1
|
Küçük D, Üner G, İpek SL, Caglayan MO, Üstündağ Z. An impedimetric determination of zearalenone on MIP-modified carboceramic electrode. Toxicon 2024; 250:108115. [PMID: 39368557 DOI: 10.1016/j.toxicon.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Zearalenone (ZEN) is a mycotoxin that poses significant risks to human and animal health due to its mutagenic, immunosuppressive, and carcinogenic properties. This study presents a novel analytical method for detecting ZEN using electrochemical impedance spectroscopy (EIS) combined with a molecularly imprinted polymer (MIP). ZEN, used as the template molecule, was incorporated into polypyrrole on screen-printed electrodes (SPE), and a ZEN-sensitive MIP sensor was created through template removal. The modified sensor surfaces were characterized by EIS and scanning electron microscopy (SEM). An impedimetric MIP sensor for ZEN was developed, offering a detection range from 1 pM to 500 pM. The method's limit of detection (LOD) was established at 1 pM (0.3 pg/mL) with a signal-to-noise ratio of 3 (S/N = 3). The method demonstrated high precision and accuracy, with a maximum relative standard deviation (RSD) of less than 4.4% at a 95% confidence level, and relative error (RE) values ranging from -0.8% to -2.7%. The selectivity of the developed MIP sensor was evaluated using ochratoxin A, ochratoxin B, and aflatoxin B1, with no significant interference observed. ZEN recovery from spiked samples was between 95% and 105%, indicating that the method was successfully applied to grain samples, including corn, rice, and wheat.
Collapse
Affiliation(s)
- Dilruba Küçük
- Kutahya Dumlupınar University, Chemistry Department, Kütahya, Turkey
| | - Gülcan Üner
- Kutahya Dumlupınar University, Chemistry Department, Kütahya, Turkey
| | - Semih Latif İpek
- Kutahya Dumlupınar University, Chemistry Department, Kütahya, Turkey; Adana Alparslan Türkeş Science and Technology University, Department of Food Eng., Adana, Turkey.
| | | | - Zafer Üstündağ
- Kutahya Dumlupınar University, Chemistry Department, Kütahya, Turkey.
| |
Collapse
|
2
|
Grümpel-Schlüter A, Kersten S, Kluess J, Lühken S, Saltzmann J, Schubbert A, Büngener-Schröder S, Dänicke S. Effect of zearalenone in sugar beet products on zootechnical and reproductive performance and lesions of sows and piglets. Mycotoxin Res 2024:10.1007/s12550-024-00564-z. [PMID: 39394408 DOI: 10.1007/s12550-024-00564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Following the use of sugar beet pulp that was retrospectively found to be predominantly contaminated with zearalenone (ZEN) in diets of reproducing sows largely exceeding the EU-guidance value for critical ZEN concentration of 0.25 mg/kg, farmers did not report any changes in the reproductive performance of sows. Thus, the aim of the study was to verify this guidance value in a dose-response setup by using sugar beet pulp as a ZEN source hitherto not considered a risky feedstuff additionally characterized by comparatively low levels of deoxynivalenol. A total of 90 sows was equally allocated to one of the three feed groups during experimental lactation 1 and up to 40 days after insemination: CON with a minimal ZEN concentration, ZEN1 with a target concentration of 250 µg ZEN/kg feed, and ZEN2 with a target concentration of 500 µg ZEN/kg feed. Thereafter, all sows received the same feed without ZEN for the rest of gestation, and the following lactation for testing of putative carry-over effects resulting from previous ZEN exposure. Exposure of sows to ZEN with blood serum as an indicator was linearly related to dietary ZEN concentrations. Reproductive and zootechnical performances of sows were only affected by ZEN exposure at weaning weight. Clinical-chemical parameters indicated no clear effect of ZEN exposure. An influence of ZEN on the occurrence of tail and ear injuries (not necrosis) in piglets and lesions on the mammary complexes in sows is possible. The influence of a ZEN concentration above the EU guidance value on the study farm can therefore not be neglected.
Collapse
Affiliation(s)
- A Grümpel-Schlüter
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Bundesallee 37, 38116, Brunswick, Germany.
| | - S Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Bundesallee 37, 38116, Brunswick, Germany
| | - J Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Bundesallee 37, 38116, Brunswick, Germany
| | - S Lühken
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223, Celle, Germany
| | - J Saltzmann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Bundesallee 37, 38116, Brunswick, Germany
| | - A Schubbert
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Dörnbergstraße 25/27, 29223, Celle, Germany
| | | | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Bundesallee 37, 38116, Brunswick, Germany
| |
Collapse
|
3
|
Bierworth RM, Ribeiro GO, Terry SA, Malmuthuge N, Penner GB, McKinnon JJ, Hucl P, Randhawa H, Beauchemin KA, Stanford K, Schwartzkopf-Genswein K, Yang WZ, Gruninger R, Guan LL, Gibb D, McAllister TA. High deoxynivalenol and ergot alkaloid levels in wheat grain: effects on growth performance, carcass traits, rumen fermentation, and blood parameters of feedlot cattle. Mycotoxin Res 2024; 40:401-417. [PMID: 38698149 PMCID: PMC11258187 DOI: 10.1007/s12550-024-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
This study was designed to assess the impacts of a mixture of deoxynivalenol (DON) and ergot alkaloids (EAs) on growth performance, rumen function, blood parameters, and carcass traits of feedlot cattle. Forty steers (450 ± 6.0 kg) were stratified by weight and randomly allocated to 1 of 4 treatments; control-low (CON-L), control-high (CON-H) which contained low or high wheat screenings that lacked mycotoxins at the same level as the mycotoxin-low (MYC-L; 5.0 mg/kg DON, 2.1 mg/kg EA), and mycotoxin-high (MYC-H: 10 mg/kg DON, 4.2 mg/kg EA) diets that included wheat screening with mycotoxins. Steers were housed in individual pens for a 112-day finishing trial. Intake was 24.8% lower (P < 0.001) for MYC steers compared to CON steers. As a result, average daily gains of MYC steers were 42.1% lower (P < 0.001) than CON steers. Gain to feed ratio was also lower (P < 0.001) for MYC steers compared to CON steers. Platelets, alanine aminotransferase, globulins, and blood urea nitrogen were lower (P ≤ 0.008), and lymphocytes, glutathione peroxidase activity (GPx), and interleukin-10 (IL-10) were elevated (P ≤ 0.002) in MYC steers compared to CON steers. Hot carcass weights and backfat thickness were reduced (P < 0.001) in MYC steers, resulting in leaner (P < 0.001) carcasses and higher (P < 0.007) meat yield compared to CON steers. Results suggest that a mixture of DON and EAs negatively impacted health, performance, and carcass traits of feedlot steers, with the majority of this response likely attributable to EAs. However, more research is needed to distinguish the relative contribution of each mycotoxin to the specific responses observed.
Collapse
Affiliation(s)
- R M Bierworth
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - G O Ribeiro
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - S A Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - N Malmuthuge
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - G B Penner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - J J McKinnon
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - P Hucl
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - H Randhawa
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - K A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - K Stanford
- Department of Biological Sciences, University of Lethbridge, Alberta, T1K 3M4, Canada
| | - K Schwartzkopf-Genswein
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - W Z Yang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - R Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - L L Guan
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - D Gibb
- Gowan's Feed Consulting, Raymond, AB, T0K 2S0, Canada
| | - T A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada.
| |
Collapse
|
4
|
Sauvé B, Chorfi Y, Létourneau-Montminy MP, Guay F. Vitamin 25(OH)D 3, E, and C Supplementation Impact the Inflammatory and Antioxidant Responses in Piglets Fed a Deoxynivalenol-Contaminated Diet and Challenged with Lipopolysaccharides. Toxins (Basel) 2024; 16:297. [PMID: 39057937 PMCID: PMC11281576 DOI: 10.3390/toxins16070297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Using alternative ingredients or low-quality grain grades to reduce feeding costs for pig diets can introduce mycotoxins such as deoxynivalenol (DON) into feed, which is known to induce anorexia, inflammation, and oxidative stress. Adding vitamin 25(OH)D3 or vitamins E and C to the feed could increase piglets' immune system to alleviate the effects of DON. This study used 54 pigs (7.8 ± 0.14 kg) in 27 pens (2 pigs/pen) with a vitamin 25(OH)D3 or vitamin E-C supplementation, or their combination, in DON-contaminated (5.1 mg/kg) feed ingredients over 21 days followed by a lipopolysaccharide (LPS) challenge (20 µg/kg BW) 3 h prior to euthanasia for 1 piglet per pen. DON contamination induced anorexia, which reduced piglet growth. DON also induced immunomodulation, oxidative stress, and downregulated vitamin D status. The vitamin E and C supplementation and the combination of vitamins E, C, and 25(OH)D3 provided protection against DON contamination by not only decreasing blood and liver oxidative stress markers, but also by increasing antioxidant enzymes and tocopherol levels in blood, indicating improved antioxidant defense mechanisms. The combination of vitamins also restored the vitamin D status. After LPS challenge, DON contamination decreased intestinal and liver antioxidant statuses and increased inflammation markers. The addition of vitamins E and C to DON-contaminated feed reduced markers of inflammation and improved the antioxidant status after the LPS immune stimulation. The combination of all these vitamins also reduced the oxidative stress markers and the inflammation in the intestine and mesenteric lymph nodes, suggesting an anti-inflammatory effect.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, University of Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Dai J, Xu Z, Yang N, Tuerxunjiang H, Shan X, Diao Y, Zhao J, Ma M, Li X, Xiao M, Pei J. Investigation of the biocontrol mechanism of a novel Pseudomonas species against phytopathogenic Fusarium graminearum revealed by multi-omics integration analysis. Appl Environ Microbiol 2024; 90:e0045524. [PMID: 38809045 PMCID: PMC11218632 DOI: 10.1128/aem.00455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Phytopathogenic Fusarium graminearum poses significant threats to crop health and soil quality. Although our laboratory-cultivated Pseudomonas sp. P13 exhibited potential biocontrol capacities, its effectiveness against F. graminearum and underlying antifungal mechanisms are still unclear. In light of this, our study investigated a significant inhibitory effect of P13 on F. graminearum T1, both in vitro and in a soil environment. Conducting genomic, metabolomic, and transcriptomic analyses of P13, we sought to identify evidence supporting its antagonistic effects on T1. The results revealed the potential of P13, a novel Pseudomonas species, to produce active antifungal components, including phenazine-1-carboxylate (PCA), hydrogen cyanide (HCN), and siderophores [pyoverdine (Pvd) and histicorrugatin (Hcs)], as well as the dynamic adaptive changes in the metabolic pathways of P13 related to these active ingredients. During the logarithmic growth stage, T1-exposed P13 strategically upregulated PCA and HCN biosynthesis, along with transient inhibition of the tricarboxylic acid (TCA) cycle. However, with growth stabilization, upregulation of PCA and HCN synthesis ceased, whereas the TCA cycle was enhanced, increasing siderophores secretion (Pvd and Hcs), suggesting that this mechanism might have caused continuous inhibition of T1. These findings improved our comprehension of the biocontrol mechanisms of P13 and provided the foundation for potential application of Pseudomonas strains in the biocontrol of phytopathogenic F. graminearum. IMPORTANCE Pseudomonas spp. produces various antifungal substances, making it an effective natural biocontrol agent against pathogenic fungi. However, the inhibitory effects and the associated antagonistic mechanisms of Pseudomonas spp. against Fusarium spp. are unclear. Multi-omics integration analyses of the in vitro antifungal effects of novel Pseudomonas species, P13, against F. graminearum T1 revealed the ability of P13 to produce antifungal components (PCA, HCN, Pvd, and Hcs), strategically upregulate PCA and HCN biosynthesis during logarithmic growth phase, and enhance the TCA cycle during stationary growth phase. These findings improved our understanding of the biocontrol mechanisms of P13 and its potential application against pathogenic fungi.
Collapse
Affiliation(s)
- Jiawei Dai
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhaofeng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ning Yang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | | | - Xin Shan
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuting Diao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiahui Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Meiqi Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiang Li
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ming Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Junmin Pei
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
6
|
Kim YW, Yang SG, Seo BB, Koo DB, Park HJ. Deoxynivalenol leads to endoplasmic reticulum stress-mediated apoptosis via the IRE1/JNK/CHOP pathways in porcine embryos. Food Chem Toxicol 2024; 188:114633. [PMID: 38608924 DOI: 10.1016/j.fct.2024.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The cytotoxic mycotoxin deoxynivalenol (DON) reportedly has adverse effects on oocyte maturation and embryonic development in pigs. Recently, the interplay between cell apoptosis and endoplasmic reticulum (ER) stress has garnered increasing attention in embryogenesis. However, the involvement of the inositol-requiring enzyme 1 (IRE1)/c-jun N-terminal kinase (JNK)/C/EBP homologous protein (CHOP) pathways of unfolded protein response (UPR) signaling in DON-induced apoptosis in porcine embryos remains unknown. In this study, we revealed that exposure to DON (0.25 μM) substantially decreased cell viability until the blastocyst stage in porcine embryos, concomitant with initiation of cell apoptosis through the IRE1/JNK/CHOP pathways in response to ER stress. Quantitative PCR confirmed that UPR signaling-related transcription factors were upregulated in DON-treated porcine blastocysts. Western blot analysis showed that IRE1/JNK/CHOP signaling was activated in DON-exposed porcine embryos, indicating that ER stress-associated apoptosis was instigated. The ER stress inhibitor tauroursodeoxycholic acid protected against DON-induced ER stress in porcine embryos, indicating that the toxic effects of DON on early developmental competence of porcine embryos can be prevented. In conclusion, DON exposure impairs the developmental ability of porcine embryos by inducing ER stress-mediated apoptosis via IRE1/JNK/CHOP signaling.
Collapse
Affiliation(s)
- Ye-Won Kim
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea; DU Center for Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Seul-Gi Yang
- DU Center for Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea; Department of Companion Animal Industry, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, 38453, Republic of Korea
| | - Byoung-Boo Seo
- Department of Companion Animal Industry, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, 38453, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea; DU Center for Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea; Department of Companion Animal Industry, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, 38453, Republic of Korea.
| | - Hyo-Jin Park
- Department of Biotechnology, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea; DU Center for Infertility, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
7
|
Nikolov N, Petkova T, Binev R, Milanova A. Low Doses of Deoxynivalenol and Zearalenone Alone or in Combination with a Mycotoxin Binder Affect ABCB1 mRNA and ABCC2 mRNA Expression in the Intestines of Pigs. TOXICS 2024; 12:297. [PMID: 38668520 PMCID: PMC11054541 DOI: 10.3390/toxics12040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Mycotoxin binders, in combination with enzymes degrading some mycotoxins, contribute to feed detoxification. Their use reduces economic losses and the negative impacts of mycotoxins on animal health and productivity in farm animals. The aim of this study was to evaluate the efficacy of a mycotoxin detoxifier on the expression of the ATP-binding cassette efflux transporters ABCB1 mRNA and ABCC2 mRNA, which transport xenobiotics and thus have a barrier function, in the tissues of pigs exposed to low doses of deoxynivalenol (DON, 1 mg/kg feed) and zearalenone (ZEN, 0.4 mg/kg feed) for 37 days. The levels of expression were determined by an RT-PCR, and the effect of the mycotoxin detoxifier (Mycofix Plus3.E) was evaluated by a comparison of results between healthy pigs (n = 6), animals treated with DON and ZEN (n = 6), and a group that received both mycotoxins and the detoxifier (n = 6). A significant downregulation of ABCB1 mRNA and ABCC2 mRNA was observed in the jejunum (p < 0.05). A tendencies toward the downregulation of ABCB1 mRNA and ABCC2 mRNA were found in the ileum and duodenum, respectively. The mycotoxin detoxifier restored the expression of ABCB1 mRNA to the level found in healthy animals but did not restore that of ABCC2 mRNA to the level of healthy animals in the jejunum.
Collapse
Affiliation(s)
- Nikolay Nikolov
- Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria; (N.N.); (R.B.)
| | - Tsvetelina Petkova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria;
| | - Rumen Binev
- Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria; (N.N.); (R.B.)
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria;
| |
Collapse
|
8
|
Yu J, Pedroso IR. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins (Basel) 2023; 15:480. [PMID: 37624237 PMCID: PMC10467131 DOI: 10.3390/toxins15080480] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cereal grains are the most important food staples for human beings and livestock animals. They can be processed into various types of food and feed products such as bread, pasta, breakfast cereals, cake, snacks, beer, complete feed, and pet foods. However, cereal grains are vulnerable to the contamination of soil microorganisms, particularly molds. The toxigenic fungi/molds not only cause quality deterioration and grain loss, but also produce toxic secondary metabolites, mycotoxins, which can cause acute toxicity, death, and chronic diseases such as cancer, immunity suppression, growth impairment, and neural tube defects in humans, livestock animals and pets. To protect human beings and animals from these health risks, many countries have established/adopted regulations to limit exposure to mycotoxins. The purpose of this review is to update the evidence regarding the occurrence and co-occurrence of mycotoxins in cereal grains and cereal-derived food and feed products and their health impacts on human beings, livestock animals and pets. The effort for safe food and feed supplies including prevention technologies, detoxification technologies/methods and up-to-date regulation limits of frequently detected mycotoxins in cereal grains for food and feed in major cereal-producing countries are also provided. Some important areas worthy of further investigation are proposed.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | | |
Collapse
|
9
|
Dänicke S, Carlson L, Heymann AK, Grümpel-Schlüter A, Doupovec B, Schatzmayr D, Streit B, Kersten S, Kluess J. Inactivation of zearalenone (ZEN) and deoxynivalenol (DON) in complete feed for weaned piglets: Efficacy of ZEN hydrolase ZenA and of sodium metabisulfite (SBS) as feed additives. Mycotoxin Res 2023:10.1007/s12550-023-00486-2. [PMID: 37249806 PMCID: PMC10393848 DOI: 10.1007/s12550-023-00486-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Female pigs respond sensitive both to DON and ZEN with anorexia and endocrine disruption, respectively, when critical diet concentrations are exceeded. Therefore, the frequent co-contamination of feed by DON and ZEN requires their parallel inactivation. The additive ZenA hydrolyzes ZEN while SBS inactivates DON through sulfonation. Both supplements were simultaneously added (+, 2.5 g SBS and 100 U ZenA/kg) to a control diet (CON-, 0.04 mg DON and < 0.004 mg ZEN/kg; CON+, 0.03 mg DON and < 0.004 mg ZEN/kg) and a Fusarium toxin contaminated diet (FUS-, 2.57 mg DON and 0.24 mg ZEN/kg; FUS+, 2.04 mg DON and 0.24 mg ZEN/kg). The 4 diets were fed to 20 female weaned piglets each (6 kg initial body weight) for 35 days; the piglets were sacrificed thereafter for collecting samples. Supplements improved performance and modified metabolism and hematology independent of dietary DON contamination. The mechanisms behind these changes could not be clarified and require further consideration. SBS reduced DON concentration in feed by approximately 20% and to the same extent in blood plasma and urine suggesting that no further DON sulfonate formation occurred in the digestive tract before absorbing DON in the upper digestive tract or that additionally formed DON sulfonates escaped absorption. DON sulfonates were detected in feces suggesting that unabsorbed DON sulfonates reached feces and/or that unabsorbed DON was sulfonated in the hindgut. The observed reduction rate of 20% was evaluated to be insufficient for feeding practice. Galenic form of SBS added to dry feed needs to be improved to support the DON sulfonation in the proximal digestive tract.ZenA was active in the digestive tract as demonstrated by the presence of its hydrolyzed none-estrogenic reaction products hydrolyzed ZEN (HZEN) and decarboxylated and hydrolyzed ZEN (DHZEN) both in feces, systemic circulation, and urine of group FUS+ compared to group FUS-. The presence of these hydrolysis products was paralleled by a significant decrease in high-estrogenic ZEN concentrations which, in turn, was related to a decrease in relative weights of uteri and ovaries when compared to group FUS-. Thus, ZenA was proven to be effective; both in terms of biomarkers and biological effects.
Collapse
Affiliation(s)
- Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116, Braunschweig, Germany
| | - Linn Carlson
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116, Braunschweig, Germany
| | - Ann-Katrin Heymann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116, Braunschweig, Germany
| | - Angelika Grümpel-Schlüter
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116, Braunschweig, Germany
| | | | | | | | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116, Braunschweig, Germany.
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116, Braunschweig, Germany
| |
Collapse
|
10
|
Mao X, Zhang P, Du H, Ge L, Liu S, Huang K, Chen X. The combined effect of deoxynivalenol and Fumonisin B1 on small intestinal inflammation mediated by pyroptosis in vivo and in vitro. Toxicol Lett 2023; 372:25-35. [DOI: 10.1016/j.toxlet.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
11
|
Zearalenone Promotes Uterine Development of Weaned Gilts by Interfering with Serum Hormones and Up-Regulating Expression of Estrogen and Progesterone Receptors. Toxins (Basel) 2022; 14:toxins14110732. [PMID: 36355982 PMCID: PMC9695532 DOI: 10.3390/toxins14110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we aimed to assess the effect of diet ZEA on serum hormones, the location and expression of estrogen receptor ERα/β and progesterone receptor (PR) of the uterus in weaned piglets and to reveal the mechanism underneath. A total of 40 healthy weaned gilts were randomly allocated to basal diet supplemented with 0 (Control), 0.5 (ZEA0.5), 1.0 (ZEA1.0) and 1.5 (ZEA1.5) mg ZEA/kg and fed individually for 35 days. Meanwhile, the porcine endometrial epithelial cells (PECs) were incubated for 24 h with ZEA at 0 (Control), 5 (ZEA5), 20 (ZEA20) and 80 (ZEA80) μmol/L, respectively. The results showed that nutrient apparent digestibility (CP and GE), nutrient apparent availability (ME/GE, BV and NPU), the uterine immunoreactive integrated optic density (IOD), relative mRNA and protein expression of ER-α, ER-β and PR and the relative mRNA and protein expression of ER-α and ER-β in PECs all increased linearly (p < 0.05) with ZEA. Collectively, ZEA can interfere with the secretion of some reproductive hormones in the serum and promote the expression of estrogen/progesterone receptors in the uterus and PECs. All these indicate that ZEA may promote the development of the uterus in weaned gilts through estrogen receptor pathway.
Collapse
|
12
|
Sun X, Ye Y, Sun J, Tang L, Yang X, Sun X. Advances in the study of liver microsomes in the in vitro metabolism and toxicity evaluation of foodborne contaminants. Crit Rev Food Sci Nutr 2022; 64:3264-3278. [PMID: 36226776 DOI: 10.1080/10408398.2022.2131728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Foodborne contaminants are closely related to anthropologic activities and represent an important food safety hazard. The study of metabolic transformation and toxic side effects of foodborne contaminants in the body is important for their safety assessment. Liver microsomes contain a variety of enzymes related to substance metabolism and biotransformation. An in vitro model simulating liver metabolic transformation is associated with a significant advantage in the study of the metabolic transformation mechanisms of contaminants. This review summarizes the recent progress in the application of liver microsomes in metabolic transformation and toxicity evaluation of various foodborne pollutants based on metabolic kinetics, molecular docking and enzyme inhibition studies. The purpose of this review is to distinguish the existing studies involving liver microsomes and provide strategies for their application in the future. Finally, the prospects and challenges of the liver microsomal model are discussed.
Collapse
Affiliation(s)
- Xinyu Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Xingxing Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Adácsi C, Kovács S, Pócsi I, Pusztahelyi T. Elimination of Deoxynivalenol, Aflatoxin B1, and Zearalenone by Gram-Positive Microbes (Firmicutes). Toxins (Basel) 2022; 14:toxins14090591. [PMID: 36136529 PMCID: PMC9501497 DOI: 10.3390/toxins14090591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mycotoxin contaminations in the feed and food chain are common. Either directly or indirectly, mycotoxins enter the human body through the consumption of food of plant and animal origin. Bacteria with a high mycotoxin elimination capability can reduce mycotoxin contamination in feed and food. Four Gram-positive endospore-forming bacteria (Bacillus thuringiensis AMK10/1, Lysinibacillus boronitolerans AMK9/1, Lysinibacillus fusiformis AMK10/2, and Rummeliibacillus suwonensis AMK9/2) were isolated from fermented forages and tested for their deoxynivalenol (DON), aflatoxin B1 (AFB1), and zearalenone (ZEA) elimination potentials. Notably, the contribution of bacterial cell wall fractions to the observed outstanding ZEA elimination rates was demonstrated; however, the ZEA elimination differed considerably within the tested group of Gram-positive bacteria. It is worth noting that the purified cell wall of L. boronitolerans AMK9/1, L. fusiformis AMK10/2 and B. thuringiensis AMK10/1 were highly efficient in eliminating ZEA and the teichoic acid fractions of B. thuringiensis AMK10/1, and L. fusiformis AMK10/2 could also be successfully used in ZEA binding. The ZEA elimination capacity of viable R. suwonensis AMK9/2 cells was outstanding (40%). Meanwhile, R. suwonensis AMK9/2 and L. boronitolerans AMK9/1 cells produced significant esterase activities, and ZEA elimination of the cell wall fractions of that species did not correlate with esterase activity. DON and AFB1 binding capabilities of the tested bacterial cells and their cell wall fractions were low, except for B. thuringiensis AMK10/1, where the observed high 64% AFB1 elimination could be linked to the surface layer (S-layer) fraction of the cell wall.
Collapse
Affiliation(s)
- Cintia Adácsi
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary
| | - Szilvia Kovács
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-20-210-9491
| |
Collapse
|
14
|
Toxigenicity of F. graminearum Residing on Host Plants Alternative to Wheat as Influenced by Environmental Conditions. Toxins (Basel) 2022; 14:toxins14080541. [PMID: 36006203 PMCID: PMC9414964 DOI: 10.3390/toxins14080541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Fusarium graminearum is an important pathogen that causes Fusarium head blight (FHB) in several cereal crops worldwide. The potential of this pathogen to contaminate cereals with trichothecene mycotoxins presents a health risk for both humans and animals. This study aimed to evaluate the potential of different trichothecene genotypes of F. graminearum isolated from an alternative host plant to produce mycotoxins under different spring wheat grain incubation conditions. Fourteen F. graminearum strains were isolated from seven alternative host plants and identified as 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) genotypes. These strains were cultivated on spring wheat grains at 25 °C and 29 °C for 5 weeks. The mycotoxins produced were analysed with a high-performance liquid chromatograph (HPLC) coupled to a Thermo Scientific TSQ Quantiva MS/MS detector. The obtained results showed that the F. graminearum strains from alternative host plants could produce nivalenol (NIV), deoxynivalenol (DON), fusarenon-X (FUS-X), 3-ADON, deoxynivalenol-3-ß-d-glucoside (D3G), 15-ADON, and zearalenone (ZEA). F. graminearum strains produced DON and ZEA under both temperatures, with the mean concentrations varying from 363 to 112,379 µg kg−1 and from 1452 to 44,816 µg kg−1, respectively. Our results indicated the possible role of dicotyledonous plants, including weeds, as a reservoir of inoculum sources of F. graminearum-induced Fusarium head blight, associated with the risk of mycotoxin contamination in spring wheat.
Collapse
|
15
|
Bai J, Zhou Y, Luo X, Hai J, Si X, Li J, Fu H, Dai Z, Yang Y, Wu Z. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Compr Rev Food Sci Food Saf 2022; 21:3326-3345. [PMID: 35751400 DOI: 10.1111/1541-4337.12974] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jia Hai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.,Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing, P. R. China
| |
Collapse
|
16
|
Impact of a Natural Fusarial Multi-Mycotoxin Challenge on Broiler Chickens and Mitigation Properties Provided by a Yeast Cell Wall Extract and a Postbiotic Yeast Cell Wall-Based Blend. Toxins (Basel) 2022; 14:toxins14050315. [PMID: 35622561 PMCID: PMC9145611 DOI: 10.3390/toxins14050315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Yeast cell wall-based preparations have shown efficacy against Aspergillus-based toxins but have lower impact against type-B trichothecenes. Presently, we investigated a combination of deoxynivalenol (DON), T-2 toxin (T2) and zearalenone (ZEA), and the effect of a yeast cell wall extract (YCWE) and a post-biotic yeast cell wall-based blend (PYCW) with the objectives of preventing mycotoxins’ negative effects in commercial broilers. A total of 720 one-day-old male Cobb broilers were randomly allocated to: (1) control diet, (aflatoxins 6 µg/kg; cyclopiazonic acid 15 µg/kg; fusaric acid 25 µg/kg; fumonisin B1 310 µg/kg); (2) Diet1 + 0.2% YCWE; (3) Diet1 + 0.2% PYCW; (4) Contaminated diet (3.0 mg/kg DON; 2.17 mg/kg 3-acetyldeoxynivalenol; 104 g/kg T2; 79 g/kg ZEA); (5) Diet4 + 0.2% YCWE; and (6) Diet4 + 0.2% PYCW. Naturally contaminated diets adversely affected performance, serum biochemistry, liver function, immune response, altered cecal SCFA goblet cell count and architecture of intestinal villi. These adverse effects were reduced in birds fed PYCW and to a lesser extent YCWE, indicating protection against toxic assault. PYCW yielded better production performance and stimulated liver function, with higher response to NDV and IBV vaccination. Furthermore, mycotoxins were found to affect production outputs when evaluated with the European poultry production efficiency factor compared to control or YCWE and PYCW supplemented treatments. Taken together, YCWE, when complemented with nutritional add-ons (PYCW), could potentiate the remediation of the negative effects from a multi mycotoxins dietary challenge in broiler birds.
Collapse
|
17
|
Zhou J, Zhao L, Huang S, Liu Q, Ao X, Lei Y, Ji C, Ma Q. Zearalenone toxicosis on reproduction as estrogen receptor selective modulator and alleviation of zearalenone biodegradative agent in pregnant sows. J Anim Sci Biotechnol 2022; 13:36. [PMID: 35382876 PMCID: PMC8985363 DOI: 10.1186/s40104-022-00686-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zearalenone (ZEA) is a resorcylic acid lactone derivative derived from various Fusarium species that are widely found in food and feeds. The molecular structure of ZEA resembles that of the mammalian hormone 17β-oestradiol, thus zearalenone and its metabolites are known to compete with endogenous hormones for estrogen receptors binding sites and to activate transcription of oestrogen-responsive genes. However, the effect of long-term low-dose ZEA exposure on the reproductive response to Bacillus subtilis ANSB01G culture for first-parity gilts has not yet been investigated. This study was conducted to investigate the toxic effects of ZEA as an estrogen receptor selective modulator and the alleviating effects of Bacillus subtilis ANSB01G cultures as ZEA biodegraders in pregnant sows during their first parity. RESULTS A total of 80 first-parity gilts (Yorkshire × Landrace) were randomly assigned to four dietary treatments during gestation: CO (positive control); MO (negative control, 246 μg ZEA/kg diet); COA (CO + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet); MOA (MO + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet). There were 20 replications per treatment with one gilt per replicate. Feeding low-dose ZEA naturally contaminated diets disordered most of reproductive hormones secretion and affected estrogen receptor-α and estrogen receptor-β concentrations in serum and specific organs and led to moderate histopathological changes of gilts, but did not cause significant detrimental effects on reproductive performance. The addition of Bacillus subtilis ANSB01G culture to the diet can effectively relieve the competence of ZEA to estrogen receptor and the disturbance of reproductive hormones secretion, and then ameliorate toxicosis of ZEA in gilts. CONCLUSIONS Collectively, our study investigated the effects of feeding low-dose ZEA on reproduction in pregnant sows during their first parity. Feeding low-dose ZEA could modulate estrogen receptor-α and -β concentrations in specific organs, cause disturbance of reproductive hormones and vulva swelling, and damage organ histopathology and up-regulate apoptosis in sow models. Diet with Bacillus subtilis ANSB01G alleviated negative effects of the ZEA on gilts to some extent.
Collapse
Affiliation(s)
- Jianchuan Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Sichuan tieqilishi Food Co., Ltd, Mianyang, 610000, Sichuan province, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qingxiu Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiang Ao
- Sichuan tieqilishi Food Co., Ltd, Mianyang, 610000, Sichuan province, China
| | - Yuanpei Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Rückner A, Plagge L, Heenemann K, Harzer M, Thaa B, Winkler J, Dänicke S, Kauffold J, Vahlenkamp TW. The mycotoxin deoxynivalenol (DON) can deteriorate vaccination efficacy against porcine reproductive and respiratory syndrome virus (PRRSV) at subtoxic levels. Porcine Health Manag 2022; 8:13. [PMID: 35307023 PMCID: PMC8935682 DOI: 10.1186/s40813-022-00254-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Feedgrain contamination with mycotoxins, including deoxynivalenol (DON, “vomitoxin”) is relatively frequently encountered. Pigs are particularly sensitive to the toxicity of DON. To assess the interplay between DON and porcine reproductive and respiratory syndrome virus (PRRSV), we performed an experimental DON exposure–PRRSV vaccination–challenge infection trial. Three-week-old piglets were divided into four groups. Groups I, II and III (10 animals/group) were vaccinated with a PRRSV modified live vaccine and 2 weeks later challenged with a heterologous field strain. While group I was not supplemented with DON, animals in groups II and III received DON for 4 weeks prior to challenge infection at levels that can be encountered in pig feed, employing a low-dose or high-dose regime (group II: 40 µg DON/kg body weight per day; group III: 80 µg DON/kg body weight per day, corresponding to approx. 1 or 2 mg DON/kg feed, respectively). Eight animals (group IV; unvaccinated, not DON exposed) served as control animals for the challenge infection.
Results
We assessed clinical signs, virus load in serum and various organs as well as antibody titres in the animals. All vaccinated animals mounted an efficient PRRSV-specific antibody response within 2 weeks, except for 20% of the animals receiving the higher DON dose. Upon virus challenge, the vaccinated animals in group I were protected from clinical signs. Vaccinated DON-exposed animals in group II and III were protected from clinical signs to a lesser extent. Clinical signs in group III receiving the higher dose of DON were as severe as in the (unvaccinated, not DON exposed) control group IV. The animals of group III also displayed lower antibody titres compared with the animals in group I and II.
Conclusions
The experimental vaccination/challenge study therefore revealed that exposure of pigs to DON for a period of 4 weeks deteriorates the efficacy of vaccination against clinical signs of PRRS.
Collapse
|
19
|
Falkauskas R, Bakutis B, Jovaišienė J, Žilaitis V, Pridotkas G, Stankevičius R, Gerulis G, Vaičiulienė G, Baliukonienė V. Mycotoxin risk management for dairy cows by monitoring blood parameters, reproduction status and SCC in milk. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The objective of this study was to determine the effectiveness of mycotoxin management with feed additive by monitoring biochemical blood parameters, reproduction status and udder health in cows. During the first 1-12-months, the reproduction performance was assessed. The cows were fed only total mixed ration (TMR) with naturally contaminated mycotoxins (ZEN;DON;AFB1;OTA) and the cows were regarded as a control group (CG). In months 13-15, two groups were created: control (CG)(n=30) and experimental (EG)(n=60). The CG was fed with contaminated TMR and the EG was fed with the same TMR+40g/cow mycotoxins management feed additive (TMXL1000). During this period, blood indicators and udder health were studied. Beginning with months 16-24, all cows were fed with contaminated TMR+40 g/cow (TMXL1000) and regarded as the EG. The IgA concentrations in the CG decreased in the 15th month (p<0.05). The concentrations of cortisol decreased by two times (p<0.05) in the EG. Ovarian cyst treatment was more effective by 14.98% (p<0.05) in the EG than in the CG (p<0.05). The EG performed an effective (18.02%) (p<0.05) response to applied ovsynch protocol compared with the CG. According to the obtained results, it can be concluded that feed additive for mycotoxins management had a positive impact on dairy cow health.
Collapse
Affiliation(s)
- R. Falkauskas
- Lithuanian University of Health Sciences, Lithuanian
| | - B. Bakutis
- Lithuanian University of Health Sciences, Lithuanian
| | - J. Jovaišienė
- Lithuanian University of Health Sciences, Lithuanian
| | - V. Žilaitis
- Lithuanian University of Health Sciences, Lithuanian
| | - G. Pridotkas
- National Food and Veterinary Risk Assessment Institute, Lithuanian
| | | | - G. Gerulis
- Lithuanian University of Health Sciences, Lithuanian
| | | | | |
Collapse
|
20
|
Durairaj S, Guo Q, Wang Q, Chen A. Sensitive electrochemical detection of metabisulphite in gastrointestinal fluids. Analyst 2022; 147:5508-5517. [DOI: 10.1039/d2an01352e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrochemical detection of metabisulphite in simulated gastrointestinal fluids.
Collapse
Affiliation(s)
- Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Qian Guo
- Agriculture and Agri-Food Canada, 90 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Qi Wang
- Agriculture and Agri-Food Canada, 90 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| |
Collapse
|
21
|
Gao D, Cao X, Ren H, Wu L, Yan Y, Hua R, Xing W, Lei M, Liu J. Immunotoxicity and uterine transcriptome analysis of the effect of zearalenone (ZEA) in sows during the embryo attachment period. Toxicol Lett 2021; 357:33-42. [PMID: 34933075 DOI: 10.1016/j.toxlet.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Zearalenone is a mycotoxin and a pollutant that is commonly found in crops. Once ingested, ZEA can cause disturbances in the immune system and produce immunotoxicity. However, there is little research on the effect of ZEA exposure on the relationship between immune regulation and embryo implantation in the uteri of sows. Embryo implantation relies upon the fact that the relationship between the maternal and fetal immune systems is balanced. This balance is provided by the joint regulation of immune organs, cytokines, and uterine immunity. In this study, we investigated 20 sows with an initial weight of 100.00 ± 5.00 kg and 200 days in age. The sows were fed with diets containing ZEA at concentrations of 0 mg/kg, 1 mg/kg, 2 mg/kg, and 10 mg/kg, respectively, from 8 to 14 days of gestation. We studied immunotoxicity and the uterine transcriptomics associated with the effect of ZEA in sows during embryo attachment. Following ZEA treatment, serum biochemical analysis and RT-qPCR were used to detect the concentration and mRNA expression levels of immunoglobulin IgA, IgG, and IgM, in the serum and spleen, respectively. The same analysis was carried out for a range of cytokines in the serum and spleen: IL-1, IL-2, IL-6, IL-10, and TNF. Uterine transcriptome analysis revealed 75, 215, and 81 genes that were differentially expressed in the 0 mg/kg vs 1 mg/kg treatment, 0 mg/kg vs 10 mg/kg treatment, and 1 mg/kg vs 10 mg/kg treatment, respectively. GO terms analysis showed that the up-regulated genes related to the immune system were highly expressed. KEGG pathway analysis further revealed the importance of several metabolic pathways, including drug metabolism-cytochrome P450, the cytokine-cytokine receptor interaction pathway, and calcium signaling pathways. The differentially expressed genes were confirmed by quantitative real-time PCR. These findings expand our understanding of the gene expression profiles and signaling pathways associated with the immune response to ZEA exposure in sows during the embryo implantation window. This study provides valuable information for clarifying the molecular mechanism of ZEA's immunotoxicity to early pregnant sows in the future.
Collapse
Affiliation(s)
- Dengying Gao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Xinxin Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Huihui Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Lihang Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Youxin Yan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Renwu Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China
| | - Wenkai Xing
- Jiangxi Zhengbang Breeding Co. LTD, Jiangxi, Nanchang, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, China; National Engineering Research Center for Livestock, China.
| | - Jian Liu
- Jiangxi Zhengbang Breeding Co. LTD, Jiangxi, Nanchang, China
| |
Collapse
|
22
|
Shen W, Liu Y, Zhang X, Zhang X, Rong X, Zhao L, Ji C, Lei Y, Li F, Chen J, Ma Q. Comparison of Ameliorative Effects between Probiotic and Biodegradable Bacillus subtilis on Zearalenone Toxicosis in Gilts. Toxins (Basel) 2021; 13:toxins13120882. [PMID: 34941719 PMCID: PMC8703852 DOI: 10.3390/toxins13120882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to compare the potential ameliorative effects between probiotic Bacillus subtilis and biodegradable Bacillus subtilis on zearalenone (ZEN) toxicosis in gilts. Thirty-six Landrace×Yorkshire gilts (average BW = 64 kg) were randomly divided into four groups: (1) Normal control diet group (NC) fed the basal diet containing few ZEN (17.5 μg/kg); (2) ZEN contaminated group (ZC) fed the contaminated diet containing an exceeded limit dose of ZEN (about 300 μg/kg); (3) Probiotic agent group (PB) fed the ZC diet with added 5 × 109 CFU/kg of probiotic Bacillus subtilis ANSB010; (4) Biodegradable agent group (DA) fed the ZC diet with added 5 × 109 CFU/kg of biodegradable Bacillus subtilis ANSB01G. Results showed that Bacillus subtilis ANSB010 and ANSB01G isolated from broiler intestinal chyme had similar inhibitory activities against common pathogenic bacteria. In addition, the feed conversion ratio and the vulva size in DA group were significantly lower than ZC group (p < 0.05). The levels of IgG, IgM, IL-2 and TNFα in the ZC group were significantly higher than PB and DA groups (p < 0.05). The levels of estradiol and prolactin in the ZC group was significantly higher than those of the NC and DA groups (p < 0.05). Additionally, the residual ZEN in the feces of the ZC and PB groups were higher than those of the NC and DA groups (p < 0.05). In summary, the ZEN-contaminated diet had a damaging impact on growth performance, plasma immune function and hormone secretion of gilts. Although probiotic and biodegradable Bacillus subtilis have similar antimicrobial capacities, only biodegradable Bacillus subtilis could eliminate these negative effects through its biodegradable property to ZEN.
Collapse
Affiliation(s)
- Wenqiang Shen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Yaojun Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Xinyue Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Xiong Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Xiaoping Rong
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Yuanpei Lei
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Fengjuan Li
- FuQing Fengze Agricultural Science and Technology Development Co., Ltd., Fuzhou 350011, China; (F.L.); (J.C.)
| | - Jing Chen
- FuQing Fengze Agricultural Science and Technology Development Co., Ltd., Fuzhou 350011, China; (F.L.); (J.C.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
- Correspondence:
| |
Collapse
|
23
|
Song JL, Sun YJ, Liu GQ, Zhang GL. Deoxynivalenol and zearalenone: Different mycotoxins with different toxic effects in donkey (Equus asinus) endometrial epithelial cells. Theriogenology 2021; 179:162-176. [PMID: 34879314 DOI: 10.1016/j.theriogenology.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEA), which are commonly found in feed products, exhibit serious negative effects on the reproductive systems of domestic animals. However, the toxicity of mycotoxins on the uterine function of donkey (Equus asinus) remains unclear. This study investigated the biological effects of DON and ZEA exposure on donkey endometrial epithelial cells (EECs). It was administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro. The results showed that 10 μM DON exposure markedly changed the expression levels of pyroptosis-associated genes and that 30 μM ZEA exposure changed the expression levels of inflammation-associated genes in EECs. The mRNA expression of cancer-promoting genes was markedly upregulated in cells exposed to DON and 30 μM ZEA; in particular, 10 μM and 30 μM DON and ZEA markedly disturbed the expression of androgen and estrogen secretion-related genes. Furthermore, Q-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed EECs. Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of EECs from donkey in vitro.
Collapse
Affiliation(s)
- Jun-Lin Song
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yu-Jiang Sun
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Gui-Qin Liu
- College of Agronomy, Liaocheng University, Liaocheng, Shandong, 252059, China; Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng, Shandong, 252059, China
| | - Guo-Liang Zhang
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
24
|
Baumann C, Schikore N, Sigmarsson HL, Sperling D, Kauffold J. [Pathomorphology und microbiology of the urogenital tract of reproductively failed sows with positive deoxynivalenol result]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49:384-391. [PMID: 34861731 DOI: 10.1055/a-1580-8889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Deoxynivalenol (DON) is a mycotoxin produced by fungi of Fusarium spp. It causes vomiting, but also exerts immunosuppressive effects that may be seen at local level e. g. the urogenital tract, in which case these effects are of relevance for fertility. The presented report describes a DON-associated pathomorphological picture of the urogenital tract in conjunction with the associated microbiological colonization. MATERIAL AND METHODS A total of 19 genital tracts (vagina, cervix, uterus, oviducts and ovaries) including the urinary bladder (n = 15) from reproductively failed gilts and different parity sows submitted from 8 farms in 2019/20 were examined pathomorphologically. DON as well as zearalenone (ZEA) were determined by using high performance liquid chromatography in 11 individual and 2 pooled (2 and 4 animals, respectively) bile samples. Microbiologic examinations of uterine (n = 17) and bladder (n = 12) specimens were additionally performed. RESULTS Nearly all vaginas (n = 16), cervixes (n = 15), uteri (n = 18) and numerous oviducts (n = 11) as well as urinary bladders (n = 11) displayed a mostly medium to severe chronical inflammation. In 17 cases, ≥ 2 organs were affected. Microbiologic evaluation revealed a usually mixed flora of several gram-negative and gram-positive bacterial species with E. coli, Streptococcus spp., Aeromonas spp. and Enterococcus spp. being the predominant species. A total of 8 individual and both pooled bile samples were found DON-positive (75.5 to > 200.0 µg/l). In a subset of the DON-positive samples, ZEA was simultaneously detected at low concentrations (6.57-21.20 µg/l). CONCLUSION AND CLINICAL RELEVANCE The results of the present study allow for the postulation that DON may cause fertility problems. Subsequent pathomorphological examinations of genital organs and the urinary bladder are recommended. When ≥ 2 organs are chronically inflamed and the uteri are additionally microbiologically positive, a contribution of DON may be assumed and confirmation via bile analysis is warranted.
Collapse
Affiliation(s)
| | - Nina Schikore
- Klinik für Klauentiere, Veterinärmedizinische Fakultät, Universität Leipzig
| | | | - Daniel Sperling
- Ruminant and Swine Clinic, University of Veterinary and Pharmaceutical Sciences
| | - Johannes Kauffold
- Klinik für Klauentiere, Veterinärmedizinische Fakultät, Universität Leipzig
| |
Collapse
|
25
|
Elweza AE, Marey MA, Elesh IF, Zinnah MA, Akthar I, Kanno C, Takagi M, Miyamoto A. Zearalenone interferes with the sperm-triggered inflammation in the bovine uterus in vitro: Negative impact on sperm motility and survival. Reprod Toxicol 2021; 107:81-89. [PMID: 34864119 DOI: 10.1016/j.reprotox.2021.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
Zearalenone (ZEN)-contaminated diets induce detrimental effects on the bovine reproduction. Recently, we reported that active sperm induce pro-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. This study aimed to investigate the impact of presence of ZEN on the sperm-uterine crosstalk in vitro. BEECs monolayers were stimulated by ZEN (10, 100, and 1000 ng/mL) for 0, 3, 6, 12, or 24 h and gene expressions were analyzed by real-time PCR. Moreover, BEECs were pre-exposed to ZEN (10, 100, and 1000 ng/mL) for 24 h then, co-incubated with sperm for 6 h. Conditioned media (CM) from a sperm-BEECs co-culture, after pre-exposure to ZEN, were harvested and exploited to challenge either polymorphonuclear cells (PMNs) or sperm. Both PMNs phagocytic activity toward sperm and sperm motility parameters were then assessed. Results showed that ZEN alone induced pro-inflammatory responses in BEECs through the induction of mRNA expressions of pro-inflammatory cytokines (TNFA and IL1B) and PGES1 at different time points. Pre-exposure of BEECs to ZEN, amplified the sperm-triggered upregulation of pro-inflammatory cytokines (TNFA and IL1B) and chemokine IL8 mRNA abundance in BEECs. Sperm-BEECs conditioned media, primed by ZEN, stimulated the PMNs phagocytosis for sperm whereas suppressed sperm motility parameters. Taken together, these findings indicate that the presence of ZEN augments the pro-inflammatory cascade triggered by sperm in BEECs, provokes PMNs phagocytosis for sperm, and reduces sperm motility parameters. Such immunological reactions may create a hostile environment for sperm competence and survival in the bovine uterus, thus impair fertility.
Collapse
Affiliation(s)
- Ahmed E Elweza
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080 8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia, 32897, Egypt
| | - Mohamed A Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080 8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Behera, Egypt.
| | - Ibrahim F Elesh
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080 8555, Japan; Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Damanhour University, Behera, Egypt
| | - Mohammad A Zinnah
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080 8555, Japan; Department of Microbiology and Public Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
| | - Ihshan Akthar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080 8555, Japan
| | | | - Mitsuhiro Takagi
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 1677-1, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080 8555, Japan
| |
Collapse
|
26
|
Grgic D, Varga E, Novak B, Müller A, Marko D. Isoflavones in Animals: Metabolism and Effects in Livestock and Occurrence in Feed. Toxins (Basel) 2021; 13:836. [PMID: 34941674 PMCID: PMC8705642 DOI: 10.3390/toxins13120836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Soybeans are a common ingredient of animal feed. They contain isoflavones, which are known to act as phytoestrogens in animals. Isoflavones were described to have beneficial effects on farm animals. However, there are also reports of negative outcomes after the consumption of isoflavones. This review summarizes the current knowledge of metabolization of isoflavones (including the influence of the microbiome, phase I and phase II metabolism), as well as the distribution of isoflavones and their metabolites in tissues. Furthermore, published studies on effects of isoflavones in livestock species (pigs, poultry, ruminants, fish) are reviewed. Moreover, published studies on occurrence of isoflavones in feed materials and co-occurrence with zearalenone are presented and are supplemented with our own survey data.
Collapse
Affiliation(s)
- Dino Grgic
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Anneliese Müller
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| |
Collapse
|
27
|
Cao L, Zhao J, Xu J, Zhu L, Rahman SU, Feng S, Li Y, Wu J, Wang X. N-acetylcysteine ameliorate cytotoxic injury in piglets sertoli cells induced by zearalenone and deoxynivalenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60276-60289. [PMID: 34156614 DOI: 10.1007/s11356-021-14052-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) and Deoxynivalenol (DON) are two mycotoxins highly detected in agricultural products and feed. Both mycotoxins produce reproductive toxicity and pose a serious threat to human and animal health, among which pigs are the most sensitive animals. Sertoli cells (SCs) play an important role in spermatogenesis; however, the combined toxicity of ZEA and DON and the screening of effective protective agents remains to be determined. By studying the effects of N-acetylcysteine (NAC) on the cells exposed to 20 μM of ZEA and 0.6 μM of DON, we explored the protective mechanism of NAC (4 mM) on the cytotoxic injury of piglets SCs induced by both mycotoxins. The results showed that the combination of ZEA and DON destroy organelles and SCs structures, NAC significantly alleviates the damage caused by ZEA and DON. NAC also significantly increased the expression and distribution of zonula occludens 1 (ZO-1), decreased the relative mRNA and protein expression levels of Bax, Bid, caspase-3, and caspase-9, and increased Bcl-2 expression level and inhibited the decrease of mitochondrial membrane potential. Further, NAC also eases the cell cycle arrest and oxidative stress caused by ZEA and DON. In summary, our results show that NAC could alleviate SCs injury via reducing the oxidative damage and apoptosis caused by ZEA and DON.
Collapse
Affiliation(s)
- Li Cao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Jie Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Jingru Xu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Lei Zhu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, China.
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| |
Collapse
|
28
|
Dänicke S, Saltzmann J, Liermann W, Glatter M, Hüther L, Kersten S, Zeyner A, Feige K, Warnken T. Evaluation of Inner Exposure of Horses to Zearalenone (ZEN), Deoxynivalenol (DON) and Their Metabolites in Relation to Colic and Health-Related Clinical-Chemical Traits. Toxins (Basel) 2021; 13:toxins13080588. [PMID: 34437459 PMCID: PMC8402592 DOI: 10.3390/toxins13080588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Mycotoxin contaminated feed has been associated with colic of horses caused by intestinal disorders. Whether such disease conditions alter the intestinal toxin metabolism and transfer across a compromised mucosal barrier is unknown. A screening approach was used to relate blood residue levels of DON, ZEN and their metabolites to the status of the horses (sick vs. healthy). A total of 55 clinically healthy horses from 6 different farms with varying feeding background served as control for sick horses (N = 102) hospitalized due to colic. ZEN, alpha-zearalenol (ZEL), beta-ZEL and DON were detectable in peripheral blood as indicators for the inner exposure with significant farm effects for alpha- and beta-ZEL. However, the levels in sick horses were similar to all farms. Moreover, the proportion of beta-ZEL of all detected ZEN metabolites as an indicator for the degree of metabolism of ZEN was not different for sick horses but differed amongst the control farms. Although the incidence of DON in blood was generally low and not significantly different amongst healthy and sick horses, the positive samples were nearly exclusively found in sick horses suggesting either a higher toxin transfer, an association of DON with the development of colic or a different feeding background.
Collapse
Affiliation(s)
- Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany; (J.S.); (L.H.); (S.K.)
- Correspondence: ; Tel.: +49-531-58044-102
| | - Janine Saltzmann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany; (J.S.); (L.H.); (S.K.)
| | - Wendy Liermann
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Maren Glatter
- Group Animal Nutrition, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Theodor-Lieser-Str.11, D-06120 Halle/Saale, Germany; (M.G.); (A.Z.)
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany; (J.S.); (L.H.); (S.K.)
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Bundesallee 37, 38116 Braunschweig, Germany; (J.S.); (L.H.); (S.K.)
| | - Annette Zeyner
- Group Animal Nutrition, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Theodor-Lieser-Str.11, D-06120 Halle/Saale, Germany; (M.G.); (A.Z.)
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover, Germany; (K.F.); (T.W.)
| | - Tobias Warnken
- Clinic for Horses, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover, Germany; (K.F.); (T.W.)
| |
Collapse
|
29
|
Vanhoutte I, De Tender C, Demeyere K, Abdallah MF, Ommeslag S, Vermeir P, Saeger SD, Debode J, Meyer E, Croubels S, Audenaert K, De Gelder L. Bacterial Enrichment Cultures Biotransform the Mycotoxin Deoxynivalenol into a Novel Metabolite Toxic to Plant and Porcine Cells. Toxins (Basel) 2021; 13:toxins13080552. [PMID: 34437423 PMCID: PMC8402469 DOI: 10.3390/toxins13080552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The mycotoxin deoxynivalenol (DON), produced in wheat, barley and maize by Fusarium graminearum and Fusarium culmorum, is threatening the health of humans and animals. With its worldwide high incidence in food and feed, mitigation strategies are needed to detoxify DON, maintaining the nutritional value and palatability of decontaminated commodities. A promising technique is biological degradation, where microorganisms are used to biotransform mycotoxins into less toxic metabolites. In this study, bacterial enrichment cultures were screened for their DON detoxification potential, where DON and its potential derivatives were monitored. The residual phytotoxicity was determined through a bioassay using the aquatic plant Lemna minor L. Two bacterial enrichment cultures were found to biotransform DON into a still highly toxic metabolite for plants. Furthermore, a cytotoxic effect was observed on the cellular viability of intestinal porcine epithelial cells. Through liquid chromatography high-resolution mass spectrometry analysis, an unknown compound was detected, and tentatively characterized with a molecular weight of 30.0 Da (i.e., CH2O) higher than DON. Metabarcoding of the subsequently enriched bacterial communities revealed a shift towards the genera Sphingopyxis, Pseudoxanthomonas, Ochrobactrum and Pseudarthrobacter. This work describes the discovery of a novel bacterial DON-derived metabolite, toxic to plant and porcine cells.
Collapse
Affiliation(s)
- Ilse Vanhoutte
- Laboratory of Environmental Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Caroline De Tender
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (C.D.T.); (S.O.); (J.D.)
- Computer Science and Statistics, Department of Applied Mathematics, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (K.D.); (E.M.); (S.C.)
| | - Mohamed F. Abdallah
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (S.D.S.)
| | - Sarah Ommeslag
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (C.D.T.); (S.O.); (J.D.)
| | - Pieter Vermeir
- Laboratory of Chemical Analysis (LCA), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (S.D.S.)
| | - Jane Debode
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium; (C.D.T.); (S.O.); (J.D.)
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (K.D.); (E.M.); (S.C.)
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (K.D.); (E.M.); (S.C.)
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Leen De Gelder
- Laboratory of Environmental Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Correspondence: ; Tel.: +32-9-243-24-75
| |
Collapse
|
30
|
Dänicke S, Heymann AK, Oster M, Wimmers K, Tesch T, Bannert E, Bühler S, Kersten S, Frahm J, Kluess J, Kahlert S, Rothkötter HJ, Billenkamp F. Does chronic dietary exposure to the mycotoxin deoxynivalenol affect the porcine hepatic transcriptome when an acute-phase response is initiated through first or second-pass LPS challenge of the liver? Innate Immun 2021; 27:388-408. [PMID: 34338001 PMCID: PMC8419296 DOI: 10.1177/17534259211030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sensitivity of pigs to deoxynivalenol (DON) might be increased by systemic inflammation (SI), which also has consequences for hepatic integrity. Liver lesions and a dys-regulated gene network might hamper hepatic handling and elimination of DON whereby the way of initiation of hepatic inflammation might play an additional role. First and second-pass exposure of the liver with LPS for triggering a SI was achieved by LPS infusion via pre- or post-hepatic venous route, respectively. Each infusion group was pre-conditioned either with a control diet (0.12 mg DON/kg diet) or with a DON-contaminated diet (4.59 mg DON/kg diet) for 4 wk. Liver transcriptome was evaluated at 195 min after starting infusions. DON exposure alone failed to modulate the mRNA expression significantly. However, pre- and post-hepatic LPS challenges prompted transcriptional responses in immune and metabolic levels. The mRNAs for B-cell lymphoma 2-like protein 11 as a key factor in apoptosis and IFN-γ released by T cells were clearly up-regulated in DON-fed group infused with LPS post-hepatically. On the other hand, mRNAs for nucleotide binding oligomerization domain containing 2, IFN-α and eukaryotic translation initiation factor 2α kinase 3 as ribosomal stress sensors were exclusively up-regulated in control pigs with pre-hepatic LPS infusion. These diverse effects were traced back to differences in TLR4 signalling.
Collapse
Affiliation(s)
- Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Ann-Katrin Heymann
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Michael Oster
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Germany
| | - Tanja Tesch
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Erik Bannert
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Susanne Bühler
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Susanne Kersten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| | - Stefan Kahlert
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Germany
| | | | - Fabian Billenkamp
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Germany
| |
Collapse
|
31
|
Song JL, Zhang GL. Deoxynivalenol and Zearalenone: Different Mycotoxins with Different Toxic Effects in the Sertoli Cells of Equus asinus. Cells 2021; 10:cells10081898. [PMID: 34440667 PMCID: PMC8394322 DOI: 10.3390/cells10081898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Deoxynivalenol (DON) and zearalenone (ZEA) are type B trichothecene mycotoxins that exert serious toxic effects on the reproduction of domestic animals. However, there is little information about the toxicity of mycotoxins on testis development in Equus asinus. This study investigated the biological effects of DON and ZEA exposure on Sertoli cells (SCs) of Equus asinus; (2) Methods: We administered 10 μM and 30 μM DON and ZEA to cells cultured in vitro; (3) Results: The results showed that 10 μM DON exposure remarkably changed pyroptosis-associated genes and that 30 μM ZEA exposure changed inflammation-associated genes in SCs. The mRNA expression of cancer-promoting genes was remarkably upregulated in the cells exposed to DON or 30 μM ZEA; in particular, DON and ZEA remarkably disturbed the expression of androgen and oestrogen secretion-related genes. Furthermore, quantitative RT-PCR, Western blot, and immunofluorescence analyses verified the different expression patterns of related genes in DON- and ZEA-exposed SCs; (4) Conclusions: Collectively, these results illustrated the impact of exposure to different toxins and concrete toxicity on the mRNA expression of SCs from Equus asinus in vitro.
Collapse
Affiliation(s)
- Jun-Lin Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China;
- Correspondence:
| |
Collapse
|
32
|
Biosensors for Deoxynivalenol and Zearalenone Determination in Feed Quality Control. Toxins (Basel) 2021; 13:toxins13070499. [PMID: 34357971 PMCID: PMC8310349 DOI: 10.3390/toxins13070499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022] Open
Abstract
Mycotoxin contamination of cereals used for feed can cause intoxication, especially in farm animals; therefore, efficient analytical tools for the qualitative and quantitative analysis of toxic fungal metabolites in feed are required. Current trends in food/feed analysis are focusing on the application of biosensor technologies that offer fast and highly selective and sensitive detection with minimal sample treatment and reagents required. The article presents an overview of the recent progress of the development of biosensors for deoxynivalenol and zearalenone determination in cereals and feed. Novel biosensitive materials and highly sensitive detection methods applied for the sensors and the application of these sensors to food/feed products, the limit, and the time of detection are discussed.
Collapse
|
33
|
Protective effect of glutamine and alanyl-glutamine against zearalenone-induced intestinal epithelial barrier dysfunction in IPEC-J2 cells. Res Vet Sci 2021; 137:48-55. [PMID: 33932823 DOI: 10.1016/j.rvsc.2021.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, has a negative effect on porcine intestine. Glutamine (Gln) and alanyl-glutamine (Ala-Gln) are nutrients with potential preservation functions similar to those of the intestinal epithelial barrier. The protective role of Gln and Ala-Gln on ZEN-induced intestinal barrier dysfunction was evaluated in this study. Additionally, the ability of Gln and Ala-Gln to protect the intestinal barrier was investigated. Our results showed that lactate dehydrogenase (LDH) activity, paracellular permeability and reactive oxygen species (ROS) level were increased by ZEN, while the glutathione (GSH) level was decreased by ZEN. Gln and Ala-Gln promoted the proliferation of cells and attenuated the ZEN-induced increase in cytotoxicity, cell apoptosis and paracellular permeability. Gln and Ala-Gln alleviated barrier function damage, which was additionally induced by ZEN by increasing the antioxidant capacity of cells. In addition, Gln and Ala-Gln upregulated intestinal barrier associated gene expressions including pBD-1, pBD-2, MUC-2, ZO-1, occludin and claudin-3. This study revealed that Gln and Ala-Gln had similar effects in protecting intestinal epithelial barrier function against ZEN exposure in IPEC-J2 cells. A new treatment for alleviating ZEN-induced injury to the intestine through nutritional intervention is provided.
Collapse
|
34
|
Yu C, Lu P, Liu S, Li Q, Xu E, Gong J, Liu S, Yang C. Efficiency of Deoxynivalenol Detoxification by Microencapsulated Sodium Metabisulfite Assessed via an In Vitro Bioassay Based on Intestinal Porcine Epithelial Cells. ACS OMEGA 2021; 6:8382-8393. [PMID: 33817499 PMCID: PMC8015119 DOI: 10.1021/acsomega.1c00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 05/11/2023]
Abstract
Deoxynivalenol (DON) contamination occurs in feeds and causes a reduction in growth performance, damage to the intestinal epithelial cells, and increased susceptibility to enteric pathogen challenge. Sodium metabisulfite (SMBS) has shown promise in reducing DON; however, SMBS quickly degrades under aqueous acidic conditions such as the environment within a stomach. Thus, protection of SMBS is required for effective delivery to the small intestine to detoxify DON. This study was to encapsulate SMBS into hydrogenated palm oil-based microparticles for its delivery to the small intestine and to evaluate its efficacy on DON detoxification in simulated intestinal fluids using IPEC-J2 cells in vitro. The diameter of the SMBS containing microparticles was 511 ± 135 μm, and the loading capacity of SMBS in the microparticles was 45.50%; 1.41% of the encapsulated SMBS (ES) was released into the simulated gastric fluid, and 66.39% of ES was progressively released into the simulated intestinal fluid within 4 h at 37 °C. In IPEC-J2 cells, when DON was treated with the simulated gastric fluid containing 0.5% ES for 2 h, then mixed with the simulated intestinal fluid (1:1) and incubated for 2 h, cytotoxicity was not observed. DON treated with 0.5 ES decreased the gene expression of inflammatory cytokines in the cells compared with DON alone and maintained the cell integrity. To conclude, the SMBS containing microparticles were stable in the simulated gastric fluid and allowed a progressive release of SMBS in the simulated intestinal fluid. The released SMBS in the simulated intestinal fluid effectively detoxified DON.
Collapse
Affiliation(s)
- Changning Yu
- Department
of Biosystems Engineering, University of
Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Peng Lu
- Department
of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shangxi Liu
- Department
of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Qiao Li
- Department
of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Erhua Xu
- King
Techina Group, No. 8,
Yinxing Road, Renhe Street, Yuhang District, Hangzhou 311107, China
| | - Joshua Gong
- Guelph
Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Song Liu
- Department
of Biosystems Engineering, University of
Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Chengbo Yang
- Department
of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
35
|
|
36
|
Tian Y, Zhang MY, Zhao AH, Kong L, Wang JJ, Shen W, Li L. Single-cell transcriptomic profiling provides insights into the toxic effects of Zearalenone exposure on primordial follicle assembly. Am J Cancer Res 2021; 11:5197-5213. [PMID: 33859742 PMCID: PMC8039963 DOI: 10.7150/thno.58433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Zearalenone (ZEN), a pollutant in our daily diet, seriously threatens the reproductive health of humans and animals. The primordial follicle (PF) assembly in the mouse occurs during the perinatal period, which determines the whole ovarian reserve in reproductive lifespan. In the current investigation, we administered ZEN orally to perinatal mice from 16.5 days post coitum (dpc) to postnatal day 3 (PD3), and single-cell RNA sequencing (scRNA-seq) was performed on PD0 and PD3 ovarian tissues in the offspring to check ZEN toxic to primordial follicle formation at the single cell level. Methods: Ovarian tissues (in vivo) were examined by single cell RNA sequencing analysis, Immunostaining, and Western blotting. Ovarian tissues (in vitro) were examined by qRT-PCR, Immunostaining, and Western blotting. Results: We found that ZEN exposure altered the developmental trajectory of both germ cells and granulosa cells. Furthermore, after establishing the cell-cell communication network between germ cells and granulosa cells, we found that this was perturbed by ZEN exposure, especially during the Hippo signaling pathway. Conclusions: This study showed that ZEN affected the status of germ cells and granulosa cells through the Hippo signaling pathway and blocked the assembly of PFs. This research contributes to our deeper understanding of the mechanisms of toxicity in different cell types and the disruption of normal intercellular signaling by ZEN exposure.
Collapse
|
37
|
Birr T, Jensen T, Preußke N, Sönnichsen FD, De Boevre M, De Saeger S, Hasler M, Verreet JA, Klink H. Occurrence of Fusarium Mycotoxins and Their Modified Forms in Forage Maize Cultivars. Toxins (Basel) 2021; 13:toxins13020110. [PMID: 33540691 PMCID: PMC7913079 DOI: 10.3390/toxins13020110] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/25/2023] Open
Abstract
Forage maize is often infected by mycotoxin-producing Fusarium fungi during plant growth, which represent a serious health risk to exposed animals. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important Fusarium mycotoxins, but little is known about the occurrence of their modified forms in forage maize. To assess the mycotoxin contamination in Northern Germany, 120 natural contaminated forage maize samples of four cultivars from several locations were analysed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) for DON and ZEN and their modified forms deoxynivalenol-3-glucoside (DON3G), the sum of 3- and 15-acetyl-deoxynivalenol (3+15-AcDON), α- and β-zearalenol (α-ZEL, β-ZEL). DON and ZEN occurred with high incidences (100 and 96%) and a wide range of concentrations, reaching levels up to 10,972 and 3910 µg/kg, respectively. Almost half of the samples (46%) exceeded the guidance value in complementary and complete feeding stuffs for ZEN (500 µg/kg), and 9% for DON (5000 µg/kg). The DON related mycotoxins DON3G and 3+15-AcDON were also present in almost all samples (100 and 97%) with amounts of up to 3038 and 2237 µg/kg and a wide range of concentrations. For the ZEN metabolites α- and β-ZEL lower incidences were detected (59 and 32%) with concentrations of up to 423 and 203 µg/kg, respectively. Forage maize samples were contaminated with at least three co-occurring mycotoxins, whereby 95% of all samples contained four or more mycotoxins with DON, DON3G, 3+15-AcDON, and ZEN co-occurring in 93%, together with α-ZEL in 57% of all samples. Positive correlations were established between concentrations of the co-occurring mycotoxins, especially between DON and its modified forms. Averaged over all samples, ratios of DON3G/DON and 3+15-AcDON/DON were similar, 20.2 and 20.5 mol%; cultivar-specific mean ratios ranged from 14.6 to 24.3 mol% and 15.8 to 24.0 mol%, respectively. In total, 40.7 mol% of the measured DON concentration was present in the modified forms DON3G and 3+15-AcDON. The α-ZEL/ZEN ratio was 6.2 mol%, ranging from 5.2 to 8.6 mol% between cultivars. These results demonstrate that modified mycotoxins contribute substantially to the overall mycotoxin contamination in forage maize. To avoid a considerable underestimation, it is necessary to analyse modified mycotoxins in future mycotoxin monitoring programs together with their parent forms.
Collapse
Affiliation(s)
- Tim Birr
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
- Correspondence: ; Tel.: +49-431-880-4574
| | - Tolke Jensen
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
| | - Nils Preußke
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany; (N.P.); (F.D.S.)
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany; (N.P.); (F.D.S.)
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany;
| | - Joseph-Alexander Verreet
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
| | - Holger Klink
- Department of Plant Diseases and Crop Protection, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 9, 24118 Kiel, Germany; (T.J.); (J.-A.V.); (H.K.)
| |
Collapse
|
38
|
Ropejko K, Twarużek M. Zearalenone and Its Metabolites-General Overview, Occurrence, and Toxicity. Toxins (Basel) 2021; 13:35. [PMID: 33418872 PMCID: PMC7825134 DOI: 10.3390/toxins13010035] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 12/27/2022] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi and represent one of the most common groups of food contaminants with low molecular weight. These toxins are considered common and can affect the food chain at various stages of production, harvesting, storage and processing. Zearalenone is one of over 400 detected mycotoxins and produced by fungi of the genus Fusarium; it mainly has estrogenic effects on various organisms. Contaminated products can lead to huge economic losses and pose risks to animals and humans. In this review, we systemize information on zearalenone and its major metabolites.
Collapse
Affiliation(s)
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland;
| |
Collapse
|
39
|
Transmission of Zearalenone, Deoxynivalenol, and Their Derivatives from Sows to Piglets during Lactation. Toxins (Basel) 2021; 13:toxins13010037. [PMID: 33419041 PMCID: PMC7825292 DOI: 10.3390/toxins13010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/25/2022] Open
Abstract
Sows were fed naturally contaminated diets containing: (i) 100 ppb zearalenone (ZEN) one week before farrowing and during the lactation period (at 26 days), (ii) 100 ppb ZEN one week before farrowing and 300 ppb ZEN during the lactation period, or (iii) 300 ppb ZEN one week before farrowing and during the lactation period. All diets contained 250 ppb deoxynivalenol (DON). The highest levels of ZEN, α-ZEL, or β-ZEL were observed in the serum of sows fed 300 ppb ZEN before farrowing and during lactation. However, only α-ZEL was significantly increased in the colostrum and milk of these sows. Sows fed the 300 ppb ZEN during the complete trial presented a significant decrease in backfat thickness before farrowing. This effect was accompanied by a decrease in serum leptin levels. These sows also presented a decrease in estradiol levels and this effect was observed in their piglets exposed during lactation, which presented increased glucagon-like peptide 1, but no changes in serum levels of ZEN, α-ZEL, or β-ZEL. Although all sows were fed the same levels of DON, the serum levels of DON and de-epoxy-DON were increased only in the serum of piglets from the sows fed a diet with the highest ZEN levels during the whole experimental period. Moreover, these piglets presented gut inflammation, as indicated by significantly increased calprotectin levels in their serum.
Collapse
|
40
|
Effects of Dietary Zearalenone Exposure on the Growth Performance, Small Intestine Disaccharidase, and Antioxidant Activities of Weaned Gilts. Animals (Basel) 2020; 10:ani10112157. [PMID: 33228146 PMCID: PMC7699518 DOI: 10.3390/ani10112157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary This study was conducted to assess the effects of Zearalenone (ZEA) exposure on the growth performance, small intestine disaccharidase, and antioxidant activities of weaned gilts. Twenty weaned gilts were randomly divided into control and ZEA treatment (1.04 mg/kg) groups. The data showed that 1.04 mg/kg ZEA in gilt’s diet could reduce the activity of disaccharidase enzymes and induce oxidative stress in the small intestine. Therefore, ZEA may induce intestinal injury by oxidative stress, or induce oxidative stress through intestinal injury, thus reducing the effect of animals on nutrient absorption. Abstract Zearalenone (ZEA) is a secondary metabolite with estrogenic effects produced by Fusarium fungi and mainly occurs as a contaminant of grains such as corn and wheat. ZEA, to which weaned gilts are extremely sensitive, is the main Fusarium toxin detected in corn–soybean meal diets. Our aim was to examine the effects of ZEA on the growth performance, intestinal disaccharidase activity, and anti-stress capacity of weaned gilts. Twenty 42-day-old healthy Duroc × Landrace × Large White weaned gilts (12.84 ± 0.26 kg) were randomly divided into control and treatment (diet containing 1.04 mg/kg ZEA) groups. The experiment included a 7-day pre-trial period followed by a 35-day test period, all gilts were euthanized and small intestinal samples were collected and subjected to immunohistochemical and western blot analyses. The results revealed that inclusion of 1.04 mg/kg ZEA in the diet significantly reduced the activities of lactase, sucrase, and maltase in the duodenum, jejunum, and ileum of gilts. Similarly, the activities of superoxide dismutase and glutathione peroxidase in the duodenum, jejunum, and ileum, and activities of catalase in the jejunum and ileum were reduced (p < 0.05). Conversely, the content of malondialdehyde in the duodenum, jejunum, and ileum, and the integrated optical density (IOD), IOD in single villi, and the mRNA and protein expression of heat shock protein 70 (Hsp70) were significantly increased (p < 0.05). The results of immunohistochemical analyses revealed that the positive reaction of Hsp70 in the duodenum, jejunum, and ileum of weaned gilts was enhanced in the ZEA treatment, compared with the control. The findings of this study indicate the inclusion of ZEA (1.04 mg/kg) in the diet of gilts reduced the activity of disaccharidase enzymes and induced oxidative stress in the small intestine, thereby indicating that ZEA would have the effect of reducing nutrient absorption in these animals.
Collapse
|
41
|
Tran AT, Kluess J, Kersten S, Berk A, Paulick M, Schatzmayr D, Dänicke S, Frahm J. Sodium sulfite (SoS) as decontamination strategy for Fusarium-toxin contaminated maize and its impact on immunological traits in pigs challenged with lipopolysaccharide (LPS). Mycotoxin Res 2020; 36:429-442. [PMID: 32902833 PMCID: PMC7536171 DOI: 10.1007/s12550-020-00403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 11/25/2022]
Abstract
The main objective of this study was to evaluate the effects of sodium sulfite (SoS) treatment of maize and its impact on the porcine immune system in the presence of an LPS-induced systemic inflammation. Control maize (CON) and Fusarium-toxin contaminated maize (FUS) were wet-preserved (20% moisture) for 79 days with (+) or without (−) SoS and then included at 10% in a diet, resulting in four experimental groups: CON−, CON+, FUS−, and FUS+ with deoxynivalenol (DON) concentrations of 0.09, 0.05, 5.36, and 0.83 mg DON/kg feed, respectively. After 42-day feeding trial (weaned barrows, n = 20/group), ten pigs per group were challenged intraperitoneally with either 7.5 μg LPS/kg BW or placebo (0.9% NaCl), observed for 2 h, and then sacrificed. Blood, mesenteric lymph nodes, and spleen were collected for phenotyping of different T cell subsets, B cells, and monocytes. Phagocytic activity and intracellular formation of reactive oxygen species (ROS) were analyzed in both polymorphonuclear cells (PMN) and peripheral blood mononuclear cells (PBMC) using flow cytometry. Our results revealed that the impact of DON was more notable on CD3+CD4+CD8+ T cells in lymphoid tissues rather than in blood T cells. In contrast, SoS treatment of maize altered leukocyte subpopulations in blood, e.g., reduced the percentage and fluorescence signal of CD8high T cells. Interestingly, SoS treatment reduced the amount of free radicals in basal ROS-producing PMNs only in LPS-challenged animals, suggesting a decrease in basal cellular ROS production (pSoS*LPS = 0.022).
Collapse
Affiliation(s)
- Anh-Tuan Tran
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jeannette Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany.
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Andreas Berk
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Marleen Paulick
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | | | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| |
Collapse
|
42
|
Individual and Combined In Vitro Effects of Deoxynivalenol and Zearalenone on Boar Semen. Toxins (Basel) 2020; 12:toxins12080495. [PMID: 32752294 PMCID: PMC7472223 DOI: 10.3390/toxins12080495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 01/03/2023] Open
Abstract
Mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) can negatively affect pig health. However, little is known about their effects on boar semen. We assessed the individual and combined effects of DON and ZEN on boar semen in vitro. In a pretrial, we determined the minimum dose (MiD) of each mycotoxin that induces a significant alteration of sperm progressive motility, as investigated using computer-assisted semen analysis (CASA). In the main trial, the individual and combined effects of each mycotoxin’s MiD on sperm motility and kinetics (CASA analysis), morphology (SpermBlue staining), viability (calcein-propidium iodide staining), membrane functional status (hypoosmotic swelling test), and chromatin integrity (acridine orange staining) were analyzed. Pretrial results suggested a MiD of 50.6 μM and 62.8 μM for DON and ZEN, respectively. In the main trial, DON and ZEN administered at MiD significantly affected CASA parameters (e.g., increase of immotile spermatozoa, reduction of progressive motile spermatozoa), decreased sperm viability, and affected sperm morphology (head abnormalities) and membrane functional status. DON and ZEN showed less than additive effects on most parameters tested and a synergistic effect on viability and on two CASA parameters. In conclusion, DON and ZEN showed individual and combined toxic effects on boar semen in vitro.
Collapse
|
43
|
Effects of Deoxynivalenol and Zearalenone on the Histology and Ultrastructure of Pig Liver. Toxins (Basel) 2020; 12:toxins12070463. [PMID: 32698427 PMCID: PMC7404993 DOI: 10.3390/toxins12070463] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study was to determine the effects of single and combined administrations of deoxynivalenol (DON) and zearalenone (ZEN) on the histology and ultrastructure of pig liver. The study was performed on immature gilts, which were divided into four equal groups. Animals in the experimental groups received DON at a dose of 12 μg/kg body weight (BW) per day, ZEN at 40 μg/kg BW per day, or a mixture of DON (12 μg/kg BW per day) and ZEN (40 μg/kg BW). The control group received vehicle. The animals were killed after 1, 3, and 6 weeks of experiment. Treatment with mycotoxins resulted in several changes in liver histology and ultrastructure, including: (1) an increase in the thickness of the perilobular connective tissue and its penetration to the lobules in gilts receiving DON and DON + ZEN; (2) an increase in the total microscopic liver score (histology activity index (HAI)) in pigs receiving DON and DON + ZEN; (3) dilatation of hepatic sinusoids in pigs receiving ZEN, DON and DON + ZEN; (4) temporary changes in glycogen content in all experimental groups; (5) an increase in iron accumulation in the hepatocytes of gilts treated with ZEN and DON + ZEN; (6) changes in endoplasmic reticulum organization in the hepatocytes of pigs receiving toxins; (7) changes in morphology of Browicz-Kupffer cells after treatment with ZEN, DON, and DON + ZEN. The results show that low doses of mycotoxins used in the present study, even when applied for a short period, affected liver morphology.
Collapse
|
44
|
Tan S, Ge W, Wang J, Liu W, Zhao Y, Shen W, Li L. Zearalenone-induced aberration in the composition of the gut microbiome and function impacts the ovary reserve. CHEMOSPHERE 2020; 244:125493. [PMID: 32050327 DOI: 10.1016/j.chemosphere.2019.125493] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEA), as a contaminant commonly found in our daily diet, has been widely studied for its toxicity. However, the exact mechanism underlying ZEA induced reproduction disorders remains unclear. Our study aimed to elucidate the underlying relationship between aberrations in the gut microbiota and the degeneration of the ovarian reserve following exposure to ZEA. Four-week-old mice were treated with different doses (0, 20, 40 μg/kg bw/day) of ZEA for 2 weeks and it was found that the primordial follicles were dramatically decreased when compared to untreated controls. Moreover, we applied metagenomic shotgun sequencing to investigate the effects of ZEA exposure on the population composition and function of gut microbiota. The results showed that the abundance of three susceptible bacterial strains, parabacteroides, bacteroides and lachnospiraceae were increased in a dose-dependent manner after ZEA exposure, whereas the bacterial glycerophospholipid metabolism pathway was greatly suppressed. Of note, utilizing LC/MS we found lysophosphatidylcholines (LPCs), important metabolites in the process of glycerophospholipid metabolism, were markedly decreased in the plasma of the ZEA treated mice. In conclusion, our findings here provide evidences that the dysfunction in gut microbiome after ZEA exposure may affect the ovarian reserve.
Collapse
Affiliation(s)
- Shaojing Tan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Junjie Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxiang Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
45
|
Höfle L, Biedenkopf D, Werner BT, Shrestha A, Jelonek L, Koch A. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes. RNA Biol 2020. [PMID: 31814508 DOI: 10.1101/824953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Previously, we have demonstrated that transgenic Arabidopsis and barley plants, expressing a 791 nucleotide (nt) dsRNA (CYP3RNA) that targets all three CYP51 genes (FgCYP51A, FgCYP51B, FgCYP51C) in Fusarium graminearum (Fg), inhibited fungal infection via a process designated as host-induced gene silencing (HIGS). More recently, we have shown that spray applications of CYP3RNA also protect barley from fungal infection via a process termed spray-induced gene silencing (SIGS). Thus, RNAi technology may have the potential to revolutionize plant protection in agriculture. Therefore, successful field application will require optimization of RNAi design necessary to maximize the efficacy of the RNA silencing construct for making RNAi-based strategies a realistic and sustainable approach in agriculture. Previous studies indicate that silencing is correlated with the number of siRNAs generated from a dsRNA precursor. To prove the hypothesis that silencing efficiency is correlated with the number of siRNAs processed out of the dsRNA precursor, we tested in a HIGS and SIGS approach dsRNA precursors of increasing length ranging from 400 nt to 1500 nt to assess gene silencing efficiency of individual FgCYP51 genes. Concerning HIGS-mediated disease control, we found that there is no significant correlation between the length of the dsRNA precursor and the reduction of Fg infection on CYP51-dsRNA-expressing Arabidopsis plants. Importantly and in clear contrast to HIGS, we measured a decrease in SIGS-mediated Fg disease resistance that significantly correlates with the length of the dsRNA construct that was sprayed, indicating that the size of the dsRNA interferes with a sufficient uptake of dsRNAs by the fungus.
Collapse
Affiliation(s)
- L Höfle
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - D Biedenkopf
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - B T Werner
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - A Shrestha
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute, Braunschweig, Germany
| | - L Jelonek
- Institute of Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - A Koch
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
46
|
Rodríguez-Blanco M, Marín S, Sanchis V, Ramos AJ. Fusarium mycotoxins in total mixed rations for dairy cows. Mycotoxin Res 2020; 36:277-286. [PMID: 32048206 DOI: 10.1007/s12550-020-00390-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/26/2022]
Abstract
Mycotoxins produced by certain fungal species of the Fusarium genus are frequently found as contaminants in cereals and feedstuffs. Fumonisins (FBs), deoxynivalenol (DON) and zearalenone (ZEN) are of special concern relative to animal health and productivity. The aim of this work was to analyse the levels of Fusarium mycotoxin contamination in samples of total mixed rations (TMRs) for dairy cows. To accomplish this analysis, an HPLC-MS/MS multi-mycotoxin method was developed and validated. The relation between the formulation of TMR samples and the presence of mycotoxins was also studied. From February 2016 to January 2018, a total of 193 TMR samples for dairy cows collected from farms located in different areas of Spain were analysed for the presence of FBs, ZEN, DON and their metabolites. In total, 112 samples (58%) were contaminated with at least one mycotoxin, and 38 samples (20%) presented more than one mycotoxin. FBs were the mycotoxins most frequently found (34% positive samples). DON was detected in 17% of samples, and ZEN was detected in 16% of samples. Among the metabolites analysed, only deoxynivalenol-3-glucoside (DON-3-Glc) and 15-acetyldeoxynivalenol (15-ADON) were detected. The levels of all the Fusarium mycotoxins studied were always below the values recommended by the European Commission for feedstuffs. The wide variety of ingredients used in the formulation of the analysed samples made it difficult to reach definite conclusions, although it seemed that some cereal silages and concentrates such as cereals or compound feed used as ingredients of the TMR may be related to the presence of mycotoxins.
Collapse
Affiliation(s)
- María Rodríguez-Blanco
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Sonia Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Vicente Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
47
|
Rojas EC, Sapkota R, Jensen B, Jørgensen HJL, Henriksson T, Jørgensen LN, Nicolaisen M, Collinge DB. Fusarium Head Blight Modifies Fungal Endophytic Communities During Infection of Wheat Spikes. MICROBIAL ECOLOGY 2020; 79:397-408. [PMID: 31448388 PMCID: PMC7033075 DOI: 10.1007/s00248-019-01426-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/13/2019] [Indexed: 05/29/2023]
Abstract
Fusarium head blight (FHB) is a devastating disease of wheat heads. It is caused by several species from the genus Fusarium. Several endophytic fungi also colonize wheat spikes asymptomatically. Pathogenic and commensal fungi share and compete for the same niche and thereby influence plant performance. Understanding the natural dynamics of the fungal community and how the pre-established species react to pathogen attack can provide useful information on the disease biology and the potential use of some of these endophytic organisms in disease control strategies. Fungal community composition was assessed during anthesis as well as during FHB attack in wheat spikes during 2016 and 2017 in two locations. Community metabarcoding revealed that endophyte communities are dominated by basidiomycete yeasts before anthesis and shift towards a more opportunistic ascomycete-rich community during kernel development. These dynamics are interrupted when Fusarium spp. colonize wheat spikes. The Fusarium pathogens appear to exclude other fungi from floral tissues as they are associated with a reduction in community diversity, especially in the kernel which they colonize rapidly. Similarly, the presence of several endophytes was negatively correlated with Fusarium spp. and linked with spikes that stayed healthy despite exposure to the pathogen. These endophytes belonged to the genera Cladosporium, Itersonillia and Holtermanniella. These findings support the hypothesis that some naturally occurring endophytes could outcompete or prevent FHB and represent a source of potential biological control agents in wheat.
Collapse
Affiliation(s)
- Edward C Rojas
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| | - Rumakanta Sapkota
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Birgit Jensen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Hans J L Jørgensen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | | | - Lise Nistrup Jørgensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - David B Collinge
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences & Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
48
|
Bahrenthien L, Kluess J, Berk A, Kersten S, Saltzmann J, Hüther L, Schatzmayr D, Schwartz-Zimmermann HE, Zeyner A, Dänicke S. Detoxifying deoxynivalenol (DON)-contaminated feedstuff: consequences of sodium sulphite (SoS) treatment on performance and blood parameters in fattening pigs. Mycotoxin Res 2020; 36:213-223. [PMID: 31960350 PMCID: PMC7182618 DOI: 10.1007/s12550-019-00385-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 11/21/2022]
Abstract
A 10-week feeding experiment was carried out examining the effects of deoxynivalenol (DON)-contaminated maize treated with different sodium sulphite (SoS) concentrations on performance, health and DON-plasma concentrations in fattening pigs. Two maize batches were used: background-contaminated (CON, 0.73 mg/kg maize) and Fusarium-toxin contaminated (DON, 44.45 mg/kg maize) maize. Both were wet preserved at 20% moisture content, with one of three (0.0, 2.5, 5.0 g/kg maize) sodium sulphite concentrations and propionic acid (15%). Each maize batch was then mixed into a barley-wheat-based diet at a proportion of 10%, resulting in the following 6 feeding groups: CON− (CON + 0.0 g SoS/kg maize), CON2.5 (CON + 2.5 g SoS/kg maize), CON5.0 (CON + 5.0 g SoS/kg maize), DON- (DON + 0.0 g SoS/kg maize), DON2.5 (DON + 2.5 g SoS/kg maize) and DON5.0 (DON + 5.0 g SoS/kg maize). Dietary DON concentration was reduced by ~ 36% in group DON2.5 and ~ 63% in group DON5.0. There was no impact on ZEN concentration in the diets due to SoS treatment. Pigs receiving diet DON- showed markedly lower feed intake (FI) compared to those fed the control diets. With SoS-treatment of maize, FI of pigs fed the DON diet (DON5.0: 3.35 kg/d) were comparable to that control (CON−: 3.30 kg/day), and these effects were also reflected in live weight gain. There were some effects of SoS, DON or their interaction on serum urea, cholesterol and albumin, but always within the physiological range and thus likely negligible. SoS wet preservation of Fusarium-toxin contaminated maize successfully detoxified DON to its innocuous sulfonates, thus restoring impaired performance in fatteners.
Collapse
Affiliation(s)
- L Bahrenthien
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 37, 38116, Braunschweig, Germany
| | - J Kluess
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 37, 38116, Braunschweig, Germany.
| | - A Berk
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 37, 38116, Braunschweig, Germany
| | - S Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 37, 38116, Braunschweig, Germany
| | - J Saltzmann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 37, 38116, Braunschweig, Germany
| | - L Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 37, 38116, Braunschweig, Germany
| | - D Schatzmayr
- BIOMIN Holding GmbH, BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria
| | - H E Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, 3430, Tulln, Vienna, Austria
| | - A Zeyner
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Theodor-Lieser-Straße 11, 06120, Halle, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 37, 38116, Braunschweig, Germany
| |
Collapse
|
49
|
Höfle L, Biedenkopf D, Werner BT, Shrestha A, Jelonek L, Koch A. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes. RNA Biol 2020; 17:463-473. [PMID: 31814508 DOI: 10.1080/15476286.2019.1700033] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Previously, we have demonstrated that transgenic Arabidopsis and barley plants, expressing a 791 nucleotide (nt) dsRNA (CYP3RNA) that targets all three CYP51 genes (FgCYP51A, FgCYP51B, FgCYP51C) in Fusarium graminearum (Fg), inhibited fungal infection via a process designated as host-induced gene silencing (HIGS). More recently, we have shown that spray applications of CYP3RNA also protect barley from fungal infection via a process termed spray-induced gene silencing (SIGS). Thus, RNAi technology may have the potential to revolutionize plant protection in agriculture. Therefore, successful field application will require optimization of RNAi design necessary to maximize the efficacy of the RNA silencing construct for making RNAi-based strategies a realistic and sustainable approach in agriculture. Previous studies indicate that silencing is correlated with the number of siRNAs generated from a dsRNA precursor. To prove the hypothesis that silencing efficiency is correlated with the number of siRNAs processed out of the dsRNA precursor, we tested in a HIGS and SIGS approach dsRNA precursors of increasing length ranging from 400 nt to 1500 nt to assess gene silencing efficiency of individual FgCYP51 genes. Concerning HIGS-mediated disease control, we found that there is no significant correlation between the length of the dsRNA precursor and the reduction of Fg infection on CYP51-dsRNA-expressing Arabidopsis plants. Importantly and in clear contrast to HIGS, we measured a decrease in SIGS-mediated Fg disease resistance that significantly correlates with the length of the dsRNA construct that was sprayed, indicating that the size of the dsRNA interferes with a sufficient uptake of dsRNAs by the fungus.
Collapse
Affiliation(s)
- L Höfle
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - D Biedenkopf
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - B T Werner
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - A Shrestha
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute, Braunschweig, Germany
| | - L Jelonek
- Institute of Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - A Koch
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
50
|
Koch A, Höfle L, Werner BT, Imani J, Schmidt A, Jelonek L, Kogel K. SIGS vs HIGS: a study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants. MOLECULAR PLANT PATHOLOGY 2019; 20:1636-1644. [PMID: 31603277 PMCID: PMC6859480 DOI: 10.1111/mpp.12866] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CYP3RNA, a double-stranded (ds)RNA designed to concomitantly target the two sterol 14α-demethylase genes FgCYP51A and FgCYP51B and the fungal virulence factor FgCYP51C, inhibits the growth of the ascomycete fungus Fusarium graminearum (Fg) in vitro and in planta. Here we compare two different methods (setups) of dsRNA delivery, viz. transgene expression (host-induced gene silencing, HIGS) and spray application (spray-induced gene silencing, SIGS), to assess the activity of CYP3RNA and novel dsRNA species designed to target one or two FgCYP51 genes. Using Arabidopsis and barley, we found that dsRNA designed to target two FgCYP51 genes inhibited fungal growth more efficiently than dsRNA targeting a single gene, although both dsRNA species reduced fungal infection. Either dsRNA delivery method reduced fungal growth stronger than anticipated from previous mutational knock-out (KO) strategies, where single gene KO had no significant effect on fungal viability. Consistent with the strong inhibitory effects of the dsRNAs on fungal development in both setups, we detected to a large extent dsRNA-mediated co-silencing of respective non-target FgCYP51 genes. Together, our data further support the valuation that dsRNA applications have an interesting potential for pesticide target validation and gene function studies, apart from their potential for crop protection.
Collapse
Affiliation(s)
- Aline Koch
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Lisa Höfle
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Bernhard Timo Werner
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Jafargholi Imani
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Alexandra Schmidt
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| | - Lukas Jelonek
- Institute of Bioinformatics and Systems BiologyJustus Liebig UniversityHeinrich‐Buff‐Ring 58D‐35392GiessenGermany
| | - Karl‐Heinz Kogel
- Institute of PhytopathologyCentre for BioSystemsLand Use and NutritionJustus Liebig UniversityHeinrich‐Buff‐Ring 26D‐35392GiessenGermany
| |
Collapse
|