov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
5
|
Saad A, Turgut F, Sommer C, Becker M, DeBuc D, Barboni M, Somfai GM. The Use of the RETeval Portable Electroretinography Device for Low-Cost Screening: A Mini-Review. Klin Monbl Augenheilkd 2024; 241:533-537. [PMID: 38653305 DOI: 10.1055/a-2237-3814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electroretinography (ERG) provides crucial insights into retinal function and the integrity of the visual pathways. However, ERG assessments classically require a complicated technical background with costly equipment. In addition, the placement of corneal or conjunctival electrodes is not always tolerated by the patients, which restricts the measurement for pediatric evaluations. In this short review, we give an overview of the use of the RETeval portable ERG device (LKC Technologies, Inc., Gaithersburg, MD, USA), a modern portable ERG device that can facilitate screening for diseases involving the retina and the optic nerve. We also review its potential to provide ocular biomarkers in systemic pathologies, such as Alzheimer's disease and central nervous system alterations, within the framework of oculomics.
Collapse
Affiliation(s)
- Amr Saad
- Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
| | - Ferhat Turgut
- Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
- Ophthalmology, Gutblick, Pfäffikon, Switzerland
| | - Chiara Sommer
- Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
| | - Matthias Becker
- Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
| | - Delia DeBuc
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida, United States
| | - Mirella Barboni
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Gabor Mark Somfai
- Ophthalmology, Stadtspital Zürich Triemli, Zürich, Switzerland
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Pueyo V, Cedillo Ley M, Fanlo-Zarazaga Á, Hu L, Pan X, Perez-Roche T, Balasanyan V, Solanas D, de Fernando S, Prieto E, Yam JCS, Pham C, Ortin M, Castillo O, Gutierrez D. Colour perception develops throughout childhood with increased risk of deficiencies in children born prematurely. Acta Paediatr 2024; 113:259-266. [PMID: 37775921 DOI: 10.1111/apa.16978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
AIM To quantify the impact of prematurity on chromatic discrimination throughout childhood, from 2 to 15 years of age. METHODS We recruited two cohorts of children, as part of the TrackAI Project, an international project with seven different study sites: a control group of full-term children with normal visual development and a group of children born prematurely. All children underwent a complete ophthalmological exam and an assessment of colour discrimination along the three colour axes: deutan, protan and trytan using a DIVE device with eye tracking technology. RESULTS We enrolled a total of 1872 children (928 females and 944 males) with a mean age of 6.64 years. Out of them, 374 were children born prematurely and 1498 were full-term controls. Using data from all the children born at term, reference normative curves were plotted for colour discrimination in every colour axis. Pre-term children presented worse colour discrimination than full-term in the three colour axes (p < 0.001). Even after removing from the comparison, all pre-term children with any visual disorder colour discrimination outcomes remained significantly worse than those from full-term children. CONCLUSION While colour perception develops throughout the first years of life, children born pre-term face an increased risk for colour vision deficiencies.
Collapse
Affiliation(s)
- Victoria Pueyo
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragón), Madrid, Spain
- Department de Microbiology, Pediatrics, Radiology and Public Health. Faculty of Medicine. University of Zaragoza, Zaragoza, Spain
| | - Mauricio Cedillo Ley
- Ophthalmology Department, Hospital Luis Sánchez Bulnes, Asociación Para Evitar la Ceguera (APEC), Mexico, Mexico
| | - Álvaro Fanlo-Zarazaga
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragón), Madrid, Spain
| | - Liu Hu
- Ophthalmology Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Pan
- DIVE Medical S.L., Zaragoza, Spain
| | - Teresa Perez-Roche
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragón), Madrid, Spain
| | | | | | | | - Esther Prieto
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragón), Madrid, Spain
| | | | - Chau Pham
- National Institute of Ophthalmology, Hanoi, Vietnam
| | - Marta Ortin
- Aragon Institute for Health Research (IIS Aragón), Madrid, Spain
- DIVE Medical S.L., Zaragoza, Spain
| | - Olimpia Castillo
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragón), Madrid, Spain
| | - Diego Gutierrez
- Aragon Institute for Health Research (IIS Aragón), Madrid, Spain
- I3A Institute for Research in Engineering, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
7
|
Edgar KS, Cunning C, Gardiner TA, McDonald DM. BH4 supplementation reduces retinal cell death in ischaemic retinopathy. Sci Rep 2023; 13:21292. [PMID: 38042898 PMCID: PMC10693630 DOI: 10.1038/s41598-023-48167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023] Open
Abstract
Dysregulation of nitric oxide (NO) production can cause ischaemic retinal injury and result in blindness. How this dysregulation occurs is poorly understood but thought to be due to an impairment in NO synthase function (NOS) and nitro-oxidative stress. Here we investigated the possibility of correcting this defective NOS activity by supplementation with the cofactor tetrahydrobiopterin, BH4. Retinal ischaemia was examined using the oxygen-induced retinopathy model and BH4 deficient Hph-1 mice used to establish the relationship between NOS activity and BH4. Mice were treated with the stable BH4 precursor sepiapterin at the onset of hypoxia and their retinas assessed 48 h later. HPLC analysis confirmed elevated BH4 levels in all sepiapterin supplemented groups and increased NOS activity. Sepiapterin treatment caused a significant decrease in neuronal cell death in the inner nuclear layer that was most notable in WT animals and was associated with significantly diminished superoxide and local peroxynitrite formation. Interestingly, sepiapterin also increased inflammatory cytokine levels but not microglia cell number. BH4 supplementation by sepiapterin improved both redox state and neuronal survival during retinal ischaemia, in spite of a paradoxical increase in inflammatory cytokines. This implicates nitro-oxidative stress in retinal neurones as the cytotoxic element in ischaemia, rather than enhanced pro-inflammatory signalling.
Collapse
Affiliation(s)
- Kevin S Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Ciara Cunning
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Tom A Gardiner
- School of Medicine, Dentistry and Biomedical Sciences, Centre for Biomedical Sciences Education, Queen's University Belfast, Belfast, UK
| | - Denise M McDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, 97 Lisburn Road, BT9 7BL, UK.
| |
Collapse
|
8
|
Harman JC, Pivodic A, Nilsson AK, Boeck M, Yagi H, Neilsen K, Ko M, Yang J, Kinter M, Hellström A, Fu Z. Postnatal hyperglycemia alters amino acid profile in retinas (model of Phase I ROP). iScience 2023; 26:108021. [PMID: 37841591 PMCID: PMC10568433 DOI: 10.1016/j.isci.2023.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Nutritional deprivation occurring in most preterm infants postnatally can induce hyperglycemia, a significant and independent risk factor for suppressing physiological retinal vascularization (Phase I retinopathy of prematurity (ROP)), leading to compensatory but pathological neovascularization. Amino acid supplementation reduces retinal neovascularization in mice. Little is known about amino acid contribution to Phase I ROP. In mice modeling hyperglycemia-associated Phase I ROP, we found significant changes in retinal amino acids (including most decreased L-leucine, L-isoleucine, and L-valine). Parenteral L-isoleucine suppressed physiological retinal vascularization. In premature infants, severe ROP was associated with a higher mean intake of parenteral versus enteral amino acids in the first two weeks of life after adjustment for treatment group, gestational age at birth, birth weight, and sex. The number of days with parenteral amino acids support independently predicted severe ROP. Further understanding and modulating amino acids may help improve nutritional intervention and prevent Phase I ROP.
Collapse
Affiliation(s)
- Jarrod C. Harman
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aldina Pivodic
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders K. Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Kinter
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Akula JD, Lancos AM, AlWattar BK, De Bruyn H, Hansen RM, Fulton AB. A Simplified Model of Activation and Deactivation of Human Rod Phototransduction-An Electroretinographic Study. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 37738060 PMCID: PMC10528468 DOI: 10.1167/iovs.64.12.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Purpose To test the hypothesis that a simple model having properties consistent with activation and deactivation in the rod approximates the whole time course of the photoresponse. Methods Routinely, an exponential of the form f = α·(1 - exp(-(τ·(t - teff)s-1))), with amplitude α, rate constant τ (often scaled by intensity), irreducible delay teff, and time exponent s-1, is fit to the early period of the flash electroretinogram. Notably, s (an integer) represents the three integrating stages in the rod amplification cascade (rhodopsin isomerization, transducin activation, and cGMP hydrolysis). The time course of the photoresponse to a 0.17 cd·s·m-2 conditioning flash (CF) was determined in 21 healthy eyes by presenting the CF plus a bright probe flash (PF) in tandem, separated by interstimulus intervals (ISIs) of 0.01 to 1.4 seconds, and calculating the proportion of the PF a-wave suppressed by the CF at each ISI. To test if similar kinetics describe deactivation, difference of exponential (DoE) functions with common α and teff parameters, respective rate constants for the initiation (I) and quenching (Q) phases of the response, and specified values of s (sI, sQ), were compared to the photoresponse time course. Results As hypothesized, the optimal values of sI and sQ were 3 and 2, respectively. Mean ± SD α was 0.80 ± 0.066, I was 7700 ± 2400 m2·cd-1·s-3, and Q was 1.4 ± 0.47 s-1. Overall, r2 was 0.93. Conclusions A method, including a DoE model with just three free parameters (α, I, Q), that robustly captures the magnitude and time-constants of the complete rod response, was produced. Only two steps integrate to quench the rod photoresponse.
Collapse
Affiliation(s)
- James D. Akula
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Annie M. Lancos
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Bilal K. AlWattar
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Hanna De Bruyn
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Ronald M. Hansen
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Anne B. Fulton
- Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Curran ALK, Stukin J, Ambrosio L, Mantagos IS, Wu C, Vanderveen DK, Hansen RM, Akula JD, Fulton AB. Electroretinographic Responses in Retinopathy of Prematurity Treated Using Intravitreal Bevacizumab or Laser. Am J Ophthalmol 2023; 252:275-285. [PMID: 37146743 PMCID: PMC10524994 DOI: 10.1016/j.ajo.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Intravitreal injection of bevacizumab (IVB) offers advantages over laser photoablation for treatment of type 1 retinopathy of prematurity (ROP). However, retinal function has not, to date, been quantitatively compared following these interventions. Therefore, electroretinography (ERG) was used compare retinal function among eyes treated using IVB or laser, and control eyes. In addition, among the IVB-treated eyes, ERG was used to compare function in individuals in whom subsequent laser was and was not required. DESIGN Prospective clinical cohort study. METHODS ERG was used to record dark- and light-adapted stimulus/response functions in 21 children treated using IVB (12 of whom required subsequent laser in at least 1 eye for persistent avascular retina [PAR]). Sensitivity and amplitude parameters were derived from the a-wave, b-wave, and oscillatory potentials (OPs), representing activity in photoreceptor, postreceptor, and inner retinal cells, respectively. These parameters were then referenced to those of 76 healthy, term-born controls and compared to those of 10 children treated using laser only. RESULTS In children with treated ROP, every ERG parameter was significantly below the mean in controls. However, these significant ERG deficits did not differ between IVB- and laser-treated eyes. Among children treated using IVB, no ERG parameter was significantly associated with dose or need for subsequent laser. CONCLUSION Retinal function was significantly impaired in treated ROP eyes. Function in IVB-treated eyes did not differ from that in laser-treated eyes. Functional differences also did not distinguish those IVB-treated eyes that would subsequently need laser for PAR.
Collapse
Affiliation(s)
| | - Justyna Stukin
- Boston Children’s Hospital, Ophthalmology
- Northeastern University, Behavioral Neuroscience
| | - Lucia Ambrosio
- University of Naples Federico II, Department of Neuroscience, Reproductive and Odontostomatological Sciences
- University of Naples Federico II, Department of Public Health
| | - Iason S. Mantagos
- Boston Children’s Hospital, Ophthalmology
- Harvard Medical School, Ophthalmology
| | - Carolyn Wu
- Boston Children’s Hospital, Ophthalmology
- Harvard Medical School, Ophthalmology
| | | | - Ronald M. Hansen
- Boston Children’s Hospital, Ophthalmology
- Harvard Medical School, Ophthalmology
| | - James D. Akula
- Boston Children’s Hospital, Ophthalmology
- Harvard Medical School, Ophthalmology
| | - Anne B. Fulton
- Boston Children’s Hospital, Ophthalmology
- Harvard Medical School, Ophthalmology
| |
Collapse
|
11
|
Chen S, Zhang J, Sun D, Wu Y, Fang J, Wan X, Li S, Zhang S, Gu Q, Shao Q, Dong J, Xu X, Wei F, Sun Q. SYVN1 Promotes STAT3 Protein Ubiquitination and Exerts Antiangiogenesis Effects in Retinopathy of Prematurity Development. Invest Ophthalmol Vis Sci 2023; 64:8. [PMID: 37540175 PMCID: PMC10408771 DOI: 10.1167/iovs.64.11.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE SYVN1, a gene involved in endoplasmic reticulum-associated degradation, has been found to exert a protective effect by inhibiting inflammation in retinopathy. This study aimed to clarify whether SYVN1 is involved in the pathogenesis of retinopathy of prematurity (ROP) and its potential as a candidate for target therapy. METHODS Human retinal microvascular endothelial cells (hRMECs) and a mouse model of oxygen-induced retinopathy (OIR) were used to reveal the retinopathy development-associated protein expression and molecular mechanism. An adenovirus overexpressing SYVN1 or vehicle control was injected intravitreally at postnatal day 12 (P12), and the neovascular lesions were evaluated in retinal flatmounts with immunofluorescence staining, and hematoxylin and eosin staining at P17. Visual function was assessed by using electroretinogram (ERG). RESULTS Endogenous SYVN1 expression dramatically decreased in hRMECs under hypoxia and in ROP mouse retinas. SYVN1 regulated the signal transducer and activator of transcription 3 (STAT3)/vascular endothelial growth factor (VEGF) axis. SYVN1 overexpression promoted ubiquitination and degradation of STAT3, decreased the levels of phospho-STAT3, secretion of VEGF, and formation of neovascularization in hRMECs, which could be rescued by STAT3 activator treatment. In addition, SYVN1 overexpression prevented neovascularization and extended physiologic retinal vascular development in the retinal tissues of OIR mice without affecting retinal function. CONCLUSIONS SYVN1 has a protective effect against OIR, and the molecular mechanisms are partly through SYVN1-mediated ubiquitination of STAT3 and the subsequent downregulation of VEGF. These findings strongly support our assumption that SYVN1 confers ROP resistance and may be a potentially novel pharmaceutical target against proliferative retinopathy.
Collapse
Affiliation(s)
- Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yidong Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shenping Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qing Shao
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| | - Jun Dong
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qiao Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Xuhui District, Shanghai Aier Eye Institute, Shanghai, China
| |
Collapse
|
12
|
Fu Z, Lundgren P, Pivodic A, Yagi H, Harman JC, Yang J, Ko M, Neilsen K, Talukdar S, Hellström A, Smith LEH. FGF21 via mitochondrial lipid oxidation promotes physiological vascularization in a mouse model of Phase I ROP. Angiogenesis 2023; 26:409-421. [PMID: 36943533 PMCID: PMC10328855 DOI: 10.1007/s10456-023-09872-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
Hyperglycemia in early postnatal life of preterm infants with incompletely vascularized retinas is associated with increased risk of potentially blinding neovascular retinopathy of prematurity (ROP). Neovascular ROP (Phase II ROP) is a compensatory but ultimately pathological response to the suppression of physiological postnatal retinal vascular development (Phase I ROP). Hyperglycemia in neonatal mice which suppresses physiological retinal vascular growth is associated with decreased expression of systemic and retinal fibroblast growth factor 21 (FGF21). FGF21 administration promoted and FGF21 deficiency suppressed the physiological retinal vessel growth. FGF21 increased serum adiponectin (APN) levels and loss of APN abolished FGF21 promotion of physiological retinal vascular development. Blocking mitochondrial fatty acid oxidation also abolished FGF21 protection against delayed physiological retinal vessel growth. Clinically, preterm infants developing severe neovascular ROP (versus non-severe ROP) had a lower total lipid intake with more parenteral and less enteral during the first 4 weeks of life. Our data suggest that increasing FGF21 levels in the presence of adequate enteral lipids may help prevent Phase I retinopathy (and therefore prevent neovascular disease).
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Pia Lundgren
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Aldina Pivodic
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Jarrod C Harman
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jay Yang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Minji Ko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
De Bruyn H, Hansen RM, Akula JD, Fulton AB. The Development of Retinal Function and Refractive Error in Children With Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2023; 64:35. [PMID: 37651111 PMCID: PMC10476440 DOI: 10.1167/iovs.64.11.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
Purpose The purpose of this study was to test the hypothesis that retinopathy of prematurity (ROP) prolongs development of rod-mediated thresholds for detection of stimuli at 10 degrees but not 30 degrees eccentricity. In addition, to evaluate the thresholds at each site for an association with visual acuity (VA) and spherical equivalent (SE). Methods We estimated rod-mediated dark-adapted thresholds (DATs) for the detection of 2 degree diameter, 50 ms, blue (λ < 510 nm) flashes at 10 degrees and 30 degrees eccentric in former preterm subjects (n = 111), stratified by ROP severity: None (n = 32), Mild (n = 66), and Severe (n = 13). We also tested Term-born (n = 28) controls. To determine the age at half-maximal sensitivity (Agehalf) for each group and eccentricity, we fit DATs to logistic growth curves. We obtained VA and SE for Preterm subjects and evaluated the course of threshold development at 10 degrees and 30 degrees for significant association with VA and SE predicted at age 10 years. Results DAT development at 10 degrees was significantly delayed in ROP (Mild and Severe); ROP did not significantly alter DAT development at 30 degrees. At age 10 years, among Preterm subjects, both VA and SE were significantly associated with group (None,Mild, and Severe). SE was predicted by the course of DAT development at 30 degrees. VA was not associated with the course of DAT development at 10 degrees. Conclusions At 10 degrees, ROP-whether mild or severe-is associated with significant delays in DAT development, evidence that the late-maturing central retina is vulnerable to ROP. The association of 30 degree threshold and myopia are evidence that more peripheral retina is important to refractive development.
Collapse
Affiliation(s)
- Hanna De Bruyn
- Ophthalmology Department, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Ronald M. Hansen
- Ophthalmology Department, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology Department, Harvard Medical School, Boston, Massachusetts, United States
| | - James D. Akula
- Ophthalmology Department, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology Department, Harvard Medical School, Boston, Massachusetts, United States
| | - Anne B. Fulton
- Ophthalmology Department, Boston Children's Hospital, Boston, Massachusetts, United States
- Ophthalmology Department, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Cheng H, Cao D, Qian J, Gu W, Zheng Z, Ma M. Refractive status and retinal morphology in children with a history of intravitreal ranibizumab for retinopathy of prematurity. Eur J Pediatr 2023:10.1007/s00431-023-04965-7. [PMID: 37097446 DOI: 10.1007/s00431-023-04965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
This study investigated the characteristics of refractive status, visual acuity, and retinal morphology in children with a history of receiving intravitreal ranibizumab for retinopathy of prematurity (ROP). Children 4-6 years of age were enrolled and divided into the following four groups: group 1, children with a history of ROP who had been treated with intravitreal ranibizumab; group 2, children with a history of ROP who had not received any treatment; group 3, premature children without ROP; and group 4, full-term children. Refractive status, peripapillary retinal nerve fiber layer (RNFL), and macular thickness were measured. A total of 204 children were enrolled. In group 1, myopic shift was not noted, but poorer best corrected visual acuity (BCVA) and shorter axial length were observed. Significantly lower peripapillary RNFL thickness in the average total and superior quadrant, higher central subfield thickness, lower parafoveal retinal thickness in average total, superior, and nasal and temporal quadrants were observed in group 1 than in the other groups. The poor BCVA in patients with ROP was correlated with the lower RNFL thickness in the superior quadrant. Conclusion: Children with a history of type 1 ROP treated with ranibizumab did not show a myopic shift but did show abnormal retinal morphology and the poorest BCVA among all groups. We suggest that pediatric ophthalmologists should always pay attention to visual development in patients with ROP with a history of intravitreal ranibizumab. What is Known: • Anti-VEGF is efficiently and widely used in the treatment of type 1 retinopathy of prematurity (ROP), and different anti-VEGF agents are associated with different prevalence of myopia. • Patients with ROP who receive treatment such as laser therapy or cryotherapy have abnormal macular development and retinal nerve fiber layer (RNFL) thickness. What is New: • Children with a history of ROP treated with intravitreal ranibizumab did not show a myopic shift but did show poor BCVA at 4-6 years of age. • Abnormal macular morphology and lower peripapillary RNFL thickness were found in these children.
Collapse
Affiliation(s)
- Haixia Cheng
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Ophthalmology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Di Cao
- Department of Ophthalmology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
- Department of Ophthalmology, Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Qian
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gu
- Department of Quality Management, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, No. 85, Wujin Road, Hongkou District, Shanghai, China.
| | - Mingming Ma
- Department of Ophthalmology, Shanghai General Hospital; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, No. 85, Wujin Road, Hongkou District, Shanghai, China.
| |
Collapse
|
15
|
Ingvaldsen SH, Hansen TI, Håberg AK, Moholdt V, Evensen KAI, Dammann O, Austeng D, Morken TS. Visual function correlates with neurodevelopment in a population cohort of school-aged children born extremely preterm. Acta Paediatr 2023; 112:753-761. [PMID: 36627478 DOI: 10.1111/apa.16667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
AIM To investigate visual function and neurodevelopment in a geographically defined population cohort of school-aged children born extremely preterm. METHODS All children born extremely preterm in Central Norway between 2006 and 2011 (n=65) were identified, and 36 (median age, min/max: 13, 10/16) were included. Best-corrected visual acuity (BCVA), contrast sensitivity (four spatial frequencies), parent-reported challenges and neuropsychological testing in learning, executive functions, motor skills, perception, reaction time, working and visual memory, processing speed, and pattern separation were measured. Brain MRI (3T) was acquired and read by a neuroradiologist. RESULTS Median (min/max) BCVA letter score was 85 (35/91) in the better and 82 (13/89) in the worse eye. ROP participants (n=7) had lower contrast sensitivity in the two highest spatial frequencies (p = 0.024 and p = 0.004). Parent-reported challenges correlated negatively with BCVA (learning: p = 0.014; executive functions: p = 0.002; motor skills: p = 0.000; and perception: p = 0.001), while motor skills correlated negatively with one (p = 0.010) and perception with two (p = 0.003 and p = 0.009) of four spatial frequencies. Neuropsychological tests were reduced relative to norms. None had MRI-verified preterm brain injury. CONCLUSION Visual function was subnormal and correlated with parent-reported challenges in a small cohort of extremely preterm school-aged children, indicating that visual function may be a marker of neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Sigrid Hegna Ingvaldsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Ophthalmology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tor Ivar Hansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St Olav hospital, Trondheim University Hospital, Trondheim, Norway
| | - Viggo Moholdt
- Department of Radiology and Nuclear Medicine, St Olav hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Anne I Evensen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physiotherapy, Oslo Metropolitan University, Oslo, Norway.,Children's Clinic, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Olaf Dammann
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA.,Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Dordi Austeng
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Ophthalmology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tora Sund Morken
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Ophthalmology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
16
|
Yang M, Li J, Liu Z, Zhang H, Liu J, Liu Y, Zhuang A, Zhou H, Gu P, Fan X. An injectable vitreous substitute with sustained release of metformin for enhanced uveal melanoma immunotherapy. Biomater Sci 2022; 10:7077-7092. [PMID: 36326609 DOI: 10.1039/d2bm01058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignant tumor in adults with a high rate of metastasis. Conventional treatments have limited effects on metastasis and cause permanent ocular tissue defects. Here, a novel strategy based on an injectable vitreous substitute with sustained metformin release ability (IVS-Met) was reported for efficient UM therapy as well as for repairing vitreous deficiency and preserving visual function. IVS-Met showed an excellent long-term anti-tumor effect by direct tumor attack and modulation of the tumor microenvironment (TME). IVS-Met reduced the proportion of pro-tumor M2 tumor-associated macrophages and induced the pro-inflammatory M1 phenotype, thus reversing the immunosuppressive TME and eliciting robust anti-tumor immune responses. Notably, IVS-Met demonstrated high performance in the inhibition of UM metastasis and significantly extended the survival time of mice. In addition, the vitreous substitute achieved facile administration via direct injection and exhibited excellent rheological and optical properties with the key parameters very close to those of the vitreous body to repair vitreous deficiency and preserve visual function. In summary, this strategy has realized effective UM treatment while retaining eyeballs and vision for the first time, revealing great potential for translation to clinical practice.
Collapse
Affiliation(s)
- Muyue Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Zeyang Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jin Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yan Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
17
|
Fu Z, Nilsson AK, Hellstrom A, Smith LEH. Retinopathy of prematurity: Metabolic risk factors. eLife 2022; 11:e80550. [PMID: 36420952 PMCID: PMC9691009 DOI: 10.7554/elife.80550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
At preterm birth, the retina is incompletely vascularized. Retinopathy of prematurity (ROP) is initiated by the postnatal suppression of physiological retinal vascular development that would normally occur in utero. As the neural retina slowly matures, increasing metabolic demand including in the peripheral avascular retina, leads to signals for compensatory but pathological neovascularization. Currently, only late neovascular ROP is treated. ROP could be prevented by promoting normal vascular growth. Early perinatal metabolic dysregulation is a strong but understudied risk factor for ROP and other long-term sequelae of preterm birth. We will discuss the metabolic and oxygen needs of retina, current treatments, and potential interventions to promote normal vessel growth including control of postnatal hyperglycemia, dyslipidemia and hyperoxia-induced retinal metabolic alterations. Early supplementation of missing nutrients and growth factors and control of supplemental oxygen promotes physiological retinal development. We will discuss the current knowledge gap in retinal metabolism after preterm birth.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Anders K Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lois EH Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
18
|
Wang J, Du E, Li F, Zheng Y. Changes of Beclin-1 and ULK1 in retina of mice model in oxygen-inducedretinopathy. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2022; 2:100065. [PMID: 37846291 PMCID: PMC10577824 DOI: 10.1016/j.aopr.2022.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2023]
Abstract
Purpose To observe the expression differences and potential effects of autophagy-related Beclin1 (mammalian Atg6) and Uncoordinated-51 like kinase 1 (ULK1) in the oxygen-induced retinopathy (OIR) model. Materials and methods Thirty-three C57BL/6 mice in OIR model group were exposed to 75 ± 0.5% oxygen from postnatal day-of-life 7 (P7) to P12, and were then brought into normal room environment (relative hypoxia stage) and raised to P17. Thirty-three control mice were kept in a normal room environment. The expression of autophagy in the retina tissue was assessed by Western blot analysis. The thickness and ultrastructural of retina were observed by light microscopy and transmission electron microscope (TEM) on P17. Results In the hyperoxia stage (P8-P11), the expression of Beclin1, ULK1 and Autophagy 5 (Atg5) in retina showed no significant difference between the OIR model group and the control group. In the relatively hypoxia stage (P14 to P17), however, the protein level of Beclin1, ULK1, and Bcl-2-associated X protein (Bax) were upregulated in the retina of the OIR model group, whereas B-cell lymphoma 2 (Bcl-2) was downregulated. The autophagosomes in the photoreceptors of retina in the OIR mice were observed. The inner-segment/out-segment (IS/OS) layer in OIR model group was thinner than that the control group on P17. Conclusions The expression of Beclin-1 and ULK1 in retina has changed in the OIR model, and the change of Beclin-1 and ULK1 expression is related to the change of oxygen concentration.
Collapse
Affiliation(s)
- Jie Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
- Sir Run Run Shaw Hospital College of Medicine Zhejiang University, Hangzhou, China
| | - Ergang Du
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - FeiFei Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yunliang Zheng
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Sanatkar M, Dastjani Farahani A, Bazvand F. Ketamine Analgesia as an Alternative to General Anesthesia During Laser Treatment for Retinopathy of Prematurity. J Pediatr Ophthalmol Strabismus 2022; 59:416-421. [PMID: 35446192 DOI: 10.3928/01913913-20220225-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To determine the safety and efficacy of ketamine analgesia as an alternative to general anesthesia during laser treatment for retinopathy of prematurity (ROP). METHODS Eighteen premature neonates with ROP underwent laser treatment. The procedure was performed in the operating room, and the neonates were admitted to the neonatal intensive care unit (NICU) after the procedure. An initial dose of 1 mg/kg of ketamine was administered. If the neonate exhibited movement or distress during the procedure, incremental doses of ketamine were administered. Perioperative ventilation status, severity of pain during the procedure, surgeon satisfaction, and perioperative events were recorded. RESULTS Eighteen premature neonates underwent ketamine analgesia during laser treatment for ROP. The procedure was performed in 16 patients with good tolerance and without events. The Premature Infant Pain Profile (PIPP) scores during the procedure were 5 or less in 12 neonates (44.4%), 5 to 10 in 4 neonates (22.2%), and greater than 10 in 2 (11.1%) neonates. Three neonates had perioperative events, which resolved completely with minimal intervention. None of the neonates needed intubation perioperatively, and hemodynamic instability, hypotension, and bradycardia were not recorded in any of the neonates during or after the procedure. CONCLUSIONS The ROP laser treatment under ketamine sedation could be performed in premature neonates with few perioperative complications and provide satisfactory operative conditions. [J Pediatr Ophthalmol Strabismus. 2022;59(6):416-421.].
Collapse
|
20
|
He Y, Chen X, Tsui I, Vajzovic L, Sadda SR. Insights into the developing fovea revealed by imaging. Prog Retin Eye Res 2022; 90:101067. [PMID: 35595637 DOI: 10.1016/j.preteyeres.2022.101067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
Early development of the fovea has been documented by histological studies over the past few decades. However, structural distortion due to sample processing and the paucity of high-quality post-mortem tissue has limited the effectiveness of this approach. With the continuous progress in high-resolution non-invasive imaging technology, most notably optical coherence tomography (OCT) and OCT angiography (OCT-A), in vivo visualization of the developing retina has become possible. Combining the information from histologic studies with this novel imaging information has provided a more complete and accurate picture of retinal development, and in particular the developing fovea. Advances in neonatal care have increased the survival rate of extremely premature infants. However, with enhanced survival there has been an attendant increase in retinal developmental complications. Several key abnormalities, including a thickening of the inner retina at the foveal center, a shallower foveal pit, a smaller foveal avascular zone, and delayed development of the photoreceptors have been described in preterm infants when compared to full-term infants. Notably these abnormalities, which are consistent with a partial arrest of foveal development, appear to persist into later childhood and adulthood in these eyes of individuals born prematurely. Understanding normal foveal development is vital to interpreting these pathologic findings associated with prematurity. In this review, we first discuss the various advanced imaging technologies that have been adapted for imaging the infant eye. We then review the key events and steps in the development of the normal structure of the fovea and contrast structural features in normal and preterm retina from infancy to childhood. Finally, we discuss the development of the perifoveal retinal microvasculature and highlight future opportunities to expand our understanding of the developing fovea.
Collapse
Affiliation(s)
- Ye He
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Pasadena, CA, USA; Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, China
| | - Xi Chen
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Irena Tsui
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Pasadena, CA, USA
| | - Lejla Vajzovic
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Srinivas R Sadda
- Department of Ophthalmology, University of California - Los Angeles, Los Angeles, CA, USA; Doheny Eye Institute, Pasadena, CA, USA.
| |
Collapse
|
21
|
Yang LL, Zhou F, Xu Q, Ye T, Xiong H. Clinical Effect of Tongmai Fuming Decoction on Neovascular Ophthalmopathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7327609. [PMID: 36034947 PMCID: PMC9410785 DOI: 10.1155/2022/7327609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Background The incidence of neovascular eye disease is increasing year by year, seriously threatening human vision health and becoming an urgent public health problem. Tongmai fuming decoction as an experienced prescription can treat ischemic eye disease. Objective To investigate the therapeutic effect of Tongmai fuming decoction combined with anti-VEGF therapy on neovascular ophthalmopathy. Methods 52 patients (62 eyes) with neovascular ophthalmopathy who met the inclusion criteria from January 2018 to July 2020 were randomly divided into the control and observation groups. The control group was given an intravitreal injection of antivascular endothelial growth factor (VEGF) drugs once a day combined with on-demand treatment. The observation group was treated with traditional Chinese medicine Tongmai fuming decoction in addition to the treatment of anti-VEGF drugs. The best-corrected visual acuity (BCVA) was examined before and after treatment, and optical coherence tomography angiography (OCTA) was used to examine the mean retinal thickness and neovascularization in the macular area. Patients were followed for one year and the number of anti-VEGF injections was recorded. Results After treatment, the average thickness of BCVA and macular retina in the two groups significantly improved. The BCVA of the control group was 0.59 ± 0.39 3 months after treatment, and that of the experimental group was 0.42 ± 0.25 3 months after treatment. The average thickness of the macular retina in the control group was 304.8 ± 79.7 3 months after treatment, and that in the experimental group was 267.7 ± 64.6 3 months after treatment; The average number of injections of anti-VEGF therapy in the control group was 2.32 ± 1.15 times, and that in the experimental group was 1.74 ± 0.76 times. There was a significant difference between the two groups. Conclusion Tongmai fuming decoction and anti-VEGF therapy have a synergistic effect in the treatment of neovascular ophthalmopathy, which can reduce the treatment times of anti-VEGF drugs.
Collapse
Affiliation(s)
- Lei lei Yang
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology Ophthalmology, Wuhan 430030, China
| | - Feng Zhou
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology Ophthalmology, Wuhan 430030, China
| | - Qi Xu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ultrasound Diagnosis Department, Wuhan 430030, China
| | - Ting Ye
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology Ophthalmology, Wuhan 430030, China
| | - Hong Xiong
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology Ophthalmology, Wuhan 430030, China
| |
Collapse
|
22
|
Liu J, Tsang JKW, Fung FKC, Chung SK, Fu Z, Lo ACY. Retinal microglia protect against vascular damage in a mouse model of retinopathy of prematurity. Front Pharmacol 2022; 13:945130. [PMID: 36059936 PMCID: PMC9431881 DOI: 10.3389/fphar.2022.945130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a common cause of blindness in preterm babies. As a hypoxia-induced eye disease characterized by neovascularization, its association with retinal microglia has been noted but not well documented. We performed a comprehensive analysis of retinal microglia and retinal vessels in mouse oxygen-induced retinopathy (OIR), an animal model of ROP. In combination with a pharmacological inhibitory strategy, the role of retinal microglia in vascular network maintenance was investigated. Postnatal day (P) 7 C57BL/6J mouse pups with their nursing mother were exposed to 75% oxygen for 5 days to induce OIR. Age-matched room air-treated pups served as controls. On P12, P17, P21, P25, and P30, retinal microglia and vessels were visualized and quantified based on their location and activation status. Their relationship with retinal vessels was also analyzed. On P5 or P12, retinal microglia inhibition was achieved by intravitreal injection of liposomes containing clodronate (CLD); retinal vasculature and microglia were examined in P12 and P17 OIR retinae. The number of retinal microglia was increased in the superficial areas of OIR retinae on P12, P17, P21, P25, and P30, and most of them displayed an amoeboid (activated) morphology. The increased retinal microglia were associated with increased superficial retinal vessels in OIR retinae. The number of retinal microglia in deep retinal areas of OIR retinae also increased from P17 to P30 with a ramified morphology, which was not associated with reduced retinal vessels. Intravitreal injection of liposomes-CLD caused a significant reduction in retinal microglia. Loss of retinal microglia before hyperoxia treatment resulted in increased vessel obliteration on P12 and subsequent neovascularization on P17 in OIR retinae. Meanwhile, loss of retinal microglia immediately after hyperoxia treatment on P12 also led to more neovascularization in P17 OIR retinae. Our data showed that activated microglia were strongly associated with vascular abnormalities upon OIR. Retinal microglial activation continued throughout OIR and lasted until after retinal vessel recovery. Pharmacological inhibition of retinal microglia in either hyperoxic or hypoxic stage of OIR exacerbated retinal vascular consequences. These results suggested that retinal microglia may play a protective role in retinal vasculature maintenance in the OIR process.
Collapse
Affiliation(s)
- Jin Liu
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jessica Kwan Wun Tsang
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Frederic Khe Cheong Fung
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sookja Kim Chung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Zhongjie Fu, ; Amy Cheuk Yin Lo,
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Zhongjie Fu, ; Amy Cheuk Yin Lo,
| |
Collapse
|
23
|
Yao K, Liang X, Zhang G, Rong Y, Zhang Q, Liao Q, Zhang H, Xi K, Wang J. Covalent Organic Framework (COF): A Drug and Carrier to Attenuate Retinal Ganglion Cells Death in an Acute Glaucoma Mouse Model. Polymers (Basel) 2022; 14:polym14163265. [PMID: 36015521 PMCID: PMC9414516 DOI: 10.3390/polym14163265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: We aim to investigate the use of covalent organic framework (COF) nanoparticles in the local treatment of glaucoma, both as a means of protecting retinal ganglion cells (RGCs), and as a carrier for delayed release of the medication rapamycin following a single intravitreal injection. Methods: a water-dispersible COF, and a COF-based nanoplatform for rapamycin release (COF-Rapa) was constructed. C57BL/6J mice were randomly divided into four groups: intravitreal injection of 1.5 µL normal saline (NS), COF (0.67 ng/µL), rapamycin (300 µM) or COF-Rapa (0.67 ng/µL-300 µM), respectively. The ischemia–reperfusion (I/R) model was established to mimic high intraocular pressure (IOP)-induced retinal injury in glaucoma. Labeling of RGCs by Fluoro-Gold and retinal electroretinogram were used to evaluate retinal function. Immunohistochemistry and Western blotting analyses of retinas were performed. Results: COF nanoparticles were delivered in vitro and in vivo. Six weeks after the COF injection, the number of RGCs was unaffected. In addition, the number of RBPMS-positive RGCs, GFAP-positive astrocytes and Iba1-positive microglia did not differ from the normal control. COF could effectively reduce RGCs death, improve phototransduction function and alleviate the overactivation of microglia compared to NS control after retinal I/R injury. Within six weeks, the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway in the retinas could be inhibited by a single intravitreal injection of COF-Rapa. Compared with single COF administration, COF-Rapa significantly reduced the inflammatory reaction after retinal I/R injury. Conclusions: COF may act as both an RGC protection agent and a carrier for prolonged rapamycin release. This research may lead to the development of novel RGC protection agents and drug delivery techniques, as well as the creation of multifunctional COF-based biomaterials for glaucoma retinopathy.
Collapse
Affiliation(s)
- Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xin Liang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Guiyang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China
| | - Yan Rong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Qiuxiang Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Qiaobo Liao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Xi
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210000, China
- Correspondence: (K.X.); (J.W.)
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430000, China
- Correspondence: (K.X.); (J.W.)
| |
Collapse
|
24
|
McAnany JJ, Park JC, Fishman GA, Hyde RA. Spatial and Temporal Integration Abnormalities in X-Linked Retinoschisis. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 35984651 PMCID: PMC9419457 DOI: 10.1167/iovs.63.9.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate spatial and temporal integration across the visual field in individuals with juvenile X-linked retinoschisis (XLRS). Methods Nine subjects with XLRS and 10 visually normal individuals participated. Luminance thresholds were measured at 15 locations along the horizontal visual field meridian. Locations were grouped into four regions for analysis: foveal, parafoveal (2°), perifoveal (5°-10°), and peripheral (10°-60°). For spatial integration measurements, stimulus duration was 100 ms, and size ranged from 0.01 to 2.32 deg2 (Goldmann I-V). For temporal integration measurements, stimulus size was 0.15 deg2 (Goldmann III), and duration ranged from 12 to 800 ms. The effect of stimulus size and duration on the subjects' threshold was described using integration models. Results Luminance thresholds for the XLRS group were more elevated for small targets (2.0×-12.6×) than for large targets (1.25×-3.2×) compared to controls for all locations. Likewise, thresholds for the XLRS group were more elevated for short durations (6.3×) than for long durations (4.0×) in the fovea and parafovea but were similarly elevated at all durations (2.0×-2.5×) in the perifovea and periphery. For both the size and duration experiments, thresholds measured in the fovea, parafovea, and perifovea of XLRS subjects were highly similar to those measured from the peripheral field of the controls. Conclusions Spatial and temporal integration characteristics of the XLRS fovea, parafovea, and perifovea are similar to those of the normal periphery. The results also indicate that scaling stimulus size equates thresholds for the XLRS and control subjects throughout the visual field, but scaling duration does not.
Collapse
Affiliation(s)
- J Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jason C Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Gerald A Fishman
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States.,The Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois, United States
| | - Robert A Hyde
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
25
|
Wiecek E, Akula JD, Vanderveen DK, Mantagos IS, Wu C, Curran AL, De Bruyn H, Peterson B, Fulton AB. Longitudinal Change of Refractive Error in Retinopathy of Prematurity Treated With Intravitreal Bevacizumab or Laser Photocoagulation. Am J Ophthalmol 2022; 240:252-259. [PMID: 35367438 PMCID: PMC9308642 DOI: 10.1016/j.ajo.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To compare progression of myopia and refractive error in former premature infants with retinopathy of prematurity (ROP) treated using intravitreal bevacizumab (IVB) or laser. DESIGN Retrospective clinical cohort study. METHODS We identified premature infants with ROP treated using IVB from 2011 to 2020 and compared their longitudinal cycloplegic refraction data to that of infants with ROP treated using laser during the same timeframe. A subset of infants treated using IVB also underwent additional treatment using laser. We included cycloplegic refractions from 789 cumulative visits over a median 3.2 years. We used a linear mixed-effects model with a log decay function to evaluate how refraction changed with age after treatment. RESULTS In aggregate, the model estimated a significant (P < .001) trend in refraction-from slight hyperopia to relatively more myopic states. However, progression in laser-treated eyes was significantly (P < .001) more rapid, regardless of treatment with IVB. The number of laser spots resulted in increased myopic progression by approximately 0.16 diopters per 100 laser spots. Both ROP stage and zone had a significant effect on myopic progression, with more severe disease resulting in faster myopic progression. Random effects, including individual subject variation with nested variance for left and right eye, accounted for 86.4% of the remaining variance not explained by age and treatment. CONCLUSIONS Laser treatment for severe ROP increases the trend to severe myopia. In our sample, IVB did not affect myopic progression but did substantially reduce the amount of consequent laser required to treat ROP. The effect of laser persists after accounting for differences in ROP stage and zone.
Collapse
Affiliation(s)
- Emily Wiecek
- From Boston Children's Hospital (E.W., J.A., D.V., I.M., C.W., A-L.C., H.D., B.P., A.F.), Boston, Massachusetts, USA; Harvard Medical School (E.W., J.A., D.V., I.M., C.W., A.F.), Boston, Massachusetts, USA.
| | - James D Akula
- From Boston Children's Hospital (E.W., J.A., D.V., I.M., C.W., A-L.C., H.D., B.P., A.F.), Boston, Massachusetts, USA; Harvard Medical School (E.W., J.A., D.V., I.M., C.W., A.F.), Boston, Massachusetts, USA
| | - Deborah K Vanderveen
- From Boston Children's Hospital (E.W., J.A., D.V., I.M., C.W., A-L.C., H.D., B.P., A.F.), Boston, Massachusetts, USA; Harvard Medical School (E.W., J.A., D.V., I.M., C.W., A.F.), Boston, Massachusetts, USA
| | - Iason S Mantagos
- From Boston Children's Hospital (E.W., J.A., D.V., I.M., C.W., A-L.C., H.D., B.P., A.F.), Boston, Massachusetts, USA; Harvard Medical School (E.W., J.A., D.V., I.M., C.W., A.F.), Boston, Massachusetts, USA
| | - Carolyn Wu
- From Boston Children's Hospital (E.W., J.A., D.V., I.M., C.W., A-L.C., H.D., B.P., A.F.), Boston, Massachusetts, USA; Harvard Medical School (E.W., J.A., D.V., I.M., C.W., A.F.), Boston, Massachusetts, USA
| | - Amber-Lee Curran
- From Boston Children's Hospital (E.W., J.A., D.V., I.M., C.W., A-L.C., H.D., B.P., A.F.), Boston, Massachusetts, USA
| | - Hanna De Bruyn
- From Boston Children's Hospital (E.W., J.A., D.V., I.M., C.W., A-L.C., H.D., B.P., A.F.), Boston, Massachusetts, USA
| | - Bridget Peterson
- From Boston Children's Hospital (E.W., J.A., D.V., I.M., C.W., A-L.C., H.D., B.P., A.F.), Boston, Massachusetts, USA
| | - Anne B Fulton
- From Boston Children's Hospital (E.W., J.A., D.V., I.M., C.W., A-L.C., H.D., B.P., A.F.), Boston, Massachusetts, USA; Harvard Medical School (E.W., J.A., D.V., I.M., C.W., A.F.), Boston, Massachusetts, USA
| |
Collapse
|
26
|
Wu Q, Hu Y, Mo Z, Wu R, Zhang X, Yang Y, Liu B, Xiao Y, Zeng X, Lin Z, Fang Y, Wang Y, Lu X, Song Y, Ng WWY, Feng S, Yu H. Development and Validation of a Deep Learning Model to Predict the Occurrence and Severity of Retinopathy of Prematurity. JAMA Netw Open 2022; 5:e2217447. [PMID: 35708686 PMCID: PMC10881218 DOI: 10.1001/jamanetworkopen.2022.17447] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/29/2022] [Indexed: 01/18/2023] Open
Abstract
Importance Retinopathy of prematurity (ROP) is the leading cause of childhood blindness worldwide. Prediction of ROP before onset holds great promise for reducing the risk of blindness. Objective To develop and validate a deep learning (DL) system to predict the occurrence and severity of ROP before 45 weeks' postmenstrual age. Design, Setting, and Participants This retrospective prognostic study included 7033 retinal photographs of 725 infants in the training set and 763 retinal photographs of 90 infants in the external validation set, along with 46 characteristics for each infant. All images of both eyes from the same infant taken at the first screening were labeled according to the final diagnosis made between the first screening and 45 weeks' postmenstrual age. The DL system was developed using retinal photographs from the first ROP screening and clinical characteristics before or at the first screening in infants born between June 3, 2017, and August 28, 2019. Exposures Two models were specifically designed for predictions of the occurrence (occurrence network [OC-Net]) and severity (severity network [SE-Net]) of ROP. Five-fold cross-validation was applied for internal validation. Main Outcomes and Measures Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity to evaluate the performance in ROP prediction. Results This study included 815 infants (450 [55.2%] boys) with mean birth weight of 1.91 kg (95% CI, 1.87-1.95 kg) and mean gestational age of 33.1 weeks (95% CI, 32.9-33.3 weeks). In internal validation, mean AUC, accuracy, sensitivity, and specificity were 0.90 (95% CI, 0.88-0.92), 52.8% (95% CI, 49.2%-56.4%), 100% (95% CI, 97.4%-100%), and 37.8% (95% CI, 33.7%-42.1%), respectively, for OC-Net to predict ROP occurrence and 0.87 (95% CI, 0.82-0.91), 68.0% (95% CI, 61.2%-74.8%), 100% (95% CI, 93.2%-100%), and 46.6% (95% CI, 37.3%-56.0%), respectively, for SE-Net to predict severe ROP. In external validation, the AUC, accuracy, sensitivity, and specificity were 0.94, 33.3%, 100%, and 7.5%, respectively, for OC-Net, and 0.88, 56.0%, 100%, and 35.3%, respectively, for SE-Net. Conclusions and Relevance In this study, the DL system achieved promising accuracy in ROP prediction. This DL system is potentially useful in identifying infants with high risk of developing ROP.
Collapse
Affiliation(s)
- Qiaowei Wu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Ophthalmology, General Hospital of Central Theater Command, Wuhan, China
| | - Yijun Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenyao Mo
- Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Rong Wu
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiayin Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yahan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Baoyi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Xiao
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaomin Zeng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhanjie Lin
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Fang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yijin Wang
- Department of Neonatology, Second Nanning People’s Hospital, Nanning, China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yanping Song
- Department of Ophthalmology, General Hospital of Central Theater Command, Wuhan, China
| | - Wing W. Y. Ng
- Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
27
|
Rad LM, Yumashev AV, Hussen BM, Jamad HH, Ghafouri-Fard S, Taheri M, Rostami S, Niazi V, Hajiesmaeili M. Therapeutic Potential of Microvesicles in Cell Therapy and Regenerative Medicine of Ocular Diseases With an Especial Focus on Mesenchymal Stem Cells-Derived Microvesicles. Front Genet 2022; 13:847679. [PMID: 35422841 PMCID: PMC9001951 DOI: 10.3389/fgene.2022.847679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
These days, mesenchymal stem cells (MSCs), because of immunomodulatory and pro-angiogenic abilities, are known as inevitable factors in regenerative medicine and cell therapy in different diseases such as ocular disorder. Moreover, researchers have indicated that exosome possess an essential potential in the therapeutic application of ocular disease. MSC-derived exosome (MSC-DE) have been identified as efficient as MSCs for treatment of eye injuries due to their small size and rapid diffusion all over the eye. MSC-DEs easily transfer their ingredients such as miRNAs, proteins, and cytokines to the inner layer in the eye and increase the reconstruction of the injured area. Furthermore, MSC-DEs deliver their immunomodulatory cargos in inflamed sites and inhibit immune cell migration, resulting in improvement of autoimmune uveitis. Interestingly, therapeutic effects were shown only in animal models that received MSC-DE. In this review, we summarized the therapeutic potential of MSCs and MSC-DE in cell therapy and regenerative medicine of ocular diseases.
Collapse
Affiliation(s)
- Lina Moallemi Rad
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Alexey V Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Hadayat Jamad
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Samaneh Rostami
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciecnes, Zanjan, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Critical Care Quality Improvement Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Filippi L, Cammalleri M, Amato R, Ciantelli M, Pini A, Bagnoli P, Dal Monte M. Decoupling Oxygen Tension From Retinal Vascularization as a New Perspective for Management of Retinopathy of Prematurity. New Opportunities From β-adrenoceptors. Front Pharmacol 2022; 13:835771. [PMID: 35126166 PMCID: PMC8814365 DOI: 10.3389/fphar.2022.835771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Retinopathy of prematurity (ROP) is an evolutive and potentially blinding eye disease that affects preterm newborns. Unfortunately, until now no conservative therapy of active ROP with proven efficacy is available. Although ROP is a multifactorial disease, premature exposition to oxygen concentrations higher than those intrauterine, represents the initial pathogenetic trigger. The increase of oxygenation in a retina still incompletely vascularized promotes the downregulation of proangiogenic factors and finally the interruption of vascularization (ischemic phase). However, the increasing metabolic requirement of the ischemic retina induces, over the following weeks, a progressive hypoxia that specularly increases the levels of proangiogenic factors finally leading to proliferative retinopathy (proliferative phase). Considering non-modifiable the coupling between oxygen levels and vascularization, so far, neonatologists and ophthalmologists have "played defense", meticulously searching the minimum necessary concentration of oxygen for individual newborns, refining their diagnostic ability, adopting a careful monitoring policy, ready to decisively intervene only in a very advanced stage of disease progression. However, recent advances have demonstrated the possibility to pharmacologically modulate the relationship between oxygen and vascularization, opening thus the perspective for new therapeutic or preventive opportunities. The perspective of a shift from a defensive towards an attack strategy is now at hand.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
29
|
Flicker electroretinogram in newborn infants. Doc Ophthalmol 2022; 145:175-184. [PMID: 36199003 PMCID: PMC9653345 DOI: 10.1007/s10633-022-09889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/21/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE To develop and validate a flicker electroretinogram (ERG) protocol in term-born neonates as a potential tool for assessing preterm infants at risk of developing retinopathy of prematurity. METHODS A custom flicker ERG protocol was developed for use with the hand-held RETeval® electrophysiology device. Feasibility of measuring flicker ERG through closed eyelids and without mydriasis was established in a pilot study enabling optimisation of the test protocol. Following this, healthy term-born neonates (gestational age 37-42 weeks) were recruited at the Neonatology clinic of the University Hospital Zurich. Flicker ERG recordings were performed using proprietary disposable skin electrodes during the first four days of life when the infants were sleeping. Flicker stimuli were presented at 28.3 Hz for a stimulus series at 3, 6, 12, 30, and 50 cd·s/m2, with two measurements at each stimulus level. Results were analysed offline. Flicker ERG peak times and amplitudes were derived from the averaged measurements per stimulus level for each subject. RESULTS 28 term-born neonates were included in the analysis. All infants tolerated the testing procedure well. Flicker ERG recording was achieved in all subjects with reproducible flicker ERG waveforms for 30 and 50 cd·s/m2 stimuli. Reproducible ERGs were recorded in the majority of infants for the weaker stimuli (with detectable ERGs in 20/28, 25/28, and 27/28 at 3, 6, and 12 cd·s/m2, respectively). Flicker ERG amplitudes increased with increasing stimulus strength, with peak times concurrently decreasing slightly. CONCLUSION Flicker ERG recording is feasible and reliably recorded in sleeping neonates through closed eyelids using skin electrodes and without mydriasis. Flicker ERG amplitude decreases for lower luminance flicker but remains detectable for 3 cd·s/m2 flicker in the majority of healthy term-born neonates. These data provide a basis to study retinal function in premature infants using this protocol.
Collapse
|
30
|
Ingvaldsen SH, Morken TS, Austeng D, Dammann O. Visuopathy of prematurity: is retinopathy just the tip of the iceberg? Pediatr Res 2022; 91:1043-1048. [PMID: 34168272 PMCID: PMC9122817 DOI: 10.1038/s41390-021-01625-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023]
Abstract
Research on retinopathy of prematurity (ROP) focuses mainly on the abnormal vascularization patterns that are directly visible for ophthalmologists. However, recent findings indicate that children born prematurely also exhibit changes in the retinal cellular architecture and along the dorsal visual stream, such as structural changes between and within cortical areas. Moreover, perinatal sustained systemic inflammation (SSI) is associated with an increased risk for ROP and the visual deficits that follow. In this paper, we propose that ROP might just be the tip of an iceberg we call visuopathy of prematurity (VOP). The VOP paradigm comprises abnormal vascularization of the retina, alterations in retinal cellular architecture, choroidal degeneration, and abnormalities in the visual pathway, including cortical areas. Furthermore, VOP itself might influence the developmental trajectories of cerebral structures and functions deemed responsible for visual processing, thereby explaining visual deficits among children born preterm.
Collapse
Affiliation(s)
- Sigrid Hegna Ingvaldsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Tora Sund Morken
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Ophthalmology, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Dordi Austeng
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Ophthalmology, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Olaf Dammann
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway ,grid.67033.310000 0000 8934 4045Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA USA ,grid.10423.340000 0000 9529 9877Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Tsai AS, Chou HD, Ling XC, Al-Khaled T, Valikodath N, Cole E, Yap VL, Chiang MF, Chan RVP, Wu WC. Assessment and management of retinopathy of prematurity in the era of anti-vascular endothelial growth factor (VEGF). Prog Retin Eye Res 2021; 88:101018. [PMID: 34763060 DOI: 10.1016/j.preteyeres.2021.101018] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
The incidence of retinopathy of prematurity (ROP) continues to rise due to the improved survival of very low birth weight infants in developed countries. This epidemic is also fueled by increased survival of preterm babies with variable use of oxygen and a lack of ROP awareness and screening services in resource-limited regions. Improvements in technology and a basic understanding of the disease pathophysiology have changed the way we screen and manage ROP, educate providers and patients, and improve ROP awareness. Advancements in imaging techniques, expansion of telemedicine services, and the potential for artificial intelligence-assisted ROP screening programs have created opportunities to improve ROP care in areas with a shortage of ophthalmologists trained in ROP. To address the gap in provider knowledge regarding ROP, the Global Education Network for Retinopathy of Prematurity (GEN-ROP) created a web-based tele-education training module that can be used to educate all providers involved in ROP, including non-physician ROP screeners. Over the past 50 years, the treatment of severe ROP has evolved from limited treatment modalities to cryotherapy and laser photocoagulation. More recently, there has been growing evidence to support the use of anti-vascular endothelial growth factor (VEGF) agents for the treatment of severe ROP. However, VEGF is known to be important in organogenesis and microvascular maintenance, and given that intravitreal anti-VEGF treatment can result in systemic VEGF suppression over a period of at least 1-12 weeks, there are concerns regarding adverse effects and long-term ocular and systemic developmental consequences of anti-VEGF therapy. Future research in ophthalmology to address the growing burden of ROP should focus on cost-effective fundus imaging devices, implementation of artificial intelligence platforms, updated treatment algorithms with optimal use of anti-VEGF and careful investigation of its long-term effects, and surgical options in advanced ROP. Addressing these unmet needs will aid the global effort against the ROP epidemic and optimize our understanding and treatment of this blinding disease.
Collapse
Affiliation(s)
- Andrew Sh Tsai
- Singapore National Eye Centre, Singapore; DUKE NUS Medical School, Singapore
| | - Hung-Da Chou
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Xiao Chun Ling
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Tala Al-Khaled
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Nita Valikodath
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Emily Cole
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Vivien L Yap
- Division of Newborn Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael F Chiang
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - R V Paul Chan
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Illinois Eye and Ear Infirmary, Chicago, IL, USA.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
32
|
Tomita Y, Usui-Ouchi A, Nilsson AK, Yang J, Ko M, Hellström A, Fu Z. Metabolism in Retinopathy of Prematurity. Life (Basel) 2021; 11:1119. [PMID: 34832995 PMCID: PMC8620873 DOI: 10.3390/life11111119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Retinopathy of prematurity is defined as retinal abnormalities that occur during development as a consequence of disturbed oxygen conditions and nutrient supply after preterm birth. Both neuronal maturation and retinal vascularization are impaired, leading to the compensatory but uncontrolled retinal neovessel growth. Current therapeutic interventions target the hypoxia-induced neovessels but negatively impact retinal neurons and normal vessels. Emerging evidence suggests that metabolic disturbance is a significant and underexplored risk factor in the disease pathogenesis. Hyperglycemia and dyslipidemia correlate with the retinal neurovascular dysfunction in infants born prematurely. Nutritional and hormonal supplementation relieve metabolic stress and improve retinal maturation. Here we focus on the mechanisms through which metabolism is involved in preterm-birth-related retinal disorder from clinical and experimental investigations. We will review and discuss potential therapeutic targets through the restoration of metabolic responses to prevent disease development and progression.
Collapse
Affiliation(s)
- Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan;
| | - Anders K. Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| | - Ann Hellström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 413 19 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.T.); (J.Y.); (M.K.)
| |
Collapse
|
33
|
Pesce NA, Canovai A, Plastino F, Lardner E, Kvanta A, Cammalleri M, André H, Dal Monte M. An imbalance in autophagy contributes to retinal damage in a rat model of oxygen-induced retinopathy. J Cell Mol Med 2021; 25:10480-10493. [PMID: 34623024 PMCID: PMC8581343 DOI: 10.1111/jcmm.16977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
In retinopathy of prematurity (ROP), the abnormal retinal neovascularization is often accompanied by retinal neuronal dysfunction. Here, a rat model of oxygen‐induced retinopathy (OIR), which mimics the ROP disease, was used to investigate changes in the expression of key mediators of autophagy and markers of cell death in the rat retina. In addition, rats were treated from birth to postnatal day 14 and 18 with 3‐methyladenine (3‐MA), an inhibitor of autophagy. Immunoblot and immunofluorescence analysis demonstrated that autophagic mechanisms are dysregulated in the retina of OIR rats and indicated a possible correlation between autophagy and necroptosis, but not apoptosis. We found that 3‐MA acts predominantly by reducing autophagic and necroptotic markers in the OIR retinas, having no effects on apoptotic markers. However, 3‐MA does not ameliorate retinal function, which results compromised in this model. Taken together, these results revealed the crucial role of autophagy in retinal cells of OIR rats. Thus, inhibiting autophagy may be viewed as a putative strategy to counteract ROP.
Collapse
Affiliation(s)
- Noemi Anna Pesce
- Department of Biology, University of Pisa, Pisa, Italy.,Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | | | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | | | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Solna, Sweden
| | | |
Collapse
|
34
|
Rojo Arias JE, Jászai J. Gene expression profile of the murine ischemic retina and its response to Aflibercept (VEGF-Trap). Sci Rep 2021; 11:15313. [PMID: 34321516 PMCID: PMC8319207 DOI: 10.1038/s41598-021-94500-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic retinal dystrophies are leading causes of acquired vision loss. Although the dysregulated expression of the hypoxia-responsive VEGF-A is a major driver of ischemic retinopathies, implication of additional VEGF-family members in their pathogenesis has led to the development of multivalent anti-angiogenic tools. Designed as a decoy receptor for all ligands of VEGFR1 and VEGFR2, Aflibercept is a potent anti-angiogenic agent. Notwithstanding, the molecular mechanisms mediating Aflibercept's efficacy remain only partially understood. Here, we used the oxygen-induced retinopathy (OIR) mouse as a model system of pathological retinal vascularization to investigate the transcriptional response of the murine retina to hypoxia and of the OIR retina to Aflibercept. While OIR severely impaired transcriptional changes normally ensuing during retinal development, analysis of gene expression patterns hinted at alterations in leukocyte recruitment during the recovery phase of the OIR protocol. Moreover, the levels of Angiopoietin-2, a major player in the progression of diabetic retinopathy, were elevated in OIR tissues and consistently downregulated by Aflibercept. Notably, GO term, KEGG pathway enrichment, and expression dynamics analyses revealed that, beyond regulating angiogenic processes, Aflibercept also modulated inflammation and supported synaptic transmission. Altogether, our findings delineate novel mechanisms potentially underlying Aflibercept's efficacy against ischemic retinopathies.
Collapse
Affiliation(s)
- Jesús Eduardo Rojo Arias
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany ,grid.5335.00000000121885934Present Address: Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - József Jászai
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
35
|
Di Fiore JM, Raffay TM. The relationship between intermittent hypoxemia events and neural outcomes in neonates. Exp Neurol 2021; 342:113753. [PMID: 33984336 DOI: 10.1016/j.expneurol.2021.113753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
This brief review examines 1) patterns of intermittent hypoxemia in extremely preterm infants during early postnatal life, 2) the relationship between neonatal intermittent hypoxemia exposure and outcomes in both human and animal models, 3) potential mechanistic pathways, and 4) future alterations in clinical care that may reduce morbidity. Intermittent hypoxemia events are pervasive in extremely preterm infants (<28 weeks gestation at birth) during early postnatal life. An increased frequency of intermittent hypoxemia events has been associated with a range of poor neural outcomes including language and cognitive delays, motor impairment, retinopathy of prematurity, impaired control of breathing, and intraventricular hemorrhage. Neonatal rodent models have shown that exposure to short repetitive cycles of hypoxia induce a pathophysiological cascade. However, not all patterns of intermittent hypoxia are deleterious and some may even improve neurodevelopmental outcomes. Therapeutic interventions include supplemental oxygen, pressure support and pharmacologic drugs but prolonged hyperoxia and pressure exposure have been associated with cardiopulmonary morbidity. Therefore, it becomes imperative to distinguish high risk from neutral and/or even beneficial patterns of intermittent hypoxemia during early postnatal life. Identification of such patterns could improve clinical care with targeted interventions for high-risk patterns and minimal or no exposure to treatment modalities for low-risk patterns.
Collapse
Affiliation(s)
- Juliann M Di Fiore
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies and Children's Hospital, Cleveland, OH, United States of America; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
36
|
The Nrf2 inhibitor brusatol has a protective role in a rat model of oxygen-induced retinopathy of prematurity. Vis Neurosci 2021; 38:E002. [PMID: 33729121 DOI: 10.1017/s095252382100002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been testified to be involved in the development of retinopathy of prematurity (ROP), which can cause childhood visual impairment. Whether brusatol, an Nrf2 inhibitor, could be utilized to treat ROP was unknown. The oxygen-induced retinopathy rat model was established to mimic ROP, which was further intravitreal administrated with brusatol. Vessel morphology and microglial activation in the retina were assessed with histology analysis. The relative expression levels of angiogenesis and inflammation-related molecules were detected with Western blot and real-time polymerase chain reaction methods. Intravitreal brusatol administration could alleviate both angiogenesis and microgliosis induced by hyperoxia, along with down-regulation of vascular endothelial growth factor, vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, cluster of differentiation molecule 11B, tumor necrosis factor alpha, inducible nitric oxide synthase, glial fibrillary acidic protein, and IBA-1 expression. It was further revealed that Nrf2 and heme oxygenease-1 were diminished by brusatol administration. The results demonstrate the potential of intravitreal brusatol deliver to treat ROP with down-regulation of angiogenesis and microgliosis.
Collapse
|
37
|
Ambrosio L, Hansen RM, Moskowitz A, Oza A, Barrett D, Manganella J, Medina G, Kawai K, Fulton AB, Kenna M. Dark-adapted threshold and electroretinogram for diagnosis of Usher syndrome. Doc Ophthalmol 2021; 143:39-51. [PMID: 33511521 DOI: 10.1007/s10633-021-09818-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To determine the utility of ophthalmology evaluation, dark-adapted threshold, and full-field electroretinogram for early detection of Usher syndrome in young patients with bilateral sensorineural hearing loss. METHODS We identified 39 patients with secure genetic diagnoses of Usher Syndrome. Visual acuity, spherical equivalent, fundus appearance, dark-adapted threshold, and full-field electroretinogram results were summarized and compared to those in a group of healthy controls with normal hearing. In those Usher patients with repeated measures, regression analysis was done to evaluate for change in visual acuity and dark-adapted threshold with age. Spherical equivalent and full-field electroretinogram responses from dark- and light-adapted eyes were evaluated as a function of age. RESULTS The majority of initial visual acuity and spherical equivalent results were within normal limits for age. Visual acuity and dark-adapted threshold worsened significantly with age in Usher type 1 but not in Usher type 2. At initial test, full-field electroretinogram responses from dark- and light-adapted eyes were abnormal in 53% of patients. Remarkably, nearly half of our patients (17% of Usher type 1 and 30% of Usher type 2) would have been missed by tests of retinal function alone if evaluated before age 10. CONCLUSIONS Although there is an association of abnormal dark-adapted threshold and full-field electroretinogram at young ages in Usher patients, it appears that a small but important proportion of patients would not be detected by tests of retinal function alone. Thus, genetic testing is needed to secure a diagnosis of Usher syndrome.
Collapse
Affiliation(s)
- Lucia Ambrosio
- Department of Ophthalmology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Ophthalmology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Ronald M Hansen
- Department of Ophthalmology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Ophthalmology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Anne Moskowitz
- Department of Ophthalmology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Ophthalmology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Andrea Oza
- Laboratory for Molecular Medicine, Partners HealthCare Personalized Medicine, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Devon Barrett
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Juliana Manganella
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Genevieve Medina
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kosuke Kawai
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Anne B Fulton
- Department of Ophthalmology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Ophthalmology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Margaret Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Otolaryngology, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| |
Collapse
|
38
|
Liu J, Jiang F, Jiang Y, Wang Y, Li Z, Shi X, Zhu Y, Wang H, Zhang Z. Roles of Exosomes in Ocular Diseases. Int J Nanomedicine 2020; 15:10519-10538. [PMID: 33402823 PMCID: PMC7778680 DOI: 10.2147/ijn.s277190] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes, nanoscale vesicles with a diameter of 30 to 150 nm, are composed of a lipid bilayer, protein, and genetic material. Exosomes are secreted by virtually all types of cells in the human body. They have key functions in cell-to-cell communication, immune regulation, inflammatory response, and neovascularization. Mounting evidence indicates that exosomes play an important role in various diseases, such as cancer, cardiovascular diseases, and brain diseases; however, the role that exosomes play in eye diseases has not yet been rigorously studied. This review covers current exosome research as it relates to ocular diseases including diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, glaucoma, traumatic optic neuropathies, corneal diseases, retinopathy of prematurity, and uveal melanoma. In addition, we discuss recent advances in the biological functions of exosomes, focusing on the toxicity of exosomes and the use of exosomes as biomarkers and drug delivery vesicles. Finally, we summarize the primary considerations and challenges to be taken into account for the effective applications of exosomes.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Yu Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Yicheng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Xuefeng Shi
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, 300020, People's Republic of China.,School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, People's Republic of China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, People's Republic of China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
39
|
Sawant OB, Jidigam VK, Wilcots K, Fuller RD, Samuels I, Rao S. Thyroid Activating Enzyme, Deiodinase II Is Required for Photoreceptor Function in the Mouse Model of Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 33237298 PMCID: PMC7691789 DOI: 10.1167/iovs.61.13.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinopathy of prematurity (ROP) is a severe complication of premature infants, leading to vision loss when untreated. Presently, the molecular mechanisms underlying ROP are still far from being clearly understood. This study sought to investigate whether thyroid hormone (TH) signaling contributes to the neuropathology of ROP using the mouse model of ROP to evaluate longitudinal photoreceptor function. Methods Animals were exposed to hyperoxia from P7 to P12 to induce retinopathy, thereafter the animals were returned to room air (normoxia). The thyroid-activating enzyme type 2 deiodinases (Dio2) knockout (KO) mice and the littermate controls that were exposed to hyperoxia or maintained in room air and were then analyzed. The retinal function was evaluated using electroretinograms (ERGs) at three and seven weeks followed by histologic assessments with neuronal markers to detect cellular changes in the retina. Rhodopsin protein levels were measured to validate the results obtained from the immunofluorescence analyses. Results In the ROP group, the photoreceptor ERG responses are considerably lower both in the control and the Dio2 KO animals at P23 compared to the non-ROP group. In agreement with the ERG responses, loss of Dio2 results in mislocalized cone nuclei, and abnormal rod bipolar cell dendrites extending into the outer nuclear layer. The retinal function is compromised in the adult Dio2 KO animals, although the cellular changes are less severe. Despite the reduction in scotopic a-wave amplitudes, rhodopsin levels are similar in the adult mice, across all genotypes irrespective of exposure to hyperoxia. Conclusions Using the mouse model of ROP, we show that loss of Dio2 exacerbates the effects of hyperoxia-induced retinal deficits that persist in the adults. Our data suggest that aberrant Dio2/TH signaling is an important factor in the pathophysiology of the visual dysfunction observed in the oxygen-induced retinopathy model of ROP.
Collapse
Affiliation(s)
- Onkar B. Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Eversight, Cleveland, Ohio, United States
| | - Vijay K. Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Kenya Wilcots
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States
| | - Rebecca D. Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ivy Samuels
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
40
|
Movsas TZ, Muthusamy A. Associations between VEGF isoforms and impending retinopathy of prematurity. Int J Dev Neurosci 2020; 80:586-593. [PMID: 32737903 DOI: 10.1002/jdn.10054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND/OBJECTIVE Vascular Endothelial Growth Factor (VEGF) is the main driver of angiogenesis during neurodevelopment (i.e., brain and retina). VEGF165 and VEGF121 are the two most prevalent human VEGF isoforms. Although retinopathy of prematurity (ROP), a neuroretinal disorder, is associated with VEGF dysregulation, little is known about the interaction of VEGF isoforms on neuroretinal angiogenesis. We hypothesized that: (a) A specific VEGF165/VEGF121 correlation, at a given time point, is associated with normal retinal development (no ROP) and (b) An altered correlation, of such, is associated with aberrant retinal development (ROP). Utilizing pre-collected dried blood spots (DBS) from <1-week-old preterm infants, we aimed to determine whether correlations between VEGF165 and VEGF121 precede the diagnosis of early stage, non-proliferative ROP (NP-ROP). METHODOLOGY We conducted a case/control study, utilizing DBS from 65 preterm infants. We measured DBS levels of VEGF165 on the Mesoscale Discovery Platform and VEGF121 via Cloud Clone Elisa Assay. RESULTS In infants with NP-ROP, VEGF165 is significantly higher in males (than females). In infants without ROP, there is a significant correlation between VEGF165 and VEGF121 in females (but not males). In infants with NP-ROP, the opposite is so; there is a significant correlation between VEGF165 and VEGF121 in males (but not females). CONCLUSIONS This pilot study, utilizing de-identified data, suggests the potential importance of examining interactions between VEGF isoforms, at <1 week after birth, to better understand ROP development. Our study also suggests that retinal angiogenesis may not be a sex-neutral process. A prospective study is needed to confirm our novel findings.
Collapse
Affiliation(s)
- Tammy Z Movsas
- Zietchick Research Institute (ZRI), Plymouth, MI, USA.,Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
41
|
Liu Y, Kinoshita J, Ivanova E, Sun D, Li H, Liao T, Cao J, Bell BA, Wang JM, Tang Y, Brydges S, Peachey NS, Sagdullaev BT, Romano C. Mouse models of X-linked juvenile retinoschisis have an early onset phenotype, the severity of which varies with genotype. Hum Mol Genet 2020; 28:3072-3090. [PMID: 31174210 DOI: 10.1093/hmg/ddz122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/04/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
X-linked juvenile retinoschisis (XLRS) is an early-onset inherited condition that affects primarily males and is characterized by cystic lesions of the inner retina, decreased visual acuity and contrast sensitivity and a selective reduction of the electroretinogram (ERG) b-wave. Although XLRS is genetically heterogeneous, all mouse models developed to date involve engineered or spontaneous null mutations. In the present study, we have studied three new Rs1 mutant mouse models: (1) a knockout with inserted lacZ reporter gene; (2) a C59S point mutant substitution and (3) an R141C point mutant substitution. Mice were studied from postnatal day (P15) to 28 weeks by spectral domain optical coherence tomography and ERG. Retinas of P21-22 mice were examined using biochemistry, single cell electrophysiology of retinal ganglion cells (RGCs) and by immunohistochemistry. Each model developed intraretinal schisis and reductions in the ERG that were greater for the b-wave than the a-wave. The phenotype of the C59S mutant appeared less severe than the other mutants by ERG at adult ages. RGC electrophysiology demonstrated elevated activity in the absence of a visual stimulus and reduced signal-to-noise ratios in response to light stimuli. Immunohistochemical analysis documented early abnormalities in all cells of the outer retina. Together, these results provide significant insight into the early events of XLRS pathophysiology, from phenotype differences between disease-causing variants to common mechanistic events that may play critical roles in disease presentation and progression.
Collapse
Affiliation(s)
- Yang Liu
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Junzo Kinoshita
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Elena Ivanova
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY 10605, USA
| | - Duo Sun
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Hong Li
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Tara Liao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jingtai Cao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Brent A Bell
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jacob M Wang
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yajun Tang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Botir T Sagdullaev
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY 10605, USA
| | | |
Collapse
|
42
|
Ambrosio L, Hansen RM, Kimia R, Fulton AB. Retinal Function in X-Linked Juvenile Retinoschisis. Invest Ophthalmol Vis Sci 2020; 60:4872-4881. [PMID: 31747688 DOI: 10.1167/iovs.19-27897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess retinal function in young patients with X-linked juvenile retinoschisis (XLRS), a disorder that is known to alter ERG postreceptor retinal components and also possibly photoreceptor components. Methods ERG responses to full-field stimuli were recorded under scotopic and photopic conditions in 12 XLRS patients aged 1 to 15 (median 8) years. A- and b-wave amplitudes and implicit times were examined over a range of stimulus intensities. Rod and cone photoreceptor (SROD, RROD, SCONE, RCONE) and rod-driven postreceptor (log σ, VMAX) response parameters were calculated from the a- and b-waves. Data from XLRS patients were evaluated for significant change with age. Results A- and b-wave amplitudes were smaller in XLRS patients compared with controls under both scotopic and photopic conditions. Saturated photoresponse amplitude (RROD), postreceptor b-wave (log σ), and saturated b-wave amplitude (VMAX) were significantly lower in XLRS patients than in controls; SROD did not differ between the two groups. SCONE and RCONE values were normal. In XLRS patients, neither a- and b-wave amplitudes nor calculated parameters (SROD, RROD, log σ, VMAX,SCONE, and RCONE) changed with age. Conclusions In these young XLRS patients, RROD and a-wave amplitudes were significantly smaller than in controls. Thus, in addition to XLRS causing postreceptor dysfunction, an effect of XLRS on rod photoreceptors cannot be ignored.
Collapse
Affiliation(s)
- Lucia Ambrosio
- Department of Ophthalmology, Boston Children's Hospital & Harvard Medical School, Boston, Massachusetts, United States
| | - Ronald M Hansen
- Department of Ophthalmology, Boston Children's Hospital & Harvard Medical School, Boston, Massachusetts, United States
| | - Rotem Kimia
- Department of Ophthalmology, Boston Children's Hospital & Harvard Medical School, Boston, Massachusetts, United States
| | - Anne B Fulton
- Department of Ophthalmology, Boston Children's Hospital & Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
43
|
Quinn PM, Wijnholds J. Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes (Basel) 2019; 10:E987. [PMID: 31795518 PMCID: PMC6947654 DOI: 10.3390/genes10120987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.
Collapse
Affiliation(s)
- Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
44
|
Rojo Arias JE, Economopoulou M, Juárez López DA, Kurzbach A, Au Yeung KH, Englmaier V, Merdausl M, Schaarschmidt M, Ader M, Morawietz H, Funk RHW, Jászai J. VEGF-Trap is a potent modulator of vasoregenerative responses and protects dopaminergic amacrine network integrity in degenerative ischemic neovascular retinopathy. J Neurochem 2019; 153:390-412. [PMID: 31550048 DOI: 10.1111/jnc.14875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
Retinal hypoxia triggers abnormal vessel growth and microvascular hyper-permeability in ischemic retinopathies. Whereas vascular endothelial growth factor A (VEGF-A) inhibitors significantly hinder disease progression, their benefits to retinal neurons remain poorly understood. Similar to humans, oxygen-induced retinopathy (OIR) mice exhibit severe retinal microvascular malformations and profound neuronal dysfunction. OIR mice are thus a phenocopy of human retinopathy of prematurity, and a proxy for investigating advanced stages of proliferative diabetic retinopathy. Hence, the OIR model offers an excellent platform for assessing morpho-functional responses of the ischemic retina to anti-angiogenic therapies. Using this model, we investigated the retinal responses to VEGF-Trap (Aflibercept), an anti-angiogenic agent recognizing ligands of VEGF receptors 1 and 2 that possesses regulatory approval for the treatment of neovascular age-related macular degeneration, macular edema secondary to retinal vein occlusion and diabetic macular edema. Our results indicate that Aflibercept not only reduces the severity of retinal microvascular aberrations but also significantly improves neuroretinal function. Aflibercept administration significantly enhanced light-responsiveness, as revealed by electroretinographic examinations, and led to increased numbers of dopaminergic amacrine cells. Additionally, retinal transcriptional profiling revealed the concerted regulation of both angiogenic and neuronal targets, including transcripts encoding subunits of transmitter receptors relevant to amacrine cell function. Thus, Aflibercept represents a promising therapeutic alternative for the treatment of further progressive ischemic retinal neurovasculopathies beyond the set of disease conditions for which it has regulatory approval. Cover Image for this issue: doi: 10.1111/jnc.14743.
Collapse
Affiliation(s)
- Jesús E Rojo Arias
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Matina Economopoulou
- Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - David A Juárez López
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Anica Kurzbach
- Medizinische Klinik III, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Kwan H Au Yeung
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Vanessa Englmaier
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Marie Merdausl
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Martin Schaarschmidt
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Marius Ader
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Saxony, Germany
| | - Henning Morawietz
- Department of Medicine III, University Hospital Carl Gustav Carus, Division of Vascular Endothelium and Microcirculation, Technische Universität Dresden, Saxony, Germany
| | - Richard H W Funk
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - József Jászai
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
45
|
Akula JD, Ambrosio L, Howard FI, Hansen RM, Fulton AB. Extracting the ON and OFF contributions to the full-field photopic flash electroretinogram using summed growth curves. Exp Eye Res 2019; 189:107827. [PMID: 31600486 DOI: 10.1016/j.exer.2019.107827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Under cone-mediated (photopic) conditions, an "instantaneous" flash of light, including both stimulus onset and offset, will simultaneously activate both "ON" and "OFF" bipolar cells, which either depolarize (ON) or hyperpolarize (OFF) in response and, respectively, produce positive-going and negative-going deflections in the electroretinogram (ERG). The stimulus-response (SR) relationship of the photopic ON response demonstrates logistic growth, like that manifested in the rod-mediated (scotopic) b-wave, which is driven by a single class of depolarizing bipolar cell. However, the photopic b-wave SR function is importantly shaped by OFF responses, leading to a "photopic hill." Furthermore, both on and off stimuli elicit activity in both ON and OFF bipolar cells. This has made it difficult to produce meaningful parameters for ready interpretation of the photopic b-wave SR relationship. Therefore, we evaluated whether the sum of sigmoidal SR functions, as descriptors of the depolarizing and hyperpolarizing components of the photopic flash ERG, could be used to elucidate and quantitate the mechanisms that produce the photopic hill. We used a novel fitting routine to optimize a sum of simple sigmoidal curves to SR data in five groups of subjects: Healthy adult, 10-week-old infant, congenital stationary night blindness (CSNB), X-linked juvenile retinoschisis (XJR), and preterm-born, both without and with a history of retinopathy of prematurity (ROP). Differences in ON and OFF amplitude, sensitivity, and implicit time among the groups were then compared using parameters extracted from these fits. We found that our modeling procedure enabled plausible derivations of ON and OFF pathway contributions to the ERG, and that the parameters produced appeared to have physiological relevance. In adult subjects, the ON and OFF amplitudes were similar in magnitude with respectively longer and shorter implicit times. Infant, CSNB, and XJR subjects showed significant ON pathway deficits. History of preterm-birth, without or with a diagnosis of ROP, did not much affect cone responses.
Collapse
Affiliation(s)
- James D Akula
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Ophthalmology, Harvard Medical School, Boston, MA, United States.
| | - Lucia Ambrosio
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Fiona I Howard
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Psychology, Northeastern University, Boston, MA, United States
| | - Ronald M Hansen
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Anne B Fulton
- Ophthalmology, Boston Children's Hospital, Boston, MA, United States; Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Fu Z, Chen CT, Cagnone G, Heckel E, Sun Y, Cakir B, Tomita Y, Huang S, Li Q, Britton W, Cho SS, Kern TS, Hellström A, Joyal JS, Smith LE. Dyslipidemia in retinal metabolic disorders. EMBO Mol Med 2019; 11:e10473. [PMID: 31486227 PMCID: PMC6783651 DOI: 10.15252/emmm.201910473] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/10/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022] Open
Abstract
The light‐sensitive photoreceptors in the retina are extremely metabolically demanding and have the highest density of mitochondria of any cell in the body. Both physiological and pathological retinal vascular growth and regression are controlled by photoreceptor energy demands. It is critical to understand the energy demands of photoreceptors and fuel sources supplying them to understand neurovascular diseases. Retinas are very rich in lipids, which are continuously recycled as lipid‐rich photoreceptor outer segments are shed and reformed and dietary intake of lipids modulates retinal lipid composition. Lipids (as well as glucose) are fuel substrates for photoreceptor mitochondria. Dyslipidemia contributes to the development and progression of retinal dysfunction in many eye diseases. Here, we review photoreceptor energy demands with a focus on lipid metabolism in retinal neurovascular disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gael Cagnone
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Emilie Heckel
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shuo Huang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Qian Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - William Britton
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Steve S Cho
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA, USA
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, University of Montreal, Montreal, QC, Canada
| | - Lois Eh Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
47
|
Zhou TE, Zhu T, Rivera JC, Omri S, Tahiri H, Lahaie I, Rouget R, Wirth M, Nattel S, Lodygensky G, Ferbeyre G, Nezhady M, Desjarlais M, Hamel P, Chemtob S. The Inability of the Choroid to Revascularize in Oxygen-Induced Retinopathy Results from Increased p53/miR-Let-7b Activity. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2340-2356. [PMID: 31430465 DOI: 10.1016/j.ajpath.2019.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Retinopathy of prematurity (ROP) is characterized by an initial retinal avascularization, followed by pathologic neovascularization. Recently, choroidal thinning has also been detected in children formerly diagnosed with ROP; a similar sustained choroidal thinning is observed in ROP models. But the mechanism underlying the lack of choroidal revascularization remains unclear and was investigated in an oxygen-induced retinopathy (OIR) model. In OIR, evidence of senescence was detected, preceded by oxidative stress in the choroid and the retinal pigment epithelium. This was associated with a global reduction of proangiogenic factors, including insulin-like growth factor 1 receptor (Igf1R). Coincidentally, tumor suppressor p53 was highly expressed in the OIR retinae. Curtailing p53 activity resulted in reversal of senescence, normalization of Igf1r expression, and preservation of choroidal integrity. OIR-induced down-regulation of Igf1r was mediated at least partly by miR-let-7b as i) let-7b expression was augmented throughout and beyond the period of oxygen exposure, ii) let-7b directly targeted Igf1r mRNA, and iii) p53 knock-down blunted let-7b expression, restored Igf1r expression, and elicited choroidal revascularization. Finally, restoration of Igf1r expression rescued choroid thickness. Altogether, this study uncovers a significant mechanism for defective choroidal revascularization in OIR, revealing a new role for p53/let-7b/IGF-1R axis in the retina. Future investigations on this (and connected) pathway could further our understanding of other degenerative choroidopathies, such as geographic atrophy.
Collapse
Affiliation(s)
- Tianwei E Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada.
| | - Tang Zhu
- Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - José C Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada; Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada; Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Houda Tahiri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Raphaël Rouget
- Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Stanley Nattel
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Medicine, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Gregory Lodygensky
- Department of Pediatrics, Sainte-Justine University Hospital Centre, Université de Montréal, Montréal, Québec, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Mohammad Nezhady
- Department of Pathology and Cell Biology, University of Montréal, Montréal, Québec, Canada
| | - Michel Desjarlais
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Hamel
- Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada; Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Québec, Canada; Department of Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada; Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, Université de Montréal, Montréal, Québec, Canada; Department of Pediatrics, Sainte-Justine University Hospital Centre, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
48
|
Role of TGF-Beta1/SMAD2/3 Pathway in Retinal Outer Deep Vascular Plexus and Photoreceptor Damage in Rat 50/10 Oxygen-Induced Retinopathy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4072319. [PMID: 31240212 PMCID: PMC6556365 DOI: 10.1155/2019/4072319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/28/2019] [Accepted: 04/28/2019] [Indexed: 11/25/2022]
Abstract
In retinopathy of prematurity (ROP), outer deep vascular plexus (oDVP) was the emerging field, and the mechanisms of photoreceptor dysfunction remained to be explored. ODVP and photoreceptors were related, with oDVP being part of the supplier of oxygen and nutrients to photoreceptors, while their possible relationship in ROP was not clear. TGF-beta1 has been reported indispensable in oDVP development and altered in ROP patients and animal models. We hypothesized that the TGF-beta1 alteration in rat 50/10 oxygen-induced retinopathy (OIR) model contributed to oDVP malformation and exerted consequent effects on photoreceptor development. We first explored the profile of oDVP development in rat after birth and compared the expression of TGF-beta1 and pSMAD2/3 in Normoxia and OIR groups. Afterwards, the inhibitor of the pathway, LY364947, was used to establish the OIR, OIR+LY364947, Normoxia, and Normoxia+LY364947 groups. The oDVP and photoreceptor were examined by Isolectin B4 staining, western-blot of CD31 and Rho, and electron microscopy. ODVP sprouted at postnatal day 10 (D10) and reached the edge of retina at D14. The TGF-beta1/SMAD2/3 pathway was compromised during the critical period of oDVP development. The inhibitor simulated the oDVP retardation, pericyte, and photoreceptor malformation in the Normoxia+LY364947 group and might further compromise the development of oDVP and photoreceptor in the OIR+LY364947 group. The inhibition of the TGF-beta1/SMAD2/3 pathway indicated its critical role in oDVP malformation and photoreceptor damage, suggesting a possible therapeutic target of ROP treatment.
Collapse
|
49
|
Abstract
The retina is one of the most metabolically active tissues in the body, consuming high levels of oxygen and nutrients. A well-organized ocular vascular system adapts to meet the metabolic requirements of the retina to ensure visual function. Pathological conditions affect growth of the blood vessels in the eye. Understanding the neuronal biological processes that govern retinal vascular development is of interest for translational researchers and clinicians to develop preventive and interventional therapeutics for vascular eye diseases that address early drivers of abnormal vascular growth. This review summarizes the current knowledge of the cellular and molecular processes governing both physiological and pathological retinal vascular development, which is dependent on the interaction among retinal cell populations, including neurons, glia, immune cells, and vascular endothelial cells. We also review animal models currently used for studying retinal vascular development.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| |
Collapse
|
50
|
Flicker electroretinogram recorded with portable ERG device in prematurely born schoolchildren with and without ROP. Doc Ophthalmol 2019; 139:59-65. [PMID: 30972611 DOI: 10.1007/s10633-019-09695-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE The purpose of this study was to compare electroretinographic (ERG) responses of preterm schoolchildren, with and without a history of retinopathy of prematurity (ROP) with those of full-term schoolchildren by using a portable ERG device (RETeval system). METHODS Twenty five prematurely born schoolchildren with a mean gestational age of 27 + 1/7w (range 23-30w) and a mean birth weight of 1030 g (range 580-1700 g) who were 6.9 ± 2.2 years old participated in the study (premature group). A further subdivision according to a history of ROP (ROP+ group) or its absence (ROP- group) was introduced. Twenty eight healthy full-term schoolchildren with an average age of 8.6 ± 1.9 years participated as the control group. 30-Hz flicker ERG responses were obtained, and implicit times and amplitudes were compared between the groups. RESULTS 30-Hz flicker ERG implicit times showed a significant difference between all three groups of children. The mean value of the implicit time in the term group was 25.76 ± 0.9 ms, whereas in the preterm ROP + group it was 28.96 ± 1.0 ms and in the preterm ROP- group it was 26.87 ± 1.5 ms. 30-Hz flicker ERG amplitudes did not show significant difference between term children and children born prematurely with or without ROP. CONCLUSIONS Prematurely born schoolchildren exhibit longer implicit time of the 30-Hz flicker ERG response compared to controls, suggesting a possible abnormality of the retinal cone system function. Under such circumstances, portable ERG device might be used clinically as a screening tool for retinal function evaluation in prematurely born children.
Collapse
|