1
|
Zaslavsky K, Vincent A, Ertl-Wagner BB, Brundler MA, Mallipatna A. Highly asymmetric early presentation of FEVR requiring enucleation. Ophthalmic Genet 2024:1-5. [PMID: 39647854 DOI: 10.1080/13816810.2024.2427879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/12/2024] [Accepted: 11/03/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Familial exudative vitreoretinopathy (FEVR) is a rare inherited disorder characterized by abnormal retinal vascular development. While it typically presents in childhood, distinguishing it from retinoblastoma in young infants can be challenging, especially in cases with asymmetric and advanced manifestations. METHODS Case report. RESULTS A 2-month-old female with microcephaly and intrauterine growth restriction (IUGR) presented with a left eye intraocular mass involving the entire globe and a flat anterior chamber. MRI showed no calcifications or contrast enhancement typical of retinoblastoma. Intravenous fluorescein angiography showed incomplete vascularization in the contralateral eye with compensatory neovascularization. The left eye was enucleated, and histology demonstrated a dysplastic retina with a retrolental membrane and abnormal vascular proliferations, confirming a diagnosis of FEVR. Genetic testing identified a novel pathogenic CTNNB1 p.Gly635* variant, inherited from the mother in whom it was present at 10-20% mosaicism. DISCUSSION Variants in CTNNB1 cause of CTNNB1-neurodevelopmental disorder, characterized by microcephaly, IUGR, autism spectrum disorder, intellectual disability, and FEVR in 20-40% of cases. Affected children present at an early age and advanced stages of disease. This case highlights that FEVR can have a highly asymmetric and advanced presentation at an early age and must be distinguished from retinoblastoma in the differential diagnosis of leukocoria.
Collapse
Affiliation(s)
- Kirill Zaslavsky
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatric Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Birgit Betina Ertl-Wagner
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Ontario, Toronto, Canada
| | - Marie-Anne Brundler
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ashwin Mallipatna
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatric Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Chen H, Chen E, Cao T, Feng F, Lin M, Wang X, Xu Y. Integrative analysis of PANoptosis-related genes in diabetic retinopathy: machine learning identification and experimental validation. Front Immunol 2024; 15:1486251. [PMID: 39697326 PMCID: PMC11652367 DOI: 10.3389/fimmu.2024.1486251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Background Diabetic retinopathy (DR) is a major complication of diabetes, leading to severe vision impairment. Understanding the molecular mechanisms, particularly PANoptosis, underlying DR is crucial for identifying potential biomarkers and therapeutic targets. This study aims to identify differentially expressed PANoptosis-related genes (DE-PRGs) in DR, offering insights into the disease's pathogenesis and potential diagnostic tools. Methods DR datasets were obtained from the Gene Expression Omnibus (GEO) database, while PANoptosis-related genes were sourced from the GeneCards database. Differentially expressed genes (DEGs) were identified using the DESeq2 package, followed by functional enrichment analysis through DAVID and Metascape tools. Three machine learning algorithms-LASSO regression, Random Forest, and SVM-RFE-were employed to identify hub genes. A diagnostic nomogram was constructed and its performance assessed via ROC analysis. The CIBERSORT algorithm analyzed immune cell infiltration. Hub genes were validated through RT-qPCR, Western blotting, immunohistochemistry, and publicly available datasets. Additionally, the impact of FASN and PLSCR3 knockdown on HUVECs behavior was validated through in vitro experiments. Results Differential expression analysis identified 1,418 DEGs in the GSE221521 dataset, with 39 overlapping DE-PRGs (29 upregulated, 10 downregulated). Functional enrichment indicated that DE-PRGs are involved in apoptosis, signal transduction, and inflammatory responses, with key pathways such as MAPK and TNF signaling. Machine learning algorithms identified six PANoptosis-related hub genes (BEX2, CASP2, CD36, FASN, OSMR, and PLSCR3) as potential biomarkers. A diagnostic nomogram based on these hub genes showed high diagnostic accuracy. Immune cell infiltration analysis revealed significant differences in immune cell patterns between control and DR groups, especially in Activated CD4 Memory T Cells and Monocytes. Validation confirmed the diagnostic efficiency and expression patterns of the PANoptosis-related hub genes, supported by in vitro and the GSE60436 dataset analysis. Furthermore, experiments demonstrated that knocking down FASN and PLSCR3 impacted HUVECs behavior. Conclusion This study provides valuable insights into the molecular mechanisms of DR, particularly highlighting PANoptosis-related pathways, and identifies potential biomarkers and therapeutic targets for the disease.
Collapse
Affiliation(s)
- Han Chen
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enguang Chen
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Cao
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feifan Feng
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Lin
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Wang
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Xu
- Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
4
|
Liu H, Wang F, Hu Z, Wei J. Potential Drug Targets for Diabetic Retinopathy Identified Through Mendelian Randomization Analysis. Transl Vis Sci Technol 2024; 13:17. [PMID: 39541108 PMCID: PMC11572760 DOI: 10.1167/tvst.13.11.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This study aimed to investigate the causal effect of plasma proteins on diabetic retinopathy (DR) risk and identify potential drug targets for this disease. Methods Two-sample Mendelian randomization was performed to explore potential drug targets for DR. A total of 734 proteins were selected as instrumental variables. The Steiger filtering test and colocalization analysis were conducted to determine the causal direction and genetic pleiotropy. Plasma proteins from the decode study were used to validate the findings. Results Eleven plasma proteins were associated with DR risk. Genetically predicted high levels of CCL3L1 (odds ratio [OR] = 0.582; 95% confidence interval [CI], 0.343-0.986; P = 0.044), PAM (OR = 0.782; 95% CI, 0.652-0.937; P = 0.008), GP1BA (OR = 0.793; 95% CI, 0.632-0.994; P = 0.044), GALNT16 (OR = 0.832; 95% CI, 0.727-0.952; P = 0.008), POGLUT1 (OR = 0.836; 95% CI = 0.703-0.995; P = 0.043), and DKK3 (OR = 0.859; 95% CI, 0.777-0.950; P = 0.003) have the protective effect on DR risk. Genetically predicted high levels of GFRA2 (OR = 1.104; 95% CI, 1.028-1.187; P = 0.007), PATE4 (OR = 1.405; 95% CI, 1.060-1.860; P = 0.018), GSTA1 (OR = 1.464; 95% CI, 1.163-1.842; P = 0.001), SIRPG (OR = 1.600, 95% CI, 1.244-2.057; P = 2.51E-04), and MAPK13 (OR = 1.731; 95% CI, 1.233-2.431; P = 0.002) were associated with an increased risk of DR. However, the colocalization analysis results suggested that SIRPG and GP1BA have a shared causal variant with DR. Conclusions CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 were associated with DR risk and were identified as potential drug targets for DR. Translational Relevance The present study has highlighted the role of CCL3L1, PAM, GALNT16, POGLUT1, DKK3, GFRA2, PATE4, GSTA1, and MAPK13 in the development of DR.
Collapse
Affiliation(s)
- Huan Liu
- Department of Ophthalmology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Feiyan Wang
- Department of Ophthalmology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, PR China
| | - Ziqing Hu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Jing Wei
- Department of Ophthalmology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, PR China
| |
Collapse
|
5
|
Yao X, Li Z, Lei Y, Liu Q, Chen S, Zhang H, Dong X, He K, Guo J, Li MJ, Wang X, Yan H. Single-Cell Multiomics Profiling Reveals Heterogeneity of Müller Cells in the Oxygen-Induced Retinopathy Model. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 39504047 PMCID: PMC11547256 DOI: 10.1167/iovs.65.13.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/28/2024] [Indexed: 11/10/2024] Open
Abstract
Purpose Retinal neovascularization poses heightened risks of vision loss and blindness. Despite its clinical significance, the molecular mechanisms underlying the pathogenesis of retinal neovascularization remain elusive. This study utilized single-cell multiomics profiling in an oxygen-induced retinopathy (OIR) model to comprehensively investigate the intricate molecular landscape of retinal neovascularization. Methods Mice were exposed to hyperoxia to induce the OIR model, and retinas were isolated for nucleus isolation. The cellular landscape of the single-nucleus suspensions was extensively characterized through single-cell multiomics sequencing. Single-cell data were integrated with genome-wide association study (GWAS) data to identify correlations between ocular cell types and diabetic retinopathy. Cell communication analysis among cells was conducted to unravel crucial ligand-receptor signals. Trajectory analysis and dynamic characterization of Müller cells were performed, followed by integration with human retinal data for pathway analysis. Results The multiomics dataset revealed six major ocular cell classes, with Müller cells/astrocytes showing significant associations with proliferative diabetic retinopathy (PDR). Cell communication analysis highlighted pathways that are associated with vascular proliferation and neurodevelopment, such as Vegfa-Vegfr2, Igf1-Igf1r, Nrxn3-Nlgn1, and Efna5-Epha4. Trajectory analysis identified a subset of Müller cells expressing genes linked to photoreceptor degeneration. Multiomics data integration further unveiled positively regulated genes in OIR Müller cells/astrocytes associated with axon development and neurotransmitter transmission. Conclusions This study significantly advances our understanding of the intricate cellular and molecular mechanisms underlying retinal neovascularization, emphasizing the pivotal role of Müller cells. The identified pathways provide valuable insights into potential therapeutic targets for PDR, offering promising directions for further research and clinical interventions.
Collapse
Affiliation(s)
- Xueming Yao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Li
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yi Lei
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Qiangyun Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Haokun Zhang
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xue Dong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ju Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Chiang MC, Tsai SH, Wang NK, Lai YJ. Bilateral Coats' disease in a 5-year-old boy. Asia Pac J Ophthalmol (Phila) 2024; 13:100119. [PMID: 39645081 DOI: 10.1016/j.apjo.2024.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024] Open
Affiliation(s)
- Meng-Chen Chiang
- Department of Medical Education, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shawn H Tsai
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Optometry, Mackay Medical College, New Taipei City, Taiwan.
| | - Nan-Kai Wang
- College of Medicine, School of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Yung-Jen Lai
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
7
|
Song Y, Yin C, Kong N. Stem Cell-Derived Exosomes: Natural Intercellular Messengers with Versatile Mechanisms for the Treatment of Diabetic Retinopathy. Int J Nanomedicine 2024; 19:10767-10784. [PMID: 39469447 PMCID: PMC11514697 DOI: 10.2147/ijn.s475234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic retinopathy is one of the complications of diabetes mellitus that occurs in the early stages. It is a disease that has a serious impact, and may lead to blindness when the disease progresses to advanced stages. Currently, treatments for diabetic retinopathy are mainly limited to its advanced stages of the disease, being restricted to a single therapeutic mechanism. Stem cells hold the promise of regenerative therapy and have the potential to comprehensively improve diabetic retinopathy. However, direct stem cell therapy carries some risk of carcinogenesis. Exosomes secreted by stem cells have shown a similar overall improvement in disease as stem cells. Exosomes can carry a number of biologically active materials from donor cells to recipient cells or distant organs, regulating intercellular signaling. Exosomes have shown remarkable efficacy in alleviating oxidative stress, inhibiting inflammatory responses, suppressing angiogenesis, reducing apoptosis and protecting neural tissues. Currently, the experimental literature using stem cell exosomes in the treatment of diabetic retinopathy tends to converge on the above experimental results. With this in mind, we have chosen to explore exosomes in depth from a subtle molecular perspective. We will elaborate on this perspective in this paper and propose to advocate exosome therapy as one promising approach for the treatment of diabetic retinopathy to ameliorate the lesions through multiple mechanisms.
Collapse
Affiliation(s)
- Yameng Song
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People’s Republic of China
| | - Caiyun Yin
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, People’s Republic of China
| | - Ning Kong
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
8
|
Huang X, Xiu L, An Y, Gong Y, Li S, Chen X, Liu C, Lu J, Shan H, Chang J, Zhang M. Preventive Effect of Royal Jelly and 10-HDA on Skin Damage in Diabetic Mice through Regulating Keratinocyte Wnt/β-Catenin and Pyroptosis Pathway. Mol Nutr Food Res 2024; 68:e2400098. [PMID: 39246232 DOI: 10.1002/mnfr.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The objective of this study is to elucidate how Royal jelly (RJ) and 10-hydroxy-2-decanoic acid (10-HDA) prevents diabetic skin dysfunction by modulating the pyroptosis pathway. Type 2 diabetes models are induced by fat diet consumption and low dose of streptozotocin (STZ) in C57BL/6J mice and treated with RJ (100 mg kg-1 day-1) and 10-HDA, the major lipid component of royal jelly (100 mg kg-1 day-1) for 28 weeks. The results show that serum concentrations of glucose and triglyceride are significantly lower in the RJ group or 10-HDA than diabetes mellitus (DM) group. Compared to the control group, pyroptosis proteins, GSDMD, ASC, Caspase-1, and IL-1β are increased in the skin of the diabetic model, accompanied by the activation of the Wnt/β-catenin signal pathway. Further evaluations by RJ exhibit superior improvement of skin damage, repress activation of the Wnt/β-catenin pathway, and attenuate keratinocyte pyroptosis, but 10-HDA cannot completely suppress the activation of Wnt/β-catenin pathway and pyroptosis, which shows a relatively weak protective effect on skin damage which shows that RJ is a better effect on skin injury after DM.
Collapse
Affiliation(s)
- Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Lu Xiu
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yuan Gong
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Sunao Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Chao Liu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jianghuiwen Lu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215123, China
| | - Jie Chang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, Suzhou, 215123, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Ma X, Wu W, Hara M, Zhou J, Panzarin C, Schafer CM, Griffin CT, Cai J, Ma JX, Takahashi Y. Deficient RPE mitochondrial energetics leads to subretinal fibrosis in age-related neovascular macular degeneration. Commun Biol 2024; 7:1075. [PMID: 39223298 PMCID: PMC11369096 DOI: 10.1038/s42003-024-06773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Subretinal fibrosis permanently impairs the vision of patients with neovascular age-related macular degeneration. Despite emerging evidence revealing the association between disturbed metabolism in retinal pigment epithelium (RPE) and subretinal fibrosis, the underlying mechanism remains unclear. In the present study, single-cell RNA sequencing revealed, prior to subretinal fibrosis, genes in mitochondrial fatty acid oxidation are downregulated in the RPE lacking very low-density lipoprotein receptor (VLDLR), especially the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). We found that overexpression of CPT1A in the RPE of Vldlr-/- mice suppresses epithelial-to-mesenchymal transition and fibrosis. Mechanistically, TGFβ2 induces fibrosis by activating a Warburg-like effect, i.e. increased glycolysis and decreased mitochondrial respiration through ERK-dependent CPT1A degradation. Moreover, VLDLR blocks the formation of the TGFβ receptor I/II complex by interacting with unglycosylated TGFβ receptor II. In conclusion, VLDLR suppresses fibrosis by attenuating TGFβ2-induced metabolic reprogramming, and CPT1A is a potential target for treating subretinal fibrosis.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Wenjing Wu
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Miwa Hara
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Junwen Zhou
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Carolina Panzarin
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas-UNICAMP, Limeira, Brazil
| | - Christopher M Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jiyang Cai
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yusuke Takahashi
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Bedoukian EC, Forbes G, Scoles D. Vitreoretinopathy in Asymptomatic Children With CTNNB1 Syndrome. JAMA Ophthalmol 2024; 142:874-878. [PMID: 39145965 PMCID: PMC11327901 DOI: 10.1001/jamaophthalmol.2024.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Importance Previous studies have identified familial exudative vitreoretinonpathy (FEVR) in patients with CTNNB1 syndrome based on severe congenital ocular phenotypes. However, ophthalmoscopy may not be sufficient to detect vision-threatening vitreoretinopathy in all patients. Objective To report a consecutive retrospective case series of 11 patients with CTNNB1 variants who had previously unremarkable ophthalmoscopic examination results and to describe their detailed ophthalmic phenotypes. Design, Setting, and Participants This retrospective case series was conducted at the Children's Hospital of Philadelphia from October 2022 to November 2023 among patients with identified variants in CTNNB1 and previously documented normal results in office retinal examinations. These consecutive patients subsequently underwent an examination under anesthesia with fluorescein angiography. Detailed genotype information was analyzed for all patients, and each variant was mapped on the CTNNB1 gene to observe any associations with severity of vitreoretinopathy. Main Outcomes and Measures Number of patients with vitreoretinopathy and number requiring treatment for vitreoretinopathy. Results The mean (SD) age at the time of CTNNB1 syndrome diagnosis was 2 (1) years, and the mean (SD) age at examination was 6 (3) years for the 11 total patients. A total of 9 patients had a diagnosis of strabismus, and 5 patients had undergone strabismus surgery. FEVR was present in 5 of 11 patients and in 9 eyes. The presence of disease requiring treatment was identified in 6 eyes, including 1 retinal detachment. Detailed genotype analysis of the patients found no clearly delineated high-risk loci in CTNNB1 in association with high severity of FEVR. Conclusions and Relevance In this case series study, nearly all patients with CTNNB1 syndrome required ophthalmic care for refractive error and strabismus, and a subset also required treatment for FEVR. These findings support consideration of ultra-widefield fluorescein angiography among individuals with CTNNB1 syndrome when feasible, including the use of sedation if such an assessment is not possible in the office setting.
Collapse
Affiliation(s)
- Emma C. Bedoukian
- Roberts Individualized Medical Genetics Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Ophthalmology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Grace Forbes
- Department of Ophthalmology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Drew Scoles
- Department of Ophthalmology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Scheie Eye Institute, University of Pennsylvania, Philadelphia
| |
Collapse
|
11
|
Wang Y, Ge H, Chen P, Wang Y. Wnt/β-catenin signaling in corneal epithelium development, homeostasis, and pathobiology. Exp Eye Res 2024; 246:110022. [PMID: 39117134 DOI: 10.1016/j.exer.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The corneal epithelium is located on the most anterior surface of the eyeball and protects against external stimuli. The development of the corneal epithelium and the maintenance of corneal homeostasis are essential for the maintenance of visual acuity. It has been discovered recently via the in-depth investigation of ocular surface illnesses that the Wnt/β-catenin signaling pathway is necessary for the growth and stratification of corneal epithelial cells as well as the control of endothelial cell stability. In addition, the Wnt/β-catenin signaling pathway is directly linked to the development of common corneal illnesses such as keratoconus, fungal keratitis, and corneal neovascularization. This review mainly summarizes the role of the Wnt/β-catenin signaling pathway in the development, homeostasis, and pathobiology of cornea, hoping to provide new insights into the study of corneal epithelium and the treatment of related diseases.
Collapse
Affiliation(s)
- Yihui Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong 266042, China.
| |
Collapse
|
12
|
Zhou P, Zhang S, Li L, Zhang R, Guo G, Zhang Y, Wang R, Liu M, Wang Z, Zhao H, Yang G, Xie S, Ran J. Targeted degradation of VEGF with bispecific aptamer-based LYTACs ameliorates pathological retinal angiogenesis. Theranostics 2024; 14:4983-5000. [PMID: 39267779 PMCID: PMC11388081 DOI: 10.7150/thno.98467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Neovascular ocular diseases (NODs) represent the leading cause of visual impairment globally. Despite significant advances in anti-angiogenic therapies targeting vascular endothelial growth factor (VEGF), persistent challenges remain prevalent. As a proof-of-concept study, we herein demonstrate the effectiveness of targeted degradation of VEGF with bispecific aptamer-based lysosome-targeting chimeras (referred to as VED-LYTACs). Methods: VED-LYTACs were constructed with three distinct modules: a mannose-6-phosphate receptor (M6PR)-binding motif containing an M6PR aptamer, a VEGF-binding module with an aptamer targeting VEGF, and a linker essential for bridging and stabilizing the two-aptamer structure. The degradation efficiency of VED-LYTACs via the autophagy-lysosome system was examined using an enzyme-linked immunosorbent assay (ELISA) and immunofluorescence staining. Subsequently, the anti-angiogenic effects of VED-LYTACs were evaluated using in vitro wound healing assay, tube formation assay, three-dimensional sprouting assay, and ex vivo aortic ring sprouting assay. Finally, the potential therapeutic effects of VED-LYTACs on pathological retinal neovascularization and vascular leakage were tested by employing mouse models of NODs. Results: The engineered VED-LYTACs promote the interaction between M6PR and VEGF, consequently facilitating the translocation and degradation of VEGF through the lysosome. Our data show that treatment with VED-LYTACs significantly suppresses VEGF-induced angiogenic activities both in vitro and ex vivo. In addition, intravitreal injection of VED-LYTACs remarkably ameliorates abnormal vascular proliferation and leakage in mouse models of NODs. Conclusion: Our findings present a novel strategy for targeting VEGF degradation with an aptamer-based LYTAC system, effectively ameliorating pathological retinal angiogenesis. These results suggest that VED-LYTACs have potential as therapeutic agents for managing NODs.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Sai Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Renshuai Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guizhi Guo
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yufei Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Runa Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Miaoyuan Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhiyi Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Guiwen Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
13
|
Chuan J, Li W, Pan S, Jiang Z, Shi J, Yang Z. Progress in the development of modulators targeting Frizzleds. Pharmacol Res 2024; 206:107286. [PMID: 38936522 DOI: 10.1016/j.phrs.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The Frizzleds (FZDs) receptors on the cell surface belong to the class F of G protein-coupled receptors (GPCRs) which are the major receptors of WNT protein that mediates the classical WNT signaling pathway and other non-classical pathways. Besides, the FZDs also play a core role in tissue regeneration and tumor occurrence. With the structure and mechanism of FZDs activation becoming clearer, a series of FZDs modulators (inhibitors and agonists) have been developed, with the hope of bringing benefits to the treatment of cancer and degenerative diseases. Most of the FZDs inhibitors (small molecules, antibodies or designed protein inhibitors) block WNT signaling through binding to the cysteine-rich domain (CRD) of FZDs. Several small molecules impede FZDs activation by targeting to the third intracellular domain or the transmembrane domain of FZDs. However, three small molecules (FZM1.8, SAG1.3 and purmorphamine) activate the FZDs through direct interaction with the transmembrane domain. Another type of FZDs agonists are bivalent or tetravalent antibodies which activate the WNT signaling via inducing FZD-LRP5/6 heterodimerization. In this article, we reviewed the FZDs modulators reported in recent years, summarized the critical molecules' discovery processes and the elucidated relevant structural and pharmacological mechanisms. We believe the summaried molecular mechanisms of the relevant modulators could provide important guidance and reference for the future development of FZD modulators.
Collapse
Affiliation(s)
- Junlan Chuan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu 610041, China; The University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101408, China
| | - Shengliu Pan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu 610041, China; The University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101408, China
| | - Zhongliang Jiang
- Hematology Department, Miller School of Medicine, University of Miami, USA
| | - Jianyou Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhenglin Yang
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
14
|
Wang XF, Xiang XH, Wei J, Zhang PB, Xu Q, Liu MH, Qu LQ, Wang XX, Yu L, Wu AG, Qing DL, Wu JM, Law BYK, Yu CL, Yong-Tang. Raddeanin A Protects the BRB Through Inhibiting Inflammation and Apoptosis in the Retina of Alzheimer's Disease. Neurochem Res 2024; 49:2197-2214. [PMID: 38834846 DOI: 10.1007/s11064-024-04145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular β-amyloid (Aβ) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting β-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aβ-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/β-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- Laboratory Animal Centre, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
| | - Xiao-Hong Xiang
- Department of Ophthalmology in The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Wei
- Eye School and Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection of Chengdu University of TCM, Chengdu, China
| | - Peng-Bo Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 15651, China
| | - Qin Xu
- Department of Ophthalmology in The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Meng-Han Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Li-Qun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xing-Xia Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Da-Lian Qing
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Jian-Ming Wu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica of Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chong-Lin Yu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China.
| | - Yong-Tang
- Laboratory Animal Centre, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China.
| |
Collapse
|
15
|
Atac D, Maggi K, Feil S, Maggi J, Cuevas E, Sowden JC, Koller S, Berger W. Identification and Characterization of ATOH7-Regulated Target Genes and Pathways in Human Neuroretinal Development. Cells 2024; 13:1142. [PMID: 38994994 PMCID: PMC11240604 DOI: 10.3390/cells13131142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
The proneural transcription factor atonal basic helix-loop-helix transcription factor 7 (ATOH7) is expressed in early progenitors in the developing neuroretina. In vertebrates, this is crucial for the development of retinal ganglion cells (RGCs), as mutant animals show an almost complete absence of RGCs, underdeveloped optic nerves, and aberrations in retinal vessel development. Human mutations are rare and result in autosomal recessive optic nerve hypoplasia (ONH) or severe vascular changes, diagnosed as autosomal recessive persistent hyperplasia of the primary vitreous (PHPVAR). To better understand the role of ATOH7 in neuroretinal development, we created ATOH7 knockout and eGFP-expressing ATOH7 reporter human induced pluripotent stem cells (hiPSCs), which were differentiated into early-stage retinal organoids. Target loci regulated by ATOH7 were identified by Cleavage Under Targets and Release Using Nuclease with sequencing (CUT&RUN-seq) and differential expression by RNA sequencing (RNA-seq) of wildtype and mutant organoid-derived reporter cells. Additionally, single-cell RNA sequencing (scRNA-seq) was performed on whole organoids to identify cell type-specific genes. Mutant organoids displayed substantial deficiency in axon sprouting, reduction in RGCs, and an increase in other cell types. We identified 469 differentially expressed target genes, with an overrepresentation of genes belonging to axon development/guidance and Notch signaling. Taken together, we consolidate the function of human ATOH7 in guiding progenitor competence by inducing RGC-specific genes while inhibiting other cell fates. Furthermore, we highlight candidate genes responsible for ATOH7-associated optic nerve and retinovascular anomalies, which sheds light to potential future therapy targets for related disorders.
Collapse
Affiliation(s)
- David Atac
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Kevin Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Elisa Cuevas
- UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
16
|
Liu X, Xu X, Lai Y, Zhou X, Chen L, Wang Q, Jin Y, Luo D, Ding X. Tetrahedral framework nucleic acids-based delivery of MicroRNA-22 inhibits pathological neovascularization and vaso-obliteration by regulating the Wnt pathway. Cell Prolif 2024; 57:e13623. [PMID: 38433462 PMCID: PMC11216936 DOI: 10.1111/cpr.13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The objective of this study was to investigate the effects and molecular mechanisms of tetrahedral framework nucleic acids-microRNA22 (tFNAs-miR22) on inhibiting pathological retinal neovascularization (RNV) and restoring physiological retinal vessels. A novel DNA nanocomplex (tFNAs-miR22) was synthesised by modifying microRNA-22 (miR22) through attachment onto tetrahedral frame nucleic acids (tFNAs), which possess diverse biological functions. Cell proliferation, wound healing, and tube formation were employed for in vitro assays to investigate the angiogenic function of cells. Oxygen-induced retinopathy (OIR) model was utilised to examine the effects of reducing pathological neovascularization (RNV) and inhibiting vascular occlusion in vivo. In vitro, tFNAs-miR22 demonstrated the ability to penetrate endothelial cells and effectively suppress cell proliferation, tube formation, and migration in a hypoxic environment. In vivo, tFNAs-miR22 exhibited promising results in reducing RNV and promoting the restoration of normal retinal blood vessels in OIR model through modulation of the Wnt pathway. This study provided a theoretical basis for the further understanding of RNV, and highlighted the innovative and potential of tFNAs-miR22 as a therapeutic option for ischemic retinal diseases.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Xiaoxiao Xu
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yanting Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Xiaodi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Limei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qiong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yili Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Delun Luo
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
17
|
Zhang Y, Xu J, Li P, Luo B, Tang H. Activation of Wnt signaling mitigates blood-brain barrier disruption by inhibiting vesicular transcytosis after traumatic brain injury in mice. Exp Neurol 2024; 377:114782. [PMID: 38641126 DOI: 10.1016/j.expneurol.2024.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Elevated transport of Caveolin-1 (CAV-1) vesicles within vascular endothelial cells constitutes a significant secondary pathogenic event contributing to the compromise of the blood-brain barrier (BBB) post-traumatic brain injury (TBI). While Wnt/β-catenin signaling is recognized for its critical involvement in angiogenesis and the maintenance of BBB integrity, its influence on vascular endothelial transcytosis in the aftermath of TBI is not well-defined. This study aims to elucidate the impact of Wnt/β-catenin signaling on cerebrovascular vesicular transcytosis following TBI. In this experiment, adult male wild-type (WT) C57BL/6 mice underwent various interventions. TBI was induced utilizing the controlled cortical impact technique. Post-TBI, mice were administered either an inhibitor or an agonist of Wnt signaling via intraperitoneal injection. Recombinant adeno-associated virus (rAAV) was administered intracerebroventricularly to modulate the expression of the CAV-1 inhibitory protein, Major facilitator superfamily domain-containing 2a (Mfsd2a). This research utilized Evans blue assay, Western blot analysis, immunofluorescence, transmission electron microscopy, and neurobehavioral assessments. Post-TBI observations revealed substantial increases in macromolecule (Evans blue and albumin) leakage, CAV-1 transport vesicle count, astrocyte end-feet edema, and augmented aquaporin-4 (AQP4) expression, culminating in BBB disruption. The findings indicate that Wnt signaling pathway inhibition escalates CAV-1 transport vesicle activity and aggravates BBB compromise. Conversely, activating this pathway could alleviate BBB damage by curtailing CAV-1 vesicle presence. Post-TBI, there is a diminution in Mfsd2a expression, which is directly influenced by the modulation of WNT signals. Employing a viral approach to regulate Mfsd2a, we established that its down-regulation undermines the protective benefits derived from reducing CAV-1 transport vesicles through WNT signal enhancement. Moreover, we verified that the WNT signaling agonist LiCl notably ameliorates neurological deficits following TBI in mice. Collectively, our data imply that Wnt/β-catenin signaling presents a potential therapeutic target for safeguarding against BBB damage and enhancing neurological function after TBI.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Jianfeng Xu
- Neurosurgery of the Third People's Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, China
| | - Pengcheng Li
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Bo Luo
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
18
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Kiryakoza L, Cruz NFSD, Hoyek S, Berrocal AM. Retinopathy With Variant of Unknown Significance and Atypical Chorioretinal Coloboma in the Setting of Prematurity. Ophthalmic Surg Lasers Imaging Retina 2024; 55:285-288. [PMID: 38408227 DOI: 10.3928/23258160-20240202-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A 37-week-old girl underwent ophthalmic examination. Born at 32 weeks, the infant weighed 680 grams and received high-flow nasal cannula for respiratory distress of the newborn. Dilated fundus examination of the right eye revealed an atypical chorioretinal coloboma; the left eye revealed hyperpigmentary changes in the macula. Fluorescein angiography of both eyes showed retinal vascularization to zone II. Genetic testing revealed a heterozygous variant of uncertain significance in the catenin Alpha 1 (CTNNA1) gene. CTNNA1 gene abnormalities have been implicated as causes of familial exudative vitreoretinopathy (FEVR). It is important to recognize possible simultaneous retinopathy of prematurity and FEVR. [Ophthalmic Surg Lasers Imaging Retina 2024;55:285-288.].
Collapse
|
20
|
Wani AK, Prakash A, Sena S, Akhtar N, Singh R, Chopra C, Ariyanti EE, Mudiana D, Yulia ND, Rahayu F. Unraveling molecular signatures in rare bone tumors and navigating the cancer pathway landscapes for targeted therapeutics. Crit Rev Oncol Hematol 2024; 196:104291. [PMID: 38346462 DOI: 10.1016/j.critrevonc.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Rare cancers (RCs), which account for over 20% of cancer cases, face significant research and treatment challenges due to their limited prevalence. This results in suboptimal outcomes compared to more common malignancies. Rare bone tumors (RBTs) constitute 5-10% of rare cancer cases and pose unique diagnostic complexities. The therapeutic potential of anti-cancer drugs for RBTs remains largely unexplored. Identifying molecular alterations in cancer-related genes and their associated pathways is essential for precision medicine in RBTs. Small molecule inhibitors and monoclonal antibodies targeting specific RBT-associated proteins show promise. Ongoing clinical trials aim to define RBT biomarkers, subtypes, and optimal treatment contexts, including combination therapies and immunotherapeutic agents. This review addresses the challenges in diagnosing, treating, and studying RBTs, shedding light on the current state of RBT biomarkers, potential therapeutic targets, and promising inhibitors. Rare cancers demand attention and innovative solutions to improve clinical outcomes.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Esti Endah Ariyanti
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Deden Mudiana
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Nina Dwi Yulia
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor 16911, Indonesia
| |
Collapse
|
21
|
Hung JH, Tsai PH, Aala WJF, Chen CC, Chiou SH, Wong TW, Tsai KJ, Hsu SM, Wu LW. TIMP3/Wnt axis regulates gliosis of Müller glia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167087. [PMID: 38369214 DOI: 10.1016/j.bbadis.2024.167087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Previous studies have confirmed the expression of tissue inhibitor of metalloproteinase-3 (TIMP3) in Müller glia (MG). However, the role of TIMP3 in MG remains unknown. METHODS A mouse model of laser-induced retinal damage and gliosis was generated using wild-type C57BL/6 mice. TIMP3 and associated proteins were detected using Western blotting and immunofluorescence microscopy. RNA sequencing (GSE132140) of mouse laser-induced gliosis was utilized for pathway analysis. TIMP3 overexpression was induced in human MG. Human vitreous samples were obtained from patients with proliferative diabetic retinopathy (PDR) and healthy controls for protein analysis. RESULTS TIMP3 levels increased in mouse eyes after laser damage. Morphology and spatial location of TIMP3 indicated its presence in MG. TIMP3-overexpressing MG showed increased cellular proliferation, migration, and cell nuclei size, suggesting TIMP3-induced gliosis for retinal repair. Glial fibrillary acidic protein (GFAP) and vimentin levels were elevated in TIMP3-overexpressing MG and laser-damaged mouse retinas. RNA sequencing and Western blotting suggested a role for β-catenin in mediating TIMP3 effects on the retina. Human vitreous samples from patients with PDR showed a positive correlation between TIMP3 and GFAP levels, both of which were elevated in patients with PDR. CONCLUSIONS TIMP3 is associated with MG gliosis to enhance the repair ability of damaged retinas and is mediated by the canonical Wnt/β-catenin. Changes in TIMP3 could potentially be used to control gliosis in a range of retinal diseases However, given the multifaceted nature of TIMP3, care must be taken when developing treatments that aim solely to boost the function of TIMP3. FUNDING National Cheng Kung University Hospital, Taiwan (NCKUH-10604009 and NCKUH-11202007); the Ministry of Science and Technology (MOST 110-2314-B-006-086-MY3).
Collapse
Affiliation(s)
- Jia-Horung Hung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wilson Jr F Aala
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chung Chen
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Liu D, Du J, Xie H, Tian H, Lu L, Zhang C, Xu GT, Zhang J. Wnt5a/β-catenin-mediated epithelial-mesenchymal transition: a key driver of subretinal fibrosis in neovascular age-related macular degeneration. J Neuroinflammation 2024; 21:75. [PMID: 38532410 DOI: 10.1186/s12974-024-03068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration (nAMD), accounts for up to 90% of AMD-associated vision loss, ultimately resulting in the formation of fibrotic scar in the macular region. The pathogenesis of subretinal fibrosis in nAMD involves the process of epithelial-mesenchymal transition (EMT) occurring in retinal pigment epithelium (RPE). Here, we aim to investigate the underlying mechanisms involved in the Wnt signaling during the EMT of RPE cells and in the pathological process of subretinal fibrosis secondary to nAMD. METHODS In vivo, the induction of subretinal fibrosis was performed in male C57BL/6J mice through laser photocoagulation. Either FH535 (a β-catenin inhibitor) or Box5 (a Wnt5a inhibitor) was intravitreally administered on the same day or 14 days following laser induction. The RPE-Bruch's membrane-choriocapillaris complex (RBCC) tissues were collected and subjected to Western blot analysis and immunofluorescence to examine fibrovascular and Wnt-related markers. In vitro, transforming growth factor beta 1 (TGFβ1)-treated ARPE-19 cells were co-incubated with or without FH535, Foxy-5 (a Wnt5a-mimicking peptide), Box5, or Wnt5a shRNA, respectively. The changes in EMT- and Wnt-related signaling molecules, as well as cell functions were assessed using qRT-PCR, nuclear-cytoplasmic fractionation assay, Western blot, immunofluorescence, scratch assay or transwell migration assay. The cell viability of ARPE-19 cells was determined using Cell Counting Kit (CCK)-8. RESULTS The in vivo analysis demonstrated Wnt5a/ROR1, but not Wnt3a, was upregulated in the RBCCs of the laser-induced CNV mice compared to the normal control group. Intravitreal injection of FH535 effectively reduced Wnt5a protein expression. Both FH535 and Box5 effectively attenuated subretinal fibrosis and EMT, as well as the activation of β-catenin in laser-induced CNV mice, as evidenced by the significant reduction in areas positive for fibronectin, alpha-smooth muscle actin (α-SMA), collagen I, and active β-catenin labeling. In vitro, Wnt5a/ROR1, active β-catenin, and some other Wnt signaling molecules were upregulated in the TGFβ1-induced EMT cell model using ARPE-19 cells. Co-treatment with FH535, Box5, or Wnt5a shRNA markedly suppressed the activation of Wnt5a, nuclear translocation of active β-catenin, as well as the EMT in TGFβ1-treated ARPE-19 cells. Conversely, treatment with Foxy-5 independently resulted in the activation of abovementioned molecules and subsequent induction of EMT in ARPE-19 cells. CONCLUSIONS Our study reveals a reciprocal activation between Wnt5a and β-catenin to mediate EMT as a pivotal driver of subretinal fibrosis in nAMD. This positive feedback loop provides valuable insights into potential therapeutic strategies to treat subretinal fibrosis in nAMD patients.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jingxiao Du
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
23
|
Chen B, Zou J, Xie L, Cai Y, Li B, Tan W, Huang J, Li F, Xu H. WNT-inhibitory factor 1-mediated glycolysis protects photoreceptor cells in diabetic retinopathy. J Transl Med 2024; 22:245. [PMID: 38448948 PMCID: PMC10918886 DOI: 10.1186/s12967-024-05046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND In diabetic retinopathy (DR), hypoxia-inducible factor (HIF-1α) induces oxidative stress by upregulating glycolysis. This process leads to neurodegeneration, particularly photoreceptor cell damage, which further contributes to retinal microvascular deterioration. Further, the regulation of Wnt-inhibitory factor 1 (WIF1), a secreted Wnt signaling antagonist, has not been fully characterized in neurodegenerative eye diseases. We aimed to explore the impact of WIF1 on photoreceptor function within the context of DR. METHOD Twelve-week-old C57BL/KsJ-db/db mice were intravitreally injected with WIF1 overexpression lentivirus. After 4 weeks, optical coherence tomography (OCT), transmission electron microscopy (TEM), H&E staining, and electroretinography (ERG) were used to assess the retinal tissue and function. The potential mechanism of action of WIF1 in photoreceptor cells was explored using single-cell RNA sequencing. Under high-glucose conditions, 661 W cells were used as an in vitro DR model. WIF1-mediated signaling pathway components were assessed using quantitative real-time PCR, immunostaining, and western blotting. RESULT Typical diabetic manifestations were observed in db/db mice. Notably, the expression of WIF1 was decreased at the mRNA and protein levels. These pathological manifestations and visual function improved after WIF1 overexpression in db/db mice. TEM demonstrated that WIF1 restored damaged mitochondria, the Golgi apparatus, and photoreceptor outer segments. Moreover, ERG indicated the recovery of a-wave potential amplitude. Single-cell RNA sequencing and in vitro experiments suggested that WIF1 overexpression prevented the expression of glycolytic enzymes and lactate production by inhibiting the canonical Wnt signaling pathway, HIF-1α, and Glut1, thereby reducing retinal and cellular reactive oxygen species levels and maintaining 661 W cell viability. CONCLUSIONS WIF1 exerts an inhibitory effect on the Wnt/β-catenin-HIF-1α-Glut1 glycolytic pathway, thereby alleviating oxidative stress levels and mitigating pathological structural characteristics in retinal photoreceptor cells. This mechanism helps preserve the function of photoreceptor cells in DR and indicates that WIF1 holds promise as a potential therapeutic candidate for DR and other neurodegenerative ocular disorders.
Collapse
Affiliation(s)
- Bolin Chen
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Zou
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lihui Xie
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yinjun Cai
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bowen Li
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, Xiangtan Central Hospital, Xiangtan, 411199, Hunan, China
| | - Jinhaohao Huang
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fangling Li
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huizhuo Xu
- Eye Center of Xiangya Hospital, Hunan Key Laboratory of Ophthalmology, Central South University, No 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
24
|
Liu M, Dai E, Yang M, Li S, Fan L, Liu Y, Xiao H, Zhao P, Yang Z. Investigating the Impact of Dimer Interface Mutations on Norrin's Secretion and Norrin/β-Catenin Pathway Activation. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 38517429 PMCID: PMC10981164 DOI: 10.1167/iovs.65.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Purpose This study aimed to investigate the impact of 21 NDP mutations located at the dimer interface, focusing on their potential effects on protein assembly, secretion efficiency, and activation of the Norrin/β-catenin signaling pathway. Methods The expression level, secretion efficiency, and protein assembly of mutations were analyzed using Western blot. The Norrin/β-catenin signaling pathway activation ability after overexpression of mutants or supernatant incubation of mutant proteins was tested in HEK293STF cells. The mutant norrin and wild-type (WT) FZD4 were overexpressed in HeLa cells to observe their co-localization. Immunofluorescence staining was conducted in HeLa cells to analyze the subcellular localization of Norrin and the Retention Using Selective Hook (RUSH) assay was used to dynamically observe the secretion process of WT and mutant Norrin. Results Four mutants (A63S, E66K, H68P, and L103Q) exhibited no significant differences from WT in all evaluations. The other 17 mutants presented abnormalities, including inadequate protein assembly, reduced secretion, inability to bind to FZD4 on the cell membrane, and decreased capacity to activate Norrin/β-catenin signaling pathway. The RUSH assay revealed the delay in endoplasmic reticulum (ER) exit and impairment of Golgi transport. Conclusions Mutations at the Norrin dimer interface may lead to abnormal protein assembly, inability to bind to FZD4, and decreased secretion, thus contributing to compromised Norrin/β-catenin signaling. Our results shed light on the pathogenic mechanisms behind a significant proportion of NDP gene mutations in familial exudative vitreoretinopathy (FEVR) or Norrie disease.
Collapse
Affiliation(s)
- Min Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lin Fan
- The University of Chinese Academy of Sciences, Beijing, China
| | - Yining Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haodong Xiao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- The University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Zhao R, Liu M, Dai E, Chen C, Lv L, Peng L, He Y, Li S, Yang M. Deciphering a crucial dimeric interface governing Norrin dimerization and the pathogenesis of familial exudative vitreoretinopathy. FASEB J 2024; 38:e23493. [PMID: 38363575 DOI: 10.1096/fj.202302387r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease that could cause blindness. It has been established that Norrin forms dimers to activate β-catenin signaling, yet the core interface for Norrin dimerization and the precise mechanism by which Norrin dimerization contributes to the pathogenesis of FEVR remain elusive. Here, we report an NDP variant, c.265T>C (p.Phe89Leu), that interrupted β-catenin signaling by disrupting Norrin dimerization. Structural and functional analysis revealed that the Phe-89 of one Norrin monomer interacts with Pro-98, Ser-101, Arg-121, and Ile-123 of another, forming two core symmetrical dimerization interfaces that are pivotal for the formation of a "hand-by-arm" dimer. Intriguingly, we proved that one of the two core symmetrical interfaces is sufficient for dimerization and activation of β-catenin signaling, with a substantial contribution from the Phe-89/Pro-98 interaction. Further functional analysis revealed that the disruption of both dimeric interfaces eliminates potential binding sites for LRP5, which could be partially restored by over-expression of TSPAN12. In conclusion, our findings unveil a core dimerization interface that regulates Norrin/LRP5 interaction, highlighting the essential role of Norrin dimerization on β-catenin signaling and providing potential therapeutic avenues for the treatment of FEVR.
Collapse
Affiliation(s)
- Rulian Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Min Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Liting Lv
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Peng
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yunqi He
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (No.2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
26
|
Wu X, Yang X, Dai X, Chen X, Shen M, Dai J, Yuan F, Wang L, Yuan Y, Feng Y. 5-Aza-2'-Deoxycytidine Ameliorates Choroidal Neovascularization by Inhibiting the Wnt/β-Catenin Signaling Pathway. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 38345554 PMCID: PMC10866157 DOI: 10.1167/iovs.65.2.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Choroidal neovascularization (CNV) can constitute the final pathology of many ocular diseases and result in severe vision loss. Studies have demonstrated that DNA methylation is critical in retinal development, aging, and disorders. The current work investigated the effects and underlying mechanism of 5-Aza-2'-deoxycytidine (5-aza-dC), a suppressor of DNA methylation, in the pathological progression of CNV. Methods The DNA methylation profiles of retinal pigment epithelial (RPE)/choroidal complexes in normal and laser-induced CNV mice were assessed by Arraystar Mouse RefSeq Promoter Arrays. The CNV area and blood flow density and intensity were observed by optical coherence tomography angiography, and fluorescence leakage was examined by fundus fluorescein angiography in CNV mice with systemic administration of 5-aza-dC. The effects of 5-aza-dC on the biological functions of bEnd.3 cells were estimated by related assays. Notum gene promoter methylation was measured using bisulfite sequencing PCR. Methyltransferases and Wnt signaling-related genes were detected in animal and cell culture experiments by real-time PCR and immunoblot. Results Methyltransferases were upregulated, but Notum (a secretion inhibitor of Wnt signaling) was downregulated in the RPE/choroidal complexes of mice with experimental CNV. Intraperitoneal injection of 5-aza-dC inactivated the Wnt pathway and ameliorated the lesion area and the intensity and density of blood flow, as well as the degree of leakage in CNV. In vitro, vascular endothelial growth factor A (VEGFA) stimulation promoted methyltransferases expression and suppressed Notum expression, consequently activating Wnt signaling, whereas exogenous 5-aza-dC reversed VEGFA-induced hyperpermeability, proliferation, migration, and tube formation in bEnd.3 cells via demethylation of Notum promoter. Conclusions We observed that 5-aza-dC attenuates the growth of CNV by inhibiting the Wnt signaling pathway via promoter demethylation of the Wnt antagonist Notum. These findings provide a theoretical basis for methylation-based treatment with the Notum gene as a potential target for CNV treatment.
Collapse
Affiliation(s)
- Xinyuan Wu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaochan Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiuping Chen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minqian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyang Wang
- Department of Ophthalmology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Yuanzhi Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Yifan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A, Sharma S. Role of Serine Protease Inhibitors A1 and A3 in Ocular Pathologies. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38324301 PMCID: PMC10854419 DOI: 10.1167/iovs.65.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Serine protease inhibitors A1 (SerpinA1) and A3 (SerpinA3) are important members of the serpin family, playing crucial roles in the regulation of serine proteases and influencing various physiological processes. SerpinA1, also known as α-1-antitrypsin, is a versatile glycoprotein predominantly synthesized in the liver, with additional production in inflammatory and epithelial cell types. It exhibits multifaceted functions, including immune modulation, complement activation regulation, and inhibition of endothelial cell apoptosis. SerpinA3, also known as α-1-antichymotrypsin, is expressed both extracellularly and intracellularly in various tissues, particularly in the retina, kidney, liver, and pancreas. It exerts anti-inflammatory, anti-angiogenic, antioxidant, and antifibrotic activities. Both SerpinA1 and SerpinA3 have been implicated in conditions such as keratitis, diabetic retinopathy, age-related macular degeneration, glaucoma, cataracts, dry eye disease, keratoconus, uveitis, and pterygium. Their role in influencing metalloproteinases and cytokines, as well as endothelial permeability, and their protective effects on Müller cells against oxidative stress further highlight their diverse and critical roles in ocular pathologies. This review provides a comprehensive overview of the etiology and functions of SerpinA1 and SerpinA3 in ocular diseases, emphasizing their multifaceted roles and the complexity of their interactions within the ocular microenvironment.
Collapse
Affiliation(s)
- Richard Kontoh-Twumasi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Stepan Budkin
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Neel Edupuganti
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
28
|
Terhaar HM, Henriksen MDL, Mehaffy C, Hess A, McMullen RJ. The use of shotgun label-free quantitative proteomic mass spectrometry to evaluate the inflammatory response in aqueous humor from horses with uveitis compared to ophthalmologically healthy horses. Vet Ophthalmol 2024; 27:40-52. [PMID: 37144658 DOI: 10.1111/vop.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE The objective of this study was to use shotgun label-free tandem mass spectrometry (LF-MS/MS) to evaluate aqueous humor (AH) from horses with uveitis (UH) compared to ophthalmologically healthy horses (HH). ANIMALS STUDIED Twelve horses diagnosed with uveitis based on ophthalmic examination and six ophthalmologically healthy horses (postmortem) purchased for teaching purposes. PROCEDURES All horses received a complete ophthalmic examination and physical exam. Aqueous paracentesis was performed on all horses and AH total protein concentrations were measured with nanodrop (TPn) and refractometry (TPr). AH samples were analyzed with shotgun LF-MS/MS and proteomic data were compared between groups using Wilcoxon rank-sum test. RESULTS A total of 147 proteins were detected, 11 proteins had higher abundance in UH, and 38 proteins had lower abundance in UH. Proteins with higher abundance included apolipoprotein E, alpha-2-macroglobulin (A2M), alpha-2-HS-glycoprotein, prothrombin, fibrinogen, complement component 4 (C4), joining chain for IgA and IgM, afamin, and amine oxidase. There were positive correlations between TPn (p = .003) and TPr (p = .0001) compared to flare scores. CONCLUSION Differential abundance of A2M, prothrombin, fibrinogen, and C4 indicate upregulation of the complement and coagulation cascade in equine uveitis. Proinflammatory cytokines and the complement cascade have potential as therapeutic targets for equine uveitis.
Collapse
Affiliation(s)
- Hannah M Terhaar
- Comparative Ophthalmology, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michala de Linde Henriksen
- Comparative Ophthalmology, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Carolina Mehaffy
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ann Hess
- Department of Statistics, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard J McMullen
- Equine Ophthalmology, Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, JT Vaughan Large Animal Teaching Hospital, Auburn, Alabama, USA
| |
Collapse
|
29
|
Bayramoğlu SE, Sayın N, Erdoğan M, Doğan S, Gezdirici A, Çetinkaya M. Extraretinal Fibrovascular Proliferation in a Neonate Possibly Associated with an ESAM Gene Variant. Turk J Ophthalmol 2023; 53:386-389. [PMID: 38008937 PMCID: PMC10750092 DOI: 10.4274/tjo.galenos.2023.72609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/25/2023] [Indexed: 11/28/2023] Open
Abstract
A female infant born with a gestational age of 35 weeks and birth weight of 2500 g was referred for ophthalmic examination on the second postnatal day. Bilateral venous dilatation and arterial tortuosity, severe extraretinal fibrovascular proliferation, and peripheral ischemia were detected. Fluorescein angiography showed profoundly delayed arteriovenous transit and peripheral avascularity. Both eyes were treated with diode laser photocoagulation and bevacizumab injection. Cranial magnetic resonance imaging (MRI) revealed hydrocephalus, ventricular dilatation, and cerebral atrophy. Her family history revealed that the patient’s brother presented to the ophthalmology outpatient clinic at postnatal 3 months with inoperable total retinal detachment and similar cranial MRI findings. No systemic or ocular findings were detected in the parents. A recent study showed that in 13 cases, including our patients, bi-allelic variants in the ESAM gene lead to a new neurodevelopmental disease whose main clinical features include impaired speech and language development, seizures, varying degrees of spasticity, ventriculomegaly, intracranial hemorrhage, and developmental delay/mental disability. Newborn siblings of children with serious pathological retinal findings should undergo a detailed ophthalmic examination as soon as possible after birth to prevent total retinal detachment, even without a diagnosis of specific inherited retinal vascular diseases. Further investigations performed in collaboration with an international network may reveal more candidate gene variants possibly related to retinopathy of prematurity-like ophthalmological findings such as extraretinal fibrovascular proliferation.
Collapse
Affiliation(s)
- Sadık Etka Bayramoğlu
- University of Health Sciences Türkiye, Kanuni Sultan Süleyman Training and Research Hospital, Clinic of Ophthalmology, İstanbul, Türkiye
| | - Nihat Sayın
- University of Health Sciences Türkiye, Kanuni Sultan Süleyman Training and Research Hospital, Clinic of Ophthalmology, İstanbul, Türkiye
| | - Mehmet Erdoğan
- University of Health Sciences Türkiye, Kanuni Sultan Süleyman Training and Research Hospital, Clinic of Ophthalmology, İstanbul, Türkiye
| | - Sümeyra Doğan
- University of Health Sciences Türkiye, Kanuni Sultan Süleyman Training and Research Hospital, Clinic of Radiodiagnosis, İstanbul, Türkiye
| | - Alper Gezdirici
- University of Health Sciences Türkiye, Başakşehir Çam and Sakura City Hospital, Clinic of Genetics, İstanbul, Türkiye
| | - Merih Çetinkaya
- University of Health Sciences Türkiye, Başakşehir Çam and Sakura City Hospital, Clinic of Neonatology, İstanbul, Türkiye
| |
Collapse
|
30
|
Wood EH, Moshfeghi DM, Capone A, Williams GA, Blumenkranz MS, Sieving PA, Harper CA, Hartnett ME, Drenser KA. A Literary Pediatric Retina Fellowship With Michael T. Trese, MD. Ophthalmic Surg Lasers Imaging Retina 2023; 54:701-712. [PMID: 38113364 DOI: 10.3928/23258160-20231020-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Michael T. Trese, MD (1946-2022), a vitreoretinal surgeon, made significant contributions to the field of retina. Although most known for his work in pediatric retina surgery, he was a pioneer in areas such as medical retina, translational research, and telemedicine. This article reviews his major contributions to spread his knowledge more widely to vitreoretinal trainees and specialists. We discuss six areas where Trese made a lasting impact: lens-sparing vitrectomy, familial exudative vitreoretinopathy, congenital X-linked retinoschisis, autologous plasmin enzyme, regenerative medicine, and telemedicine. [Ophthalmic Surg Lasers Imaging Retina 2023;54:701-712.].
Collapse
|
31
|
Qi X, Hu Q, Elghobashi-Meinhardt N, Long T, Chen H, Li X. Molecular basis of Wnt biogenesis, secretion, and Wnt7-specific signaling. Cell 2023; 186:5028-5040.e14. [PMID: 37852257 PMCID: PMC10841698 DOI: 10.1016/j.cell.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qinli Hu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
33
|
Wu D, Li L, Wen Z, Wang G. Romosozumab in osteoporosis: yesterday, today and tomorrow. J Transl Med 2023; 21:668. [PMID: 37759285 PMCID: PMC10523692 DOI: 10.1186/s12967-023-04563-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoporosis is a systemic bone disease characterized by low bone mass, microarchitectural deterioration, increased bone fragility, and fracture susceptibility. It commonly occurs in older people, especially postmenopausal women. As global ageing increases, osteoporosis has become a global burden. There are a number of medications available for the treatment of osteoporosis, categorized as anabolic and anti-resorptive. Unfortunately, there is no drugs which have dual influence on bone, while all drugs have limitations and adverse events. Some serious adverse events include jaw osteonecrosis and atypical femoral fracture. Recently, a novel medication has appeared that challenges this pattern. Romosozumab is a novel drug monoclonal antibody to sclerostin encoded by the SOST gene. It has been used in Japan since 2019 and has achieved promising results in treating osteoporosis. However, it is also accompanied by some controversy. While it promotes rapid bone growth, it may cause serious adverse events such as cardiovascular diseases. There has been scepticism about the drug since its inception. Therefore, the present review comprehensively covered romosozumab from its inception to its clinical application, from animal studies to human studies, and from safety to cost. We hope to provide a better understanding of romosozumab for its clinical application.
Collapse
Affiliation(s)
- Dong Wu
- Department of Orthopeadics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Lei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhun Wen
- Department of Orthopaedics, Zhuanghe Central Hospital, Zhuanghe City, 116499, Liaoning Province, China.
| | - Guangbin Wang
- Department of Orthopeadics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
34
|
Zhang Y, Yang J, Ji Y, Liang Z, Wang Y, Zhang J. Development of Osthole-Loaded Microemulsions as a Prospective Ocular Delivery System for the Treatment of Corneal Neovascularization: In Vitro and In Vivo Assessments. Pharmaceuticals (Basel) 2023; 16:1342. [PMID: 37895813 PMCID: PMC10610237 DOI: 10.3390/ph16101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osthole (OST), a natural coumarin compound, has shown a significant inhibitory effect on corneal neovascularization (CNV). But, its effect on treating CNV is restricted by its water insolubility. To overcome this limitation, an OST-loaded microemulsion (OST-ME) was created to improve the drug's therapeutic effect on CNV after topical administration. The OST-ME formulation comprised Capryol-90 (CP-90), Cremophor® EL (EL-35), Transcutol-P (TSP) and water, and sodium hyaluronate (SH) was also included to increase viscosity. The OST-ME had a droplet size of 16.18 ± 0.02 nm and a low polydispersity index (0.09 ± 0.00). In vitro drug release from OST-ME fitted well to the Higuchi release kinetics model. Cytotoxicity assays demonstrated that OST-ME was not notably toxic to human corneal epithelial cells (HCECs), and the formulation had no irritation to rabbit eyes. Ocular pharmacokinetics studies showed that the areas under the concentration-time curves (AUC0-t) in the cornea and conjunctiva were 19.74 and 63.96 μg/g*min after the administration of OST-ME, both of which were 28.2- and 102.34-fold higher than those after the administration of OST suspension (OST-Susp). Moreover, OST-ME (0.1%) presented a similar therapeutic effect to commercially available dexamethasone eye drops (0.025%) on CNV in mouse models. In conclusion, the optimized OST-ME exhibited good tolerance and enhanced 28.2- and 102.34-fold bioavailability in the cornea and conjunctiva tissues compared with suspensions in rabbit eyes. The OST-ME is a potential ocular drug delivery for anti-CNV.
Collapse
Affiliation(s)
- Yali Zhang
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jingjing Yang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Yinjian Ji
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhen Liang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Yuwei Wang
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junjie Zhang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| |
Collapse
|
35
|
Shao Y, Mao J, Fang Y, Chen Y, Zhang Z, Xiang Z, Shen L. The Characteristic of Optical Coherence Tomography Angiography and Retinal Arteries Angle in Familial Exudative Vitreoretinopathy with Inner Retinal Layer Persistence. Curr Eye Res 2023; 48:850-856. [PMID: 37302825 DOI: 10.1080/02713683.2023.2213867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
PURPOSE To compare the angle of retinal arteries and macular vessel density and foveal avascular zone (FAZ) in early stage familial exudative vitreoretinopathy (FEVR) patients with inner retinal layer (IRL) persistence with FEVR patients without IRL persistence and normal people. METHODS This study enrolled 113 early stage FEVR patients and 55 age-matched normal subjects. FEVR patients were divided into IRL group and non-IRL group based on the presence or absence of IRL in fovea. The angle of superior temporal and inferior temporal branch retinal arteries on ultra-wide-field fundus images were measured. Superficial and deep vessel density of whole image, fovea and parafovea, the area and perimeter of FAZ, A-circularity index (AI, perimeter/standard circle perimeter with equal area) and vessel density around the 300-μm width of the FAZ (FD), central macular thickness (CMT) on 3 mm × 3mm OCTA were measured. RESULTS 30 FEVR patients in IRL group, 83 FEVR patients in non-IRL group, 55 normal people in control group were evaluated. BCVA were worst in IRL group (p < .001). The angle of retinal arteries was smaller in FEVR groups (p < .001) and were smallest in IRL group (p < .001). Superficial and deep vessel density of whole and parafovea area in FEVR patients were significantly lower than that in normal people (p < .05), AI were biggest (p = .01) and FD were smallest in IRL group (p < .001). CMT in IRL group were thicker than non-IRL group and control group (p < .05). CONCLUSION Worse BCVA, smaller angle of retinal arteries (more vessels traction), lower macular vessel density, smaller and more irregular FAZ and thicker CMT were observed in FEVR patients with IRL persistence even in early stage.
Collapse
Affiliation(s)
- Yirun Shao
- Department of Ophthalmology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Retina Centre, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, China
| | - Jianbo Mao
- Department of Retina Centre, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, China
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yuyan Fang
- Department of Retina Centre, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, China
| | - Yijing Chen
- Department of Retina Centre, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, China
| | - Zhengxi Zhang
- Department of Retina Centre, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, China
| | - Ziyi Xiang
- Department of Retina Centre, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, China
| | - Lijun Shen
- Department of Retina Centre, Affiliated Eye Hospital of Wenzhou Medical University, Hangzhou, China
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
36
|
Wang Y, Lai Y, Jiang Z, Li S, Ding X. Five novel dysfunctional variants in the TSPAN12 gene in familial exudative vitreoretinopathy. Exp Eye Res 2023; 234:109574. [PMID: 37451565 DOI: 10.1016/j.exer.2023.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inheritable vitreoretinal disease characterized by incomplete retinal vascular development, which often leads to multiple retinal complications and causes severe vision loss in children. We reported the TSPAN12 variants' frequency in a cohort of FEVR and five novel TSPAN12 variants and related clinical features in six Chinese families. Seven hundred thirty-four families' genetic in-house data were reviewed. Whole-exome sequencing (WES) was performed in all probands; Sanger sequencing was conducted in the family members. Five novel variants from six families were noted, and clinical data were collected. Luciferase assays were applied to test the activity of the Norrin/β-catenin signal caused by the mutant TSPAN12 genes. The frequency of TSPAN12 variants in FEVR is 8.79% (50/569). Five novel variants in TSPAN12 were identified in six families, including two missense variants, c.476G > A(p.Cys159Tyr) and c.81T > G(p.Ser27Arg), two frameshift variants, c.628_629insA(p.Met210Asnfs*42) and c.251delG(p.Gly84Glufs*3) and one nonsense, c.352G > T(p.Glu118*). Low vision, high myopia, nystagmus, and leukocoria are the common symptom at the first presentation. All variants were also predicted as pathogenic in silico. Moreover, the luciferase assay demonstrated that all variants caused severely compromised Norrin/β-catenin signaling activity. In conclusion, the frequency of TSPAN12 variants in FEVR was 8.79% in our cohort. Five novel variants of TSPAN12 were identified. Moreover, we demonstrated the dysfunction of mutant variants via the downregulation of Norrin/β-catenin signaling. These findings expanded the genetic and clinical spectrum of FEVR with TSPAN12 variants.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yanting Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaoxin Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
37
|
Hu Z, Wang J, Pan T, Li X, Tao C, Wu Y, Wang X, Zhang Z, Liu Y, Zhang W, Xu C, Wu X, Gu Q, Fan Y, Qian H, Mugisha A, Yuan S, Liu Q, Xie P. The Exosome-Transmitted lncRNA LOC100132249 Induces Endothelial Dysfunction in Diabetic Retinopathy. Diabetes 2023; 72:1307-1319. [PMID: 37347724 DOI: 10.2337/db22-0435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Diabetic retinopathy (DR), one of the most common microangiopathic complications in diabetes, causes severe visual damage among working-age populations. Retinal vascular endothelial cells, the key cell type in DR pathogenesis, are responsible for abnormal retinal angiogenesis in advanced stages of DR. The roles of exosomes in DR have been largely unknown. In this study, we report the first evidence that exosomes derived from the vitreous humor of patients with proliferative DR (PDR-exo) promote proliferation, migration, and tube formation of human retinal vascular endothelial cells (HRVECs). We identified long noncoding RNA (lncRNA) LOC100132249 enrichment in PDR-exo via high-throughput sequencing. This lncRNA, also mainly derived from HRVECs, promoted angiogenesis both in vitro and in vivo. Mechanistically, LOC100132249 acted as a competing endogenous sponge of miRNA-199a-5p (miR-199a-5p), thus regulating the endothelial-mesenchymal transition promoter SNAI1 via activation of the Wnt/β-catenin pathway and ultimately resulting in endothelial dysfunction. In conclusion, our findings underscored the pathogenic role of endothelial-derived exosomes via the LOC100132249/miR-199a-5p/SNAI1 axis in DR angiogenesis and may shed light on new therapeutic strategies for future treatment of DR. ARTICLE HIGHLIGHTS This study provides the first evidence that exosomes derived from vitreous humor from patients with proliferative diabetic retinopathy participate in angiogenesis. The findings demonstrate an unreported long noncoding RNA (lncRNA), LOC100132249, by exosomal sequencing of vitreous humor. The newly found lncRNA LOC100132249, mainly derived from endothelial cells, promotes angiogenesis via an miRNA-199a-5p/SNAI1/Wnt/β-catenin axis in a pro-endothelial-mesenchymal transition manner.
Collapse
Affiliation(s)
- Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingfan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xinsheng Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Tao
- MOE Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingxing Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengyu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weiwei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changlin Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinjing Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinyuan Gu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Fan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiming Qian
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Ophthalmology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aime Mugisha
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Krivosic V, Mecê P, Dulière C, Lavia C, Zegrari S, Tadayoni R, Gaudric A. ABNORMALITIES IN THE RETINAL CAPILLARY PLEXUSES IN COATS DISEASE IN ADULTHOOD ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina 2023; 43:1514-1524. [PMID: 37199396 DOI: 10.1097/iae.0000000000003834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
PURPOSE To describe and quantify the abnormalities of the retinal capillary plexuses using optical coherence tomography angiography in Coats disease. METHODS Retrospective study. Eleven eyes of 11 patients with Coats disease (9 men and two women aged 32-80 years) compared with nine fellow eyes and 11 healthy control eyes. Horizontal bands of contiguous 3 × 3 mm optical coherence tomography angiograms of the superficial vascular plexus and deep capillary complex were acquired from the optic disk to 6 mm temporal to the fovea, through areas with telangiectasia visible on fluorescein angiography in 9 cases. RESULTS The vascular density was significantly decreased in both plexuses in eyes with Coats disease compared with normal and fellow eyes within the 6 mm temporal to the fovea (superficial vascular plexus: 21.5 vs. 29.4%, P = 0.00004 and vs. 30.3%, P = 0.00008; deep capillary complex, 16.5 vs. 23.9%, P = 0.00004 and vs. 24.7%, P = 0.00008, respectively). The fractal dimension was also significantly decreased in eyes with Coats disease (superficial vascular plexus: 1.796 vs. 1.848 P = 0.001 and vs. 1.833, P = 0.003; deep capillary complex: 1.762 vs. 1.853, P = 0.003 and vs. 1.838, P = 0.004, respectively). CONCLUSION Retinal plexuses' vascular density was decreased in Coats disease, including in areas with no visible telangiectasia.
Collapse
Affiliation(s)
- Valérie Krivosic
- Ophthalmology Department, AP-HP, Hôpital Lariboisière, and Université Paris Cité, Paris, France
- Centre de Référence des maladies Vasculaires rares du Cerveau et de l'Œil (CERVCO), Hôpital Lariboisière, APHP, Paris, France
- Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Pedro Mecê
- Institut Langevin, ESPCI Paris, CNRS, PSL University, Paris, France; and
| | - Cedric Dulière
- Ophthalmology Department, AP-HP, Hôpital Lariboisière, and Université Paris Cité, Paris, France
| | - Carlo Lavia
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Samira Zegrari
- Ophthalmology Department, AP-HP, Hôpital Lariboisière, and Université Paris Cité, Paris, France
| | - Ramin Tadayoni
- Ophthalmology Department, AP-HP, Hôpital Lariboisière, and Université Paris Cité, Paris, France
- Centre de Référence des maladies Vasculaires rares du Cerveau et de l'Œil (CERVCO), Hôpital Lariboisière, APHP, Paris, France
- Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Alain Gaudric
- Ophthalmology Department, AP-HP, Hôpital Lariboisière, and Université Paris Cité, Paris, France
- Centre de Référence des maladies Vasculaires rares du Cerveau et de l'Œil (CERVCO), Hôpital Lariboisière, APHP, Paris, France
| |
Collapse
|
39
|
Xiao K, Liu C, Wang H, Hou F, Shi Y, Qian ZR, Zhang H, Deng DYB, Xie L. Umbilical cord mesenchymal stem cells overexpressing CXCR7 facilitate treatment of ARDS-associated pulmonary fibrosis via inhibition of Notch/Jag1 mediated by the Wnt/β-catenin pathway. Biomed Pharmacother 2023; 165:115124. [PMID: 37454589 DOI: 10.1016/j.biopha.2023.115124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The therapeutic efficacy of umbilical cord mesenchymal stem cells (UCMSCs) in acute respiratory distress syndrome (ARDS) is mainly limited by the efficiency of homing of UCMSCs toward tissue damage. C-X-C chemokine receptor type 7 (CXCR7), which is involved in the mobilization of UCMSCs, is only expressed on the surface of a small proportion of UCMSCs. This study examined whether overexpression of CXCR7 in UCMSCs (UCMSCsOE-CXCR7) could improve their homing efficiency, and therefore, improve their effectiveness in fibrosis repair at the site of lung injury caused by ARDS. A lentiviral vector expressing CXCR7 was built and then transfect into UCMSCs. The impacts of CXCR7 expression of the proliferationand homing of UCMSCs were examined in a lipopolysaccharide-induced ARDS mouse model. The potential role and underlying mechanism of CXCR7 were examined by performing scratch assays, transwell assays, and immunoassays. The therapeutic dose and treatment time of UCMSCsOE-CXCR7 were directly proportional to their therapeutic effect on lung injury. In addition, overexpression of CXCR7 increased SDF-1-induced proliferation and migration of lung epithelial cells (Base-2b cells), and upregulation of CXCR7 inhibited α-SMA expression, suggesting that CXCR7 may have a role in alleviating pulmonary fibrosis caused by ARDS. Overexpression of CXCR7 in UCMSCs may improve their therapeutic effect of acute lung injury mouse, The mechanism of fibrosis repair by CXCR7 is inhibition of Jag1 via suppression of the Wnt/β-catenin pathway under the chemotaxis of SDF-1.
Collapse
Affiliation(s)
- Kun Xiao
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Chang Liu
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China; School of medicine Nankai university, Tianjin 300071, China
| | - Heming Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, China
| | - Fei Hou
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yinghan Shi
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi Rong Qian
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun YatSen University, Shenzhen 518106, China; Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - David Y B Deng
- Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun YatSen University, Shenzhen 518106, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
40
|
Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023; 185:106250. [PMID: 37536385 DOI: 10.1016/j.nbd.2023.106250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-β (TGF-β)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
41
|
Heidari A, Homaei A, Saffari F. Novel Homozygous Nonsense Mutation in the LRP5 Gene in Two Siblings with Osteoporosis-pseudoglioma Syndrome. J Clin Res Pediatr Endocrinol 2023; 15:318-323. [PMID: 34965700 PMCID: PMC10448547 DOI: 10.4274/jcrpe.galenos.2021.2021.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Osteoporosis-pseudoglioma syndrome (OPPG) is a rare autosomal recessive disorder characterized by severe osteoporosis and eye abnormalities that lead to vision loss. In this study, clinical findings and genetic study of two siblings with OPPG are presented. Whole exome sequencing of DNA enriched for exonic regions was performed with SureSelect 38Mbp all exon kit v. 7.0. The two siblings presented with different clinical manifestations of OPPG. The younger female sibling had blindness and severe osteoporosis with multiple fractures, while her older brother was also blind but with less severe osteoporosis and no fractures. On analysis, a novel homozygous nonsense mutation (c.351G>A) in exon 2 of LRP5 (NM_002335) was found, predicted to change a tryptophan at 117 to a stop codon (p. Trp117Ter). Thus, a variable phenotype was associated with an identical variant in these two siblings. The novel mutation reported herein expands the spectrum of the underlying genetic pathology of OPPG.
Collapse
Affiliation(s)
- Abolfazl Heidari
- Reference Laboratory of Qazvin Medical University, Iran Sana Medical Genetics Laboratory, Qazvin, Iran
| | - Ali Homaei
- Shahid Beheshti University of Medical Sciences, Department of General Surgery, Tehran, Iran
| | - Fatemeh Saffari
- Qazvin University of Medical Sciences, Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Department of Pediatric Endocrinology, Qazvin, Iran
| |
Collapse
|
42
|
Zhang L, Abedin M, Jo HN, Levey J, Dinh QC, Chen Z, Angers S, Junge HJ. A Frizzled4-LRP5 agonist promotes blood-retina barrier function by inducing a Norrin-like transcriptional response. iScience 2023; 26:107415. [PMID: 37559903 PMCID: PMC10407957 DOI: 10.1016/j.isci.2023.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/22/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
Norrin (NDP) and WNT7A/B induce and maintain the blood-brain and blood-retina barrier (BBB, BRB) by stimulating the Frizzled4-LDL receptor related protein 5/6 (FZD4-LRP5/6) complex to induce beta-catenin-dependent signaling in endothelial cells (ECs). Recently developed agonists for the FZD4-LRP5 complex have therapeutic potential in retinal and neurological diseases. Here, we use the tetravalent antibody modality F4L5.13 to identify agonist activities in Tspan12-/- mice, which display a complex retinal pathology due to impaired NDP-signaling. F4L5.13 administration during development alleviates BRB defects, retinal hypovascularization, and restores neural function. In mature Tspan12-/- mice F4L5.13 partially induces a BRB de novo without inducing angiogenesis. In a genetic model of impaired BRB maintenance, administration of F4L5.13 rapidly and substantially restores the BRB. scRNA-seq reveals perturbations of key mediators of barrier functions in juvenile Tspan12-/- mice, which are in large parts restored after F4L5.13 administration. This study identifies transcriptional and functional activities of FZD4-LRP5 agonists.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Md. Abedin
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Ha-Neul Jo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Jacklyn Levey
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Quynh Chau Dinh
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Zhe Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Harald J. Junge
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
43
|
Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res 2023; 95:101149. [PMID: 36443219 PMCID: PMC10209355 DOI: 10.1016/j.preteyeres.2022.101149] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Ghiam
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Zhao X, Zhang Z, Zhu Q, Luo Y, Ye Q, Shi S, He X, Zhu J, Zhang D, Xia W, Zhang Y, Jiang L, Cui L, Ye Y, Xiang Y, Hu J, Zhang J, Lin CP. Modeling human ectopic pregnancies with trophoblast and vascular organoids. Cell Rep 2023; 42:112546. [PMID: 37224015 DOI: 10.1016/j.celrep.2023.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Ruptured ectopic pregnancy (REP), a pregnancy complication caused by aberrant implantation, deep invasion, and overgrowth of embryos in fallopian tubes, could lead to rupture of fallopian tubes and accounts for 4%-10% of pregnancy-related deaths. The lack of ectopic pregnancy phenotypes in rodents hampers our understanding of its pathological mechanisms. Here, we employed cell culture and organoid models to investigate the crosstalk between human trophoblast development and intravillous vascularization in the REP condition. Compared with abortive ectopic pregnancy (AEP), the size of REP placental villi and the depth of trophoblast invasion are correlated with the extent of intravillous vascularization. We identified a key pro-angiogenic factor secreted by trophoblasts, WNT2B, that promotes villous vasculogenesis, angiogenesis, and vascular network expansion in the REP condition. Our results reveal the important role of WNT-mediated angiogenesis and an organoid co-culture model for investigating intricate communications between trophoblasts and endothelial/endothelial progenitor cells.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yurui Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuxiang Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jing Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Duo Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Linlin Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
45
|
Liu C, Li M, Shen Y, Han X, Wei R, Wang Y, Xu S, Zhou X. Targeting choroidal vasculopathy via up-regulation of tRNA-derived fragment tRF-22 expression for controlling progression of myopia. J Transl Med 2023; 21:412. [PMID: 37355654 PMCID: PMC10290315 DOI: 10.1186/s12967-023-04274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Myopia has emerged as a major public health concern globally, which is tightly associated with scleral extracellular matrix (ECM) remodeling and choroidal vasculopathy. Choroidal vasculopathy has gradually been recognized as a critical trigger of myopic pathology. However, the precise mechanism controlling choroidal vasculopathy remains unclear. Transfer RNA-derived fragments (tRFs) are known as a novel class of small non-coding RNAs that plays important roles in several biological and pathological processes. In this study, we investigated the role of tRF-22-8BWS72092 (tRF-22) in choroidal vasculopathy and myopia progression. METHODS The tRF-22 expression pattern under myopia-related stresses was detected by qRT-PCR. MTT assays, EdU incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of tRF-22 in choroidal endothelial cell function in vitro. Isolectin B4 staining and choroidal sprouting assay ex vivo were conducted to detect the role of tRF-22 in choroidal vascular dysfunction in vivo. Immunofluorescent staining, western blot assays and ocular biometric parameters measurement were performed to examine whether altering tRF-22 expression in choroid affects scleral hypoxia and ECM remodeling and myopia progression in vivo. Bioinformatics analysis and luciferase activity assays were conducted to identify the downstream targets of tRF-22. RNA-sequencing combined with m6A-qPCR assays were used to identify the m6A modified targets of METTL3. Gain-of-function and Loss-of-function analysis were performed to reveal the mechanism of tRF-22/METTL3-mediated choroidal vascular dysfunction. RESULTS The results revealed that tRF-22 expression was significantly down-regulated in myopic choroid. tRF-22 overexpression alleviated choroidal vasculopathy and retarded the progression of myopia in vivo. tRF-22 regulated choroidal endothelial cell viability, proliferation, migration, and tube formation ability in vitro. Mechanistically, tRF-22 interacted with METTL3 and blocked m6A methylation of Axin1 and Arid1b mRNA transcripts, which led to increased expression of Axin1 and Arid1b. CONCLUSIONS Our study reveals that the intervention of choroidal vasculopathy via tRF-22-METTL3- Axin1/Arid1b axis is a promising strategy for the treatment of patients with myopic pathology.
Collapse
Affiliation(s)
- Chang Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Meiyan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Yaming Shen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoyan Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Ruoyan Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Yunzhe Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Shanshan Xu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China.
| |
Collapse
|
46
|
Wang W, Ye W, Chen S, Tang Y, Chen D, Lu Y, Wu Z, Huang Z, Ge Y. METTL3-mediated m 6A RNA modification promotes corneal neovascularization by upregulating the canonical Wnt pathway during HSV-1 infection. Cell Signal 2023:110784. [PMID: 37356601 DOI: 10.1016/j.cellsig.2023.110784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Corneal neovascularization (CNV) is a symptom of herpes simplex keratitis (HSK), which can result in blindness. The corneal angiogenesis brought on by herpes simplex virus type 1 (HSV-1) is strongly affected by vascular endothelial growth factor A (VEGFA). The N6-methyladenosine (m6A) modification catalyzed by methyltransferase-like 3 (METTL3) is a crucial epigenetic regulatory process for angiogenic properties. However, the roles of METTL3 and m6A in HSK-induced CNV remain unknown. Here, we investigated these roles in vitro and in vivo. METHODS A PCR array in HSV-1-infected human umbilical vein endothelial cells (HUVECs) was used to screen for METTL3 among the epitranscriptomic genes. Tube formation and scratch assays were conducted to investigate cell migration capacity. The global mRNA m6A abundance was evaluated using a dot blot assay. Gene expression was assessed by RT-qPCR, western blotting, and fluorescence immunostaining. In addition, bioinformatic analysis was conducted to identify the downstream molecules of METTL3 in HUVECs. METTL3 knockdown and STM2457 treatment clarified the specific underlying molecular mechanisms affecting HSV-1-induced angiogenesis in vitro. An acute HSK mouse model was established to examine the effects of METTL3 knockdown or inhibition using STM2457 on pathological angiogenic development in vivo. RESULTS METTL3 was highly upregulated in HSV-1-infected HUVECs and led to increased m6A levels. METTL3 knockdown or inhibition by STM2457 further reduced m6A levels and VEGFA expression and impaired migration and tube formation capacity in HUVECs after HSV-1 infection. Mechanistically, METTL3 regulated LRP6 expression through post-transcriptional mRNA modification in an m6A-dependent manner, increasing its stability, upregulating VEGFA expression, and promoting angiogenesis in HSV-1-infected HUVECs. Furthermore, METTL3 knockdown or inhibition by STM2457 reduced CNV in vivo. CONCLUSION Our findings revealed that METTL3 promotes pathological angiogenesis through canonical Wnt and VEGF signaling in vitro and in vivo, providing potential pharmacological targets for preventing the progression of CNV in HSK.
Collapse
Affiliation(s)
- Wenzhe Wang
- Medical School, Nanjing University, Nanjing 210093, China; Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Wei Ye
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Si Chen
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; School of Medicine, Southeast University, 210009, China
| | - Yun Tang
- Medical School, Nanjing University, Nanjing 210093, China; Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Deyan Chen
- Center for Public Health Research, Nanjing University Medical School, Nanjing 210093, China
| | - Yan Lu
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhiwei Wu
- Center for Public Health Research, Nanjing University Medical School, Nanjing 210093, China
| | - Zhenping Huang
- Medical School, Nanjing University, Nanjing 210093, China; Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yirui Ge
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
47
|
Orozco LD, Owen LA, Hofmann J, Stockwell AD, Tao J, Haller S, Mukundan VT, Clarke C, Lund J, Sridhar A, Mayba O, Barr JL, Zavala RA, Graves EC, Zhang C, Husami N, Finley R, Au E, Lillvis JH, Farkas MH, Shakoor A, Sherva R, Kim IK, Kaminker JS, Townsend MJ, Farrer LA, Yaspan BL, Chen HH, DeAngelis MM. A systems biology approach uncovers novel disease mechanisms in age-related macular degeneration. CELL GENOMICS 2023; 3:100302. [PMID: 37388919 PMCID: PMC10300496 DOI: 10.1016/j.xgen.2023.100302] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/21/2023] [Accepted: 03/22/2023] [Indexed: 07/01/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness, affecting 200 million people worldwide. To identify genes that could be targeted for treatment, we created a molecular atlas at different stages of AMD. Our resource is comprised of RNA sequencing (RNA-seq) and DNA methylation microarrays from bulk macular retinal pigment epithelium (RPE)/choroid of clinically phenotyped normal and AMD donor eyes (n = 85), single-nucleus RNA-seq (164,399 cells), and single-nucleus assay for transposase-accessible chromatin (ATAC)-seq (125,822 cells) from the retina, RPE, and choroid of 6 AMD and 7 control donors. We identified 23 genome-wide significant loci differentially methylated in AMD, over 1,000 differentially expressed genes across different disease stages, and an AMD Müller state distinct from normal or gliosis. Chromatin accessibility peaks in genome-wide association study (GWAS) loci revealed putative causal genes for AMD, including HTRA1 and C6orf223. Our systems biology approach uncovered molecular mechanisms underlying AMD, including regulators of WNT signaling, FRZB and TLE2, as mechanistic players in disease.
Collapse
Affiliation(s)
- Luz D. Orozco
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Jeffrey Hofmann
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Amy D. Stockwell
- Department of Human Genetics, Genentech, South San Francisco, CA 94080, USA
| | - Jianhua Tao
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Susan Haller
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Vineeth T. Mukundan
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Christine Clarke
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Jessica Lund
- Departments of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Akshayalakshmi Sridhar
- Department of Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Oleg Mayba
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Julie L. Barr
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Rylee A. Zavala
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Elijah C. Graves
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Charles Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Nadine Husami
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Robert Finley
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Elizabeth Au
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - John H. Lillvis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Michael H. Farkas
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
| | - Richard Sherva
- Department of Medicine, Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S. Kaminker
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Michael J. Townsend
- Department of Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Lindsay A. Farrer
- Department of Medicine, Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Brian L. Yaspan
- Department of Human Genetics, Genentech, South San Francisco, CA 94080, USA
| | - Hsu-Hsin Chen
- Department of Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
48
|
Banerjee M, Sharma V, Azad SV, Kapil D. Bilateral atypical fundal coloboma with macular drag and abnormal vasculogenesis. BMJ Case Rep 2023; 16:e255381. [PMID: 37253534 PMCID: PMC10230932 DOI: 10.1136/bcr-2023-255381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Affiliation(s)
- Mousumi Banerjee
- Dr. R.P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, New Delhi, Delhi, India
| | - Vipasha Sharma
- Dr. R.P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, New Delhi, Delhi, India
| | - Shorya Vardhan Azad
- Dr. R.P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, New Delhi, Delhi, India
| | - Dikshit Kapil
- Dr. R.P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, New Delhi, Delhi, India
| |
Collapse
|
49
|
Wen L, Yan W, Zhu L, Tang C, Wang G. The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis. Cell Mol Life Sci 2023; 80:162. [PMID: 37221410 PMCID: PMC11072276 DOI: 10.1007/s00018-023-04801-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Vessel remodeling is essential for a functional and mature vascular network. According to the difference in endothelial cell (EC) behavior, we classified vessel remodeling into vessel pruning, vessel regression and vessel fusion. Vessel remodeling has been proven in various organs and species, such as the brain vasculature, subintestinal veins (SIVs), and caudal vein (CV) in zebrafish and yolk sac vessels, retina, and hyaloid vessels in mice. ECs and periendothelial cells (such as pericytes and astrocytes) contribute to vessel remodeling. EC junction remodeling and actin cytoskeleton dynamic rearrangement are indispensable for vessel pruning. More importantly, blood flow has a vital role in vessel remodeling. In recent studies, several mechanosensors, such as integrins, platelet endothelial cell adhesion molecule-1 (PECAM-1)/vascular endothelial cell (VE-cadherin)/vascular endothelial growth factor receptor 2 (VEGFR2) complex, and notch1, have been shown to contribute to mechanotransduction and vessel remodeling. In this review, we highlight the current knowledge of vessel remodeling in mouse and zebrafish models. We further underline the contribution of cellular behavior and periendothelial cells to vessel remodeling. Finally, we discuss the mechanosensory complex in ECs and the molecular mechanisms responsible for vessel remodeling.
Collapse
Affiliation(s)
- Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
50
|
Wang W, Lin P, Wang S, Zhang G, Chen C, Lu X, Zhuang Y, Su J, Wang H, Xu L. In-depth mining of single-cell transcriptome reveals the key immune-regulated loops in age-related macular degeneration. Front Mol Neurosci 2023; 16:1173123. [PMID: 37273909 PMCID: PMC10235539 DOI: 10.3389/fnmol.2023.1173123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Age-related macular degeneration (AMD), an ever-increasing ocular disease, has become one of the leading causes of irreversible blindness. Recent advances in single-cell genomics are improving our understanding of the molecular mechanisms of AMD. However, the pathophysiology of this multifactorial disease is complicated and still an ongoing challenge. To better understand disease pathogenesis and identify effective targets, we conducted an in-depth analysis of the single-cell transcriptome of AMD. Methods The cell expression specificity of the gene (CESG) was selected as an index to identify the novel cell markers. A computational framework was designed to explore the cell-specific TF regulatory loops, containing the interaction of gene pattern signatures, transcription factors regulons, and differentially expressed genes. Results Three potential novel cell markers were DNASE1L3 for endothelial cells, ABCB5 for melanocytes, and SLC39A12 for RPE cells detected. We observed a notable change in the cell abundance and crosstalk of fibroblasts cells, melanocytes, schwann cells, and T/NK cells between AMD and controls, representing a complex cellular ecosystem in disease status. Finally, we identified six cell type related and three disease-associated ternary loops and elaborated on the robust association between key immune-pathway and AMD. Discussion In conclusion, this study facilitates the optimization of screening for AMD-related receptor ligand pathways and proposes to further improve the interpretability of disease associations from single-cell data. It illuminated that immune-related regulation paths could be used as potential diagnostic markers for AMD, and in the future, also as therapeutic targets, providing insights into AMD diagnosis and potential interventions.
Collapse
Affiliation(s)
- Wencan Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peng Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siyu Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guosi Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chong Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Youyuan Zhuang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of PSI Genomics Co., Ltd., Wenzhou, China
| | - Hong Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou, China
| | - Liangde Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou, China
| |
Collapse
|