1
|
Chatzikonstantinou AV, Bellou MG, Spyrou S, Papanikolaou A, Simos YV, Peschos D, Stamatis H. Enhancement of the biological activity of hydroxytyrosol through its oxidation by laccase from Trametes versicolor. J Biotechnol 2024; 385:30-41. [PMID: 38403132 DOI: 10.1016/j.jbiotec.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The laccase-catalyzed oxidation of hydroxytyrosol (HT) towards the formation of its bioactive oligomer derivatives was investigated. The biocatalytic oligomerization was catalyzed by laccase from Trametes versicolor in aqueous or various water-miscible organic solvents and deep eutectic solvent (DES)-based media. Mass Spectroscopy and Nuclear Magnetic Resonance were used for the characterization of the products. The solvent system used significantly affects the degree of HT oligomerization. The use of 50 % v/v methanol favored the production of the HT dimer, while other organic solvents as well as DESs led to the formation of hydroxytyrosol trimer and other oligomers. In vitro studies showed that the HT dimer exhibits 3- to 4-fold enhanced antibacterial activity against Gram-positive and Gram-negative bacteria compared to the parent compound. Moreover, the ability of HT dimer to inhibit the activity of soybean lipoxygenase and Candida rugosa lipase was 1.5-fold higher than HT, while molecular docking supported these results. Furthermore, HT dimer showed reduced cytotoxicity against HEK293 cells and exhibited a strong ability to inhibit ROS formation. The enhanced bioactivity of HT dimer indicates that this compound could be considered for use in cosmetics, skin-care products, and nutraceuticals.
Collapse
Affiliation(s)
- Alexandra V Chatzikonstantinou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Myrto G Bellou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
| | - Stamatia Spyrou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
| | - Angelos Papanikolaou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece; Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece; Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece; Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
2
|
Lobiuc A, Pavăl NE, Mangalagiu II, Gheorghiță R, Teliban GC, Amăriucăi-Mantu D, Stoleru V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023; 28:molecules28031114. [PMID: 36770780 PMCID: PMC9920704 DOI: 10.3390/molecules28031114] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
With incidence of antimicrobial resistance rising globally, there is a continuous need for development of new antimicrobial molecules. Phenolic compounds having a versatile scaffold that allows for a broad range of chemical additions; they also exhibit potent antimicrobial activities which can be enhanced significantly through functionalization. Synthetic routes such as esterification, phosphorylation, hydroxylation or enzymatic conjugation may increase the antimicrobial activity of compounds and reduce minimal concentrations needed. With potent action mechanisms interfering with bacterial cell wall synthesis, DNA replication or enzyme production, phenolics can target multiple sites in bacteria, leading to a much higher sensitivity of cells towards these natural compounds. The current review summarizes some of the most important knowledge on functionalization of natural phenolic compounds and the effects on their antimicrobial activity.
Collapse
Affiliation(s)
- Andrei Lobiuc
- Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania
| | - Naomi-Eunicia Pavăl
- Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania
- Correspondence: (N.-E.P.); (I.I.M.)
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, “Alexandru Ioan Cuza” University, 700506 Iasi, Romania
- Correspondence: (N.-E.P.); (I.I.M.)
| | - Roxana Gheorghiță
- Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University, 720229 Suceava, Romania
| | - Gabriel-Ciprian Teliban
- Department of Horticulture Technologies, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania
| | | | - Vasile Stoleru
- Department of Horticulture Technologies, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania
| |
Collapse
|
3
|
Jin F, Liao S, Li W, Jiang C, Wei Q, Xia X, Wang Q. Amphiphilic sodium alginate-polylysine hydrogel with high antibacterial efficiency in a wide pH range. Carbohydr Polym 2023; 299:120195. [PMID: 36876766 DOI: 10.1016/j.carbpol.2022.120195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Bacterial infection is a major pathological factor leading to persistent wounds. With the aging of population, wound infection has gradually become a global health-issue. The wound site environment is complicated, and the pH changes dynamically during healing. Therefore, there is an urgent need for new antibacterial materials that can adapt to a wide pH range. To achieve this goal, we developed a thymol-oligomeric tannic acid/amphiphilic sodium alginate-polylysine hydrogel film, which exhibited excellent antibacterial efficacy in the pH range from 4 to 9, achieving the highest achievable 99.993 % (4.2 log units) and 99.62 % (2.4 log units) against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The hydrogel films exhibited excellent cytocompatibility, suggesting that the materials are promising as a novel wound healing material without the concern of biosafety.
Collapse
Affiliation(s)
- Fangyu Jin
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shiqin Liao
- Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xin Xia
- College of Textile and Clothing, Xinjiang University, Urumqi 830046, PR China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, PR China.
| |
Collapse
|
4
|
Ren J, Kong R, Gao Y, Zhang L, Zhu J. Bioinspired adhesive coatings from polyethylenimine and tannic acid complexes exhibiting antifogging, self-cleaning, and antibacterial capabilities. J Colloid Interface Sci 2021; 602:406-414. [PMID: 34139538 DOI: 10.1016/j.jcis.2021.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
In this work, we develop a simple yet robust method to fabricate a bioinspired adhesive coating based on polyethyleneimine (PEI) and tannic acid (TA) complexes, exhibiting excellent antifogging, self-cleaning, and antibacterial properties. The polyethyleneimine-tannic acid (PEI-TA) complexes coating combined with the bioinspired adhesive property from TA can be effectively and stably coated onto various substrates through a one-step deposition process, and the hydrophilicity of the coated substrates can be significantly enhanced with their water contact angle less than 10°. The bioinspired adhesive coating endows the coated substrates with outstanding antifogging and self-cleaning performance. Moreover, it is found that the PEI-TA coated safety goggles display excellent durability and antifogging capability compared to the commercial antifogging safety goggles and commercial antifogging agents coated safety goggles under 65 ℃ vapor condition for 2 h. Furthermore, the PEI-TA coatings show superior antibacterial activities for Gram-negative Escherichiak coli and Gram-positive Staphylococcus aureus. The antifogging, self-cleaning, and antibacterial coating provides widely potential application prospects in optical and medical devices.
Collapse
Affiliation(s)
- Jingli Ren
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ruixia Kong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yujie Gao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
5
|
Chitosan/polyacrylonitrile composite nanofiltration membranes: towards separation of salts, riboflavin and antibacterial study. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03727-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Abstract
Tannins are natural polyphenolic compounds widely distributed in the plant kingdom in the leaves, bark, fruits, and other parts. They have various biological functions in humans and animals and are used mainly in the pharmaceutical and cosmetic industries. The aim of this work was to isolate, extract, purify, and identify the tannins from the root bark of a common oak tree (Quercus aegilops L.) in Jordan and around the Mediterranean. The results showed that at least one form of ellagitannin (ellagic acid ester), quercitrin, afzelechin, valoneic acid, trigalloyl glucose, and catechin was identified in addition to two unidentified compounds. Results of this work can help in developing an ESI MS/MS search library for the constituents of the tannins of oak (Quercus aegilops L.) root bark.
Collapse
|
7
|
Razaviamri S, Wang K, Liu B, Lee BP. Catechol-Based Antimicrobial Polymers. Molecules 2021; 26:559. [PMID: 33494541 PMCID: PMC7865322 DOI: 10.3390/molecules26030559] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Catechol is a key constituent in mussel adhesive proteins and is responsible for strong adhesive property and crosslinking formation. Plant-based polyphenols are also capable of chemical interactions similar to those of catechol and are inherently antimicrobial. This review reports a series of catechol-based antimicrobial polymers classified according to their antimicrobial mechanisms. Catechol is utilized as a surface anchoring group for adhering monomers and polymers of known antimicrobial properties onto various types of surfaces. Additionally, catechol's ability to form strong complexes with metal ions and nanoparticles was utilized to sequester these antimicrobial agents into coatings and polymer matrices. During catechol oxidation, reactive oxygen species (ROS) is generated as a byproduct, and the use of the generated ROS for antimicrobial applications was also introduced. Finally, polymers that utilized the innate antimicrobial property of halogenated catechols and polyphenols were reviewed.
Collapse
Affiliation(s)
| | | | - Bo Liu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (S.R.); (K.W.)
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; (S.R.); (K.W.)
| |
Collapse
|
8
|
Martinelli A, Giannini L, Branduardi P. Enzymatic Modification of Cellulose To Unlock Its Exploitation in Advanced Materials. Chembiochem 2020; 22:974-981. [PMID: 33063936 DOI: 10.1002/cbic.202000643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Indexed: 01/16/2023]
Abstract
Nowadays natural biopolymers have a wide variety of uses in various industrial applications, such as food, adhesives and composite materials. Among them, cellulose has attracted the interest of researchers due to its properties: high strength and flexibility, biocompatibility and nontoxicity. Despite that, in many cases its practical use is limited because of poor solubility and/or an unsuitable hydrophilic/hydrophobic balance. In this context, enzymatic modification appears as a powerful strategy to overcome these problems through selective, green and environmentally friendly processes. This minireview discusses the different methods developed for the enzymatic modification of cellulose, emphasizing the type of reaction, the enzymes used (laccases, esterases, lipases, hexokinases, etc.), and the properties and applications of the cellulose derivatives obtained. Considering that cellulose is the most abundant natural polymer on Earth and can be derived from residual lignocellulosic biomass, the impact of its use in bio-based process following the logic of the circular economy is relevant.
Collapse
Affiliation(s)
- Andrea Martinelli
- DepartmentMaterials Science, University of Milano Bicocca, Via Cozzi 55, 20125, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | | | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| |
Collapse
|
9
|
Musengi A, Durrell K, Prins A, Khan N, Agunbiade M, Kudanga T, Kirby-McCullough B, Pletschke BI, Burton SG, Le Roes-Hill M. Production and characterisation of a novel actinobacterial DyP-type peroxidase and its application in coupling of phenolic monomers. Enzyme Microb Technol 2020; 141:109654. [PMID: 33051013 DOI: 10.1016/j.enzmictec.2020.109654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
The extracellular peroxidase from Streptomyces albidoflavus BSII#1 was purified to near homogeneity using sequential steps of acid and acetone precipitation, followed by ultrafiltration. The purified peroxidase was characterised and tested for the ability to catalyse coupling reactions between selected phenolic monomer pairs. A 46-fold purification of the peroxidase was achieved, and it was shown to be a 46 kDa haem peroxidase. Unlike other actinobacteria-derived peroxidases, it was only inhibited (27 % inhibition) by relatively high concentrations of sodium azide (5 mM) and was capable of oxidising eleven (2,4-dichlorophenol, 2,6-dimethoxyphenol, 4-tert-butylcatechol, ABTS, caffeic acid, catechol, guaiacol, l-DOPA, o-aminophenol, phenol, pyrogallol) of the seventeen substrates tested. The peroxidase remained stable at temperatures of up to 80 °C for 60 min and retained >50 % activity after 24 h between pH 5.0-9.0, but was most sensitive to incubation with hydrogen peroxide (H2O2; 0.01 mM), l-cysteine (0.02 mM) and ascorbate (0.05 mM) for one hour. It was significantly inhibited by all organic solvents tested (p ≤ 0.05). The Km and Vmax values of the partially purified peroxidase with the substrate 2,4-DCP were 0.95 mM and 0.12 mmol min-1, respectively. The dyes reactive blue 4, reactive black 5, and Azure B, were all decolourised to a certain extent: approximately 30 % decolourisation was observed after 24 h (1 μM dye). The peroxidase successfully catalysed coupling reactions between several phenolic monomer pairs including catechin-caffeic acid, catechin-catechol, catechin-guaiacol and guaiacol-syringaldazine under the non-optimised conditions used in this study. Genome sequencing confirmed the identity of strain BSII#1 as a S. albidoflavus strain. In addition, the genome sequence revealed the presence of one peroxidase gene that includes the twin arginine translocation signal sequence of extracellular proteins. Functional studies confirmed that the peroxidase produced by S. albidoflavus BSII#1 is part of the dye-decolourising peroxidase (DyP-type) family.
Collapse
Affiliation(s)
- Amos Musengi
- Applied Microbiology and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa; Biotechnology Department, Harare Institute of Technology, P. O. Box BE 277, Belvedere, Harare, Zimbabwe
| | - Kim Durrell
- Applied Microbiology and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Alaric Prins
- Applied Microbiology and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa; Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
| | - Nuraan Khan
- Applied Microbiology and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Mayowa Agunbiade
- Applied Microbiology and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Tukayi Kudanga
- Applied Microbiology and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa; Department of Biotechnology and Food Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Bronwyn Kirby-McCullough
- Institute for Microbial Biotechnology and Metagenomics, Department of Biotechnology, University of the Western Cape, Bellville, 7535, South Africa
| | - Brett I Pletschke
- Department of Biochemistry and Microbiology, Rhodes University, PO Box 94, Makhanda (Grahamstown), 6140, South Africa
| | - Stephanie G Burton
- Vice-Principal: Research and Postgraduate Education and Department of Biochemistry, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Marilize Le Roes-Hill
- Applied Microbiology and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa.
| |
Collapse
|
10
|
Tannic acid/CaII anchored on the surface of chitin nanofiber sponge by layer-by-layer deposition: Integrating effective antibacterial and hemostatic performance. Int J Biol Macromol 2020; 159:304-315. [DOI: 10.1016/j.ijbiomac.2020.05.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
|
11
|
Structure and Bioactive Properties of Novel Textile Dyes Synthesised by Fungal Laccase. Int J Mol Sci 2020; 21:ijms21062052. [PMID: 32192097 PMCID: PMC7139866 DOI: 10.3390/ijms21062052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 11/23/2022] Open
Abstract
Novel sustainable processes involving oxidative enzymatic catalysts are considered as an alternative for classical organic chemistry. The unique physicochemical and bioactive properties of novel bio-products can be obtained using fungal laccase as catalyst. Among them are textile biodyes synthesised during oxidation of substrates belonging to the amine and methoxy organic derivatives. The process of synthesis occurs in mild conditions of pH, temperature, and pressure, and without using harmful oxidants. The effect of fungal laccase activity on the substrates mixture transformation efficiency was analysed in terms of antimicrobial dye synthesis on a large scale. Three new phenazine dyes, obtained in the presence of laccase from Cerrena unicolor, were studied for their structure and properties. The phenazine core structure of the products was a result of tri-molecular transformation of aminomethoxybenzoic acid and aminonaphthalene sulfonic acid isomers. One of the compounds from the synthesised dye, namely 10-((2-carboxy-6-methoxyphenyl)amino)-11-methoxybenzo[a]phenazine-8-carboxylic acid, was able to inhibit the growth of Staphylococcus aureus. The high concentration of substrates (5 g/L) was efficiently transformed during 72 h in the mild conditions of pH 4 with the use of laccase with an activity of 200 U per g of the substrates mixture. The new bioactive dye exhibited excellent dyeing properties with concomitant antibacterial and antioxidative activity. The proposed enzyme-mediated synthesis represents an alternative eco-friendly route for the synthesis of novel antimicrobial compounds with high importance for the medical textile industry.
Collapse
|
12
|
Mohit E, Tabarzad M, Faramarzi MA. Biomedical and Pharmaceutical-Related Applications of Laccases. Curr Protein Pept Sci 2020; 21:78-98. [DOI: 10.2174/1389203720666191011105624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 12/07/2022]
Abstract
The oxidation of a vast range of phenolic and non-phenolic substrates has been catalyzed by
laccases. Given a wide range of substrates, laccases can be applied in different biotechnological applications.
The present review was conducted to provide a broad context in pharmaceutical- and biomedical-
related applications of laccases for academic and industrial researchers. First, an overview of biological
roles of laccases was presented. Furthermore, laccase-mediated strategies for imparting antimicrobial
and antioxidant properties to different surfaces were discussed. In this review, laccase-mediated
mechanisms for endowing antimicrobial properties were divided into laccase-mediated bio-grafting of
phenolic compounds on lignocellulosic fiber, chitosan and catheters, and laccase-catalyzed iodination.
Accordingly, a special emphasis was placed on laccase-mediated functionalization for creating antimicrobials,
particularly chitosan-based wound dressings. Additionally, oxidative bio-grafting and oxidative
polymerization were described as the two main laccase-catalyzed reactions for imparting antioxidant
properties. Recent laccase-related studies were also summarized regarding the synthesis of antibacterial
and antiproliferative agents and the degradation of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| |
Collapse
|
13
|
van der Zwan T, Chandra RP, Saddler JN. Laccase-mediated hydrophilization of lignin decreases unproductive enzyme binding but limits subsequent enzymatic hydrolysis at high substrate concentrations. BIORESOURCE TECHNOLOGY 2019; 292:121999. [PMID: 31446388 DOI: 10.1016/j.biortech.2019.121999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
One of the predominant mechanisms by which lignin restricts effective enzymatic deconstruction of lignocellulosic materials is the unproductive adsorption of enzymes. Although this inhibition can be partially mitigated through hydrophilization of lignin during thermochemical pretreatment, these types of treatments could potentially worsen slurry rheology, consequently making it more difficult to process the material at high substrate concentrations. In the work reported here, laccases were used to specifically modify lignin hydrophilicity within steam-pretreated substrate via in situ phenolic compound grafting. While lignin hydrophilization reduced unproductive enzyme adsorption, high-solids hydrolysis efficiency decreased significantly due to mass transfer limitations. It was apparent that low-solids hydrolysis experiments were a poor predictor of substrate digestibility at high-solids conditions and that substrate-water interactions impacted both substrate digestibility and slurry rheology.
Collapse
Affiliation(s)
- Timo van der Zwan
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Richard P Chandra
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jack N Saddler
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
14
|
Zhang X, An H, Wang R, Feng J, Fan Z, Ren Y. Low-energy disinfection under natural light by magnetic Ag Mn1−Fe2O4 in the water: Efficiency and mechanism. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.02.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Sharma V, Ayothiraman S, Dhakshinamoorthy V. Production of highly thermo-tolerant laccase from novel thermophilic bacterium Bacillus sp. PC-3 and its application in functionalization of chitosan film. J Biosci Bioeng 2018; 127:672-678. [PMID: 30573384 DOI: 10.1016/j.jbiosc.2018.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
Abstract
In this study, a novel thermophilic bacterial strain was isolated from Tattapani hot spring located in the Chhattisgarh state of India. The laccase was produced via submerged fermentation and purified by ammonium sulfate precipitation and anion exchange chromatography up to 13.7 fold. The 16S rRNA gene sequence and biochemical analysis revealed that the bacterial isolate is Bacillus sp. strain PC-3. The activity of extracellular crude laccase was determined to be 11.2 U/mL using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a substrate. The SDS-PAGE revealed that the enzyme consists of single subunit with molecular size of 36 kDa. The laccase exhibited the maximum enzyme activity at temperature of 60°C and pH 7. Moreover, the laccase retained 99.1% of its original activity for 180 min and exhibited half-life of 3.75 h at 60°C. Similarly, the laccase retained 95% activity at pH 7 for 240 min and displayed significant activity at wider pH range. In addition, the laccase was used for functionalization of chitosan film and characterized for antioxidant and antimicrobial activity. Interestingly, the functionalized chitosan film showed the improved antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India
| | - Vasanth Dhakshinamoorthy
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
16
|
Marjamaa K, Kruus K. Enzyme biotechnology in degradation and modification of plant cell wall polymers. PHYSIOLOGIA PLANTARUM 2018; 164:106-118. [PMID: 29987848 DOI: 10.1111/ppl.12800] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 05/28/2023]
Abstract
Lignocelluloses are abundant raw materials for production of fuels, chemicals and materials. The purpose of this paper is to review the enzyme-types and enzyme-technologies studied and applied in the processing of the lignocelluloses into different products. The enzymes here are mostly glycoside hydrolases, esterases and different redox enzymes. Enzymatic hydrolysis of lignocellulosic polysaccharides to platform sugars has been widely studied leading to development of advanced commercial products for this purpose. Restricted hydrolysis or oxidation of cellulosic fibers have been applied in processing of pulps to paper products, nanocelluloses and textile fibers. Oxidation, transglycosylation and derivatization have been utilized in functionalization of fibers, cellulosic surfaces and polysaccharides. Enzymatic polymerization, depolymerization and grafting methods are being developed for lignin valorization.
Collapse
Affiliation(s)
- Kaisa Marjamaa
- VTT Technical Research Centre of Finland Ltd, PO Box 1000, Espoo, 02044, Finland
| | - Kristiina Kruus
- VTT Technical Research Centre of Finland Ltd, PO Box 1000, Espoo, 02044, Finland
| |
Collapse
|
17
|
Slagman S, Zuilhof H, Franssen MCR. Laccase-Mediated Grafting on Biopolymers and Synthetic Polymers: A Critical Review. Chembiochem 2018; 19:288-311. [PMID: 29111574 PMCID: PMC5836925 DOI: 10.1002/cbic.201700518] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 12/27/2022]
Abstract
Laccase-mediated grafting on lignocelluloses has gained considerable attention as an environmentally benign method to covalently modify wood, paper and cork. In recent decades this technique has also been employed to modify fibres with a polysaccharide backbone, such as cellulose or chitosan, to infer colouration, antimicrobial activity or antioxidant activity to the material. The scope of this approach has been further widened by researchers, who apply mediators or high redox potential laccases and those that modify synthetic polymers and proteins. In all cases, the methodology relies on one- or two-electron oxidation of the surface functional groups or of the graftable molecule in solution. However, similar results can very often be achieved through simple deposition, even after extensive washing. This unintended adsorption of the active substance could have an adverse effect on the durability of the applied coating. Differentiating between actual covalent binding and adsorption is therefore essential, but proves to be challenging. This review not only covers excellent research on the topic of laccase-mediated grafting over the last five to ten years, but also provides a critical comparison to highlight either the lack or presence of compelling evidence for covalent grafting.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Laboratory of Organic ChemistryWageningen University & ResearchStippeneng 46708 WEWageningenThe Netherlands
| | - Han Zuilhof
- Laboratory of Organic ChemistryWageningen University & ResearchStippeneng 46708 WEWageningenThe Netherlands
- School of Pharmaceutical Sciences and TechnologyTianjin University92 Weijin RoadNankai DistrictTianjin92000P. R. China
| | - Maurice C. R. Franssen
- Laboratory of Organic ChemistryWageningen University & ResearchStippeneng 46708 WEWageningenThe Netherlands
| |
Collapse
|
18
|
Mukhopadhyay A, Jiao Y, Katahira R, Ciesielski PN, Himmel M, Zhu H. Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage. NANO LETTERS 2017; 17:7897-7907. [PMID: 29161046 DOI: 10.1021/acs.nanolett.7b04242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel renewable cathode made from earth abundant, low-cost materials can contribute to the intermittent storage needs of renewable energy-based society. In this work, we report for the first-time tannin from Nature as a cathode material. Our approach exploits the charge storage mechanism of the redox active quinone moiety. Tannins extracted from tree bark using environmental friendly aqueous solvents have the highest phenol content (5.56 mol g-1) among all the natural phenolic biopolymers, 5000 times higher than lignin. Tannins coupled with a conductive polymer polypyrrole acquire high specific capacitance values of 370 F g-1 at 0.5 A g-1 as well as excellent rate performance of 196 F g-1 at 25 A g-1. Additionally, we employed carbonized wood as an electrode substrate to produce a sustainable electrochemical device with dramatically improved performance compared to conventional devices. The high surface area provided by the well-aligned, cellular porosity of wood-derived substrate combined with the high mobility of ions and electrons in the carbonized cell walls and deposited tannin can achieve an areal capacitance of 4.6 F cm-2 at 1 mA cm-2, which is 1.5 times higher than activated wood carbon.
Collapse
Affiliation(s)
- Alolika Mukhopadhyay
- Department of Mechanical and Industrial Engineering, Northeastern University , Boston, Massachusetts 02115, United States
| | - Yucong Jiao
- Department of Mechanical and Industrial Engineering, Northeastern University , Boston, Massachusetts 02115, United States
| | - Rui Katahira
- National Renewable Energy Laboratory , Denver West Parkway, Golden, Colorado 80401, United States
| | - Peter N Ciesielski
- National Renewable Energy Laboratory , Denver West Parkway, Golden, Colorado 80401, United States
| | - Michael Himmel
- National Renewable Energy Laboratory , Denver West Parkway, Golden, Colorado 80401, United States
| | | |
Collapse
|
19
|
Munk L, Andersen ML, Meyer AS. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy. Enzyme Microb Technol 2017; 106:88-96. [DOI: 10.1016/j.enzmictec.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
20
|
Laccase catalysis for the synthesis of bioactive compounds. Appl Microbiol Biotechnol 2016; 101:13-33. [PMID: 27872999 DOI: 10.1007/s00253-016-7987-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 10/20/2022]
Abstract
The demand for compounds of therapeutic value is increasing mainly because of new applications of bioactive compounds in medicine, pharmaceutical, agricultural, and food industries. This has necessitated the search for cost-effective methods for producing bioactive compounds and therefore the intensification of the search for enzymatic approaches in organic synthesis. Laccase is one of the enzymes that have shown encouraging potential as biocatalysts in the synthesis of bioactive compounds. Laccases are multicopper oxidases with a diverse range of catalytic activities revolving around synthesis and degradative reactions. They have attracted much attention as potential industrial catalysts in organic synthesis mainly because they are essentially green catalysts with a diverse substrate range. Their reaction only requires molecular oxygen and releases water as the only by-product. Laccase catalysis involves the abstraction of a single electron from their substrates to produce reactive radicals. The free radicals subsequently undergo homo- and hetero-coupling to form dimeric, oligomeric, polymeric, or cross-coupling products which have practical implications in organic synthesis. Consequently, there is a growing body of research focused on the synthetic applications of laccases such as organic synthesis, hair and textile dyeing, polymer synthesis, and grafting processes. This paper reviews the major advances in laccase-mediated synthesis of bioactive compounds, the mechanisms of enzymatic coupling, structure-activity relationships of synthesized compounds, and the challenges that might guide future research directions.
Collapse
|
21
|
Sun J, Zhu Y, Meng L, Chen P, Shi T, Liu X, Zheng Y. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance. Acta Biomater 2016; 45:387-398. [PMID: 27615737 DOI: 10.1016/j.actbio.2016.09.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023]
Abstract
Magnesium (Mg) has recently received increasing attention due to its unique biological performance, including cytocompatibility, antibacterial and biodegradable properties. However, rapid corrosion in physiological environment and potential toxicity limits its clinical applications. To improve the corrosion resistance meanwhile not compromise other excellent performance, self-assembled colloidal particles were deposited onto magnesium surfaces in ethanol by a simple and effective electrophoretic deposition (EPD) method. The fabricated functional nanostructured coatings were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM). The electrochemical test, pH value, and Mg ion concentration data show that the corrosion resistance of Mg samples is enhanced appreciably after surface treatment. In vitro cellular response and antibacterial capability of the modified Mg substrates are performed. Significantly increased cell adhesion and viability are observed from the coated Mg samples, and the amounts of adherent bacteria on the treated Mg surfaces diminish remarkably compared to the bare Mg. Furthermore, the bare and coated Mg samples were implanted in New Zealand white rabbits for 12 weeks to examine the in vivo long-term corrosion performance and in situ inflammation behavior. The experiment results confirmed that compared with bare Mg substrate the corrosion and foreign-body reactions of the coated Mg samples were suppressed. The above results suggested that our coatings, which effectively enhance the biocompatibility, antimicrobial properties, and corrosion resistance of Mg substrate, provide a simple and practical strategy to expedite clinical acceptance of biodegradableMg and its alloys. STATEMENT OF SIGNIFICANCE Biomedical Mg metals have been considered as promising biodegradable implants because of their intended functions, such as cytocompatibility, antibacterial, and biodegradable properties. However, rapid corrosion in physiological environment limits their clinical applications. Alloying and surface coatings have been used to reduce the degradation rate. But this would compromise other excellent performance of Mg samples, including antibacterial and anti-inflammatory activity. Thus, while the rapid degradation of Mg samples must be solved, good antibacterial property and acceptable cytocompatibility are also necessary. In this study, polymer-based coatings were fabricated on Mg surfaces by electrophoretic deposition of poly(isobornyl acrylate-co-dimethylaminoethyl methacrylate)/tannic acid (P(ISA-co-DMA)/TA) colloidal particles. It suggested that the coating materials effectively improved the biocompatibility, antimicrobial behavior, and corrosion resistance of biomedical Mg.
Collapse
Affiliation(s)
- Jiadi Sun
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Ye Zhu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Long Meng
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Peng Chen
- Department of Orthopedics, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, People's Republic of China
| | - Tiantian Shi
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoya Liu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
22
|
Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases. Cell Mol Life Sci 2015; 72:923-40. [PMID: 25577278 PMCID: PMC11113763 DOI: 10.1007/s00018-014-1823-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 01/08/2023]
Abstract
An analysis of the scientific literature published in the last 10 years reveals a constant growth of laccase applicative research in several industrial fields followed by the publication of a great number of patents. The Green Chemistry journal devoted the cover of its September 2014 issue to a laccase as greener alternative for chemical oxidation. This indicates that laccase "never-ending story" has found a new promising trend within the constant search for efficient (bio)catalysts able to meet the 12 green chemistry principles. A survey of ancient and cutting-edge uses of laccase in different industrial sectors is offered in this review with the aim both to underline their potential and to provide inspiration for new ones. Applications in textile and food fields have been deeply described, as well as examples concerning polymer synthesis and laccase-catalysed grafting. Recent applications in pharmaceutical and cosmetic industry have also been reviewed.
Collapse
Affiliation(s)
- Cinzia Pezzella
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126, Naples, Italy,
| | | | | |
Collapse
|
23
|
Thakur K, Kalia S, Kaith BS, Pathania D, Kumar A. Surface functionalization of coconut fibers by enzymatic biografting of syringaldehyde for the development of biocomposites. RSC Adv 2015. [DOI: 10.1039/c5ra14891j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface modification of coconut fibers was carried out by laccase-assisted biografting of syringaldehyde for their use as reinforcing material in the preparation of biocomposites.
Collapse
Affiliation(s)
- Kamini Thakur
- Department of Chemistry
- Shoolini University
- Solan-173212
- India
| | - Susheel Kalia
- Department of Chemistry
- Army Cadet College Wing
- Indian Military Academy
- Dehradun-248007
- India
| | - B. S. Kaith
- Department of Chemistry
- Dr. B. R. Ambedkar National Institute of Technology
- Jalandhar-144011
- India
| | | | - Amit Kumar
- Department of Chemistry
- Shoolini University
- Solan-173212
- India
| |
Collapse
|
24
|
van der Veen S, Nady N, Franssen MCR, Zuilhof H, Boom RM, Abee T, Schroën K. Listeria monocytogenesrepellence by enzymatically modified PES surfaces. J Appl Polym Sci 2014. [DOI: 10.1002/app.41576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stijn van der Veen
- Laboratory of Food Microbiology; Department of Agrotechnology and Food Sciences, Wageningen University; PO Box 18, 6700 AA Wageningen The Netherlands
| | - Norhan Nady
- Polymers Department; Advanced Technology and New Materials Research Institute (ATNMRI); New Boarg El-Arab City 21934 Alexandria Egypt
| | - Maurice C. R. Franssen
- Laboratory of Organic Chemistry; Department of Agrotechnology and Food Sciences, Wageningen University; Dreijenplein 8 6703 HB Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry; Department of Agrotechnology and Food Sciences, Wageningen University; Dreijenplein 8 6703 HB Wageningen The Netherlands
| | - Remko M. Boom
- Laboratory of Food Process Engineering; Department of Agrotechnology and Food Sciences, Wageningen University; Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology; Department of Agrotechnology and Food Sciences, Wageningen University; PO Box 18, 6700 AA Wageningen The Netherlands
| | - Karin Schroën
- Laboratory of Food Process Engineering; Department of Agrotechnology and Food Sciences, Wageningen University; Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| |
Collapse
|
25
|
Liu R, Zheng J, Guo R, Luo J, Yuan Y, Liu X. Synthesis of New Biobased Antibacterial Methacrylates Derived from Tannic Acid and Their Application in UV-Cured Coatings. Ind Eng Chem Res 2014. [DOI: 10.1021/ie501804p] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ren Liu
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Junchao Zheng
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruixi Guo
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Luo
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yan Yuan
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoya Liu
- The Key Laboratory of Food
Colloids and Biotechnology, Ministry of Education, School of Chemical
and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 2014; 98:6525-42. [DOI: 10.1007/s00253-014-5810-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 11/27/2022]
|
27
|
Rencoret J, Aracri E, Gutiérrez A, del Río JC, Torres AL, Vidal T, Martínez AT. Structural insights on laccase biografting of ferulic acid onto lignocellulosic fibers. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Chávez-González ML, Guyot S, Rodríguez-Herrera R, Prado-Barragán A, Aguilar CN. Production profiles of phenolics from fungal tannic acid biodegradation in submerged and solid-state fermentation. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Kalia S, Thakur K, Kumar A, Celli A. Laccase-assisted surface functionalization of lignocellulosics. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Jeon JR, Chang YS. Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications. Trends Biotechnol 2013; 31:335-41. [DOI: 10.1016/j.tibtech.2013.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/01/2022]
|
31
|
|
32
|
Enzymes go big: Functionalisation of natural and synthetic polymers. N Biotechnol 2012. [DOI: 10.1016/j.nbt.2012.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
|
34
|
Nyanhongo GS, Nugroho Prasetyo E, Herrero Acero E, Guebitz GM. Engineering Strategies for Successful Development of Functional Polymers Using Oxidative Enzymes. Chem Eng Technol 2012. [DOI: 10.1002/ceat.201100590] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Božič M, Gorgieva S, Kokol V. Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohydr Polym 2012; 89:854-64. [DOI: 10.1016/j.carbpol.2012.04.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/06/2012] [Accepted: 04/07/2012] [Indexed: 10/28/2022]
|
36
|
Aracri E, Roncero MB, Vidal T. Studying the effects of laccase-catalysed grafting of ferulic acid on sisal pulp fibers. BIORESOURCE TECHNOLOGY 2011; 102:7555-7560. [PMID: 21665465 DOI: 10.1016/j.biortech.2011.05.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 05/30/2023]
Abstract
Functionalization of sisal specialty pulp fibers by laccase-catalysed grafting of ferulic acid (FRC) was investigated. To this end, the extent of phenol coupling to fibers under different reaction conditions (laccase and FRC rates, and time) was evaluated in terms of pulp properties including kappa number (expressed as the combined contributions of lignin and hexenuronic acids), brightness, Klason lignin and surface anionic charge after Soxhlet extraction of acetone-treated pulp. The specific treatment resulting in the highest degree of grafting was then used in a comparative study of the effects of applying the laccase-FRC system to refined and unrefined pulp with a view to confirming whether the increased surface area obtained by effect of fibrillation would lead to enhanced grafting. Based on the results, refining the pulp prior to the enzyme treatment resulted in increased grafting which in turn led to handsheets with improved strength-related properties (particularly wet tensile strength) relative to control samples.
Collapse
Affiliation(s)
- Elisabetta Aracri
- Textile and Paper Engineering Department, ETSEIAT, Universitat Politècnica de Catalunya, Colom 11, E-08222 Terrassa, Spain.
| | | | | |
Collapse
|
37
|
Jeon JR, Baldrian P, Murugesan K, Chang YS. Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 2011; 5:318-32. [PMID: 21791030 PMCID: PMC3821676 DOI: 10.1111/j.1751-7915.2011.00273.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Laccases are oxidases that contain several copper atoms, and catalyse single-electron oxidations of phenolic compounds with concomitant reduction of oxygen to water. The enzymes are particularly widespread in ligninolytic basidiomycetes, but also occur in certain prokaryotes, insects and plants. Depending on the species, laccases are involved in various biosynthetic processes contributing to carbon recycling in land ecosystems and the morphogenesis of biomatrices, wherein low-molecular-weight naturally occurring phenols serve as key enzyme substrates. Studies of these in vivo synthetic pathways have afforded new insights into fungal laccase applicability in green synthetic chemistry. Thus, we here review fungal laccase-catalysed oxidations of naturally occurring phenols that are particularly relevant to the synthesis of fine organic chemicals, and we discuss how the discovered synthetic strategies mimic laccase-involved in vivo pathways, thus enhancing the green nature of such reactions. Laccase-catalysed in vivo processes yield several types of biopolymers, including those of cuticles, lignin, polyflavonoids, humus and the melanin pigments, using natural mono- or poly-phenols as building blocks. The in vivo synthetic pathways involve either phenoxyl radical-mediated coupling or cross-linking reactions, and can be adapted to the design of in vitro oxidative processes involving fungal laccases in organic synthesis; the laccase substrates and the synthetic mechanisms reflect in vivo processes. Notably, such in vitro synthetic pathways can also reproduce physicochemical properties (e.g. those of chromophores, and radical-scavenging, hydration and antimicrobial activities) found in natural biomaterials. Careful study of laccase-associated in vivo metabolic pathways has been rewarded by the discovery of novel green applications for fungal laccases. This review comprehensively summarizes the available data on laccase-catalysed biosynthetic pathways and associated applications in fine chemical syntheses.
Collapse
Affiliation(s)
- Jong-Rok Jeon
- Corporate R&D Group, LG Chem Research Park, Daejeon 305-380, Korea
| | | | | | | |
Collapse
|
38
|
|
39
|
Potential applications of laccase-mediated coupling and grafting reactions: A review. Enzyme Microb Technol 2011; 48:195-208. [DOI: 10.1016/j.enzmictec.2010.11.007] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022]
|
40
|
Enzymatic Polymer Functionalisation: Advances in Laccase and Peroxidase Derived Lignocellulose Functional Polymers. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010. [DOI: 10.1007/10_2010_86] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|