1
|
Fin MT, Diedrich C, Machado CS, da Silva LM, Tartari APS, Zittlau IC, Peczek SH, Mainardes RM. Enhanced Oral Bioavailability and Biodistribution of Voriconazole through Zein-Pectin-Hyaluronic Acid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39700503 DOI: 10.1021/acsami.4c16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Nanotechnology-based drug delivery systems offer a solution to the pharmacokinetic limitations of voriconazole (VRC), including saturable metabolism and low oral bioavailability. This study developed zein/pectin/hyaluronic acid nanoparticles (ZPHA-VRC NPs) to improve VRC's pharmacokinetics and biodistribution. The nanoparticles had a spherical morphology with an average diameter of 268 nm, a zeta potential of -48.7 mV, and an encapsulation efficiency of 88%. Stability studies confirmed resistance to pH variations and digestive enzymes in simulated gastric and intestinal fluids. The in vitro release profile showed a controlled release, with 8% of the VRC released in 2 h and 16% over 24 h. Pharmacokinetic studies in rats demonstrated a 2.8-fold increase in the maximum plasma concentration and a 3-fold improvement in bioavailability compared to free VRC. Biodistribution analysis revealed enhanced VRC accumulation in key organs. These results suggest that ZPHA-VRC NPs effectively improve VRC's therapeutic potential for oral administration.
Collapse
Affiliation(s)
- Margani Taise Fin
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Camila Diedrich
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Christiane Schineider Machado
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Letícia Marina da Silva
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Ana Paula Santos Tartari
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Isabella Camargo Zittlau
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Samila Horst Peczek
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Rubiana Mara Mainardes
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
- Pharmacy Department, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| |
Collapse
|
2
|
Velopoulos I, Dimopoulou M, Chen J, Ritzoulis C. Mucoadhesion and Mucins in Oral Processing: Their Role in Food Interaction, Texture, and Sensory Perception. J Texture Stud 2024; 55:e70000. [PMID: 39600065 DOI: 10.1111/jtxs.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
This is a review of mucus, and its principal component, mucins, in oral processing; it examines oral processing from the viewpoint of mucins being integral functional constituents of the food after the latter's insertion into the mouth. Under this light, mucins are treated as an omni-present functional ingredient. The chemical physics of the bolus formation is examined, focused on the role of mucins in the process. The colloidal and rheological aspects of hydrocolloids-mucin systems are subsequently examined, highlighting the role of the oral glycoproteins in complex food models and complex foods. Following the physicochemical and mechanical description of the topic, mucus is examined as a determinant of a food's sensory attributes. Its role in oral sensations such as astringency is reviewed, with a special focus on phenol-mucin interactions. The effect of mucus on the perception of saltiness is then reviewed, and the ensuing strategies for structurally-based reduction of salt are considered. The review critically discusses the challenges and opportunities that emerge from the above, highlighting the role of mucins and their effect on food function.
Collapse
Affiliation(s)
- Ioannis Velopoulos
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Maria Dimopoulou
- School of Health and Life Science, Teesside University, Middlesbrough, UK
| | - Jianshe Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Institute of Food Oral Processing and Sensory Science, Zhejiang Gongshang University, Hangzhou, China
| | - Christos Ritzoulis
- School of Food Science and Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Perrotis College, American Farm School, Thessaloniki, Greece
| |
Collapse
|
3
|
Hazt B, Read DJ, Harlen OG, Poon WCK, O'Connell A, Sarkar A. Mucoadhesion across scales: Towards the design of protein-based adhesives. Adv Colloid Interface Sci 2024; 334:103322. [PMID: 39489118 DOI: 10.1016/j.cis.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Mucoadhesion is a special case of bioadhesion in which a material adheres to soft mucosal tissues. This review elucidates our current understanding of mucoadhesion across length, time, and energy scales by focusing on relevant structural features of mucus. We highlight the importance of both covalent and non-covalent interactions that can be tailored to maximize mucoadhesive interactions, particularly concerning proteinaceous mucoadhesives, which have been explored only to a limited extent so far in the literature. In particular, we highlight the importance of thiol groups, hydrophobic moieties, and charged species inherent to proteins as key levers to fine tune mucoadhesive performance. Some aspects of protein surface modification by grafting specific functional groups or coupling with polysaccharides to influence mucoadhesive performance are examined. Insights from this review offer a physicochemical roadmap to inform the development of biocompatible, protein-based mucoadhesive systems that can fulfil dual roles for both adhesion and delivery of actives, enabling the fabrication of advanced biomedical, nutritional and allied soft material technologies.
Collapse
Affiliation(s)
- Bianca Hazt
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK
| | - Daniel J Read
- School of Mathematics, University of Leeds, LS2 9JT, UK
| | | | - Wilson C K Poon
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Adam O'Connell
- Polymer Science Platform, Reckitt Benckiser Healthcare (UK) Ltd, Dansom Lane S, Hull, HU8 7DS, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Sader D, Zlotver I, Moya S, Calabrese GC, Sosnik A. Doubly self-assembled dermatan sulfate/chitosan nanoparticles for targeted siRNA delivery in cancer therapy. J Colloid Interface Sci 2024; 680:763-775. [PMID: 39580927 DOI: 10.1016/j.jcis.2024.11.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
RNA interference, a naturally occurring regulatory mechanism in which small interfering RNA (siRNA) molecules are responsible for the sequence-specific suppression of gene expression, emerged as one of the most promising gene therapies in cancer. In this work, we investigate a microfluidics double self-assembly method based on micellization and polyelectrolyte complex formation for the encapsulation of siRNA targeting the BIRC5 gene, a member of the inhibitor of apoptosis gene family, that codes for survivin a protein of theinhibitorof apoptosis protein family that is involved in triple-negative breast cancer (TNBC) proliferation and metastasis within nanoparticles of an amphiphilic chitosan-graft-poly(methyl methacrylate) copolymer and low-molecular weight dermatan sulfate, a polysaccharide targeting the CD44 receptor overexpressed in this tumor. Nanoparticles are spherical and display a hydrodynamic diameter of ∼ 200 nm, as measured by dynamic light scattering and scanning electron microscopy. In addition, these colloidal systems exhibit a strongly negative zeta-potential that confers them excellent physical stability for at least four months owing to electrostatic repulsion and evidences the exposure of the polyanionic dermatan sulfate on the surface. The key role of dermatan sulfate in the active targeting and intracellular delivery of the cargo in the murine breast cancer cell line 4T1, a model of TNBC, is confirmed by confocal laser scanning microscopy and imaging flow cytometry. Finally, the silencing efficiency is demonstrated in 4T1 cell viability, migration, proliferation and spheroid formation assays in vitro. Overall results highlight the promise of this simple, reproducible and scalable method for the nanoencapsulation of siRNA and other therapeutic nucleic acids.
Collapse
Affiliation(s)
- Dareen Sader
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Graciela C Calabrese
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA) and Instituto de Química Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel.
| |
Collapse
|
5
|
Correia AC, Costa I, Silva R, Sampaio P, Moreira JN, Sousa Lobo JM, Silva AC. Design of experiment (DoE) of mucoadhesive valproic acid-loaded nanostructured lipid carriers (NLC) for potential nose-to-brain application. Int J Pharm 2024; 664:124631. [PMID: 39182742 DOI: 10.1016/j.ijpharm.2024.124631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Epilepsy is a highly prevalent neurological disease and valproic acid (VPA) is used as a first-line chronic treatment. However, this drug has poor oral bioavailability, which requires the administration of high doses, resulting in adverse effects. Alternative routes of VPA administration have therefore been investigated, such as the nose-to-brain route, which allows the drug to be transported directly from the nasal cavity to the brain. Here, the use of nanostructured lipid carriers (NLC) to encapsulate drugs administered in the nasal cavity has proved advantageous. The aim of this work was to optimise a mucoadhesive formulation of VPA-loaded NLC for intranasal administration to improve the treatment of epilepsy. The Design of Experiment (DoE) was used to optimise the formulation, starting with component optimisation using Mixture Design (MD), followed by optimisation of the manufacturing process parameters using Central Composite Design (CCD). The optimised VPA-loaded NLC had a particle size of 76.1 ± 2.8 nm, a polydispersity index of 0.190 ± 0.027, a zeta potential of 28.1 ± 2.0 mV and an encapsulation efficiency of 85.4 ± 0.8%. The in vitro release study showed VPA release from the NLC of 50 % after 6 h and 100 % after 24 h. The in vitro biocompatibility experiments in various cell lines have shown that the optimised VPA-loaded NLC formulation is safe up to 75 µg/mL, in neuronal (SH-SY5Y), nasal (RPMI 2650) and hepatic (HepG2) cells. Finally, the interaction of the optimised VPA-loaded NLC formulation with nasal mucus was investigated and mucoadhesive properties were observed. The results of this study suggest that the use of intranasal VPA-loaded NLC may be a promising alternative to promote VPA targeting to the brain, thereby improving bioavailability and minimising adverse effects.
Collapse
Affiliation(s)
- A C Correia
- UCIBIO, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - I Costa
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - R Silva
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - P Sampaio
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; IBMC-Instituto de Biologia Celular e Molecular, Porto 4200-135, Portugal
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Pólo I), University of Coimbra, Coimbra 3004-531, Portugal; Faculty of Pharmacy, Univ Coimbra - University of Coimbra, CIBB, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - J M Sousa Lobo
- UCIBIO, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - A C Silva
- UCIBIO, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, Porto 4249 004, Portugal.
| |
Collapse
|
6
|
Voci S, Gagliardi A, Giuliano E, Salvatici MC, Procopio A, Cosco D. In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride. Pharmaceutics 2024; 16:1296. [PMID: 39458625 PMCID: PMC11510220 DOI: 10.3390/pharmaceutics16101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Gliadins have aroused significant interest in the last decade as suitable biomaterials for food and pharmaceutical applications. In particular, the oral route is the preferred method of administration for gliadin-based formulations, due to the affinity of this biomaterial for the gut mucosa. However, up to now, this has been demonstrated only by means of in vivo or ex vivo studies. METHODS This is why, in this study, various in vitro techniques were employed in order to evaluate the ability of polymeric nanoparticles, made up of a commercial grade of the protein and an etheric surfactant, to interact with porcine gastric mucin. The nanosystems were also used for the encapsulation of thiamine hydrochloride, used as a model of a micronutrient. RESULTS The resulting systems were characterized by a mean diameter of ~160-170 nm, a narrow size distribution when 0.2-0.6 mg/mL of thiamine was used, and an encapsulation efficiency between 30 and 45% of the drug initially employed. The incubation of the gliadin nanosystems with various concentrations of porcine gastric mucin evidenced the ability of the carriers to interact with the mucus glycoprotein, showing a decreased Zeta potential after a 4 h incubation (from ~-30 to -40 mV), while demonstrating that the encapsulation of the drug did not affect its bioadhesive features. CONCLUSIONS Altogether, these data support the conceivable application of gliadin nanoparticles as formulations for the oral administration of bioactive compounds.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
- “AGreenFood” Research Center, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
| | - Maria Cristina Salvatici
- Institute of Chemistry of Organometallic Compounds (ICCOM)-Electron Microscopy Centre (Ce.M.E.), National Research Council (CNR), via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Firenze, Italy;
| | - Antonio Procopio
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
- “AGreenFood” Research Center, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 8100 Catanzaro, Italy; (S.V.); (A.G.); (E.G.); (A.P.)
- “AGreenFood” Research Center, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Iqbal H, Razzaq A, Zhou D, Lou J, Xiao R, Lin F, Liang Y. Nanomedicine in glaucoma treatment; Current challenges and future perspectives. Mater Today Bio 2024; 28:101229. [PMID: 39296355 PMCID: PMC11409099 DOI: 10.1016/j.mtbio.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Glaucoma presents a significant global health concern and affects millions of individuals worldwide and predicted a high increase in prevalence of about 111 million by 2040. The current standard treatment involves hypotensive eye drops; however, challenges such as patient adherence and limited drug bioavailability hinder the treatment effectiveness. Nanopharmaceuticals or nanomedicines offer promising solutions to overcome these obstacles. In this manuscript, we summarized the current limitations of conventional antiglaucoma treatment, role of nanomedicine in glaucoma treatment, rational design, factors effecting the performance of nanomedicine and different types of nanocarriers in designing of nanomedicine along with their applications in glaucoma treatment from recent literature. Current clinical challenges that hinder real-time application of antiglaucoma nanomedicine are highlighted. Lastly, future directions are identified for improving the therapeutic potential and translation of antiglaucoma nanomedicine into clinic.
Collapse
Affiliation(s)
- Haroon Iqbal
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Anam Razzaq
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Dengming Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiangtao Lou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Run Xiao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fu Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
8
|
Khan O, Bhawale R, Vasave R, Mehra NK. Ionic liquid-based formulation approaches for enhanced transmucosal drug delivery. Drug Discov Today 2024; 29:104109. [PMID: 39032809 DOI: 10.1016/j.drudis.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The utilization of ionic liquids (ILs) in pharmaceutical drug delivery applications has seen significant expansion in recent years, owing to their distinctive characteristics and inherent adjustability. These innovative compounds can be used to tackle challenges associated with traditional dosage forms, such as polymorphism, inadequate solubility, permeability, and efficacy in topical drug delivery systems. Here, we provide a brief classification of ILs, and their effectiveness in augmenting transmucosal drug delivery approaches by improving the solubility and permeability of active pharmaceutical ingredients (APIs) by temporary mucus modulation aiding the paracellular transport of APIs, prolonging drug retention, and, thus, aiding controlled drug release across various mucosal surfaces. We also highlight potential advances in, and future perspectives of, IL-based formulations in mucosal drug delivery.
Collapse
Affiliation(s)
- Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Chen H, Pan L, Zhang C, Liu L, Tu B, Liu E, Huang Y. Gastroretentive Raft Forming System for Enhancing Therapeutic Effect of Drug-Loaded Hollow Mesoporous Silica on Gastric Ulcers. Adv Healthc Mater 2024; 13:e2400566. [PMID: 38767185 DOI: 10.1002/adhm.202400566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Indexed: 05/22/2024]
Abstract
Gastric ulcers are characterized by damage to the stomach lining and are often triggered by substances such as ethanol and non-steroidal anti-inflammatory drugs. Patchouli alcohol (PA) has demonstrated effectiveness in treating gastric ulcers through antioxidative and anti-inflammatory effects. However, the water insolubility of PA and rapid gastric emptying cause low drug concentration and poor absorption in the stomach, resulting in limited treatment efficacy of PA. This study develops an oral gastroretentive raft forming system (GRFDDS) containing the aminated hollow mesoporous silica nanoparticles (NH2-HMSN) for PA delivery. The application of NH2-HMSN can enhance PA-loading capacity and water dispersibility, promoting bio-adhesion to the gastric mucosa and sustained drug release. The incorporation of PA-loaded NH2-HMSN (NH2-HMSN-PA) into GRFDDS can facilitate gastric drug retention and achieve long action, thereby improving therapeutic effects. The results reveal that NH2-HMSN-PA protects the gastric mucosa damage by inhibiting NLRP3-mediated pyroptosis. The GRFDDS, optimized through orthogonal design, demonstrates the gastric retention capacity and sustained drug release, exhibiting significant therapy efficacy in an ethanol-induced acute gastric ulcers model and an aspirin-induced chronic gastric ulcers model through antioxidation, anti-pyroptosis, and anti-inflammation. This study provides a potential strategy for enhancing druggability of insoluble natural compounds and therapeutic management of gastric ulcers.
Collapse
Affiliation(s)
- Huayuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Li Pan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563003, China
| | - Chengyu Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510450, China
| | - Lin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yongzhuo Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510450, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China
| |
Collapse
|
10
|
Porfiryeva NN, Zlotver I, Davidovich-Pinhas M, Sosnik A. Mucus-Mimicking Mucin-Based Hydrogels by Tandem Chemical and Physical Crosslinking. Macromol Biosci 2024; 24:e2400028. [PMID: 38511568 DOI: 10.1002/mabi.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Mucosal tissues represent a major interface between the body and the external environment and are covered by a highly hydrated mucins gel called mucus. Mucus lubricates, protects and modulates the moisture levels of the tissue and is capitalized in transmucosal drug delivery. Pharmaceutical researchers often use freshly excised animal mucosal membranes to assess mucoadhesion and muco-penetration of pharmaceutical formulations which may struggle with limited accessibility, reproducibility, and ethical questions. Aiming to develop a platform for the rationale study of the interaction of drugs and delivery systems with mucosal tissues, in this work mucus-mimicking mucin-based hydrogels are synthesized by the tandem chemical and physical crosslinking of mucin aqueous solutions. Chemical crosslinking is achieved with glutaraldehyde (0.3% and 0.75% w/v), while physical crosslinking by one or two freeze-thawing cycles. Hydrogels after one freeze-thawing cycle show water content of 97.6-98.1%, density of 0.0529-0.0648 g cm⁻3, and storage and loss moduli of ≈40-60 and ≈3-5 Pa, respectively, that resemble the properties of native gastrointestinal mucus. The mechanical stability of the hydrogels increases over the number of freeze-thawing cycles. Overall results highlight the potential of this simple, reproducible, and scalable method to produce artificial mucus-mimicking hydrogels for different applications in pharmaceutical research.
Collapse
Affiliation(s)
- Natalia N Porfiryeva
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
11
|
Zhou H, Wang W, Cai Z, Jia ZY, Li YY, He W, Li C, Zhang BL. Injectable hybrid hydrogels enable enhanced combination chemotherapy and roused anti-tumor immunity in the synergistic treatment of pancreatic ductal adenocarcinoma. J Nanobiotechnology 2024; 22:353. [PMID: 38902759 PMCID: PMC11191229 DOI: 10.1186/s12951-024-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
Chemotherapy and immunotherapy have shown no significant outcome for unresectable pancreatic ductal adenocarcinoma (PDAC). Multi-drug combination therapy has become a consensus in clinical trials to explore how to arouse anti-tumor immunity and meanwhile overcome the poorly tumoricidal effect and the stroma barrier that greatly hinders drug penetration. To address this challenge, a comprehensive strategy is proposed to fully utilize both the ferroptotic vulnerability of PDAC to potently irritate anti-tumor immunity and the desmoplasia-associated focal adhesion kinase (FAK) to wholly improve the immunosuppressive microenvironment via sustained release of drugs in an injectable hydrogel for increasing drug penetration in tumor location and averting systematic toxicity. The injectable hydrogel ED-M@CS/MC is hybridized with micelles loaded with erastin that exclusively induces ferroptosis and a FAK inhibitor defactinib for inhibiting stroma formation, and achieves sustained release of the drugs for up to 12 days. With only a single intratumoral injection, the combination treatment with erastin and defactinib produces further anti-tumor performance both in xenograft and KrasG12D-engineered primary PDAC mice and synergistically promotes the infiltration of CD8+ cytotoxic T cells and the reduction of type II macrophages. The findings may provide a novel promising strategy for the clinical treatment of PDAC.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zedong Cai
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhou-Yan Jia
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Yao Li
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei He
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chen Li
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
12
|
Dubashynskaya NV, Petrova VA, Skorik YA. Biopolymer Drug Delivery Systems for Oromucosal Application: Recent Trends in Pharmaceutical R&D. Int J Mol Sci 2024; 25:5359. [PMID: 38791397 PMCID: PMC11120705 DOI: 10.3390/ijms25105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Oromucosal drug delivery, both local and transmucosal (buccal), is an effective alternative to traditional oral and parenteral dosage forms because it increases drug bioavailability and reduces systemic drug toxicity. The oral mucosa has a good blood supply, which ensures that drug molecules enter the systemic circulation directly, avoiding drug metabolism during the first passage through the liver. At the same time, the mucosa has a number of barriers, including mucus, epithelium, enzymes, and immunocompetent cells, that are designed to prevent the entry of foreign substances into the body, which also complicates the absorption of drugs. The development of oromucosal drug delivery systems based on mucoadhesive biopolymers and their derivatives (especially thiolated and catecholated derivatives) is a promising strategy for the pharmaceutical development of safe and effective dosage forms. Solid, semi-solid and liquid pharmaceutical formulations based on biopolymers have several advantageous properties, such as prolonged residence time on the mucosa due to high mucoadhesion, unidirectional and modified drug release capabilities, and enhanced drug permeability. Biopolymers are non-toxic, biocompatible, biodegradable and may possess intrinsic bioactivity. A rational approach to the design of oromucosal delivery systems requires an understanding of both the anatomy/physiology of the oral mucosa and the physicochemical and biopharmaceutical properties of the drug molecule/biopolymer, as presented in this review. This review summarizes the advances in the pharmaceutical development of mucoadhesive oromucosal dosage forms (e.g., patches, buccal tablets, and hydrogel systems), including nanotechnology-based biopolymer nanoparticle delivery systems (e.g., solid lipid particles, liposomes, biopolymer polyelectrolyte particles, hybrid nanoparticles, etc.).
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| |
Collapse
|
13
|
Mitsuhashi K, Inagaki NF, Ito T. Moldable Tissue-Sealant Hydrogels Composed of In Situ Cross-Linkable Polyethylene Glycol via Thiol-Michael Addition and Carbomers. ACS Biomater Sci Eng 2024; 10:3343-3354. [PMID: 38695560 DOI: 10.1021/acsbiomaterials.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Moldable tissue-sealant hydrogels were developed herein by combining the yield stress fluidity of a Carbomer and in situ cross-linking of 3-arm PEG-thiol (PEG-SH) and 4-arm PEG-acrylate (PEG-AC). The Carbomer was mixed with each PEG oligomer to form two aqueous precursors: Carbomer/PEG-SH and Carbomer/PEG-AC. The two hydrogel precursors exhibited sufficient yield stress (>100 Pa) to prevent dripping from their placement on the tissue surface. Moreover, these hydrogel precursors exhibited rapid restructuring when the shear strain was repeatedly changed. These rheological properties contribute to the moldability of these hydrogel precursors. After mixing these two precursors, they were converted from yield-stress fluids to chemically cross-linked hydrogels, Carbomer/PEG hydrogel, via thiol-Michael addition. The gelation time was 5.0 and 11.2 min at 37 and 25 °C, respectively. In addition, the Carbomer/PEG hydrogels exhibited higher cellular viability than the pure Carbomer. They also showed stable adhesiveness and burst pressure resistance to various tissues, such as the skin, stomach, colon, and cecum of pigs. The hydrogels showed excellent tissue sealing in a cecum ligation and puncture model in mice and improved the survival rate due to their tissue adhesiveness and biocompatibility. The Carbomer/PEG hydrogel is a potential biocompatible tissue sealant that surgeons can mold. It was revealed that the combination of in situ cross-linkable PEG oligomers and yield stress fluid such as Carbomer is effective for developing the moldable tissue sealant without dripping of its hydrogel precursors.
Collapse
Affiliation(s)
- Kento Mitsuhashi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Natsuko F Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
15
|
Ji S, Wang W, Huang Y, Xia Q. Tamarind seed polysaccharide-guar gum buccal films loaded with resveratrol-bovine serum albumin nanoparticles: Preparation, characterization, and mucoadhesiveness assessment. Int J Biol Macromol 2024; 262:130078. [PMID: 38340914 DOI: 10.1016/j.ijbiomac.2024.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Mucoadhesive films based on tamarind seed polysaccharide and guar gum (TSP-GG) were formulated for buccal delivery of resveratrol. Resveratrol-bovine serum albumin nanoparticles (Res-BSA) were prepared and dispersed in TSP-GG to improve its buccal mucoadhesiveness. The impregnation of Res-BSA induced the dense internal structures of TSP-GG and improved its strength and rigidity. Structural characterization showed that resveratrol existed in an amorphous state in the films containing Res-BSA, and hydrogen bonding was formed between Res-BSA and the film matrices. The films containing Res-BSA exhibited good uniformity in thickness, weight, and resveratrol content, and their surface pH was near neutral, ranging between 6.78 and 7.09. Increasing Res-BSA content reduced the water contact angle of TSP-GG (from 75.9° to 59.6°). The swelling and erosion studies indicated the favorable hydration capacity and erosion resistance of the films containing Res-BSA. Additionally, the addition of Res-BSA imparted enhanced ex vivo mucoadhesive force, in the range of 1.53 N to 1.98 N, and extended ex vivo residence time, between 17.9 h and 18.9 h, to TSP-GG. The current study implied that the composite systems of TSP-GG and Res-BSA may be a novel platform for buccal mucosal delivery of resveratrol.
Collapse
Affiliation(s)
- Suping Ji
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Yulin Huang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210096, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
16
|
Pinto SFT, Santos HA, Sarmento BFCC. New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1952. [PMID: 38500351 DOI: 10.1002/wnan.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soraia Filipa Tavares Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hélder Almeida Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Filipe Carmelino Cardoso Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
17
|
Agosti E, Zeppieri M, Antonietti S, Battaglia L, Ius T, Gagliano C, Fontanella MM, Panciani PP. Navigating the Nose-to-Brain Route: A Systematic Review on Lipid-Based Nanocarriers for Central Nervous System Disorders. Pharmaceutics 2024; 16:329. [PMID: 38543223 DOI: 10.3390/pharmaceutics16030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Background: The blood–brain barrier (BBB) regulates brain substance entry, posing challenges for treating brain diseases. Traditional methods face limitations, leading to the exploration of non-invasive intranasal drug delivery. This approach exploits the direct nose-to-brain connection, overcoming BBB restrictions. Intranasal delivery enhances drug bioavailability, reduces dosage, and minimizes systemic side effects. Notably, lipid nanoparticles, such as solid lipid nanoparticles and nanostructured lipid carriers, offer advantages like improved stability and controlled release. Their nanoscale size facilitates efficient drug loading, enhancing solubility and bioavailability. Tailored lipid compositions enable optimal drug release, which is crucial for chronic brain diseases. This review assesses lipid nanoparticles in treating neuro-oncological and neurodegenerative conditions, providing insights for effective nose-to-brain drug delivery. Methods: A systematic search was conducted across major medical databases (PubMed, Ovid MEDLINE, and Scopus) up to 6 January 2024. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to “lipid nanoparticles”, “intranasal administration”, “neuro-oncological diseases”, and “neurodegenerative disorders”. This review consists of studies in vitro, in vivo, or ex vivo on the intranasal administration of lipid-based nanocarriers for the treatment of brain diseases. Results: Out of the initial 891 papers identified, 26 articles met the eligibility criteria after a rigorous analysis. The exclusion of 360 articles was due to reasons such as irrelevance, non-reporting selected outcomes, the article being a systematic literature review or meta-analysis, and lack of method/results details. This systematic literature review, focusing on nose-to-brain drug delivery via lipid-based nanocarriers for neuro-oncological, neurodegenerative, and other brain diseases, encompassed 60 studies. A temporal distribution analysis indicated a peak in research interest between 2018 and 2020 (28.3%), with a steady increase over time. Regarding drug categories, Alzheimer’s disease was prominent (26.7%), followed by antiblastic drugs (25.0%). Among the 65 drugs investigated, Rivastigmine, Doxorubicin, and Carmustine were the most studied (5.0%), showcasing a diverse approach to neurological disorders. Notably, solid lipid nanoparticles (SLNs) were predominant (65.0%), followed by nanostructured lipid carriers (NLCs) (28.3%), highlighting their efficacy in intranasal drug delivery. Various lipids were employed, with glyceryl monostearate being prominent (20.0%), indicating preferences in formulation. Performance assessment assays were balanced, with in vivo studies taking precedence (43.3%), emphasizing the translation of findings to complex biological systems for potential clinical applications. Conclusions: This systematic review reveals the transformative potential of intranasal lipid nanoparticles in treating brain diseases, overcoming the BBB. Positive outcomes highlight the effectiveness of SLNs and NLCs, which are promising new approaches for ailments from AD to stroke and gliomas. While celebrating progress, addressing challenges like nanoparticle toxicity is also crucial.
Collapse
Affiliation(s)
- Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Sara Antonietti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neuroscience Department University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy
| |
Collapse
|
18
|
Ma S, Li X, Tao Q, Hu Q, Yang W, Kimatu BM, Ma G. The effect of in vitro digestion on the interaction between polysaccharides derived from Pleurotus eryngii and intestinal mucus. Food Sci Nutr 2024; 12:1318-1329. [PMID: 38370047 PMCID: PMC10867464 DOI: 10.1002/fsn3.3845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 02/20/2024] Open
Abstract
Pleurotus eryngii polysaccharides (PEPs) have been proven to display multiple activities through digestive system action, from which the digestion products should first interact with intestinal mucus (MUC), followed by the function of intestinal cells. Hence, possible interacting characterizations between MUC and in vitro simulated digestion products of P. eryngii polysaccharides (DPEPs) and PEP were carried out in the present study. Results showed that both PEP and DPEP could significantly interact with MUC. Moreover, digestion can modify the interaction between polysaccharides and MUC; the degree of interaction also changes with time incrementing. Viscosity could be decreased after digesting. According to the zeta potential and stability analysis result, the digestive behavior could be regular and stable between polysaccharides and MUC interactions. Following fluorescence and infrared spectra, the structure of polysaccharides and mucin might be changed by digestion between polysaccharides and MUC. The study indicates that the interaction formed between DPEP and MUC might indirectly impact the exercise and immune activities of polysaccharides and influence the transportation of other nutrients. Overall, our results, the absorption and transport pathways of PEP, can be initially revealed and may provide a novel research viewpoint on the active mechanism of PEP in the intestinal tract.
Collapse
Affiliation(s)
- Sai Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Xinyi Li
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Qi Tao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Qiuhui Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Wenjian Yang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Benard Muinde Kimatu
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
- Department of Dairy and Food Science and TechnologyEgerton UniversityEgertonKenya
| | - Gaoxing Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| |
Collapse
|
19
|
Hong SE, Lee JS, Lee HG. α-Tocopherol-loaded multi-layer nanoemulsion using chitosan, and dextran sulfate: Cellular uptake, antioxidant activity, and in vitro bioaccessibility. Int J Biol Macromol 2024; 254:127819. [PMID: 37918612 DOI: 10.1016/j.ijbiomac.2023.127819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The potential of multi-layer nanoemulsions (NEs) for improving the cellular uptake, antioxidant activity, and in vitro bioaccessibility of α-tocopherol (ToC) was examined. ToC-loaded multi-layer NEs were prepared using lecithin (primary-NEs, P-NEs), chitosan (secondary-NEs, S-NEs), and dextran sulfate (tertiary-NEs, T-NEs) as wall materials. The bioadhesion, cellular permeability, and uptake of the multi-layer NEs were significantly higher than that of the free coumarin 6 (C6). As a result of cellular uptake, the mean fluorescence intensity of T-NEs was the highest among the three types of multi-layer NEs and was 9.8-fold higher than that of free C6. The cellular antioxidant abilities of P-NEs, S-NEs, and T-NEs were 40, 45, and 50 %, respectively. Multi-layer nanoencapsulation sustains free fatty acid release after digestion. Moreover, the bioavailability of T-NEs exhibited a two-fold increase compared with that of the free ToC. These findings indicate that by multi-layer NEs using a layer-by-layer method, the cellular uptake, in vitro bioaccessibility, and antioxidant activity of ToC can be improved. Furthermore, T-NEs using chitosan and dextran sulfate can potentially enhance the cellular uptake, in vitro bioaccessibility, and antioxidant activity of ToC. These findings would facilitate the application of multi-layer NEs for lipophilic bioactive compounds using biopolymers.
Collapse
Affiliation(s)
- Seong Eun Hong
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea; Medicine Park, Co., Ltd, A-609, 406 Teheran-ro, Gangnam-gu, Seoul 06192, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
20
|
Tang Y, Sun P, Khiing AHR, Sha K, Qi X, Wu Z. Liquid-like Oral Sustained-Release System Based on Acid-Sensitive in situ Hydrogel for Alleviate Gastrointestinal Side Effects of Indobufen. J Pharm Sci 2023; 112:3141-3153. [PMID: 37473917 DOI: 10.1016/j.xphs.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Commonly, most oral non-steroidal anti-inflammatory drugs (NSAIDs) have known gastric adverse reactions due to their long-term and high dose administration. In this study, a novel liquid sustained-release system based on multiple-unit in situ hydrogel beads was designed to address this issue. The system is composed of sodium alginate (SA), gellan gum (GG), zinc oxide (ZnO), and magnesium oxide (MgO). Furthermore, indobufen was loaded into the system to evaluate its gastric mucosal protection effect. This effect can be attributed to the topical antacid, pepsin inhibition, and sustained drug release properties of the system. It was proven that the stored solid gel system could undergo a "solid to liquid" transition after shaking. Once swallowed, the liquid gel could disperse well in the stomach as hydrogel beads. Then, the "liquid to solid" gelation occurred from the exterior to interior of each multiple-unit gel bead, triggered by the release of Zn2+ and Mg2+ from neutralization reactions. The formed gel demonstrated mild antacid effect that lasted for 3 hours and 66.3% pepsin inhibition in vivo. Moreover, the rats treated with the indobufen gel system showed a drug plasma concentration versus time curve with less fluctuation compared to the rats treated with the marketed preparation (YinDuo®) group. The gel system also exhibited an extended Tmax (6.50 hours) and reduced Cmax (52.87 μg/mL). Additionally, the gastric mucosal protection of the gel system was verified using three types of peptic gastric ulcer models. These findings suggested that this multiple-unit in situ gel could be a potential oral liquid sustained release delivery system for NSAIDs.
Collapse
Affiliation(s)
- Ya Tang
- The Second Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, PR China
| | - Peng Sun
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Adric Hii Ru Khiing
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Kang Sha
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China; Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou 310018, China.
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
21
|
Hebishy E, Du H, Brito-Oliveira TC, Pinho SC, Miao S. Saltiness perception in gel-based food systems (gels and emulsion-filled gels). Crit Rev Food Sci Nutr 2023:1-18. [PMID: 37933819 DOI: 10.1080/10408398.2023.2276331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Reducing salt in food without compromising its quality is a huge challenge. Some review articles have been recently published on saltiness perception in some colloidal systems such as emulsions. However, no published reviews are available on saltiness perceptions of gel-based matrices, even though salt release and perception in these systems have been extensively studied. This article reviews the recent advances in salt perception in gel-based systems and provides a detailed analysis of the main factors affecting salt release. Strategies to enhance saltiness perception in gels and emulsion-filled gels are also reviewed. Saltiness perception can be improved through addition of biopolymers (proteins and polysaccharides) due to their ability to modulate texture and/or to adhere to or penetrate through the mucosal membrane on the tongue to prolong sodium retention. The composition of the product and the distribution of salt within the matrix are the two main factors affecting the perception of salty taste. Food structure re-design can lead to control the level of interaction between the salt and other components and change the structure, which in turn affects the mobility and release of the salt. The change of ingredients/matrix can affect the texture of the product, highlighting the importance of sensory evaluation.
Collapse
Affiliation(s)
- Essam Hebishy
- Centre of Excellence in Agri-food Technologies, National Centre for Food Manufacturing, College of Health and Science, University of Lincoln, Holbeach, Spalding, UK
| | - Han Du
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Thais C Brito-Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of Sao Paulo (USP), Pirassununga, SP, Brazil
| | - Samantha C Pinho
- Department of Food Engineering, School of Animal Science and Food Engineering, University of Sao Paulo (USP), Pirassununga, SP, Brazil
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- China-Ireland International Cooperation Centre for Food Material Sciences and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Watchorn J, Stuart S, Clasky AJ, Oliveira MH, Burns DC, Gu FX. Transfer-based nuclear magnetic resonance uncovers unique mechanisms for protein-polymer and protein-nanoparticle binding behavior. J Mater Chem B 2023; 11:10121-10130. [PMID: 37824091 DOI: 10.1039/d3tb01668d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nanoparticle-based drug delivery systems have shown increasing popularity as a means to improve patient outcomes by improving the effectiveness of active pharmaceutical ingredients (APIs). Similarly, nanoparticles have shown success in targeting alternative routes of API administration, such as applying mucoadhesion or mucopenetration to mucosal drug delivery to enhance uptake. While there are many promising examples of mucoadhesive nanomedicines in literature, there are also many examples of contradictory mucoadhesive binding behavior, most prominently in cases using the same nanoparticle materials. We have uncovered mechanistic insights in polymer-protein binding systems using nOe transfer-based NMR and sought to leverage them to explore nanoparticle-protein interactions. We tested several polymer-coated nanoparticles and micellar polymer nanoparticles and evaluated their binding with mucin proteins. We uncovered that the composition and interaction intimacy of polymer moieties that promote mucin binding change when the polymers are incorporated onto nanoparticle surfaces compared to polymer in solution. This change from solution state to nanoparticle coating can enable switching of behavior of these materials from inert to binding, as we observed in polyvinyl pyrrolidone. We also found the nanoparticle core was influential in determining the binding fate of polymer materials, whereas the nanoparticle size did not possess a clear correlation in the ranges we tested (60-270 nm). These experiments demonstrate that identical polymers may switch their binding behavior to mucin as a function of conformational changes that are induced by incorporating the polymers onto the surface of nanoparticles. These NMR-derived insights could be further leveraged to optimize nanoparticle formulations and guide polymer-mediated mucoadhesion.
Collapse
Affiliation(s)
- Jeffrey Watchorn
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| | - Samantha Stuart
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| | - Matthew H Oliveira
- Division of Engineering Science, University of Toronto, Toronto, Ontario, M5S 2E4, Canada
| | - Darcy C Burns
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Frank X Gu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
- Acceleration Consortium, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
23
|
Voci S, Pangua C, Martínez-Ohárriz MC, Aranaz P, Collantes M, Irache JM, Cosco D. Gliadin nanoparticles for oral administration of bioactives: Ex vivo and in vivo investigations. Int J Biol Macromol 2023; 249:126111. [PMID: 37541472 DOI: 10.1016/j.ijbiomac.2023.126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
This study aims to provide a thorough characterization of Brij O2-stabilized gliadin nanoparticles to be used for the potential oral administration of various compounds. Different techniques were used in order to evaluate their physico-chemical features and then in vivo studies in rats were performed for the investigation of their biodistribution and gastrointestinal transit profiles. The results showed that the gliadin nanoparticles accumulated in the mucus layer of the bowel mucosa and evidenced their ability to move along the digestive systems of the animals. The incubation of the nanosystems with Caenorhabditis elegans, used as an additional in vivo model, confirmed the intake of the particles and evidenced their presence along the entire gastrointestinal tract of these nematodes. The gliadin nanoparticles influenced neither the egg-laying activity of the worms nor their metabolism of lipids up to 10 μg/mL of nanoformulation. The systems decreased the content of the age-related lipofuscin pigment in the nematodes in a dose-dependent manner, demonstrating a certain antioxidant activity. Lastly, dihydroethidium staining showed the absence of oxidative stress upon incubation of the worms together with the formulations, confirming their safe profile. This data paves the way for the future application of the proposed nanosystems regarding the oral delivery of various bioactives.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", 88100 Catanzaro, Italy
| | - Cristina Pangua
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | | | - Paula Aranaz
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Maria Collantes
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", 88100 Catanzaro, Italy.
| |
Collapse
|
24
|
Das S, Bhattacharya K, Blaker JJ, Singha NK, Mandal M. Beyond traditional therapy: Mucoadhesive polymers as a new frontier in oral cancer management. Biopolymers 2023; 114:e23556. [PMID: 37341448 DOI: 10.1002/bip.23556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
In recent times mucoadhesive drug delivery systems are gaining popularity in oral cancer. It is a malignancy with high global prevalence. Despite significant advances in cancer therapeutics, improving the prognosis of late-stage oral cancer remains challenging. Targeted therapy using mucoadhesive polymers can improve oral cancer patients' overall outcome by offering enhanced oral mucosa bioavailability, better drug distribution and tissue targeting, and minimizing systemic side effects. Mucoadhesive polymers can also be delivered via different formulations such as tablets, films, patches, gels, and nanoparticles. These polymers can deliver an array of medicines, making them an adaptable drug delivery approach. Drug delivery techniques based on these mucoadhesive polymers are gaining traction and have immense potential as a prospective treatment for late-stage oral cancer. This review examines leading research in mucoadhesive polymers and discusses their potential applications in treating oral cancer.
Collapse
Affiliation(s)
- Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Koushik Bhattacharya
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jonny J Blaker
- Bio-Active Materials Group, Department of Materials and Henry Royce Institute, The University of Manchester, Manchester, UK
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
25
|
Henriques P, Bicker J, Silva S, Doktorovová S, Fortuna A. Nasal-PAMPA: A novel non-cell-based high throughput screening assay for prediction of nasal drug permeability. Int J Pharm 2023; 643:123252. [PMID: 37479103 DOI: 10.1016/j.ijpharm.2023.123252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
In nasal drug product development, screening studies are vital to select promising compounds or formulations. The Parallel Artificial Membrane Permeability Assay (PAMPA), a high throughput screening tool, has been applied to evaluate drug permeability across several barriers such as the skin or blood-brain barrier. Herein, a new nasal-PAMPA model was optimized to predict nasal permeability, using a biorelevant donor medium containing mucin. The apparent permeability (Papp) of 15 reference compounds was assessed in six different experimental conditions, and the most discriminating and predictive model was applied to a test drug (piroxicam) and mucoadhesive powder formulations loading the same drug. The model with 0.5% (w/v) mucin in the donor compartment and 2% (w/v) phosphatidylcholine in the lipid membrane accurately distinguished high and low permeable compounds. Additionally, it exhibited the highest correlation with permeation across human nasal epithelial cells, RPMI 2650 (R2 = 0.93). When applied to powder formulations, this model was sensitive to the presence of mucoadhesive excipients and the drug solid state. Overall, the nasal-PAMPA model was more rapid than cell-based assays, without requiring specialized training or equipment, showing to be a promising in vitro tool that can be applied in drug and formulation screening for nasal delivery.
Collapse
Affiliation(s)
- Patrícia Henriques
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; R&D, Drug Product Development, Hovione FarmaCiencia SA, Lisbon, Portugal
| | - Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Soraia Silva
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | | | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| |
Collapse
|
26
|
Özkan B, Altuntaş E, Ünlü Ü, Doğan HH, Özsoy Y, Çakır Koç R. Development of an Antiviral Ion-Activated In Situ Gel Containing 18β-Glycyrrhetinic Acid: A Promising Alternative against Respiratory Syncytial Virus. Pharmaceutics 2023; 15:2055. [PMID: 37631269 PMCID: PMC10458153 DOI: 10.3390/pharmaceutics15082055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 08/27/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) is a major cause of serious lower respiratory infections and poses a considerable risk to public health globally. Only a few treatments are currently used to treat RSV infections, and there is no RSV vaccination. Therefore, the need for clinically applicable, affordable, and safe RSV prevention and treatment solutions is urgent. In this study, an ion-activated in situ gelling formulation containing the broad-spectrum antiviral 18β-glycyrrhetinic acid (GA) was developed for its antiviral effect on RSV. In this context, pH, mechanical characteristics, ex vivo mucoadhesive strength, in vitro drug release pattern, sprayability, drug content, and stability were all examined. Rheological characteristics were also tested using in vitro gelation capacity and rheological synergism tests. Finally, the cytotoxic and antiviral activities of the optimized in situ gelling formulation on RSV cultured in the human laryngeal epidermoid carcinoma (HEp-2) cell line were evaluated. In conclusion, the optimized formulation prepared with a combination of 0.5% w/w gellan gum and 0.5% w/w sodium carboxymethylcellulose demonstrated good gelation capacity and sprayability (weight deviation between the first day of the experiment (T0) and the last day of the experiment (T14) was 0.34%), desired rheological synergism (mucoadhesive force (Fb): 9.53 Pa), mechanical characteristics (adhesiveness: 0.300 ± 0.05 mJ), ex vivo bioadhesion force (19.67 ± 1.90 g), drug content uniformity (RSD%: 0.494), and sustained drug release over a period of 6 h (24.56% ± 0.49). The optimized formulation demonstrated strong anti-hRSV activity (simultaneous half maximal effective concentration (EC50) = 0.05 µg/mL; selectivity index (SI) = 306; pre-infection EC50 = 0.154 µg/mL; SI = 100), which was significantly higher than that of ribavirin (EC50 = 4.189 µg/mL; SI = 28) used as a positive control against hRSV, according to the results of the antiviral activity test. In conclusion, this study showed that nasal in situ gelling spray can prevent viral infection and replication by directly inhibiting viral entry or modulating viral replication.
Collapse
Affiliation(s)
- Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Istanbul 34116, Turkey;
| | - Ümmühan Ünlü
- Elderly Care Program, Ataturk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| | - Hasan Hüseyin Doğan
- Department of Biology, Science Faculty, Alaeddin Keykubat Campus, Selcuk University, Konya 42130, Turkey;
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Istanbul 34116, Turkey;
| | - Rabia Çakır Koç
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
27
|
Kong X, Jia Y, Wang H, Li R, Li C, Cheng S, Chen T, Mai Y, Nie Y, Deng Y, Xie Z, Liu Y. Effective Treatment of Haemophilus influenzae-Induced Bacterial Conjunctivitis by a Bioadhesive Nanoparticle Reticulate Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22892-22902. [PMID: 37154428 DOI: 10.1021/acsami.3c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ocular formulations should provide an effective antibiotic concentration at the site of infection to treat bacterial eye infections. However, tears and frequent blinking accelerate the drug clearance rate and limit drug residence time on the ocular surface. This study describes a biological adhesion reticulate structure (BNP/CA-PEG) consisting of antibiotic-loaded bioadhesion nanoparticles (BNP/CA), with an average 500-600 nm diameter, and eight-arm NH2-PEG-NH2 for local and extended ocular drug delivery. This retention-prolonging effect is a function of the Schiff base reaction between groups on the surface of BNP and amidogen on PEG. BNP/CA-PEG showed significantly higher adhesion properties and better treatment efficacy in an ocular rat model with conjunctivitis in comparison to non-adhesive nanoparticles, BNP, or free antibiotics. Both in vivo safety experiment and in vitro cytotoxicity test verified the biocompatibility and biosafety of the biological adhesion reticulate structure, indicating a promising translational prospect for further clinical use.
Collapse
Affiliation(s)
- Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Han Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chujie Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shihong Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Multilayered polymer coating modulates mucoadhesive and biological properties of camptothecin-loaded lipid nanocapsules. Int J Pharm 2023; 635:122792. [PMID: 36863543 DOI: 10.1016/j.ijpharm.2023.122792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Lipid core nanocapsules (NCs) coated with multiple polymer layers were rationally designed as a potential approach for the colonic delivery of camptothecin (CPT). Chitosan (CS), hyaluronic acid (HA) and hypromellose phthalate (HP) were selected as coating materials, to modulate the mucoadhesive and permeability properties of CPT regarding the improvement of local and targeted action in the colon cancer cells. NCs were prepared by emulsification/solvent evaporation method and coated with multiple polymer layers by polyelectrolyte complexation technique. NCs exhibited spherical shape, negative zeta potential, and size ranged from 184 to 252 nm. The high efficiency of CPT incorporation (>94%) was evidenced. The ex vivo permeation assay showed that nanoencapsulation reduced the permeation rate of CPT through the intestinal mucosa by up to 3.5 times, and coating with HA and HP reduced the permeation percentage by 2 times when compared to NCs coated only with CS. The mucoadhesive capacity of NCs was demonstrated in gastric and enteric pH. Nanoencapsulation did not reduce the antiangiogenic activity of CPT and, additionally, it was observed that nanoencapsulation resulted in localized antiangiogenic action of CPT.
Collapse
|
29
|
Arzi RS, Davidovich-Pinhas M, Cohen N, Sosnik A. An experimental and theoretical approach to understand the interaction between particles and mucosal tissues. Acta Biomater 2023; 158:449-462. [PMID: 36596435 DOI: 10.1016/j.actbio.2022.12.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Nanonization of poorly water-soluble drugs has shown great potential in improving their oral bioavailability by increasing drug dissolution rate and adhesion to the gastrointestinal mucus. However, the fundamental features that govern the particle-mucus interactions have not been investigated in a systematic way before. In this work, we synthesize mucin hydrogels that mimic those of freshly excised porcine mucin. By using fluorescent pure curcumin particles, we characterize the effect of particle size (200 nm, and 1.2 and 1.3 μm), concentration (18, 35, and 71 μg mL-1), and hydrogel crosslinking density on the diffusion-driven particle penetration in vitro. Next, we derive a phenomenological model that describes the physics behind the diffusion-derived penetration and considers the contributions of the key parameters assessed in vitro. Finally, we challenge our model by assessing the oral pharmacokinetics of an anti-cancer model drug, namely dasatinib, in pristine and nanonized forms and two clinically relevant doses in rats. For a dose of 10 mg kg-1, drug nanonization leads to a significant ∼8- and ∼21-fold increase of the drug oral bioavailability and half-life, respectively, with respect to the unprocessed drug. When the dose of the nanoparticles was increased to 15 mg kg-1, the oral bioavailability increased though not significantly, suggesting the saturation of the mucus penetration sites, as demonstrated by the in vitro model. Our overall results reveal the potential of this approach to pave the way for the development of tools that enable a more rational design of nano-drug delivery systems for mucosal administration. STATEMENT OF SIGNIFICANCE: The development of experimental-theoretical tools to understand and predict the diffusion-driven penetration of particles into mucus is crucial not only to rationalize the design of nanomedicines for mucosal administration but also to anticipate the risks of the exposure of the body to nano-pollutants. However, a systematic study of such tools is still lacking. Here we introduce an experimental-theoretical approach to predict the diffusion-driven penetration of particles into mucus and investigate the effect of three key parameters on this interaction. Then, we challenge the model in a preliminary oral pharmacokinetics study in rats which shows a very good correlation with in vitro results. Overall, this work represents a robust platform for the modelling of the interaction of particles with mucosae under dynamic conditions.
Collapse
Affiliation(s)
- Roni Sverdlov Arzi
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Noy Cohen
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
30
|
Modification of chicha gum: Antibacterial activity, ex vivo mucoadhesion, antioxidant activity and cellular viability. Int J Biol Macromol 2023; 228:594-603. [PMID: 36563812 DOI: 10.1016/j.ijbiomac.2022.12.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The aim of the present work was to modify the exuded gum of Sterculia striata tree by an amination reaction. The viscosity and zero potential of the chicha gum varied as a function of pH. The modification was confirmed by X-ray diffraction (XRD), infrared spectroscopy (FTIR), size exclusion chromatography (SEC), zeta potential, thermogravimetric analysis (TG), and differential scanning calorimetry (DSC). Furthermore, the chemical modification changed the molar mass and surface charge of the chicha gum. In addition, the gums were used in tests for ex vivo mucoadhesion strength, antibacterial activity against the standard strain of Staphylococcus aureus (ATCC 25923), inhibitory activity of α-glucosidase, antioxidant capacity, and viability of Caco-2 cells. Through these tests, it was found that amination caused an increase in the mucoadhesive and inhibitory activity of chicha gum against the bacterium Staphylococcus aureus. In addition, the gums (pure and modified) showed antioxidant capacity and an inhibitory effect against the α-glucosidase enzyme and did not show cytotoxic potential.
Collapse
|
31
|
Marcello E, Chiono V. Biomaterials-Enhanced Intranasal Delivery of Drugs as a Direct Route for Brain Targeting. Int J Mol Sci 2023; 24:ijms24043390. [PMID: 36834804 PMCID: PMC9964911 DOI: 10.3390/ijms24043390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Intranasal (IN) drug delivery is a non-invasive and effective route for the administration of drugs to the brain at pharmacologically relevant concentrations, bypassing the blood-brain barrier (BBB) and minimizing adverse side effects. IN drug delivery can be particularly promising for the treatment of neurodegenerative diseases. The drug delivery mechanism involves the initial drug penetration through the nasal epithelial barrier, followed by drug diffusion in the perivascular or perineural spaces along the olfactory or trigeminal nerves, and final extracellular diffusion throughout the brain. A part of the drug may be lost by drainage through the lymphatic system, while a part may even enter the systemic circulation and reach the brain by crossing the BBB. Alternatively, drugs can be directly transported to the brain by axons of the olfactory nerve. To improve the effectiveness of drug delivery to the brain by the IN route, various types of nanocarriers and hydrogels and their combinations have been proposed. This review paper analyzes the main biomaterials-based strategies to enhance IN drug delivery to the brain, outlining unsolved challenges and proposing ways to address them.
Collapse
Affiliation(s)
- Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of 3Rs Principles in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Institute for Chemical-Physical Processes, National Research Council (CNR-IPCF), 56124 Pisa, Italy
- Correspondence:
| |
Collapse
|
32
|
Aspinall SR, Khutoryanskiy VV. Surface Modification of Silica Particles with Adhesive Functional Groups or Their Coating with Chitosan to Improve the Retention of Toothpastes in the Mouth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1677-1685. [PMID: 36649661 PMCID: PMC9893808 DOI: 10.1021/acs.langmuir.2c03269] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Silica is widely used in the oral care formulations to act as an abrasive and to give the products its distinct physical properties. In this study, silica particles were synthesized using a co-condensation of tetraethyl orthosilicate with a series of functional silane compounds [(3-mercaptopropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, and (3-acryloxypropyl)trimethoxysilane)]. The surface of the particles based on tetraethyl orthosilicate and (3-glycidyloxypropyl)trimethoxysilane was then further modified with 3-aminophenylboronic acid. Commercial Aerosil R972 Pharma silica particles were also coated with chitosan. Additionally, commercially available (3-maleimido)propyl-functionalized silica particles were used in this study. All these functionalized silica particles were incorporated into toothpaste formulations, and their retentive properties were tested on ex vivo sheep tongue mucosa models using fluorescent microscopy-based flow-through techniques. Those surfaces with chitosan, phenylboronic acid, and acryloyl groups were shown to provide a significant improvement in the retention of the oral care formulations during the retention testing. The retention of toothpastes containing silica functionalized with maleimide and thiol groups was also superior compared to that of unmodified silica particles. This study synthesized and tested a range of silica particles and demonstrated that the functionalized silica incorporated into toothpastes can significantly improve the retention of these formulations on oral mucosal surfaces.
Collapse
Affiliation(s)
- Sam R. Aspinall
- Department
of Pharmacy & Research Centre in Topical Drug Delivery and Toxicology, University of Hertfordshire, HatfieldAL10 9AB, Hertfordshire, U.K.
| | | |
Collapse
|
33
|
Duong VA, Nguyen TTL, Maeng HJ. Recent Advances in Intranasal Liposomes for Drug, Gene, and Vaccine Delivery. Pharmaceutics 2023; 15:207. [PMID: 36678838 PMCID: PMC9865923 DOI: 10.3390/pharmaceutics15010207] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Liposomes are safe, biocompatible, and biodegradable spherical nanosized vesicles produced from cholesterol and phospholipids. Recently, liposomes have been widely administered intranasally for systemic and brain delivery. From the nasal cavity, liposome-encapsulated drugs and genes enter the systemic circulation primarily via absorption in the respiratory region, whereas they can be directly transported to the brain via the olfactory pathway. Liposomes can protect drugs and genes from enzymatic degradation, increase drug absorption across the nasal epithelium, and prolong the residence time in the nasal cavity. Intranasal liposomes are also a potential approach for vaccine delivery. Liposomes can be used as a platform to load antigens and as vaccine adjuvants to induce a robust immune response. With the recent interest in intranasal liposome formulations, this review discusses various aspects of liposomes that make them suitable for intranasal administration. We have summarized the latest advancements and applications of liposomes and evaluated their performance in the systemic and brain delivery of drugs and genes administered intranasally. We have also reviewed recent advances in intranasal liposome vaccine development and proposed perspectives on the future of intranasal liposomes.
Collapse
Affiliation(s)
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
34
|
Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [PMID: 36208724 DOI: 10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Currently, the only practical way to treat type 1 and advanced insulin-dependent type 2 diabetes mellitus (T1/2DM) is the frequent subcutaneous injection of insulin, which is significantly different physiologically from endogenous insulin secretion from pancreatic islets and can lead to hyperinsulinemia, pain, and infection in patients with poor compliance. Hence, oral insulin delivery has been actively pursued to revolutionize the treatment of insulin-dependent diabetes. In this review, we provide an overview of recent progress in developing poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) for oral insulin delivery. Different strategies for insulin-loaded PLGA NPs to achieve normoglycemic effects are discussed. Finally, challenges and future perspectives of PLGA NPs for oral insulin delivery are put forward.
Collapse
|
35
|
Sharma S, Dang S. Nanocarrier-Based Drug Delivery to Brain: Interventions of Surface Modification. Curr Neuropharmacol 2023; 21:517-535. [PMID: 35794771 PMCID: PMC10207924 DOI: 10.2174/1570159x20666220706121412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022] Open
Abstract
Brain disorders are a prevalent and rapidly growing problem in the medical field as they adversely affect the quality of life of a human. With an increase in life expectancy, it has been reported that diseases like Alzheimer's, Parkinson's, stroke and brain tumors, along with neuropsychological disorders, are also being reported at an alarmingly high rate. Despite various therapeutic methods for treating brain disorders, drug delivery to the brain has been challenging because of a very complex Blood Brain Barrier, which precludes most drugs from entering the brain in effective concentrations. Nano-carrier-based drug delivery systems have been reported widely by researchers to overcome this barrier layer. These systems due to their small size, offer numerous advantages; however, their short residence time in the body owing to opsonization hinders their success in vivo. This review article focuses on the various aspects of modifying the surfaces of these nano-carriers with polymers, surfactants, protein, antibodies, cell-penetrating peptides, integrin binding peptides and glycoproteins such as transferrin & lactoferrin leading to enhanced residence time, desirable characteristics such as the ability to cross the blood-brain barrier (BBB), increased bioavailability in regions of the brain and targeted drug delivery.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
36
|
Pang H, Huang X, Xu ZP, Chen C, Han FY. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [DOI: https:/doi.org/10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
37
|
Kotoulas KT, Campbell J, Skirtach AG, Volodkin D, Vikulina A. Surface Modification with Particles Coated or Made of Polymer Multilayers. Pharmaceutics 2022; 14:2483. [PMID: 36432674 PMCID: PMC9697854 DOI: 10.3390/pharmaceutics14112483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The coating of particles or decomposable cores with polyelectrolytes via Layer-by-Layer (LbL) assembly creates free-standing LbL-coated functional particles. Due to the numerous functions that their polymers can bestow, the particles are preferentially selected for a plethora of applications, including, but not limited to coatings, cargo-carriers, drug delivery vehicles and fabric enhancements. The number of publications discussing the fabrication and usage of LbL-assembled particles has consistently increased over the last vicennial. However, past literature fails to either mention or expand upon how these LbL-assembled particles immobilize on to a solid surface. This review evaluates examples of LbL-assembled particles that have been immobilized on to solid surfaces. To aid in the formulation of a mechanism for immobilization, this review examines which forces and factors influence immobilization, and how the latter can be confirmed. The predominant forces in the immobilization of the particles studied here are the Coulombic, capillary, and adhesive forces; hydrogen bonding as well as van der Waal's and hydrophobic interactions are also considered. These are heavily dependent on the factors that influenced immobilization, such as the particle morphology and surface charge. The shape of the LbL particle is related to the particle core, whereas the charge was dependant on the outermost polyelectrolyte in the multilayer coating. The polyelectrolytes also determine the type of bonding that a particle can form with a solid surface. These can be via either physical (non-covalent) or chemical (covalent) bonds; the latter enforcing a stronger immobilization. This review proposes a fundamental theory for immobilization pathways and can be used to support future research in the field of surface patterning and for the general modification of solid surfaces with polymer-based nano- and micro-sized polymer structures.
Collapse
Affiliation(s)
- Konstantinos T. Kotoulas
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Andre G. Skirtach
- Bio-Nanotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Dmitry Volodkin
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| |
Collapse
|
38
|
Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
3D printed bilayer mucoadhesive buccal film of estradiol: Impact of design on film properties, release kinetics and predicted in vivo performance. Int J Pharm 2022; 628:122324. [DOI: 10.1016/j.ijpharm.2022.122324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/20/2022]
|
40
|
Al-Nemrawi NK, Darweesh RS, Al-shriem LA, Al-Qawasmi FS, Emran SO, Khafajah AS, Abu-Dalo MA. Polymeric Nanoparticles for Inhaled Vaccines. Polymers (Basel) 2022; 14:4450. [PMID: 36298030 PMCID: PMC9607145 DOI: 10.3390/polym14204450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Many recent studies focus on the pulmonary delivery of vaccines as it is needle-free, safe, and effective. Inhaled vaccines enhance systemic and mucosal immunization but still faces many limitations that can be resolved using polymeric nanoparticles (PNPs). This review focuses on the use of properties of PNPs, specifically chitosan and PLGA to be used in the delivery of vaccines by inhalation. It also aims to highlight that PNPs have adjuvant properties by themselves that induce cellular and humeral immunogenicity. Further, different factors influence the behavior of PNP in vivo such as size, morphology, and charge are discussed. Finally, some of the primary challenges facing PNPs are reviewed including formulation instability, reproducibility, device-related factors, patient-related factors, and industrial-level scale-up. Herein, the most important variables of PNPs that shall be defined in any PNPs to be used for pulmonary delivery are defined. Further, this study focuses on the most popular polymers used for this purpose.
Collapse
Affiliation(s)
- Nusaiba K. Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ruba S. Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Lubna A. Al-shriem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Farah S. Al-Qawasmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sereen O. Emran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Areej S. Khafajah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muna A. Abu-Dalo
- Department of Chemistry, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
41
|
Mucoadhesive brinzolamide-loaded nanofibers for alternative glaucoma treatment. Eur J Pharm Biopharm 2022; 180:48-62. [PMID: 36167272 DOI: 10.1016/j.ejpb.2022.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022]
Abstract
Despite the advances in the field of pharmaceutical materials and technology, topical administration remains a method of choice for the treatment of eye diseases such as glaucoma, with eye drops being a leading dosage form. Their main disadvantage is a very short drug residence time and thus poor drug bioavailability, leading to the necessity of continuous repeated dosing. Mucoadhesive electrospun nanofibers are promising candidates for overcoming these challenges, while still benefiting from topical ocular administration. As an alternative for eye drops, a nanofibrous drug delivery system (DDS) for the delivery of brinzolamide (BRZ), based on β-cyclodextrin (β-CD), hydroxypropyl cellulose (HPC) and polycaprolactone (PCL), was designed. The results showed β-CD/BRZ guest-host interactions, successful drug incorporation into the nanofibers, and the possibility of more accurate dosing in comparison with the control eye drops. Drug permeation through sheep corneas was almost linear in time, achieving therapeutic concentrations in the receptor medium, and mucoadhesion to sheep eye mucosa was relatively high in case of formulations with high HPC content. All formulations were biocompatible, their mechanical properties were sufficient to handle them without caution and UV irradiation was suitable to reduce bioburden of the fibers matrix, yet no antibacterial properties of BRZ were observed.
Collapse
|
42
|
Hamed R, Abu Kwiak AD, Al-Adhami Y, Hammad AM, Obaidat R, Abusara OH, Huwaij RA. Microemulsions as Lipid Nanosystems Loaded into Thermoresponsive In Situ Microgels for Local Ocular Delivery of Prednisolone. Pharmaceutics 2022; 14:1975. [PMID: 36145726 PMCID: PMC9505494 DOI: 10.3390/pharmaceutics14091975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to develop and evaluate thermoresponsive in situ microgels for the local ocular delivery of prednisolone (PRD) (PRD microgels) to improve drug bioavailability and prolong ocular drug residence time. Lipid nanosystems of PRD microemulsions (PRD-MEs) were prepared and evaluated at a drug concentration of 0.25-0.75%. PRD microgels were prepared by incorporating PRD-MEs into 10 and 12% Pluronic® F127 (F127) or combinations of 12% F127 and 1-10% Kolliphor®P188 (F68). PRD microgels were characterized for physicochemical, rheological, and mucoadhesive properties, eye irritation, and stability. Results showed that PRD-MEs were clear, miscible, thermodynamically stable, and spherical with droplet size (16.4 ± 2.2 nm), polydispersity index (0.24 ± 0.01), and zeta potential (-21.03 ± 1.24 mV). The PRD microgels were clear with pH (5.37-5.81), surface tension (30.96-38.90 mN/m), size, and zeta potential of mixed polymeric micelles (20.1-23.9 nm and -1.34 to -10.25 mV, respectively), phase transition temperature (25.3-36 °C), and gelation time (1.44-2.47 min). The FTIR spectra revealed chemical compatibility between PRD and microgel components. PRD microgels showed pseudoplastic flow, viscoelastic and mucoadhesive properties, absence of eye irritation, and drug content (99.3 to 106.3%) with a sustained drug release for 16-24 h. Microgels were physicochemically and rheologically stable for three to six months. Therefore, PRD microgels possess potential vehicles for local ocular delivery.
Collapse
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Amani D. Abu Kwiak
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Yasmeen Al-Adhami
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Osama H. Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Rana Abu Huwaij
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Al-Salt 19328, Jordan
| |
Collapse
|
43
|
Figueroa EG, Caballero-Román A, Ticó JR, Miñarro M, Nardi-Ricart A, González-Candia A. miRNA nanoencapsulation to regulate the programming of the blood-brain barrier permeability by hypoxia. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100129. [PMID: 36568262 PMCID: PMC9780061 DOI: 10.1016/j.crphar.2022.100129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
Central nervous system (CNS)-related diseases are difficult to treat as most therapeutic agents they cannot reach the brain tissue, mainly due to the blood-brain barrier (BBB), arguably the tightest barrier between the human body and cerebral parenchyma, which routinely excludes most xenobiotic therapeutics compounds. The BBB is a multicellular complex that structurally forms the neurovascular unit (NVU) and is organized by neuro-endothelial and glial cells. BBB breakdown and dysfunction from the cerebrovascular cells lead to leakages of systemic components from the blood into the CNS, contributing to neurological deficits. Understanding the molecular mechanisms that regulate BBB permeability and disruption is essential for establishing future therapeutic strategies to restore permeability and improve cerebrovascular health. MicroRNAs (miRNAs), a type of small non-coding RNAs, are emerging as an important regulator of BBB integrity by modulating gene expression by targeting mRNA transcripts. miRNAs is implicated in the development and progression of various illnesses. Conversely, nanoparticle carriers offer unprecedented opportunities for cell-specific controlled delivery of miRNAs for therapeutic purposes. In this sense, we present in this graphical review critical evidence in the regulation of cell junction expression mediated by miRNAs induced by hypoxia and for the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of BBB permeability.
Collapse
Affiliation(s)
- Esteban G. Figueroa
- Laboratory of Fetal Neuroprogramming, Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Aitor Caballero-Román
- Pharmacy and Pharmaceutical Technology, and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avinguda Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Josep R. Ticó
- Pharmacy and Pharmaceutical Technology, and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avinguda Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Montserrat Miñarro
- Pharmacy and Pharmaceutical Technology, and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avinguda Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Anna Nardi-Ricart
- Pharmacy and Pharmaceutical Technology, and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avinguda Joan XXIII, 27-31, 08028, Barcelona, Spain
- Corresponding author. Pharmacy and Pharmaceutical Technology, and Physical Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona. Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Alejandro González-Candia
- Laboratory of Fetal Neuroprogramming, Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
- Corresponding author. Libertador Bernardo O'Higgins 611, Rancagua, Chile.
| |
Collapse
|
44
|
Sarfraz M, Qamar S, Rehman MU, Tahir MA, Ijaz M, Ahsan A, Asim MH, Nazir I. Nano-Formulation Based Intravesical Drug Delivery Systems: An Overview of Versatile Approaches to Improve Urinary Bladder Diseases. Pharmaceutics 2022; 14:pharmaceutics14091909. [PMID: 36145657 PMCID: PMC9501312 DOI: 10.3390/pharmaceutics14091909] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Intravesical drug delivery is a direct drug delivery approach for the treatment of various bladder diseases. The human urinary bladder has distinctive anatomy, making it an effective barrier against any toxic agent seeking entry into the bloodstream. This screening function of the bladder derives from the structure of the urothelium, which acts as a semi-permeable barrier. However, various diseases related to the urinary bladder, such as hyperactive bladder syndrome, interstitial cystitis, cancer, urinary obstructions, or urinary tract infections, can alter the bladder’s natural function. Consequently, the intravesical route of drug delivery can effectively treat such diseases as it offers site-specific drug action with minimum side effects. Intravesical drug delivery is the direct instillation of medicinal drugs into the urinary bladder via a urethral catheter. However, there are some limitations to this method of drug delivery, including the risk of washout of the therapeutic agents with frequent urination. Moreover, due to the limited permeability of the urinary bladder walls, the therapeutic agents are diluted before the process of permeation, and consequently, their efficiency is compromised. Therefore, various types of nanomaterial-based delivery systems are being employed in intravesical drug delivery to enhance the drug penetration and retention at the targeted site. This review article covers the various nanomaterials used for intravesical drug delivery and future aspects of these nanomaterials for intravesical drug delivery.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain 64141, United Arab Emirates
| | - Shaista Qamar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Muhammad Azam Tahir
- Department of Pharmacy, Khalid Mahmood Institute of Medical Sciences, Sialkot 51310, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| | - Anam Ahsan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | | | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Correspondence: (M.I.); or (I.N.); Tel.: +92-306-3700456 (M.I.); +92-0992-383591 (I.N.)
| |
Collapse
|
45
|
Habib L, Alyan M, Ghantous Y, Shklover J, Shainsky J, Abu El-Naaj I, Bianco-Peled H, Schroeder A. A mucoadhesive patch loaded with freeze-dried liposomes for the local treatment of oral tumors. Drug Deliv Transl Res 2022; 13:1228-1245. [PMID: 36050621 DOI: 10.1007/s13346-022-01224-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/03/2022]
Abstract
Oral cancers affect millions of people globally, with increasing incidences among adults aged 35 and above. Poor drug uptake by lesions in the oral cavity following systemic administration, as well as limited localized treatment modalities for oral tumors, result in poor patient quality of life and high mortality. Here, we describe a solid, dissolvable, bioadhesive alginate patch containing freeze-dried doxorubicin-loaded liposomes as a local treatment for oral tumors located on the tongue. By varying the alginate-to-liposome ratio in the mucoadhesive patch, we could control the degree of bioadhesion to the tongue and the release profile of the drug-loaded liposomes from the matrix. In vitro, exposing squamous cell carcinoma (SCC) to the alginate mucoadhesive patch or tablet resulted in dose-dependent cancer-cell death. In vivo, the efficacy of the local treatment was demonstrated in mice bearing orthotopic SCC tumors in the tongue. The bioadhesive patch, applied directly above the lesion, significantly reduced the tumor size and treatment-associated side effects compared to implanted patches or systemic drug administration. This study demonstrates that local bioadhesive therapies are effective in treating cancers of the oral cavity.
Collapse
Affiliation(s)
- Layan Habib
- The Inter-Departmental Program of Biotechnology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Mohammed Alyan
- The Inter-Departmental Program of Biotechnology, Technion - Israel Institute of Technology, Haifa, Israel.,The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yasmine Ghantous
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya, Israel
| | - Jeny Shklover
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Janna Shainsky
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Imad Abu El-Naaj
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.,The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
46
|
Caprifico AE, Foot PJS, Polycarpou E, Calabrese G. Advances in Chitosan-Based CRISPR/Cas9 Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14091840. [PMID: 36145588 PMCID: PMC9505239 DOI: 10.3390/pharmaceutics14091840] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and the associated Cas endonuclease (Cas9) is a cutting-edge genome-editing technology that specifically targets DNA sequences by using short RNA molecules, helping the endonuclease Cas9 in the repairing of genes responsible for genetic diseases. However, the main issue regarding the application of this technique is the development of an efficient CRISPR/Cas9 delivery system. The consensus relies on the use of non-viral delivery systems represented by nanoparticles (NPs). Chitosan is a safe biopolymer widely used in the generation of NPs for several biomedical applications, especially gene delivery. Indeed, it shows several advantages in the context of gene delivery systems, for instance, the presence of positively charged amino groups on its backbone can establish electrostatic interactions with the negatively charged nucleic acid forming stable nanocomplexes. However, its main limitations include poor solubility in physiological pH and limited buffering ability, which can be overcome by functionalising its chemical structure. This review offers a critical analysis of the different approaches for the generation of chitosan-based CRISPR/Cas9 delivery systems and suggestions for future developments.
Collapse
|
47
|
Mucoadhesive Marine Polysaccharides. Mar Drugs 2022; 20:md20080522. [PMID: 36005525 PMCID: PMC9409912 DOI: 10.3390/md20080522] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mucoadhesive polymers are of growing interest in the field of drug delivery due to their ability to interact with the body’s mucosa and increase the effectiveness of the drug. Excellent mucoadhesive performance is typically observed for polymers possessing charged groups or non-ionic functional groups capable of forming hydrogen bonds and electrostatic interactions with mucosal surfaces. Among mucoadhesive polymers, marine carbohydrate biopolymers have been attracting attention due to their biocompatibility and biodegradability, sample functional groups, strong water absorption and favorable physiochemical properties. Despite the large number of works devoted to mucoadhesive polymers, there are very few systematic studies on the influence of structural features of marine polysaccharides on mucoadhesive interactions. The purpose of this review is to characterize the mucoadhesive properties of marine carbohydrates with a focus on chitosan, carrageenan, alginate and their use in designing drug delivery systems. A wide variety of methods which have been used to characterize mucoadhesive properties of marine polysaccharides are presented in this review. Mucoadhesive drug delivery systems based on such polysaccharides are characterized by simplicity and ease of use in the form of tablets, gels and films through oral, buccal, transbuccal and local routes of administration.
Collapse
|
48
|
Pornpitchanarong C, Rojanarata T, Opanasopit P, Ngawhirunpat T, Bradley M, Patrojanasophon P. Maleimide-functionalized carboxymethyl cellulose: A novel mucoadhesive polymer for transmucosal drug delivery. Carbohydr Polym 2022; 288:119368. [DOI: 10.1016/j.carbpol.2022.119368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 12/23/2022]
|
49
|
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022; 13:1866-1886. [DOI: 10.1016/j.apsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
|
50
|
Newly synthesized chitosan-nanoparticles attenuate carbendazim hepatorenal toxicity in rats via activation of Nrf2/HO1 signalling pathway. Sci Rep 2022; 12:9986. [PMID: 35705592 PMCID: PMC9200826 DOI: 10.1038/s41598-022-13960-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Widespread application of carbendazim (CBZ) is a major environmental impact because of its residues that caused multi-organ dysfunction. Recently, Chitosan nanoparticles (CS-NPs) are extensively used as nanocarriers due to their non-toxic and biodegradable nature. Therefore, the current study aimed to investigate the possible mechanistic pathway of modified CS-NPs to reduce the hepatic and nephrotoxicity of CBZ in rats. CS-NPs were synthesized by the ionic gelation method by using ascorbic acid instead of acetic acid to increase its antioxidant efficiency. Twenty-adult male Wistar rats were grouped (n = 5) as follows: Group (1) negative control, group (2) received CS-NPs, group (3) received CBZ, and group (4) co-administered CS-NPs with CBZ. Rats received the aforementioned materials daily by oral gavage for 28 days and weighed weekly. The results revealed that CBZ receiving group showed severe histopathological alterations in the liver and kidney sections including cellular necrosis and interstitial inflammation confirmed by immunostaining and showed marked immunopositivity of iNOS and caspase-3 protein. There were marked elevations in the serum levels of ALT, AST, urea, and creatinine with a significant increase in MDA levels and decrease in TAC levels. Upregulation of the Keap1 gene and down-regulation of Nrf2 and HO-1 genes were also observed. Co-treatment of rats by CS-NPs with CBZ markedly improved all the above-mentioned toxicological parameters and return liver and kidney tissues to normal histological architecture. We concluded that CBZ caused hepatorenal toxicity via oxidative stress and the Nrf2/HO-1 pathway and CS-NPs could reduce CBZ toxicity via their antioxidant, anti-apoptotic, and anti-inflammatory effects.
Collapse
|