1
|
Wang M, Li M, Yan G, Li H, Zhou J, Yang A. Epidemiological investigation, isolation, and pathogenicity of porcine epidemic diarrhea virus subtype G2c in Sichuan province. Arch Virol 2025; 170:129. [PMID: 40377695 DOI: 10.1007/s00705-025-06308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/18/2025] [Indexed: 05/18/2025]
Abstract
Continued outbreaks of porcine epidemic diarrhea are causing serious economic losses to the swine industry in China. To monitor the prevalence, genetic mutations, and pathogenicity of porcine epidemic diarrhea virus (PEDV), 172 samples were collected from eight cities in Sichuan Province from 2020 to 2022. RT-PCR analysis revealed that 25.0% (43/172) of samples were positive for PEDV. Phylogenetic analysis of 17 S gene sequences (encoding the spike protein) showed that G2c was the main genotype circulating in Sichuan. One strain, Leshan-s-2020 (G2a), was identified as a recombinant resulting from inter-lineage recombination between the KM609212/LYG/2015 (G2a) and MianYang-s-2020 (G2a) strains in the S2 domain. In addition, the G2c strain YB2201, which was highly virulent in 4-day-old piglets, was successfully isolated. The results of this study enrich our understanding of the epidemiology of PEDV, the genetic characteristics and pathogenicity of the PEDV strains circulating in China, and the role of recombination in their evolution. These findings may contribute to the development of antigen detection reagents and vaccines.
Collapse
Affiliation(s)
- Min Wang
- Liangshan Academy of Agricultural Sciences, Xichang, China
| | - Mingxiang Li
- College of Animal Science, Xichang University, Xichang, China.
- Key Laboratory of Animal Epidemic Disease Detection and Prevention in Panxi District, Sichuan, China.
| | - Guangwen Yan
- College of Animal Science, Xichang University, Xichang, China
- Key Laboratory of Animal Epidemic Disease Detection and Prevention in Panxi District, Sichuan, China
| | - Hao Li
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhou
- Sichuan BoCe Testing Tech Co., Ltd., Chengdu, China
| | - Aiguo Yang
- Sichuan Center for Animal Disease Prevention and Control, Chengdu, China
| |
Collapse
|
2
|
Herrera da Silva JP, Pamornchainavakul N, Kikuti M, Yue X, Corzo CA, VanderWaal K. Current Evolutionary Dynamics of Porcine Epidemic Diarrhea Virus (PEDV) in the U.S. a Decade After Introduction. Viruses 2025; 17:654. [PMID: 40431666 PMCID: PMC12115665 DOI: 10.3390/v17050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) was introduced in the United States (U.S.) in 2013, spreading rapidly and leading to economic losses. Two strains, S-INDEL and non-S-INDEL, are present in the U.S. We analyzed 313 genomes and 556 Spike protein sequences generated since its introduction. PEDV case numbers were highest during the first two years after its introduction (epidemic phase), then declined and stabilized in the following years (endemic phase). Sequence surveillance was higher during the initial epidemic phase. Our results suggest the non-S-INDEL strain is the predominant strain in U.S. The non-S-INDEL sequences exhibit pairwise nucleotide identity percentages above 97.6%. Most non-S-INDEL sequences sampled after 2017 clustered into two sub-clades. No descendants derived from other clades present in the epidemic period were detected in the contemporary data, suggesting that these clades are no longer circulating in the U.S. The two clades currently circulating are restricted to two respective geographic regions and our results suggest limited inter-regional spread. This insight helps determine the risk of re-introduction of PEDV if it were regionally eliminated. Ongoing molecular surveillance is essential to confirming that some older clades no longer circulate anymore in the U.S., mapping the distribution and spread of recent clades, and understanding PEDV's evolutionary diversification.
Collapse
Affiliation(s)
- Joao P. Herrera da Silva
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.P.); (M.K.); (X.Y.); (C.A.C.)
| | | | | | | | | | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.P.); (M.K.); (X.Y.); (C.A.C.)
| |
Collapse
|
3
|
Yang M, Xie D, Ji W, Zhu SJ, Zhou Y. Oral Delivery of Lactococcus lactis Expressing Full-Length S Protein via Alginate-Chitosan Capsules Induces Immune Protection Against PEDV Infection in Mice. Vaccines (Basel) 2025; 13:421. [PMID: 40333306 PMCID: PMC12030989 DOI: 10.3390/vaccines13040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: Porcine epidemic diarrhea (PED) is a highly contagious enteric infectious disease that causes severe morbidity and mortality in piglets, posing significant economic losses to the swine industry worldwide. Oral vaccines based on Lactococcus lactis offer a promising approach due to their safety and genetic manipulability. This study aims to develop and evaluate an oral L. lactis-based vaccine expressing the full-length PEDV S protein. Methods: A recombinant L. lactis strain expressing the PEDV S protein was constructed and encapsulated in alginate-chitosan microcapsules. Vaccine stability was tested in simulated digestive fluids, and mice were orally immunized. Immune responses were evaluated by measuring specific antibodies, cytokines, and lymphocyte proliferation. Results: The recombinant L. lactis NZ3900/pNZ8149-S strain successfully expressed the full-length PEDV S protein and maintained stable plasmid inheritance. Oral immunization in mice induced detectable PEDV-specific immune responses. Both encapsulated and non-encapsulated vaccines stimulated the production of IgG and sIgA antibodies, as well as cytokines associated with Th1 and Th2 responses. Notably, encapsulation with alginate-chitosan significantly enhanced bacterial survival in digestive conditions and further amplified immune responses, including higher antibody titers, elevated levels of IFN-γ, IL-4, and IL-10, and greater lymphocyte proliferation, indicating improved immune memory. Conclusions: The oral L. lactis NZ3900/pNZ8149-S vaccine expressing the PEDV S protein effectively induced systemic and mucosal immunity in mice. Encapsulation with alginate-chitosan further enhanced its immunogenicity and stability in gastrointestinal conditions. These results suggest that both the engineered L. lactis strain and the encapsulation strategy contribute to the development of a promising oral vaccine platform for controlling PEDV in swine populations.
Collapse
Affiliation(s)
- Miaoyan Yang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Hisun Animal Healthcare Products Co., Ltd., Hangzhou 311400, China
| | - Denglong Xie
- Zhejiang Hisun Animal Healthcare Products Co., Ltd., Hangzhou 311400, China
| | - Wei Ji
- Zhejiang Hisun Animal Healthcare Products Co., Ltd., Hangzhou 311400, China
| | - Shu Jeffrey Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yongqi Zhou
- Zhejiang Hisun Animal Healthcare Products Co., Ltd., Hangzhou 311400, China
- Yunnan Biopharmaceutical Co., Ltd., Kunming 650599, China
| |
Collapse
|
4
|
Fragoso-Saavedra M, Liu Q. Towards developing multistrain PEDV vaccines: Integrating basic concepts and SARS-CoV-2 pan-sarbecovirus strategies. Virology 2025; 604:110412. [PMID: 39854914 DOI: 10.1016/j.virol.2025.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a major pathogen impacting the global pig industry, with outbreaks causing significant financial losses. The genetic variability of PEDV has posed challenges for vaccine development since its identification in the 1970s, a problem that intensified with its global emergence in the 2010s. Since current vaccines provide limited cross-protection against PEDV strains, and the development of multistrain PEDV vaccines remains an underexplored area of research, there is an urgent need for improved vaccine solutions. The rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and ongoing pan-sarbecovirus vaccine research, have demonstrated the potential of next-generation vaccine platforms and novel antigen design strategies. These advancements offer valuable insights for the development of multistrain PEDV vaccines. This review summarizes key aspects of PEDV virology and explores multistrain vaccine development considering SARS-CoV-2 vaccine innovations, proposing a framework for developing next-generation PEDV vaccine solutions.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Vaccinology and Immunotherapeutics, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
5
|
Sun J, Cheng J, Shi D, Xu X, Liu Y, Ying J, Zhao Y, Zheng H, Yan J, Sun D, Song H, Su M. Genetic Epidemiology of Porcine Epidemic Diarrhea Virus Circulating in China From 2010 to 2024: Characterization of Phylogenetic and Genetic Diversity of S1-Based Genes. J Med Virol 2025; 97:e70198. [PMID: 39891595 DOI: 10.1002/jmv.70198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
As a porcine alphacoronavirus, porcine epidemic diarrhea virus (PEDV) frequently undergoes mutations that significantly reduce the effectiveness of current prevention and control strategies, leading to recurrent outbreaks in China. This study investigates the genetic evolution and mutation patterns of the S1 protein to characterize PEDV variation in China. Genetic evolutionary analysis of 804 PEDV S1 genes, including 620 Chinese PEDV strains, revealed that 78.06% of the Chinese PEDV strains belong to the G2a-subgroup, further divided into seven branches (G2a-Clade 1-7), with the predominant strains from 2020 to 2024 being in G2a-Clade 4 (68.00%). From 2021 to 2024, 32 novel substitutions, 25 deletions, and 8 insertions were identified in the S1 protein of Chinese strains compared to those from 2010 to 2011. Notably, complete mutations were observed at amino acid sites N139D, H189Y, L229P, I287M, F345L, A361T, T499I, and A520S. Moreover, protein homology modeling analysis displayed that these deletion-insertion mutations significantly altered the surface structure of the S protein, particularly in the N-terminal domain (NTD) and receptor-binding domain (RBD) regions of S1 protein. The predictive analysis using AlphaFold3 indicated that deletion-insertion mutations in the S1-RBD region notably affected the binding affinity of the S protein to porcine DC-SIGN. These findings enhance our understanding of the genetic evolution of PEDV in China.
Collapse
Affiliation(s)
- Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Su M, Wang Y, Yan J, Xu X, Zheng H, Cheng J, Du X, Liu Y, Ying J, Zhao Y, Wang Z, Duan X, Yang Y, Cheng C, Ye Z, Sun J, Sun D, Song H. Isolation and characterization of a novel S1-gene insertion porcine epidemic diarrhea virus with low pathogenicity in newborn piglets. Virulence 2024; 15:2397512. [PMID: 39282989 PMCID: PMC11407387 DOI: 10.1080/21505594.2024.2397512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes diarrhea and vomiting in piglets, leading to a mortality rate of 100%. Due to the high frequency of mutation, it is important to monitor the evolution of PEDV and develop potential vaccine candidates. In this study, two PEDV strains (ZJ2022 and ZQ2022) were identified by PCR. These strains were subsequently isolated, and their genome sequences, growth characteristics, and pathogenicity were compared. Phylogenetic and recombination analyses revealed that both strains belonged to GIIa-subgroup, and ZQ2022 was identified as a recombinant strain derived from ZJ2022. Further sequence analysis showed that the ZJ2022 strain had a modified top region of the S1 protein due to a three amino acid insertion (T380_Y380insGGE) in the S1 gene. According to the virus growth curve, ZJ2022 exhibited better cellular adaptation than ZQ2022, with higher viral titers from 8 hpi to 24 hpi. Additionally, ZQ2022 exhibited a high level of pathogenicity, causing severe diarrhea in piglets at 36 hpi and a 100% mortality rate by 96 hpi. In contrast, ZJ2022 showed lower pathogenicity, inducing severe diarrhea in piglets at 60 hpi, with a mortality rate of 60% at 96 hpi and 100% at 120 hpi. In summary, our findings provided evidence of the undergoing mutations in Chinese PEDV strains. Furthermore, the S gene insertion strain ZJ2022 exhibited strong cellular adaptability and low pathogenicity, making it a potential candidate strain for vaccine development.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Yutao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiaoxu Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Ziqi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Zhihui Ye
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
7
|
Su M, Yan Y, Huang Y, Ren J, Niu S, Zhao Y, Yan F, Tian WX, Wang Y. Isolation and characterization of a subtype G2c variant of porcine epidemic diarrhea virus that adapts well to cell culture. Arch Virol 2024; 169:217. [PMID: 39379633 DOI: 10.1007/s00705-024-06140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/09/2024] [Indexed: 10/10/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes the third most important disease in the pig industry, after African swine fever and porcine reproductive and respiratory syndrome, and leads to illness or death of the entire litter, causing significant economic losses. In this study, three PEDV strains (HN-1, HN-2, and SC2023) were isolated from swine farms with suspected PEDV infections in Sichuan and Henan provinces. Phylogenetic analysis based on complete S gene sequences showed that all three strains belonged to the G2c subgroup. HN-1 adapted readily to cell culture, grew to a viral titer as high as 2 × 108 TCID50/mL in Vero cells, and caused the formation of large syncytia. We analyzed the amino acid sequence of the HN-1 isolate and found that its S1 subunit contained a three-amino-acid insertion (355KRL358). A seven-amino-acid-deletion (1377FEKVHVQ1383) in the S2 subunit resulted in the partial deletion of the endocytosis signal YxxΦ and the complete deletion of the endoplasmic reticulum retrieval signal (ERRS) KVHVQ in the cytoplasmic tail of the S protein. Consequently, HN-1 is predicted to be less pathogenic than its parent strain, an attribute that facilitates rapid cell-to-cell spread by enhancing syncytium formation. In addition, strain HN-1 was found to have the mutation 884-885SG→RR, which may favor adaptation to cell culture by providing new trypsin cleavage sites. These results suggest that HN-1 is a G2c subtype variant that adapts well to cell culture and can be used to study the adaptive mechanisms of PEDV and develop attenuated vaccines.
Collapse
Affiliation(s)
- Min Su
- Shanxi Agricultural University, Jinzhong, China
| | - Yi Yan
- Shanxi Agricultural University, Jinzhong, China
| | | | - Jianle Ren
- Shanxi Agricultural University, Jinzhong, China
| | - Sheng Niu
- Shanxi Agricultural University, Jinzhong, China
| | - Yujun Zhao
- Shanxi Agricultural University, Jinzhong, China
| | - Fang Yan
- Shanxi Agricultural University, Jinzhong, China
| | - Wen-Xia Tian
- Shanxi Agricultural University, Jinzhong, China.
| | - Ying Wang
- Shanxi Agricultural University, Jinzhong, China.
| |
Collapse
|
8
|
Rivera-Benítez JF, Martínez-Bautista R, González-Martínez R, De la Luz-Armendáriz J, Herrera-Camacho I, Rosas-Murrieta N, Márquez-Valdelamar L, Lara R. Phylogenetic and Molecular Analysis of the Porcine Epidemic Diarrhea Virus in Mexico during the First Reported Outbreaks (2013-2017). Viruses 2024; 16:309. [PMID: 38400084 PMCID: PMC10891996 DOI: 10.3390/v16020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The characteristics of the whole PEDV genome that has circulated in Mexico from the first outbreak to the present are unknown. We chose samples obtained from 2013 to 2017 and sequenced them, which enabled us to identify the genetic variation and phylogeny in the virus during the first four years that it circulated in Mexico. A 99% identity was found among the analyzed pandemic strains; however, the 1% difference affected the structure of the S glycoprotein, which is essential for the binding of the virus to the cellular receptor. The S protein induces the most efficacious antibodies; hence, these changes in structure could be implicated in the clinical antecedents of the outbreaks. Antigenic changes could also help PEDV avoid neutralization, even in the presence of previous immunity. The characterization of the complete genome enabled the identification of three circulating strains that have a deletion in ORF1a, which is present in attenuated Asian vaccine strains. The phylogenetic analysis of the complete genome indicates that the first PEDV outbreaks in Mexico were caused by INDEL strains and pandemic strains related to USA strains; however, the possibility of the entry of European strains exists, which may have caused the 2015 and 2016 outbreaks.
Collapse
Affiliation(s)
- José Francisco Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mexico City 04010, Mexico
| | | | | | - Jazmín De la Luz-Armendáriz
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (I.H.-C.); (N.R.-M.)
| | - Nora Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (I.H.-C.); (N.R.-M.)
| | - Laura Márquez-Valdelamar
- Laboratorio de Secuenciación Genómica de la Biodiversidad y de la Salud, UNAM, Mexico City 04510, Mexico;
| | - Rocio Lara
- Programa de Maestría en Ciencias de la Producción y de la Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
9
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
10
|
Li Y, Liu T, Zhang Y, Duan X, Liu F. RNA recombination: non-negligible factor for preventing emergence or reemergence of Senecavirus A. Front Vet Sci 2024; 11:1357179. [PMID: 38328259 PMCID: PMC10847583 DOI: 10.3389/fvets.2024.1357179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Tianyu Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoxiao Duan
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Li Z, Ma Z, Han W, Chang C, Li Y, Guo X, Zheng Z, Feng Y, Xu L, Zheng H, Wang X, Xiao S. Deletion of a 7-amino-acid region in the porcine epidemic diarrhea virus envelope protein induces higher type I and III interferon responses and results in attenuation in vivo. J Virol 2023; 97:e0084723. [PMID: 37681956 PMCID: PMC10537754 DOI: 10.1128/jvi.00847-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 09/09/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) leads to enormous economic losses for the pork industry. However, the commercial vaccines failed to fully protect against the epidemic strains. Previously, the rCH/SX/2016-SHNXP strain with the entire E protein and the rCH/SX/2015 strain with the deletion of 7-amino-acid (7-aa) at positions 23-29 in E protein were constructed and rescued. The pathogenicity assay indicated that rCH/SX/2015 is an attenuated strain, but rCH/SX/2016-SHNXP belongs to the virulent strains. Then, the recombination PEDV (rPEDV-EΔaa23-aa29)strain with a 7-aa deletion in the E protein was generated, using the highly virulent rCH/SX/2016-SHNXP strain (rPEDV-Ewt) as the backbone. Compared with the rPEDV-Ewt strain, the release and infectivity of the rPEDV-EΔaa23-aa29 strain were significantly reduced in vitro, but stronger interferon (IFN) responses were triggered both in vitro and in vivo. The pathogenicity assay showed that the parental strain resulted in severe diarrhea (100%) and death (100%) in all piglets. Compared with the parental strain group, rPEDV-EΔaa23-aa29 caused lower mortality (33%) and diminished fecal PEDV RNA shedding. At 21 days, all surviving pigs were challenged orally with rPEDV-Ewt. No pigs died in the two groups. Compared with the mock group, significantly delayed and milder diarrhea and reduced fecal PEDV RNA shedding were detected in the rPEDV-EΔaa23-aa29 group. In conclusion, the deletion of a 7-aa fragment in the E protein (EΔaa23-aa29) attenuated PEDV but retained its immunogenicity, which can offer new ideas for the design of live attenuated vaccines and provide new insights into the attenuated mechanism of PEDV. IMPORTANCE Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets and remains a large challenge to the pork industry. Unfortunately, no safe and effective vaccines are available yet. The pathogenesis and molecular basis of the attenuation of PEDV remain unclear, which seriously hinders the development of PEDV vaccines. This study found that the rPEDV carrying EΔaa23-aa29 mutation in the E protein induced significantly higher IFN responses than the parental virus, partially attenuated, and remained immunogenic in piglets. For the first time, PEDV E was verified as an IFN antagonist in the infection context and identified as a virulence factor of PEDV. Our data also suggested that EΔaa23-aa29 mutation can be a good target for the development of live attenuated vaccines for PEDV and also provide new perspectives for the attenuated mechanism of PEDV.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Weiguo Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanzhe Chang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xuyang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zifang Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lele Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Mei X, Guo J, Fang P, Ma J, Li M, Fang L. The Characterization and Pathogenicity of a Recombinant Porcine Epidemic Diarrhea Virus Variant ECQ1. Viruses 2023; 15:1492. [PMID: 37515178 PMCID: PMC10383920 DOI: 10.3390/v15071492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a re-emerging enteropathogenic coronavirus, has become the predominant causative agent of lethal diarrhea in piglets, resulting in huge economic losses in many countries. Furthermore, the rapid variability of this virus has increased the emergence of novel variants with different pathogenicities. In this study, 633 fecal samples collected from diarrheic piglets in China during 2017-2019 were analyzed, and 50.08% (317/633) of these samples were PEDV-positive. The full-length spike (S) genes of 36 samples were sequenced, and a genetic evolution analysis was performed. The results showed that thirty S genes belonged to the GII-a genotype and six S genes belonged to the GII-b genotype. From the PEDV-positive samples, one strain, designated ECQ1, was successfully isolated, and its full-length genome sequence was determined. Interestingly, ECQ1 is a recombinant PEDV between the GII-a (major parent) and GII-b (minor parent) strains, with recombination occurring in the S2 domain of the S gene. The pathogenicity of ECQ1 was assessed in 5-day-old piglets and compared with that of the strain EHuB2, a representative of GII-a PEDV. Although both PEDV strains induced similar fecal viral shedding in the infected piglets, ECQ1 exhibited lower pathogenicity than did EHuB2, as evidenced by reduced mortality and less severe pathological changes in the intestines. These data suggest that PEDV strain ECQ1 is a potential live virus vaccine candidate against porcine epidemic diarrhea.
Collapse
Affiliation(s)
- Xiaowei Mei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mingxiang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
13
|
Song X, Qian J, Wang C, Wang D, Zhou J, Zhao Y, Wang W, Li J, Guo R, Li Y, Zhu X, Yang S, Zhang X, Fan B, Li B. Correlation between the IgG/IgA Antibody Response against PEDV Structural Protein and Virus Neutralization. Microbiol Spectr 2023; 11:e0523322. [PMID: 37022185 PMCID: PMC10269706 DOI: 10.1128/spectrum.05233-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). Large-scale outbreaks of PEDV have caused huge economic losses to the pig industry since 2010. Neutralizing antibodies play a pivotal role in protecting piglets from enteric infections. However, there has been no systematic report on the correlations between neutralizing antibody titers (NTs) and absorbance values of IgG or IgA to all PEDV individual structural proteins in clinical serum, fecal, and colostrum samples. In this study, the spike protein S1 domain (S1), membrane protein (M), envelope protein (E), and nucleocapsid protein (N) of the variant PEDV strain AH2012/12 were expressed and purified by using the human embryonic kidney (HEK) 293F expression system. A total of 92 clinical serum samples, 46 fecal samples, and 33 colostrum samples were collected, and the correlations between IgG or IgA absorbance values and NTs were analyzed. R2 values revealed that anti-S1 IgA absorbance values show the highest agreement with NTs in all serum, fecal, and colostrum samples, followed by the N protein. The correlations between anti-E or M IgA and NTs were very low. However, in the colostrum samples, both IgG and IgA to S1 showed high correlations with NTs. In addition, compared with E and M, the highest correlations of IgA absorbance values were with N and S1 in serum and fecal samples. Overall, this study revealed the highest correlation between NTs and IgA to PEDV S1 protein. Therefore, the diagnostic method with anti-S1 IgA can be used as a powerful tool for assessing the immune status of pigs. IMPORTANCE The humoral immune response plays an important role in virus neutralization. Against PEDV, both IgG and the mucosal immune component IgA play roles in virus neutralization. However, which plays a more prominent role and whether there are differences in different tissue samples are not clearly reported. Additionally, the relationship between IgG and IgA against individual structural proteins and viral neutralization remains unclear. In this study, we systematically determined the relationship between IgG and IgA against all PEDV structural proteins and viral neutralization in different clinical samples and found the highest correlation between neutralization activity and IgA to PEDV S1 protein. Our data have important guiding implications in the evaluation of immune protection.
Collapse
Affiliation(s)
- Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jiali Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Shanshan Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
14
|
Molecular and Structural Evolution of Porcine Epidemic Diarrhea Virus. Animals (Basel) 2022; 12:ani12233388. [PMID: 36496909 PMCID: PMC9736354 DOI: 10.3390/ani12233388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
To analyze the evolutionary characteristics of the highly contagious porcine epidemic diarrhea virus (PEDV) at the molecular and structural levels, we analyzed the complete genomes of 647 strains retrieved from the GenBank database. The results showed that the spike (S) gene exhibited larger dS (synonymous substitutions per synonymous site) values than other PEDV genes. In the selective pressure analysis, eight amino acid (aa) sites of the S protein showed strong signals of positive selection, and seven of them were located on the surface of the S protein (S1 domain), suggesting a high selection pressure of S protein. Topologically, the S gene is more representative of the evolutionary relationship at the genome-wide level than are other genes. Structurally, the evolutionary pattern is highly S1 domain-related. The haplotype networks of the S gene showed that the strains are obviously clustered geographically in the lineages corresponding to genotypes GI and GII. The alignment analysis on representative strains of the main haplotypes revealed three distinguishable nucleic acid sites among those strains, suggesting a putative evolutionary mechanism in PEDV. These findings provide several new fundamental insights into the evolution of PEDV and guidance for developing effective prevention countermeasures against PEDV.
Collapse
|
15
|
Liu H, Yin X, Tian H, Qiu Y, Wang Z, Chen J, Ma D, Zhao B, Du Q, Tong D, Huang Y. The S protein of a novel recombinant PEDV strain promotes the infectivity and pathogenicity of PEDV in mid-west China. Transbound Emerg Dis 2022; 69:3704-3723. [PMID: 36251324 DOI: 10.1111/tbed.14740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023]
Abstract
Porcine epidemic diarrhoea virus (PEDV) is an emerging and re-emerging swine enterovirus that causes highly contagious diarrhoea and mortality in piglets. To better understand the current prevalence of PEDV in mid-west China, and to find out the reason for the re-emergence of PEDV from the viral genomic characteristics. Herein, we firstly investigated epidemiology of PEDV in mid-west China from 2019 to 2020. A total of 62.23% (257/413) of diarrhoea samples were positive for PEDV, and the PEDV-positive cases were mainly detected in winter. Then, we selected the SXSL strain as a representative strain to study the genetic and pathogenic characterization of PEDV pandemic strains in mid-west China. The recombination analysis showed that SXSL strain was a recombinant strain, and the major and minor parent strains of the recombination are CH/SCZJ/2018 strain and GDS48 strain, respectively. Complete genome sequencing and homology analysis showed that the S protein of SXSL strain contained multiple amino acid indels and mutations compared to the PEDV representative strains. Furthermore, we evaluated the effect of S protein on the infectivity and pathogenicity of PEDV by the PEDV reverse genetics system, and results showed that SXSL S protein increased the infectivity and pathogenicity of chimeric virus. Overall, our findings provided important information for understanding the roles of S protein in the prevalence of PEDV in mid-west China and developing vaccines based on PEDV pandemic strains.
Collapse
Affiliation(s)
- Haixin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Xiangrui Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Haolun Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Yudong Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Zhenyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Jing Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Dan Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Bing Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| |
Collapse
|
16
|
Molecular analysis reveals a distinct subgenogroup of porcine epidemic diarrhea virus in northern Vietnam in 2018-2019. Arch Virol 2022; 167:2337-2346. [PMID: 36036306 PMCID: PMC9421642 DOI: 10.1007/s00705-022-05580-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
Abstract
The spike protein (S) of porcine epidemic diarrhea virus (PEDV), in particular, the C-terminal domain of the S1 subunit (S1-CTD), which contains the conserved CO26K-equivalent (COE) region (aa 499–638), which is recognized by neutralizing antibodies, exhibits a high degree of genetic and antigenic diversity. We analyzed 61 PEDV S1-CTD sequences (630 nt), including 26 from samples collected from seven provinces in northern Vietnam from 2018 to 2019 and 35 other sequences, representing the G1a and 1b, G2a and 2b, and recombinant (G1c) genotypes and vaccines. The majority (73.1%) of the strains (19/26) belonged to subgroup G2b. In a phylogenetic analysis, seven strains were clustered into an independent, distinct subgenogroup named dsG with strong nodal support (98%), separate from both G1a and G1b as well as G2a, 2b, and G1c. Sequence analysis revealed distinct changes (513T>S, 520G>D, 527V>(L/M), 591L>F, 669A>(S/P), and 691V>I) in the COE and S1D regions that were only identified in these Vietnamese strains. This cluster is a new antigenic variant subgroup, and further studies are required to investigate the antigenicity of these variants. The results of this study demonstrated the continuous evolution in the S1 region of Vietnamese PEDV strains, which emphasizes the need for frequent updates of vaccines for effective protection.
Collapse
|
17
|
Li X, Li Y, Huang J, Yao Y, Zhao W, Zhang Y, Qing J, Ren J, Yan Z, Wang Z, Hu X, Kang D, Liu H, Yan Z. Isolation and oral immunogenicity assessment of porcine epidemic diarrhea virus NH-TA2020 strain: One of the predominant strains circulating in China from 2017 to 2021. Virol Sin 2022; 37:646-655. [PMID: 35961502 PMCID: PMC9583181 DOI: 10.1016/j.virs.2022.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is one of the most devastating diseases in the global pig industry due to its high mortality rate in piglets. Maternal vaccines can effectively enhance the gut-mammary gland-secretory IgA axis to boost lactogenic immunity and passive protection of nursing piglets against PEDV challenge. From 2017 to 2021, we collected 882 diarrhea samples from 303 farms in China to investigate the epidemiology of PEDV. The result showed that about 52.15% (158/303) of the farms were positive for PEDV with an overall detection rate of 63.95% (564/882) of the samples. The S1 fragments of S gene from 104 strains were sequenced for the phylogenetic analysis. A total of 71 PEDV strains (68.27%) sequenced in this study were clustered into the predominant G2c subgroup, while the newly-defined G2d strains (9.62%) were identified in three provinces of China. The NH-TA2020 strain of G2c subgroup was isolated and cultured, and its infection to piglets caused watery diarrhea within 24 h, indicating its strong pathogenicity. Oral administration of NH-TA2020 strain to pregnant gilts stimulated high levels of IgA antibody in colostrum. The piglets fed by the gilts above were challenged with NH-TA2020 strain or CH–HeB-RY-2020 strain from G2d subgroup, and the clinical symptoms and virus shedding were significantly reduced compared to the mock group. Our findings suggest that G2c subgroup is the predominant branch circulating in China from 2017 to 2021. Oral administration of NH-TA2020 enhances maternal IgA and lactogenic immune responses, which confer protection against the homologous and emerging G2d PEDV strains challenges in neonates. From 2017 to 2021, PEDV positive rate of Chinese farms and samples tested in this study was 52.15% and 63.95%, respectively. A total of 71 sequenced PEDV strains (68.27%) were clustered into the predominant G2c subgroup. The newly-defined G2d strains (9.62%) were identified in three provinces of China. NH-TA2020 strain belonging to the G2c subgroup was isolated and its strong pathogenicity was confirmed. The milk containing high levels of IgA antibody induced by NH-TA2020 strain could protect piglets against PEDV challenge.
Collapse
Affiliation(s)
- Xiaowen Li
- New Hope Liuhe Co., Ltd., Chengdu, 610041, China; Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
| | - Yang Li
- New Hope Liuhe Co., Ltd., Chengdu, 610041, China; Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
| | - Jiapei Huang
- New Hope Liuhe Co., Ltd., Chengdu, 610041, China; Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
| | - Yali Yao
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Wenying Zhao
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Yunjing Zhang
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Jie Qing
- New Hope Liuhe Co., Ltd., Chengdu, 610041, China; Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
| | - Jing Ren
- Swine Health Data and Intelligent Monitoring Project Laboratory, Dezhou University, Dezhou, 253011, China
| | - Zhong Yan
- New Hope Liuhe Co., Ltd., Chengdu, 610041, China
| | - Zewei Wang
- New Hope Liuhe Co., Ltd., Chengdu, 610041, China; Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
| | - Xiaofang Hu
- New Hope Liuhe Co., Ltd., Chengdu, 610041, China; Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China
| | - Duli Kang
- Pulike Biological Engineering Inc., Luoyang, 471000, China
| | - Hongqiang Liu
- Pulike Biological Engineering Inc., Luoyang, 471000, China
| | - Zhichun Yan
- New Hope Liuhe Co., Ltd., Chengdu, 610041, China; Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd. (NHLH Academy of Swine Research), Dezhou, 253034, China.
| |
Collapse
|
18
|
Genetic Characteristics and Pathogenicity of a Novel Porcine Epidemic Diarrhea Virus with a Naturally Occurring Truncated ORF3 Gene. Viruses 2022; 14:v14030487. [PMID: 35336894 PMCID: PMC8955810 DOI: 10.3390/v14030487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets, with devastating impact on the pig industry. To further understand the molecular epidemiology and genetic diversity of PEDV field strains, in this study the complete genomes of four PEDV variants (HN2021, CH-HNYY-2018, CH-SXWS-2018, and CH-HNKF-2016) obtained from immunized pig farms in central China between 2016 to 2021 were characterized and analyzed. Phylogenetic analysis of the genome and S gene showed that the four strains identified in the present study had evolved into the subgroup G2a, but were distant from the vaccine strain CV777. Additionally, it was noteworthy that a new PEDV strain (named HN2021) belonging to the G2a PEDV subgroup was successfully isolated in vitro and it was further confirmed by RT-PCR that this isolate had a large natural deletion at 207–373 nt of the ORF3 gene, which has never been reported before. Particularly, in terms of pathogenicity evaluation, colostrum deprivation piglets challenged with PEDV HN2021 showed severe diarrhea and high mortality, confirming that PEDV HN2021 was a virulent strain. Hence, PEDV strain HN2021 of subgroup G2a presents a promising vaccine candidate for the control of recurring porcine epidemic diarrhea (PED) in China. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.
Collapse
|
19
|
He WT, Bollen N, Xu Y, Zhao J, Dellicour S, Yan Z, Gong W, Zhang C, Zhang L, Lu M, Lai A, Suchard MA, Ji X, Tu C, Lemey P, Baele G, Su S. Phylogeography reveals association between swine trade and the spread of porcine epidemic diarrhea virus in China and across the world. Mol Biol Evol 2021; 39:6482749. [PMID: 34951645 PMCID: PMC8826572 DOI: 10.1093/molbev/msab364] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.
Collapse
Affiliation(s)
- Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Yi Xu
- China animal disease control center, Ministry of Agriculture, China Beijing
| | - Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven.,Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Belgium CP160/12 50, av. FD Roosevelt, 1050 Bruxelles
| | - Ziqing Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Wenjie Gong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, China Changchun, Jilin
| | - Cheng Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Letian Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Meng Lu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, United States Frankfort, Kentucky
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University New Orleans, LA
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, China Changchun, Jilin
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| |
Collapse
|
20
|
Tran TX, Lien NTK, Thu HT, Duy ND, Duong BTT, Quyen DV. Changes in the spike and nucleocapsid protein of porcine epidemic diarrhea virus strain in Vietnam-a molecular potential for the vaccine development? PeerJ 2021; 9:e12329. [PMID: 34721997 PMCID: PMC8530102 DOI: 10.7717/peerj.12329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is a dangerous virus causing large piglet losses. PEDV spread rapidly between pig farms and caused the death of up to 90% of infected piglets. Current vaccines are only partially effective in providing immunity to suckling due to the rapid dissemination and ongoing evolution of PEDV. Methods In this study, the complete genome of a PEDV strain in Vietnam 2018 (IBT/VN/2018 strain) has been sequenced. The nucleotide sequence of each fragment was assembled to build a continuous complete sequence using the DNASTAR program. The complete nucleotide sequences and amino acid sequences of S, N, and ORF3 genes were aligned and analyzed to detect the mutations. Results The full-length genome was determined with 28,031 nucleotides in length which consisted of the 5'UTR, ORF1ab, S protein, ORF3, E protein, M protein, N protein, and 3'UTR region. The phylogenetic analysis showed that the IBT/VN/2018 strain was highly virulent belonged to the G2b subgroup along with the Northern American and Asian S-INDEL strains. Multiple sequence alignment of deduced amino acids revealed numerous mutations in the S, N, and ORF3 regions including one substitution 766P > L766 in the epitope SS6; two in the S0subdomain (135DN136 > 135SI136 and N144> D144); two in subdomain SHR1 at aa 1009L > M1009 and 1089S > L1089; one at aa 1279P > S1279 in subdomain SHR2 of the S protein; two at aa 364N > I364 and 378N > S378 in the N protein; four at aa 25L > S25, 70I > V70, 107C > F107, and 168D > N168 in the ORF3 protein. We identified two insertions (at aa 59NQGV62 and aa 145N) and one deletion (at aa 168DI169) in S protein. Remarkable, eight amino acid substitutions (294I > M294, 318A > S318, 335V > I335, 361A > T361, 497R > T497, 501SH502 > 501IY502, 506I > T506, 682V > I682, and 777P > L777) were found in SA subdomain. Besides, N- and O-glycosylation analysis of S, N, and ORF3 protein reveals three known sites (25G+, 123N+, and 62V+) and three novel sites (144D+, 1009M+, and 1279L+) in the IBT/VN/2018 strain compared with the vaccine strains. Taken together, the results showed that mutations in the S, N, and ORF3 genes can affect receptor specificity, viral pathogenicity, and the ability to evade the host immune system of the IBT/VN/2018 strain. Our results highlight the importance of molecular characterization of field strains of PEDV for the development of an effective vaccine to control PEDV infections in Vietnam.
Collapse
Affiliation(s)
- Thach Xuan Tran
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen T K Lien
- Functional of Genomics Lab, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha T Thu
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen Dinh Duy
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Bui T T Duong
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Dong Van Quyen
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam.,University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
21
|
Huang S, Yu Q, Xie L, Ran L, Wang K, Yang Y, Gan L, Song Z. Inhibitory effects of Lactobacillus plantarum metabolites on porcine epidemic diarrhea virus replication. Res Vet Sci 2021; 139:32-42. [PMID: 34246941 DOI: 10.1016/j.rvsc.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus; it causes diarrhea in pigs and is associated with high morbidity and mortality in sucking piglets. In this study, we performed in vitro and in vivo experiments to determine the inhibitory effects of Lactobacillus plantarum metabolites (LPM) on PEDV replication. Gas chromatography-mass spectrometry revealed exopolysaccharides to be one of the main components of LPM. We then determine whether L. plantarum exopolysaccharides (LPE) have an antiviral effect and also detected the expression levels of the apoptosis-related genes Bax and Bcl-2 and of the pro-apoptotic protein caspase-3. Further, we assessed the transcription levels of an immune-related protein (STAT1) and antiviral factors (MX1, MX2, ISG15, ZAP, PKR, and OAS1). Our results showed that the most effective method was to pretreat cells with LPM and that the optimal dose of LPM that could be safely administered to Vero cells was 1/8 times of the stock solution. LPE had a strong inhibitory effect on PEDV; the most effective method of administration was to co-incubate cells with LPE and PEDV, and the optimal concentration of LPE was 1.35 mg/mL. To conclude, LPE prevented PEDV adsorption and also alleviated inflammatory responses and induced early apoptosis of injured cells, but it could not regulate the immune function of cells.
Collapse
Affiliation(s)
- Shilei Huang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460, PR China; College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, PR China
| | - Qiuhan Yu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460, PR China
| | - Luyi Xie
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460, PR China
| | - Ling Ran
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460, PR China
| | - Kai Wang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460, PR China
| | - Yang Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460, PR China
| | - Lu Gan
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460, PR China
| | - Zhenhui Song
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460, PR China.
| |
Collapse
|
22
|
The trypsin-enhanced infection of porcine epidemic diarrhea virus is determined by the S2 subunit of the spike glycoprotein. J Virol 2021; 95:JVI.02453-20. [PMID: 33692210 PMCID: PMC8139691 DOI: 10.1128/jvi.02453-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an enteric pathogen in the swine industry, causing high mortality in neonatal piglets. Efficient PEDV infection usually relies on the presence of trypsin, yet the mechanism of trypsin dependency is ambiguous. Here, we identified two PEDV strains, trypsin-enhanced YN200 and trypsin-independent DR13, in which the spike (S) protein of YN200 exhibits a stronger ability to induce syncytium formation and cleaved by trypsin than that of DR13. Using a full-length infectious YN200 cDNA clone, we confirmed that the S protein is a trypsin dependency determinant by comparison of rYN200 and rYN200-SDR13 To explore the trypsin-associated sites of the YN200 S protein, we then constructed a series of mutations adjacent to the fusion peptide. The results show that the putative S2' cleavage site (R892G) is not the determinant for virus trypsin dependency. Hence, we generated viruses carrying chimeric S proteins: the S1 subunit, S2 subunit, and S2720∼892 aa domain (NS2') were individually replaced by the corresponding DR13 sequences. Intriguingly, only the S2 substitution, not the S1 or NS2' substitutions, provides trypsin-independent growth of YN200. Additionally, the NS2' recombinant virus significantly abrogated effective infection, indicating a vital role for NS2' in viral entry. These findings suggest that the trypsin dependency of PEDV is mainly controlled by mutations in the S2 subunit rather than directly trypsin cleavage site.ImportanceWith the emergence of new variants, PEDV remains a major problem in the global swine industry. Efficient PEDV infection usually requires trypsin, while the mechanism of trypsin dependency is complex. Here, we used two PEDV strains, trypsin-enhanced YN200 and trypsin-independent DR13, and results showed that the S protein determined PEDV trypsin dependency by using a reverse genetic system of YN200. The S2 subunit was verified as the main portion of PEDV trypsin dependency, though the putative S2' site mutation cannot render trypsin-independent growth of YN200. Finally, these results provide some different insight to the PEDV trypsin dependency and might inspire vaccine development.
Collapse
|
23
|
Hull JJA, Qi M, Montmayeur AM, Kumar D, Velasquez DE, Moon SS, Magaña LC, Betrapally N, Ng TFF, Jiang B, Marthaler D. Metagenomic sequencing generates the whole genomes of porcine rotavirus A, C, and H from the United States. PLoS One 2020; 15:e0244498. [PMID: 33373390 PMCID: PMC7771860 DOI: 10.1371/journal.pone.0244498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Rotavirus comprises eight species, designated A to H, and two recently identified tentative species I in dogs and J in bats. Species Rotavirus A, B, C and H (RVA, RVB, RVC and RVH) have been detected in humans and animals. While human and animal RVA are well characterized and defined, complete porcine genome sequences in the GenBank are limited compared to human strains. Here, we used a metagenomic approach to sequence the 11 segments of RVA, RVC and RVH strains from piglets in the United States (US) and explore the evolutionary relations of these RV species. Metagenomics identified Astroviridae, Picornaviridae, Caliciviridae, Coronoviridae in samples MN9.65 and OK5.68 while Picobirnaviridae and Arteriviridae were only identified in sample OK5.68. Whole genome sequencing and phylogenetic analyses identified multiple genotypes with the RVA of strain MN9.65 and OK5.68, with the genome constellation of G5/G9-P[7]/P[13]-I5/I5- R1/R1-C1-M1-A8-N1-T7-E1/E1-H1 and G5/G9-P[6]/P[7]-I5-R1/R1-C1-M1-A8-N1-T1/T7-E1/E1-H1, respectively. The RVA strains had a complex evolutionary relationship with other mammalian strains. The RVC strain OK5.68 had a genome constellation of G9-P[6]-I1-R1-C5-M6-A5-N1-T1-E1-H1, and shared an evolutionary relationship with porcine strains from the US. The RVH strains MN9.65 and OK5.68 had the genome constellation of G5-P1-I1-R1-C1-M1-A5-N1-T1-E4-H1 and G5-P1-I1-R1-C1-M1-A5-N1-T1-E1-H1, indicating multiple RVH genome constellations are circulating in the US. These findings allow us to understand the complexity of the enteric virome, develop improved screening methods for RVC and RVH strains, facilitate expanded rotavirus surveillance in pigs, and increase our understanding of the origin and evolution of rotavirus species.
Collapse
Affiliation(s)
- Jennifer J. A. Hull
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Anna M. Montmayeur
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Deepak Kumar
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Daniel E. Velasquez
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Sung-Sil Moon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Laura Cristal Magaña
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Naga Betrapally
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Terry Fei Fan Ng
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Baoming Jiang
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Douglas Marthaler
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
24
|
Qi M, Zambrano-Moreno C, Pineda P, Calderón C, Rincón-Monroy MA, Diaz A, Marthaler DG. Several lineages of porcine epidemic diarrhea virus in Colombia during the 2014 and 2016 epidemic. Transbound Emerg Dis 2020; 68:2465-2476. [PMID: 33155439 DOI: 10.1111/tbed.13914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a significant global, enteric coronavirus in pigs and was first reported in Colombia in 2014. However, the epidemiology, genetic and antigenic characteristics of the virus have yet to be investigated. In this study, we investigated the dissemination of PEDV by testing 536 samples by RT-PCR over a 33-month period. The 35.8% of positive samples (n = 192) was significantly different (p < .01) between months over time, with a higher number of positives samples occurring at the beginning of the epidemic and during the second epidemic wave within the main pork producing region. The complete PEDV genomes were generated for 21 strains, which shared a high nucleotide and amino acid sequence identity, except for the spike (S) gene. Recombinant regions were identified within the Colombian strains and between Colombian and Asian PEDV strains. Phylogenetic analysis of the 21 Colombian strains demonstrated the presence of 7 lineages that shared common ancestors with PEDV strains from the United States. Moreover, the antigenic analysis demonstrated residue differences in the neutralizing epitopes in the spike and nucleocapsid proteins. Our results illustrated the simultaneous introduction of the two PEDV genotypes (GIIa American pandemic and S-INDEL) into the Colombian swine industry during the 2014 PEDV epidemic and enhanced our understanding of the epidemiology and molecular diversity of PEDV in Colombia.
Collapse
Affiliation(s)
- Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Pilar Pineda
- Asociación Colombiana de Porcicultores - PorkColombia, Bogotá, Colombia
| | - Claudia Calderón
- Laboratorio Nacional de Diagnóstico Veterinario, Instituto Colombiano Agropecuario ICA, Bogotá, Colombia
| | - María A Rincón-Monroy
- Laboratorio Nacional de Diagnóstico Veterinario, Instituto Colombiano Agropecuario ICA, Bogotá, Colombia
| | - Andres Diaz
- Asociación Colombiana de Porcicultores - PorkColombia, Bogotá, Colombia.,Pig Improvement Company LATAM, Santiago de Querétaro, Querétaro, Mexico
| | - Douglas G Marthaler
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
25
|
Ji Z, Shi D, Shi H, Wang X, Chen J, Liu J, Ye D, Jing Z, Liu Q, Fan Q, Li M, Cong G, Zhang J, Han Y, Zhang X, Feng L. A porcine epidemic diarrhea virus strain with distinct characteristics of four amino acid insertion in the COE region of spike protein. Vet Microbiol 2020; 253:108955. [PMID: 33373882 PMCID: PMC7733691 DOI: 10.1016/j.vetmic.2020.108955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
In recent years, a novel, highly virulent variant of porcine epidemic diarrhea virus (PEDV) has emerged, causing substantial economic losses to the pork industry worldwide. In this study, a PEDV strain named LNsy was successfully isolated in China. Phylogenetic analysis based on the whole genome revealed that PEDV LNsy belonged to the G2 subtype. For the first time, a unique four amino acids (4-aa) insertion was identified in the COE region of the spike (S) protein (residues 499-640), resulting in an extra alpha helix in the spatial structure of the COE region. To determine changes in virus-neutralization (VN) antibody reactivity of the virus, polyclonal antibodies (PAbs) against the S protein of different subtypes were used in a VN test. Both PAbs against the S protein of the G1 and G2 subtype showed reduced VN reactivity to PEDV LNsy. Further, recombination analyses revealed that PEDV LNsy was the result of recombination between PEDV GDS13 and GDS46 strains at the genomic breakpoints (nt 17,959-20,594 in the alignment) in the ORF1b gene of the genomes. Pathological examination showed gross morphological pathological changes in the gut, including significant villus atrophy and shedding of the infected piglets. These results indicated that a 4-aa insertion in the COE region of the S protein may have partly altered the profiles of VN antibodies and thus it will be important to develop vaccine candidates to resist wild virus infection and to monitor the genetic diversity of PEDV.
Collapse
Affiliation(s)
- Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaobo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Dandan Ye
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhaoyang Jing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Qiuge Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Qianjin Fan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Mingwei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guangyi Cong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuru Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
26
|
Tian Y, Yang X, Li H, Ma B, Guan R, Yang J, Chen D, Han X, Zhou L, Song Z, Xie X, Wang H. Molecular characterization of porcine epidemic diarrhea virus associated with outbreaks in southwest China during 2014-2018. Transbound Emerg Dis 2020; 68:3482-3497. [PMID: 33306274 DOI: 10.1111/tbed.13953] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), which re-emerged in China since 2010, has swept across the whole country leading to tremendous economic losses. In this study, a total of 645 diarrhea samples collected from 156 pig farms in Sichuan and Guizhou province during 2014-2018 were tested for PEDV. We found that samples from 47.66% (84/156) of the farms were positive for PEDV with an overall detection rate of 35.81% (231/645). Fifty-two strains were selected for full-length S gene analyses, and these strains were classified into three subgroups, an S-INDEL subgroup (G1c), and two non-S-INDEL subgroups (G2b, AJ1102-like and G2c), accounting for 15.38% (8/52), 23.08% (12/52) and 59.62% (31/52) of the total analysed strains, respectively. We found these three subgroups of PEDV coexisted in Sichuan province, and the S-INDEL strain was detected in Guizhou. Further antigenic variation analysis of the neutralizing epitopes (S10, COE, SS2, SS6 and 2C10) on the spike protein revealed that the S-INDEL and non-S-INDEL strains shared similar variation features in COE and SS6, but exhibited distinct variation patterns in the S10 domain. Unique variation patterns on N-glycosylation sites in the S protein were also observed for the S-INDEL and non-S-INDEL strains. Moreover, nine strains (three from each subgroup) were subjected to full-genome characterization. Complete genome phylogeny showed an inconsistent tree topology for genotyping, with two G2c strains grouped into the GII-b (AH2012-like) genogroup and the remaining seven strains including three S-INDEL strains grouped into the GII-c genogroup. Further recombination analyses indicated that six of the GII-c strains probably originated from intra-genogroup recombinations. Notably, three newly emerged S-INDEL strains with novel recombination patterns were first identified. Together, our data revealed a new status of PEDV in southwest China, which can increase understanding of the prevalence, genetic characteristics and evolutionary profiles of circulating PEDV strains in China.
Collapse
Affiliation(s)
- Yiming Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Boheng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Ru Guan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Jiang Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Danyu Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaoxiao Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.,School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Long Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.,College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Zhou Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
27
|
Yu L, Liu Y, Wang S, Zhang L, Liang P, Wang L, Dong J, Song C. Molecular Characteristics and Pathogenicity of Porcine Epidemic Diarrhea Virus Isolated in Some Areas of China in 2015-2018. Front Vet Sci 2020; 7:607662. [PMID: 33426027 PMCID: PMC7793843 DOI: 10.3389/fvets.2020.607662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 11/24/2022] Open
Abstract
Since 2010, Porcine epidemic diarrhea virus (PEDV) has caused severe diarrhea disease in piglets in China, resulting in large economic losses. To understand the genetic characteristics of the PEDV strains that circulated in some provinces of China between 2015 and 2018, 375 samples of feces and small intestine were collected from pigs and tested. One hundred seventy-seven samples tested positive and the PEDV-positive rate was 47.20%. A phylogenetic tree analysis based on the entire S gene showed that these strains clustered into four subgroups, GI-a, GI-b, GII-a, and GII-b, and that the GII-b strains have become dominant in recent years. Compared with previous strains, these strains have multiple variations in the SP and S1-NTD domains and in the neutralizing epitopes of the S protein. We also successfully isolated and identified a new virulent GII-b strain, GDgh16, which is well-adapted to Vero cells and caused a high mortality rate in piglets in challenge experiments. Our study clarifies the genetic characteristics of the prevalent PEDV strains in parts of China, and suggests that the development of effective novel vaccines is both necessary and urgent.
Collapse
Affiliation(s)
- Linyang Yu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Yanling Liu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Shuangyun Wang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Leyi Zhang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Pengshuai Liang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Lei Wang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| | - Jianguo Dong
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Changxu Song
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, China
| |
Collapse
|
28
|
Cui JT, Qiao H, Hou CY, Zheng HH, Li XS, Zheng LL, Chen HY. Characteristics of the spike and ORF3 genes of porcine epidemic diarrhea virus in Henan and Shanxi provinces of China. Arch Virol 2020; 165:2323-2333. [PMID: 32715325 PMCID: PMC7382918 DOI: 10.1007/s00705-020-04744-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
To investigate the epidemic characteristics of porcine epidemic diarrhea virus (PEDV), 135 clinical samples (including intestinal tissues and feces) were collected from diseased piglets during outbreaks of diarrhea from 2015 to 2019 on farms in Henan and Shanxi provinces of China where swine had been immunized with attenuated PEDV (CV777). A total of 86 clinical samples (86/135, 63.7%) were positive for PEDV by RT-PCR, and subsequently, the complete spike (S) and ORF3 genes of 32 PEDV samples were sequenced. Phylogenetic analysis showed that the 32 PEDV strains obtained in this study belonged to group 2 (pandemic variant strains) and had a close relationship to 17 Chinese strains after 2010, two South Korean strains (KNU-1305 and KNU-1807), three American strains (PC22A-P140.BI, USA/Colorado/2013, and USA/OK10240-6/2017) and a Mexican strain (PEDV/MEX/QRO/02/2017), but differed genetically from a South Korean strain (SM98), a European strain (Br1/87), a Chinese strain (LZC), and a vaccine strain (CV777). G2-a subgroup strains were the dominant pandemic variant strains circulating in Henan and Shanxi provinces of China. Furthermore, a cross-recombination event was identified in the S region of the SX/TY2/2017 strain, and the putative parental strains were the epidemic strains CH/GDGZ/2012 and CH/YZ1/2015, identified in China in 2012 and 2015, respectively. These results provide further information about PEDV evolution, which could improve our understanding of the circulation of PEDV in Henan and Shanxi provinces. This information will also be helpful for developing new strategies for prevention and control of variant strains.
Collapse
Affiliation(s)
- Jian-Tao Cui
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China
| | - Han Qiao
- College of Life Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Cheng-Yao Hou
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China
| | - Hui-Hua Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xin-Sheng Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lan-Lan Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Nongye Road 63#, Zhengdong New District, Longzi Lake #15, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
29
|
Wang H, Zhang L, Shang Y, Tan R, Ji M, Yue X, Wang N, Liu J, Wang C, Li Y, Zhou T. Emergence and evolution of highly pathogenic porcine epidemic diarrhea virus by natural recombination of a low pathogenic vaccine isolate and a highly pathogenic strain in the spike gene. Virus Evol 2020; 6:veaa049. [PMID: 32913664 PMCID: PMC7474927 DOI: 10.1093/ve/veaa049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Outbreaks of a new variant of porcine epidemic diarrhea virus (PEDV) at the end of 2010 have raised interest in the mutation and recombination of PEDV. A PEDV strain (CN/Liaoning25/2018) isolated from a clinical outbreak of piglet diarrhea contained a 49-bp deletion in the ORF3 gene. This deletion is considered a genetic characteristic of low pathogenic attenuated vaccine strains. However, CN/Liaoning25/2018 was highly pathogenic. Complete genome sequencing, identity analysis, phylogenetic tree construction, and recombination analysis showed that this virus was a recombinant strain containing the Spike (S) gene from the highly pathogenic CN/GDZQ/2014 strain and the remaining genomic regions from the low pathogenic vaccine isolate SQ2014. Histopathology and immunohistochemistry results confirmed that this strain was highly pathogenic and indicated that intestinal epithelial cell vacuolation was positively correlated with the intensity and density of PEDV antigens. A new natural recombination model for PEDV was identified. Our results suggest that new highly pathogenic recombinant strains in the field may be generated by recombination between low pathogenic attenuated live PEDV vaccines and pathogenic circulating PEDV strains. Our findings also highlight that the 49-bp deletion of the ORF3 gene in low pathogenic attenuated vaccine strains will no longer be a reliable standard to differentiate the classical vaccine attenuated from the field strains.
Collapse
Affiliation(s)
- Huinan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Libo Zhang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Yuanbin Shang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Rongrong Tan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingxiang Ji
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Xinliang Yue
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Nannan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Jun Liu
- Beijing Institude of Feed Conrrol, Beijing 100107, China
| | - Chunhua Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
30
|
Cold Exposure-Induced Up-Regulation of Hsp70 Positively Regulates PEDV mRNA Synthesis and Protein Expression In Vitro. Pathogens 2020; 9:pathogens9040246. [PMID: 32224931 PMCID: PMC7237993 DOI: 10.3390/pathogens9040246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/14/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious, intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). PEDV as an emerging and re-emerging epizootic virus of swine causes substantial economic losses to the pig industry in China and other countries. In China, the occurrence of PED shows significant seasonal variations, usually outbreak during the winter season. The epidemic characteristics of PED may be highly correlated with the changes of ambient temperature. However, molecular mechanism on the seasonal occurrence of PED still remains unclear. It has been widely observed that low ambient temperature up-regulates the expression of host heat shock protein 70 (Hsp70). Here, we showed that nucleotide and protein levels of Hsp70 were up-regulated in the intestinal of cold exposed pig and cold exposed Vero E6 cells. We found that overexpression of Hsp70 could increase PEDV mRNA synthesis and protein expression in Vero E6 and IPEC-J2 cells, while the siRNAs mediated knockdown of Hsp70 and VER155008 mediated inhibition of Hsp70 resulted in inhibition of viral mRNA synthesis and protein expression in Vero E6 cells. These data suggested that Hsp70 positively regulated PEDV mRNA synthesis and protein expression, which being helpful for understanding the seasonality of PED epidemics and development of novel antiviral therapies in the future.
Collapse
|
31
|
Than VT, Choe SE, Vu TTH, Do TD, Nguyen TL, Bui TTN, Mai TN, Cha RM, Song D, An DJ, Le VP. Genetic characterization of the spike gene of porcine epidemic diarrhea viruses (PEDVs) circulating in Vietnam from 2015 to 2016. Vet Med Sci 2020; 6:535-542. [PMID: 32159913 PMCID: PMC7397879 DOI: 10.1002/vms3.256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/02/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea (PED) is a highly contagious swine disease caused by the PED virus (PEDV), which is a member of the family Coronaviridae. Since the first outbreaks in Belgium and the United Kingdom were reported in 1971, PED has spread throughout many countries around the world and causing significant economic loss. This study was conducted to investigate the recent distribution of PEDV strains in Vietnam during the 2015-2016 seasons. METHODS A total of 30 PED-specific PCR-positive intestinal and faecal samples were collected from unvaccinated piglets in Vietnam during the 2015-2016 seasons. The full length of the spike (S) gene of these PEDV strains were analysed to determine their phylogeny and genetic relationship with other available PEDV strains globally. RESULTS Phylogenetic analysis of the complete S gene sequences revealed that the 28 Vietnamese PEDV strains collected in the northern and central regions clustered in the G2 group (both G2a and G2b sub-groups), while the other 2 PEDV strains (HUA-PED176 and HUA-PED254) collected in the southern region were clustered in the G1/G1b group/sub-group. The nucleotide (nt) and deduced amino acid (aa) analyses based on the complete S gene sequences showed that the Vietnamese PEDV strains were closely related to each other, sharing nt and aa homology of 93.2%-99.9% and 92.6%-99.9%, respectively. The N-glycosylation patterns and mutations in the antigenic region were observed in Vietnamese PEDV strains. CONCLUSIONS This study provides, for the first time, up-to-date information on viral circulation and genetic distribution, as well as evidence to assist in the development of effective PEDV vaccines in Vietnam.
Collapse
Affiliation(s)
- Van T Than
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Se-Eun Choe
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Thi T H Vu
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Tien D Do
- Nong Lam University, Ho Chi Minh City, Vietnam
| | - Thi L Nguyen
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thi T N Bui
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thi N Mai
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Ra M Cha
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dong-Jun An
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, Republic of Korea
| | - Van P Le
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Ha Noi, Vietnam
| |
Collapse
|
32
|
Joshi LR, Mohr KA, Gava D, Kutish G, Buysse AS, Vannucci FA, Piñeyro PE, Crossley BM, Schiltz JJ, Jenkins-Moore M, Koster L, Tell R, Schaefer R, Marthaler D, Diel DG. Genetic diversity and evolution of the emerging picornavirus Senecavirus A. J Gen Virol 2019; 101:175-187. [PMID: 31859611 DOI: 10.1099/jgv.0.001360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Senecavirus A (SVA) is an emerging picornavirus that causes vesicular disease (VD) in swine. The virus has been circulating in swine in the United Stated (USA) since at least 1988, however, since 2014 a marked increase in the number of SVA outbreaks has been observed in swine worldwide. The factors that led to the emergence of SVA remain unknown. Evolutionary changes that accumulated in the SVA genome over the years may have contributed to the recent increase in disease incidence. Here we compared full-genome sequences of historical SVA strains (identified before 2010) from the USA and global contemporary SVA strains (identified after 2011). The results from the genetic analysis revealed 6.32 % genetic divergence between historical and contemporary SVA isolates. Selection pressure analysis revealed that the SVA polyprotein is undergoing selection, with four amino acid (aa) residues located in the VP1 (aa 735), 2A (aa 941), 3C (aa 1547) and 3D (aa 1850) coding regions being under positive/diversifying selection. Several aa substitutions were observed in the structural proteins (VP1, VP2 and VP3) of contemporary SVA isolates when compared to historical SVA strains. Some of these aa substitutions led to changes in the surface electrostatic potential of the structural proteins. This work provides important insights into the molecular evolution and epidemiology of SVA.
Collapse
Affiliation(s)
- Lok R Joshi
- Embrapa Swine and Poultry, Concórdia, Santa Catarina, Brazil
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
- Present address: Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kristin A Mohr
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Danielle Gava
- Embrapa Swine and Poultry, Concórdia, Santa Catarina, Brazil
| | - Gerald Kutish
- Department of Pathobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Alaire S Buysse
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| | - Fabio A Vannucci
- Department of Population Medicine, University of Minnesota, St Paul, MN 55455, USA
| | - Pablo E Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Beate M Crossley
- California Animal Health and Food Safety Laboratory System, Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - John J Schiltz
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA
| | - Melinda Jenkins-Moore
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA
| | - Leo Koster
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA
| | - Rachel Tell
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA
| | - Rejane Schaefer
- Embrapa Swine and Poultry, Concórdia, Santa Catarina, Brazil
| | - Douglas Marthaler
- Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
- Department of Population Medicine, University of Minnesota, St Paul, MN 55455, USA
| | - Diego G Diel
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
- Present address: Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Embrapa Swine and Poultry, Concórdia, Santa Catarina, Brazil
| |
Collapse
|
33
|
Reveles-Félix S, Carreón-Nápoles R, Mendoza-Elvira S, Quintero-Ramírez V, García-Sánchez J, Martínez-Bautista R, Saavedra-Montañez M, Mosqueda Gualito JJ, Sánchez-Betancourt JI. Emerging strains of porcine epidemic diarrhoea virus (PEDv) in Mexico. Transbound Emerg Dis 2019; 67:1035-1041. [PMID: 31733175 PMCID: PMC7159366 DOI: 10.1111/tbed.13426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 01/23/2023]
Abstract
As an emerging disease, the porcine epidemic diarrhoea virus has caused substantial economic losses to the pork industry in Mexico, leading to piglet mortality rates of up to 100%. For detection, sequencing and genetic characterization of the virus, 68 samples of one‐week‐old piglets from pork farms in 17 states of Mexico were analysed. In total, 53 samples were positive by real‐time RT‐PCR, confirming the presence of the virus in 15 states. Twenty‐eight samples from 10 states were amplified by endpoint RT‐PCR, and 20 sequences of the spike gene were obtained. A phylogenetic analysis based on the spike gene demonstrated that all Mexican strains are in Group II and are classified as non‐Indel‐S emerging variants. Three strains showed amino acid insertions: PEDv/MEX/GTO/LI‐DMZC15/2015 and PEDv/MEX/QRO/LI‐DMZC45/2016 showed one amino acid insertion (424Y425 and 447D448, respectively), and PEDv/MEX/QRO/LI‐DMZC49/2019 showed one and two amino acid insertions (422C423 and 537SQ538), with the second insertion in the COE region. These results provide evidence of the prevalence of emerging, non‐Indel‐S strains of the virus are currently circulating in Mexico during 2016–2018, when three of which have amino acid insertions: PEDv/MEX/GTO/IN‐DMZC15/2015 and PEDv/MEX/QRO/IN‐DMZC45/2016 have one amino acid insertion each (424Y425 and 447D448, respectively), and PEDv/MEX/QRO/IN‐DMZC49/2019 has one (422C423) and two amino acid insertions (537SQ538), the latter being in the COE region, which could generate new antigenic variants.
Collapse
Affiliation(s)
- Saúl Reveles-Félix
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rosalba Carreón-Nápoles
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Susana Mendoza-Elvira
- Laboratorio de Virología, Facultad de Estudios Superiores Cuautitlán (FESC), UNAM, Cuautitlan Izcalli, Mexico
| | | | - Juvencio García-Sánchez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rebeca Martínez-Bautista
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
34
|
Fan B, Jiao D, Zhang R, Zhou J, Guo R, Yu Z, Shi D, Zhao Y, Gu J, Niu B, Ma Z, Gao S, He K, Li B. Origin and epidemic status of porcine epidemic diarrhea virus variants in China. Transbound Emerg Dis 2019; 67:1364-1370. [PMID: 31793242 DOI: 10.1111/tbed.13444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
From 2010, porcine epidemic diarrhea virus (PEDV) variants caused sequential outbreaks of disease in Asia and the United States. In this retrospective study, 49 complete spike (S) gene sequences were obtained from PEDV strains collected in China from 2014 to 2016. We observed that variant PEDV strains with novel insertions, deletions, and multiple S gene recombination types were present in China. In addition, mixed infections involving different variant strains were observed in some areas. Based on phylogenetic and recombination analyses, we determined that the newly emerged PEDV variants potentially originated via recombination between the earliest Chinese G1 genogroup strain, JS-2004-2 and earlier Korean pandemic strains. These findings provide important information for understanding ongoing PEDV outbreaks and suggest that novel variants make it more difficult to prevent PEDV infection.
Collapse
Affiliation(s)
- Baochao Fan
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Dian Jiao
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Ruoxi Zhang
- Hebei Provincial Center for Animal Disease Control and Prevention, Shijiazhuang, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Danyi Shi
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jun Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beibei Niu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zengjun Ma
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Song Gao
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Kongwang He
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Bin Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Su M, Li C, Qi S, Yang D, Jiang N, Yin B, Guo D, Kong F, Yuan D, Feng L, Sun D. A molecular epidemiological investigation of PEDV in China: Characterization of co-infection and genetic diversity of S1-based genes. Transbound Emerg Dis 2019; 67:1129-1140. [PMID: 31785090 PMCID: PMC7233288 DOI: 10.1111/tbed.13439] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/30/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022]
Abstract
Porcine epidemic diarrhoea virus (PEDV) is an emerging and re‐emerging epizootic virus of swine that causes substantial economic losses to the pig industry in China and other countries. The variations in the virus, and its co‐infections with other enteric viruses, have contributed to the poor control of PEDV infection. In the current study, a broad epidemiological investigation of PEDV was carried out in 22 provinces or municipalities of China during 2015–2018. The enteric viruses causing co‐infection with PEDV and the genetic diversity of the PEDV S1 gene were also analysed. The results indicated that, of the 543 diarrhoea samples, 66.85% (363/543) were positive for PEDV, and co‐infection rates of PEDV with 13 enteric viruses ranged from 3.58% (13/363) to 81.55% (296/363). Among these enteric viruses, the signs of diarrhoea induced by PEDV were potentially associated with co‐infections with porcine enterovirus 9/10 (PEV) and torque teno sus virus 2 (TTSuV‐2) (p < .05). The 147 PEDV strains identified in our study belong to Chinese pandemic strains and exhibited genetic diversity. The virulence‐determining S1 proteins of PEDV pandemic strains were undergoing amino acid mutations, in which S58_S58insQGVN–N135dup–D158_I159del‐like mutations were common patterns (97.28%, 143/147). When compared with 2011–2014 PEDV strains, the amino acid mutations of PEDV pandemic strains were mainly located in the N‐terminal domain of S1 (S1‐NTD), and 21 novel mutations occurred in 2017 and 2018. Furthermore, protein homology modelling showed that the mutations in pattern of insertion and deletion mutations of the S1 protein of PEDV pandemic strains may have caused structural changes on the surface of the S1 protein. These data provide a better understanding of the co‐infection and genetic evolution of PEDV in China.
Collapse
Affiliation(s)
- Mingjun Su
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chunqiu Li
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Qi
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dan Yang
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ning Jiang
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Donghua Guo
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fanzhi Kong
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongwei Yuan
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
36
|
Antas M, Woźniakowski G. Current Status of Porcine Epidemic Diarrhoea (PED) in European Pigs. J Vet Res 2019; 63:465-470. [PMID: 31934654 PMCID: PMC6950429 DOI: 10.2478/jvetres-2019-0064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Porcine epidemic diarrhoea (PED) is a highly contagious and devastating enteric disease of pigs caused by porcine epidemic diarrhoea virus (PEDV), an enveloped, single-stranded RNA virus belonging to the Alphacoronavirus genus of the Coronaviridae family. The disease is clinically similar to other forms of porcine gastroenteritis. Pigs are the only known host of the disease, and the occurrence of PED in wild boars is unknown. The virus causes acute diarrhoea, vomiting, dehydration, and high mortality in suckling piglets reaching 100%. Heavy economic losses in the pig-farming industry were sustained in the USA between 2013 and 2015 when PEDV spread very quickly and resulted in epidemics. The loss in the US pig industry has been estimated at almost seven million pigs. The purpose of this review is a description of the current status of porcine epidemic diarrhoea in European pigs and the risk presented by the introduction of PEDV to Poland in comparison to the epidemics in the USA.
Collapse
Affiliation(s)
- Marta Antas
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Grzegorz Woźniakowski
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
37
|
Hou Y, Wang Q. Emerging Highly Virulent Porcine Epidemic Diarrhea Virus: Molecular Mechanisms of Attenuation and Rational Design of Live Attenuated Vaccines. Int J Mol Sci 2019; 20:E5478. [PMID: 31689903 PMCID: PMC6862049 DOI: 10.3390/ijms20215478] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in China in 2010. It infects pigs of all ages, and causes severe diarrhea and high mortality rates in newborn pigs, leading to devastating economic losses in the pork industry worldwide. Effective and safe vaccines against highly virulent PEDV strains are still unavailable, hampering the further prevention, control and eradication of the disease in herds. Vaccination of pregnant sows with live attenuated vaccines (LAVs) is the most effective strategy to induce lactogenic immunity in the sows, which provides A passive protection of suckling piglets against PEDV via the colostrum (beestings, or first milk) and milk. Several LAV candidates have been developed via serially passaging the highly virulent PEDV isolates in non-porcine Vero cells. However, their efficacies in the induction of sufficient protection against virulent PEDV challenge vary in vivo. In this review, we summarize the current knowledge of the virulence-related mutations of PEDV and their potential roles in PEDV attenuation in vivo. With the successful development of reverse genetics systems for PEDV, we also discuss how to use them to generate promising LAV candidates that are safe, effective and genetically stable. This article provides timely insight into the rational design of effective and safe PEDV LAV candidates.
Collapse
Affiliation(s)
- Yixuan Hou
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
38
|
Singh G, Singh P, Pillatzki A, Nelson E, Webb B, Dillberger-Lawson S, Ramamoorthy S. A Minimally Replicative Vaccine Protects Vaccinated Piglets Against Challenge With the Porcine Epidemic Diarrhea Virus. Front Vet Sci 2019; 6:347. [PMID: 31696121 PMCID: PMC6817509 DOI: 10.3389/fvets.2019.00347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), is an economically important enteric coronavirus, with over a 90% mortality rate in neonatal piglets. The virus emerged in the US in 2013, resulting in severe production losses. Effective vaccine development against PEDV is a challenge. Inactivated vaccines are of questionable efficacy. Attenuated vaccines, while more effective, require a relatively long lead development time, are associated with safety concerns and are also unable to prevent new field outbreaks. To combine the safety and efficacy advantages of inactivated and attenuated PEDV vaccines, respectively, in this study, we tested the hypothesis that subjecting PEDV virions to heat treatment at 44°C for 10 min to reversibly unfold structural proteins, followed by exposure to RNAse to fragment the genome, would result in a vaccine preparation with intact viral structure/antigenicity but highly diminished replicative abilities. We expected the vaccine to be both safe and effective in a piglet challenge model. Following the heat and RNAse treatment, PEDV virions had an intact electron microscopic ultrastructure and were amplified only in the 3rd passage in Vero cells, indicating that diminished replication was achieved in vitro. Strong PEDV spike-protein specific and virus neutralizing antibody responses were elicited in vaccinated piglets. Upon challenge, all vaccinated pigs were protected against fecal viral shedding and intestinal pathology, while the unvaccinated controls were not. The vaccine virus was not detected in the fecal matter of vaccinated pigs prior to challenge; nor did they develop intestinal lesions. Thus, the described approach has significant promise in improving current approaches for PEDV immunization.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Pankaj Singh
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Angela Pillatzki
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Eric Nelson
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Brett Webb
- Veterinary Diagnostic Laboratory, North Dakota State University, Fargo, ND, United States
| | - Steven Dillberger-Lawson
- Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
39
|
Hou Y, Ke H, Kim J, Yoo D, Su Y, Boley P, Chepngeno J, Vlasova AN, Saif LJ, Wang Q. Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2'- O-Methyltransferase and the Endocytosis Signal of the Spike Protein. J Virol 2019; 93:e00406-19. [PMID: 31118255 PMCID: PMC6639265 DOI: 10.1128/jvi.00406-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 01/18/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2'-O-methyltransferase (2'-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2'-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate.IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2'-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2'-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.
Collapse
Affiliation(s)
- Yixuan Hou
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Hanzhong Ke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yunfang Su
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Patricia Boley
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Juliet Chepngeno
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
40
|
Qin S, Hu C, Yang D, Wu J, Yue H, Tang C, Zhang B. Emergence of porcine epidemic diarrhea viruses with the novel S genes in Tibetan pigs in the Qinghai-Tibetan plateau in China. Virus Res 2019; 270:197652. [PMID: 31301333 DOI: 10.1016/j.virusres.2019.197652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/29/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022]
Abstract
The purpose of present study was to investigate the prevalence and genetic variation of porcine epidemic diarrhea virus (PEDV) in Tibetan pigs on the Qinghai-Tibetan Plateau in 2018. The PCR yielded a significantly high detection rate (38.34%, 95%CI=31.5-45.6%) for PEDV from 193 fecal samples from Tibetan pigs. The novel PEDVs were discovered in Tibetan pigs and seven complete S genes were obtained and analyzed. The unique multiple mutations were detected in S genes of PEDV from Tibetan pigs, one of which led to a new amino acid substitution of a neutralizing epitope. Phylogenetic analysis showed that seven S genes had significant genetic distance to other PEDV. Specially, two S genes formed a novel subgroup on the genogroup 2 (G2) branch, of which same recombination event occurred between different strains from genotype G2. The remaining five S genes formed a new subgroup on the G1 branch, among which distinct recombination events occurred between genotypes G1 and G2 strains. The result indicated that the new recombination events were detected in the S genes of PEDV from Tibetan pigs, which could be circulating in the Qinghai-Tibetan Plateau. Notably, the four complete PEDV genomes obtained in this study had an identical recombination region spanning S2, ORF3 and E genes. This is the first report of the crossover regional recombination event in PEDV genome. Our findings not only augmented current understanding of the genetic evolution of PEDV, but also indicated that new variants of PEDV strains have been emerging in Tibetan pigs.
Collapse
Affiliation(s)
- Sinan Qin
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Chengzhe Hu
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Danjiao Yang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding 626000, China
| | - Jianping Wu
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding 626000, China
| | - Hua Yue
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China; Animal Disease Prevention and Control Innovation Team in the Qinghai-Tibetan Plateau of State Ethnic Affairs Commission, Chengdu 610041, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China; Animal Disease Prevention and Control Innovation Team in the Qinghai-Tibetan Plateau of State Ethnic Affairs Commission, Chengdu 610041, China.
| | - Bin Zhang
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Key laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu 610041, China; Animal Disease Prevention and Control Innovation Team in the Qinghai-Tibetan Plateau of State Ethnic Affairs Commission, Chengdu 610041, China.
| |
Collapse
|
41
|
Chung HC, Nguyen VG, Le Huynh TM, Moon HJ, Kang BK, Kim SJ, Kim HK, Park SJ, Park KT, Park YH, Park BK. Molecular characterization of a Korean porcine epidemic diarrhea virus strain NB1. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2019; 83:97-103. [PMID: 31097871 PMCID: PMC6450166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/09/2018] [Indexed: 06/09/2023]
Abstract
In Korea, for the past 30 years (1987-present), porcine epidemic diarrhea (PED) has been established as an endemic situation in which multiple genogroups of classical G1 and G2b, and the recently introduced pandemic G2a, coexisted. Because of the dynamic nature of the virus, continuous field monitoring for PEDV strains is required. This study is the first to reveal prevalence of PEDV in 9 sampling provinces, with an overall detection rate of 6.70%. Porcine endemic diarrhea virus (PEDV) was present in pigs of all ages, especially in the non-PED vaccinated groups. The highest detection rate was in the finisher group (2.34%), followed by that in the newborn group (1.56%). Secondly, using Sanger sequencing, this study recovered a complete genome (28 005 nucleotides long) of NB1 strain from a farm severely affected by PED. Analyses of nucleotide and deduced amino acid sequences showed that NB1 differed from 18 other Korean PEDV mostly in 4 protein coding genes: ORF1a, ORF1b, S, and N. Two amino acid substitutions (V635E and Y681Q) in the COE and S1D neutralizing epitopes of NB1 resulted in antigenic index alteration of the adjacent sites, one of which contributed to a mutation that escaped neutralizing antibodies.
Collapse
Affiliation(s)
- Hee-Chun Chung
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Van Giap Nguyen
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Thi My Le Huynh
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Hyoung-Joon Moon
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Bo-Kyu Kang
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Sung-Jae Kim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Hye-Kwon Kim
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Seong-Jun Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Kun-Taek Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Yong-Ho Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| | - Bong-Kyun Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (H-C Chung, B-K Park); Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam (VG Nguyen, TML Huynh); Research Unit, Green Cross Veterinary Products, Yongin, Republic of Korea (H-J Moon, B-K Kang, S-J Kim); Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea (H-K Kim); Forensic Medicine Division, Daejeon Institute, National Forensic Service, Daejeon, 34054, Republic of Korea (S-J Park); Department of Biotechnology, Inje University, Injero 197, Kimhae-si, Gyeongsangnam-do, Korea (K-T Park); Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea (Y-H Park)
| |
Collapse
|
42
|
Chen F, Knutson TP, Braun E, Jiang Y, Rossow S, Marthaler DG. Semi-quantitative duplex RT-PCR reveals the low occurrence of Porcine Pegivirus and Atypical Porcine Pestivirus in diagnostic samples from the United States. Transbound Emerg Dis 2019; 66:1420-1425. [PMID: 30806022 PMCID: PMC6849716 DOI: 10.1111/tbed.13154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/24/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Porcine Pegivirus (PPgV) and Atypical Porcine Pestivirus (APPV) are two recently identified porcine viruses. In this study, the identification of two viruses by metagenomic sequencing, and a duplex semi‐quantitative RT‐PCR was developed to detect these pathogens simultaneously. The PPgV strain Minnesota‐1/2016 had a 95.5%–96.3% nucleotide identity and clustered with the recently identified US PPgV strains, which is a distant clade from the German PPgV strains. The APPV strain Minnesota‐1/2016 shared an 87.3%–92.0% nucleotide identity with the other global APPV strains identity but only shared an 82.8%–83.0% nucleotide identity with clade II consisting of strain identified in China. Detection of both PPgV and APPV was 9.0% of the diagnostic cases. Co‐infection of PPgV and APPV was identified in 7.5% of the diagnostic cases. The occurrence and genetic characterization of PPgV and APPV further enhance our knowledge regarding these new pathogens in the United States.
Collapse
Affiliation(s)
- Fangzhou Chen
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota.,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Todd P Knutson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Eli Braun
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Yin Jiang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Stephanie Rossow
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Douglas G Marthaler
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
43
|
Zhang L, Liu X, Zhang Q, Zhou P, Fang Y, Dong Z, Zhao D, Li W, Feng J, Zhang Y, Wang Y. Biological characterization and pathogenicity of a newly isolated Chinese highly virulent genotype GIIa porcine epidemic diarrhea virus strain. Arch Virol 2019; 164:1287-1295. [PMID: 30859476 PMCID: PMC7086859 DOI: 10.1007/s00705-019-04167-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/10/2019] [Indexed: 11/29/2022]
Abstract
Since 2010, continual outbreaks of highly virulent variants of porcine epidemic diarrhea virus (PEDV) belonging to genotype GII have led to serious economic losses for the Chinese swine industry. To better understand the biological characteristics and pathogenicity of the current prevalent Chinese PEDV field strains, in this study, a highly virulent Chinese genotype GIIa PEDV strain, CH/HBXT/2018, was isolated and serially propagated using Vero cells. Sequencing and phylogenetic analysis showed that strain CH/HBXT/2018 contained novel insertion and deletion mutations in the S gene region relative to the classical strain and belonged to the genotype GIIa, similar to other recently isolated PEDV strains from China and the United States. Pig infection studies indicated that the CH/HBXT/2018 strain was highly virulent in suckling piglets, and the median pig diarrhea dose (PDD50) was 8.63 log10PDD50/3 mL at 7 days postinfection (DPI). The results of the present study are important for future PEDV challenge studies and the development of new PEDV vaccines based on prevalent field strains for the prevention and control of PED in China.
Collapse
Affiliation(s)
- Liping Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Qiaoling Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Peng Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yuzhen Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhaoliang Dong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Donghong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Weiyan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiaxin Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
44
|
Simultaneous detection of five pig viruses associated with enteric disease in pigs using EvaGreen real-time PCR combined with melting curve analysis. J Virol Methods 2019; 268:1-8. [PMID: 30844408 DOI: 10.1016/j.jviromet.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 12/14/2022]
Abstract
In recent years, a series of porcine diarrhea viruses such as porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotaviruses of group A (RVA), rotaviruses of group C (RVC), and porcine circovirus 2 (PCV2) caused enormous economic losses all over the world. While any of these viruses is capable to cause disease alone, there is often concurrent infection with more than one virus on pig farms. In this study, a multiplex real-time PCR method based on EvaGreen fluorescent dye and melting curve analysis was established to simultaneously detect these five viruses in a single closed tube. Five distinct melt peaks were obtained with different melting temperature (Tm) value corresponding to each of the five viruses. This method was highly sensitive to detect and distinguish TGEV, RVA, RVC, PEDV and PCV2 with the limits of detection ranging from 5 to 50 copies/μL. The intra-assay and inter-assay reproducibility were good with coefficient of variation of Tm and cycle threshold values less than 0.32% and 2.86%, respectively. Testing of 90 field samples by the single and multiplex real-time PCR assays demonstrated a concordance of 91.1%. Thus, the EvaGreen multiplex real-time PCR is a rapid, sensitive and low-cost diagnostic tool for differential detection and routine surveillance of TGEV, RVA, RVC, PEDV and PCV2 in pigs.
Collapse
|
45
|
Hao Z, Fu F, Cao L, Guo L, Liu J, Xue M, Feng L. Tumor suppressor p53 inhibits porcine epidemic diarrhea virus infection via interferon-mediated antiviral immunity. Mol Immunol 2019; 108:68-74. [PMID: 30784764 PMCID: PMC7112615 DOI: 10.1016/j.molimm.2019.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/26/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
p53 is a tumor suppressor gene that can be activated in many contexts, such as DNA damage or stressful conditions. p53 has also been shown to be important for responses to certain viral infections. Porcine epidemic diarrhea virus (PEDV) is a major enteric pathogen of the coronavirus family that causes extensive mortality among piglets. The involvement of p53 during PEDV infection has not previously been investigated. In this study, we detected p53 upregulation in response to PEDV infection. Treatment with a p53 specific activator or p53 overexpression markedly decreased viral replication, and we showed that there was more viral progeny produced in p53 knock-out cells than in p53 wild-type cells. Finally, we demonstrated that inhibition of viral infection by p53 was mediated via p53-dependent IFN signaling, leading to IFN-stimulated response element (ISRE) activation, as well as the upregulation of IFN-stimulated genes (ISGs) and IFN-β released from infected cells. These findings demonstrate that p53 suppresses PEDV infection, offering a novel therapeutic strategy for combatting this deadly disease in piglets.
Collapse
Affiliation(s)
- Zhichao Hao
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Fang Fu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Liyan Cao
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Longjun Guo
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Jianbo Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Mei Xue
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| |
Collapse
|
46
|
Liu X, Zhang L, Zhang Q, Zhou P, Fang Y, Zhao D, Feng J, Li W, Zhang Y, Wang Y. Evaluation and comparison of immunogenicity and cross-protective efficacy of two inactivated cell culture-derived GIIa- and GIIb-genotype porcine epidemic diarrhea virus vaccines in suckling piglets. Vet Microbiol 2019; 230:278-282. [PMID: 30827401 DOI: 10.1016/j.vetmic.2019.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Although highly virulent GII-genotype PEDV strains have become pandemic in the swine population worldwide, little is known about the differences in immunogenicity and cross-protective efficacy between the GIIa and GIIb subgenotypes. Hence, in the present study, we vaccinated suckling piglets with GIIa (CH/HBXT/2018) and GIIb (CH/HNPJ/2017) PEDV strain-based inactivated vaccine candidates and compared their immunogenicity and cross-protective efficacy. The results showed that both vaccine candidates induced high levels of PEDV-specific IgG antibodies and IFN-γ and reduced the levels of neutralizing antibodies at 21 dpv in suckling piglets. The GIIa-based inactivated vaccine protected all piglets (8/8) against virulent homologous and heterologous virus challenge, while the GIIb strain-based inactivated vaccine protected only 2/4 and 1/4 piglets against virulent homologous and heterologous virus challenge, respectively. Furthermore, antibodies against the GIIa and GIIb strains cross-reacted and cross-neutralized both strains in vitro. Taken together, the data presented in this study indicate that GIIa strain-based inactivated vaccine candidates are more promising than GIIb-based candidates for the development of an effective vaccine against the current highly virulent pandemic PEDV strains.
Collapse
Affiliation(s)
- Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Liping Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Qiaoling Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Peng Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yuzhen Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Donghong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Jiaxin Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Weiyan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
47
|
Molecular characteristics of a novel recombinant of porcine epidemic diarrhea virus. Arch Virol 2019; 164:1199-1204. [PMID: 30725181 PMCID: PMC7086971 DOI: 10.1007/s00705-019-04166-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/10/2019] [Indexed: 11/30/2022]
Abstract
Porcine epidemic diarrhea (PED) is a contagious viral disease in pigs, caused by the coronavirus porcine epidemic diarrhea virus (PEDV). PEDV infection results in significant mortality in piglets in unvaccinated herds. Like many others RNA viruses, PEDV has high evolutionary rate and is prone to genetic mutations. In this study, we analyzed the complete genome sequence of the recently sequenced isolate PEDV/Belgorod/dom/2008. A recombination event in S gene of PEDV/Belgorod/dom/2008 was detected. Pairwise identity analysis of the whole genome sequences revealed that PEDV/Belgorod/dom/2008 is an intermediate between PEDV and transmissible gastroenteritis virus (TGEV) strains. These results can be used for further analysis of the evolutionary variability, prevalence, and epidemiology of the porcine epidemic diarrhea virus.
Collapse
|
48
|
Li D, Feng H, Liu Y, Chen Y, Wei Q, Wang J, Liu D, Huang H, Su Y, Wang D, Cui Y, Zhang G. Molecular evolution of porcine epidemic diarrhea virus and porcine deltacoronavirus strains in Central China. Res Vet Sci 2018; 120:63-69. [PMID: 30265872 PMCID: PMC7111851 DOI: 10.1016/j.rvsc.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/28/2018] [Accepted: 06/10/2018] [Indexed: 01/05/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are epizootic swine viruses. To detect and study the evolution of PEDV and PDCoV in central China (Shanxi, Henan, Hubei province), 70 clinical intestinal and fecal samples from piglets with severe watery diarrhea during August 2015 and June 2016 were collected, tested and analyzed. PEDV was more frequently detected by PCR than PDCoV. Phylogenetic analysis of S genes showed that the 10 PEDV strains from this study clustered into G2a (n = 7) and G2b (n = 3) groups. Additionally, the three G2b strains (PEDV S2△) contained the same specific 3 nt deletion in S2 as other reference strains in G2b. Interestingly, complete genome analysis indicated that CH/hubei/2016 was closer to the US INDEL strain and G2a group. CH/hubei/2016 had one recombination event in S2 gene which may have resulted from AH2012-12 (from G2b group) and CH-ZMDZY-11 (from G2a group). Furthermore, 10 purifying selection sites in S gene indicated an adaptive evolution of PEDV in central China swine herds. These results suggested that Pandemic G2a and G2b are predominant PEDV genotype circulating in central China. In addition, the deletion and recombination identified in S gene suggested PEDV strains of central exhibited an evolutionary variety. However, whether these changes affect the pathogenicity and antigenicity of wild PEDV is unknown and is worth for further investigation. PEDV (84.2%) infection could be more commonly detected than PDCoV (2.9%) in central China. A specific 3 nt-deletion in S2 gene was firstly reported in PEDV strains of central China. The further analyses provided evidence of the relationship between PEDV S2△ and previous PEDV stains (3-deletion in S2).
Collapse
Affiliation(s)
- Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Juan Wang
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou 450019, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou 450019, China
| | - Huimin Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunfang Su
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China; College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shanxi 712100, China
| | - Dongyu Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglei Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China; College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shanxi 712100, China.
| |
Collapse
|
49
|
Large-Scale Complete-Genome Sequencing and Phylodynamic Analysis of Eastern Equine Encephalitis Virus Reveals Source-Sink Transmission Dynamics in the United States. J Virol 2018; 92:JVI.00074-18. [PMID: 29618651 DOI: 10.1128/jvi.00074-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) has a high case-fatality rate in horses and humans, and Florida has been hypothesized to be the source of EEEV epidemics for the northeastern United States. To test this hypothesis, we sequenced complete genomes of 433 EEEV strains collected within the United States from 1934 to 2014. Phylogenetic analysis suggested EEEV evolves relatively slowly and that transmission is enzootic in Florida, characterized by higher genetic diversity and long-term local persistence. In contrast, EEEV strains in New York and Massachusetts were characterized by lower genetic diversity, multiple introductions, and shorter local persistence. Our phylogeographic analysis supported a source-sink model in which Florida is the major source of EEEV compared to the other localities sampled. In sum, this study revealed the complex epidemiological dynamics of EEEV in different geographic regions in the United States and provided general insights into the evolution and transmission of other avian mosquito-borne viruses in this region.IMPORTANCE Eastern equine encephalitis virus (EEEV) infections are severe in horses and humans on the east coast of the United States with a >90% mortality rate in horses, an ∼33% mortality rate in humans, and significant brain damage in most human survivors. However, little is known about the evolutionary characteristics of EEEV due to the lack of genome sequences. By generating large collection of publicly available complete genome sequences, this study comprehensively determined the evolution of the virus, described the epidemiological dynamics of EEEV in different states in the United States, and identified Florida as one of the major sources. These results may have important implications for the control and prevention of other mosquito-borne viruses in the Americas.
Collapse
|
50
|
Barrera M, Garrido-Haro A, Vaca MS, Granda D, Acosta-Batallas A, Pérez LJ. Tracking the Origin and Deciphering the Phylogenetic Relationship of Porcine Epidemic Diarrhea Virus in Ecuador. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2978718. [PMID: 29379796 PMCID: PMC5742880 DOI: 10.1155/2017/2978718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/12/2017] [Accepted: 10/29/2017] [Indexed: 12/30/2022]
Abstract
In 2010, new Chinese strains of porcine epidemic diarrhea virus (PEDV), clinically more severe than the classical strains, emerged. These strains were spread to United States in 2013 through an intercontinental transmission from China with further spreading across the world, evidencing the emergent nature of these strains. In the present study, an analysis of PEDV field sequences from Ecuador was conducted by comparing all the PEDV S gene sequences available in the GenBank database. Phylogenetic comparisons and Bayesian phylogeographic inference based on complete S gene sequences were also conducted to track the origin and putative route of PEDV. The sequence from the PED-outbreak in Ecuador was grouped into the clade II of PEDV genogroup 2a together with other sequences of isolates from Mexico, Canada, and United States. The phylogeographic study revealed the emergence of the Chinese PEDV strains, followed by spreading to US in 2013, from US to Korea, and later the introduction of PEDV to Canada, Mexico, and Ecuador directly from the US. The sources of imports of live swine in Ecuador in 2014 were mainly from Chile and US. Thus, this movement of pigs is suggested as the main way for introducing PEDV to Ecuador.
Collapse
Affiliation(s)
- Maritza Barrera
- Facultad de Ciencias Veterinarias, Universidad Tëcnica de Manabí, Ave Urbina y Che Guevara, Portoviejo, Manabí, Ecuador
| | - Ana Garrido-Haro
- Laboratorio de Biología Molecular, Agencia Ecuatoriana de Aseguramiento de Calidad del Agro (Agrocalidad), Av. Interoceánica, Km. 14.5, La Granja MAGAP, Tumbaco, Pichincha, Ecuador
| | - María S. Vaca
- Laboratorio de Biología Molecular, Agencia Ecuatoriana de Aseguramiento de Calidad del Agro (Agrocalidad), Av. Interoceánica, Km. 14.5, La Granja MAGAP, Tumbaco, Pichincha, Ecuador
| | - Danilo Granda
- Laboratorio de Biología Molecular, Agencia Ecuatoriana de Aseguramiento de Calidad del Agro (Agrocalidad), Av. Interoceánica, Km. 14.5, La Granja MAGAP, Tumbaco, Pichincha, Ecuador
| | - Alfredo Acosta-Batallas
- Laboratorio de Epidemiologia y Bioestadistica Veterinária, Universidad de São Paulo, São Paulo, SP, Brazil
| | - Lester J. Pérez
- Dalhousie Medicine New Brunswick (DMNB), Saint John, NB, Canada E2L 4L5
| |
Collapse
|