1
|
Hassan AMA, Abubshait SA, Abdel-Haleem DR, El-Naggar AM, Hassaballah AI. Eco-sustainable Synthesis and Potential Efficiency of Some Novel N-containing Heterocyclic Derivatives as Insecticidal and Photosensitizing Agents Against Musca domestica L. Chem Biodivers 2024:e202401650. [PMID: 39231387 DOI: 10.1002/cbdv.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
The rising application of conventional synthetic insecticides develops resistant populations of houseflies; therefore, using new chemical agents with different modes of action is essential to overcome this problem. The mechanical grinding technique was used as a green method, to synthesize the tested compounds because it is a more facile work-up and high-yield economy, simplicity and solvent-free than conventional thermal technique. Various methods were employed to synthesize new heterocycles containing anthracene (a photosensitizing agent) from chalcone 3, a building block material such as the preparation of the pyrazole derivatives 4-7, isoxazole derivative 8, pyrimidines 9-11, and oxirane derivative 12. The novel synthesized compounds were analyzed by FT-IR, 1H-NMR, 13C-NMR spectra, and elemental analysis. Herein, the toxicity of the anthracene derivatives was assessed against Musca domestica larvae and adults in different conditions to demonstrate the effect of various inserted moieties on the efficiency of tested compounds. Furthermore, the influence of sunlight on the toxicity of anthracene was studied in dark and sunlight tests against adult houseflies. Moreover, these compounds diminished the total protein and lipids contents while significantly influencing the antioxidant enzymes activities of M. domestica adults. Structure-activity relationships demonstrated the role of each moiety on the toxicity of compounds.
Collapse
Affiliation(s)
- A M A Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Samar A Abubshait
- Department of Chemistry, Collage of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 32441, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 32441, Dammam, Saudi Arabia
| | - Doaa R Abdel-Haleem
- Entomology Department, Faculty of Science, Ain Shams University, 11566, Cairo, Abbassia, Egypt
| | - Abeer M El-Naggar
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| | - Aya I Hassaballah
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
2
|
Nettles J, Alfarhan S, Pascoe CA, Westover C, Madsen MD, Sintas JI, Subbiah A, Long TE, Jin K. Functional Upcycling of Polyurethane Thermosets into Value-Added Thermoplastics via Small-Molecule Carbamate-Assisted Decross-Linking Extrusion. JACS AU 2024; 4:3058-3069. [PMID: 39211581 PMCID: PMC11350600 DOI: 10.1021/jacsau.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
The cross-linked structures of most commodity polyurethanes (PUs) hinder their recycling by common mechanical/chemical approaches. Catalyzed dynamic carbamate exchange emerges as a promising PU recycling strategy, which converts traditional static PU thermosets into reprocessable covalent adaptable networks (CANs). However, this approach has been limited to thermoset-to-thermoset reprocessing of PU CANs, accompanied by their well-preserved network structures and extremely high viscosities, which pose challenges to processing and certain applications. This study reports a catalytic decross-linking extrusion process aided by small-molecule carbamates, which can upcycle PU thermosets into easily processable and functional PU thermoplastics in a solvent-free and high-throughput manner. Key to this process is the employment of small-molecule carbamates as decross-linkers to simultaneously deconstruct cross-linked PUs and functionalize the decross-linked PU chains, through catalyzed carbamate exchange reactions in a twin-screw extruder. This strategy applies to both aromatic and aliphatic cross-linked PU films and foams, and the amount of small-molecule carbamates required to decross-link PU networks is determined through thermal, chemical, and structural analyses of the resulting extrudates. This approach is generalizable to small-molecule carbamates with various steric/electronic structures and chemical functionalities including methacrylate, anthracene, and stilbene groups. The chain-end functionalization is confirmed by analyzing the purified decross-linked extrudates after dialysis. This thermoset-to-thermoplastic extrusion process represents a powerful approach for upcycling postconsumer PU thermosets into a library of thermoplastic PUs with controlled molecular weights and chain-end functionalities for diverse applications, including adhesives, photoresins, and stimuli-responsive materials, as demonstrated herein. In the future, this strategy could be extended to upcycle many other step-growth networks capable of undergoing catalytic bond exchange reactions, such as cross-linked polyureas and polyesters, contributing to plastic waste management in general.
Collapse
Affiliation(s)
- Jared
A. Nettles
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Saleh Alfarhan
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Cameron A. Pascoe
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Clarissa Westover
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe 85287, Arizona, United States
| | - Margaret D. Madsen
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Jose I. Sintas
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Aadhi Subbiah
- Department
of Chemical and Biological Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Timothy E. Long
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Kailong Jin
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| |
Collapse
|
3
|
Svriz M, Torres CD, Mongiat L, Aranda E, Spinedi N, Fracchia S, Scervino JM. Anthracene-Induced Alterations in Liverwort Architecture In Vitro: Potential for Bioindication of Environmental Pollution. PLANTS (BASEL, SWITZERLAND) 2024; 13:2060. [PMID: 39124178 PMCID: PMC11314002 DOI: 10.3390/plants13152060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread globally, primarily due to long-term anthropogenic pollution sources. Since PAHs tend to accumulate in soil sediments, liverwort plants, such as Lunularia cruciata, are susceptible to their adverse effects, making them good models for bioindicators. The aim of this study was to probe the impact of anthracene, a three-ring linear PAH, on the growth parameters of L. cruciata and the relationship established with the internalization of the pollutant throughout the phenology of the plant. Intrinsic plant responses, isolated from external factors, were assessed in vitro. L. cruciata absorbed anthracene from the culture medium, and its bioaccumulation was monitored throughout the entire process, from the gemma germination stage to the development of the adult plant, over a total period of 60 days. Consequently, plants exposed to concentrations higher than 50 μM anthracene, decreased the growth area of the thallus, the biomass and number of tips. Moreover, anthracene also impinged on plant symmetry. This concentration represented the maximum limit of bioaccumulation in the tissues. This study provides the first evidence that architectural variables in liverwort plants are suitable parameters for their use as bioindicators of PAHs.
Collapse
Affiliation(s)
- Maya Svriz
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| | - Cristian D. Torres
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| | - Lucas Mongiat
- Departamento de Física Médica, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche 8400, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina
| | - Elisabet Aranda
- Department of Microbiology, Farmacy Faculty and Institute of Water Research, University of Granada, Ramón y Cajal, Bldg. Fray Luis 4, 18071 Granada, Spain;
| | - Nahuel Spinedi
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| | - Sebastian Fracchia
- Instituto de Micología y Botánica (INMIBO), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina;
| | - José Martín Scervino
- Institute of Research in Biodiversity and Environment (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche 8400, Argentina; (M.S.); (C.D.T.); (N.S.)
| |
Collapse
|
4
|
Aarsen C, Liguori A, Mattsson R, Sipponen MH, Hakkarainen M. Designed to Degrade: Tailoring Polyesters for Circularity. Chem Rev 2024; 124:8473-8515. [PMID: 38936815 PMCID: PMC11240263 DOI: 10.1021/acs.chemrev.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A powerful toolbox is needed to turn the linear plastic economy into circular. Development of materials designed for mechanical recycling, chemical recycling, and/or biodegradation in targeted end-of-life environment are all necessary puzzle pieces in this process. Polyesters, with reversible ester bonds, are already forerunners in plastic circularity: poly(ethylene terephthalate) (PET) is the most recycled plastic material suitable for mechanical and chemical recycling, while common aliphatic polyesters are biodegradable under favorable conditions, such as industrial compost. However, this circular design needs to be further tailored for different end-of-life options to enable chemical recycling under greener conditions and/or rapid enough biodegradation even under less favorable environmental conditions. Here, we discuss molecular design of the polyester chain targeting enhancement of circularity by incorporation of more easily hydrolyzable ester bonds, additional dynamic bonds, or degradation catalyzing functional groups as part of the polyester chain. The utilization of polyester circularity to design replacement materials for current volume plastics is also reviewed as well as embedment of green catalysts, such as enzymes in biodegradable polyester matrices to facilitate the degradation process.
Collapse
Affiliation(s)
- Celine
V. Aarsen
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Anna Liguori
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Rebecca Mattsson
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| | - Mika H. Sipponen
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106
91 Stockholm, Sweden
| | - Minna Hakkarainen
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden
| |
Collapse
|
5
|
Qi C, Zhu YL, Zhao H, Lu ZY. Ultrasmall Single-Chain Nanoparticles Derived from Amphiphilic Alternating Copolymers. Macromol Rapid Commun 2024; 45:e2400087. [PMID: 38688322 DOI: 10.1002/marc.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The collapse or folding of an individual polymer chain into a nanoscale particle gives rise to single-chain nanoparticles (SCNPs), which share a soft nature with biological protein particles. The precise control of their properties, including morphology, internal structure, size, and deformability, are a long-standing and challenging pursuit. Herein, a new strategy based on amphiphilic alternating copolymers for producing SCNPs with ultrasmall size and uniform structure is presented. SCNPs are obtained by folding the designed alternating copolymer in N,N-dimethylformamide (DMF) and fixing it through a photocatalyzed cycloaddition reaction of anthracene units. Molecular dynamics simulation confirms the solvophilic outer corona and solvophobic inner core structure of SCNPs. Furthermore, by adjusting the length of PEG units, precise control over the mean size of SCNPs is achieved within the range of 2.8 to 3.9 nm. These findings highlight a new synthetic strategy that enables enhanced control over morphology and internal structure while achieving ultrasmall and uniform size for SCNPs.
Collapse
Affiliation(s)
- Chufeng Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Jiefang Road, Changchun, 130012, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Jiefang Road, Changchun, 130012, China
| | - Huanyu Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Jiefang Road, Changchun, 130012, China
| |
Collapse
|
6
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Arndt JH, Macko T, Vanderfeesten J, Verhoogt H, Brüll R. Characterizing graft distribution in maleic anhydride grafted polyethylene - GPC with IR and UV-detection. J Chromatogr A 2024; 1714:464557. [PMID: 38065028 DOI: 10.1016/j.chroma.2023.464557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
As commodity plastics, polyolefins are in high demand and used in innumerable applications. An important reason for their success-story is their high versatility in terms of applications. The application range of polyolefins was significantly extended through the development of functionalization. A common functionalization for improving the compatibility of polyolefins with more polar polymers and surfaces is grafting with maleic anhydride. While maleic anhydride-grafted polyolefins have found widespread application, methods for their characterization remain rudimentary compared to the developments seen in the structural characterization of polyolefins in general. Herein, we propose two new approaches for determining the degree of functionalization as a function of the molar mass of maleic anhydride grafted polyolefins. On the one hand, the latest generation bandpass filter-based IR detectors are shown to be sensitive to the carbonyl moiety of MAH. After optimization of analysis conditions, the relation between MAH content and molar mass could be unraveled in an easily applicable approach suitable for routine analysis. On the other hand, the high reactivity of MAH was leveraged in a tagging approach. By imidization with a UV chromophore, MAH distribution can be assessed by HT-GPC-UV with significantly higher sensitivity compared to HT-GPC-IR.
Collapse
Affiliation(s)
- Jan-Hendrik Arndt
- Fraunhofer Institute for Structural Durability and System Reliability LBF, Division Plastics, Department Material Analysis and Characterization, Schlossgartenstrasse 6, 64289, Darmstadt, Germany
| | - Tibor Macko
- Fraunhofer Institute for Structural Durability and System Reliability LBF, Division Plastics, Department Material Analysis and Characterization, Schlossgartenstrasse 6, 64289, Darmstadt, Germany
| | - Joep Vanderfeesten
- SABIC Technology & Innovation, STC Geleen, PO Box 319, 6160 AH Geleen, the Netherlands
| | - Henk Verhoogt
- SABIC Technology & Innovation, STC Geleen, PO Box 319, 6160 AH Geleen, the Netherlands
| | - Robert Brüll
- Fraunhofer Institute for Structural Durability and System Reliability LBF, Division Plastics, Department Material Analysis and Characterization, Schlossgartenstrasse 6, 64289, Darmstadt, Germany.
| |
Collapse
|
8
|
Yan Y, Brega V, Pina MM, Thomas SW. Electronic effects of conjugated aryl groups on the properties and reactivities of di(arylethynyl)tetracenes. Org Biomol Chem 2024; 22:289-295. [PMID: 38054249 DOI: 10.1039/d3ob01601c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The photochemical oxidations of acenes can cause challenges with their optoelectronic applications, such as singlet fission and organic transistors. At the same time, these reactions form the basis for many luminescent sensing schemes for 1O2. While diethynyl substitution is arguably the most widely adopted of the various substitution strategies to control oxidation and also improve solubility and processability of long acenes, the extent to which differences between the alkyne groups can influence key properties of long acenes remains largely unknown. This report therefore describes the effects of various arenes and heteroarenes on the electronic structures, optical properites, and reactivity with singlet oxygen for eight 5,12-di(arylethynyl)tetracenes. The fluorescence spectra of these tetracenes span approximately 100 nm, while their observed rate constants for reaction with singlet oxygen correlates strongly with the HOMO level, spanning one order of magnitude. They are also amenable to fluorescent materials that respond ratiometrically to singlet oxygen. Therefore, electronic effects of groups directly conjugated to ethynylacenes offer a useful chemical space for rational acene design.
Collapse
Affiliation(s)
- Yu Yan
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Valentina Brega
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Manuel M Pina
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| | - Samuel W Thomas
- Department of Chemistry, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
9
|
Liu H, Lu HH, Alp Y, Wu R, Thayumanavan S. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies. Prog Polym Sci 2024; 148:101765. [PMID: 38476148 PMCID: PMC10927256 DOI: 10.1016/j.progpolymsci.2023.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Stimuli-responsive nano-assemblies from amphiphilic macromolecules could undergo controlled structural transformations and generate diverse macroscopic phenomenon under stimuli. Due to the controllable responsiveness, they have been applied for broad material and biomedical applications, such as biologics delivery, sensing, imaging, and catalysis. Understanding the mechanisms of the assembly-disassembly processes and structural determinants behind the responsive properties is fundamentally important for designing the next generation of nano-assemblies with programmable responsiveness. In this review, we focus on structural determinants of assemblies from amphiphilic macromolecules and their macromolecular level alterations under stimuli, such as the disruption of hydrophilic-lipophilic balance (HLB), depolymerization, decrosslinking, and changes of molecular packing in assemblies, which eventually lead to a series of macroscopic phenomenon for practical purposes. Applications of stimuli-responsive nano-assemblies in delivery, sensing and imaging were also summarized based on their structural features. We expect this review could provide readers an overview of the structural considerations in the design and applications of nanoassemblies and incentivize more explorations in stimuli-responsive soft matters.
Collapse
Affiliation(s)
- Hongxu Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 P. R. China
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yasin Alp
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ruiling Wu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Wang Z, Dong S, Yuan W, Li J, Ma X, Liu F, Jiang X. Photo-Modulated Ionic Polymer as an Adaptable Electron Transport Material for Optically Switchable Pixel-Free Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309593. [PMID: 37967857 DOI: 10.1002/adma.202309593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/06/2023] [Indexed: 11/17/2023]
Abstract
In addition to electrically driven organic light-emitting diode (OLED) displays that rely on complicated and costly circuits for switching individual pixel illumination, developing a facile approach that structures pixel-free light-emitting displays with exceptional precision and spatial resolution via external photo-modulation holds significant importance for advancing consumer electronics. Here, optically switchable organic light-emitting pixel-free displays (OSPFDs) are presented and fabricated by judiciously combining an adaptive photosensitive ionic polymer as electron transport materials (ETM) with external photo-modulation as the switching mode while ensuring superior illumination performance and seamless imaging capability. By irradiating the solution-processed OSPFDs with light at specific wavelengths, efficient and reversible tuning of both electron transport and electroluminescence is achieved simultaneously. This remarkable control is achieved by altering the energetic matching within OSPFDs, which also exhibits a high level of universality and adjustable flexibility in the three primary color-based light-emitting displays. Moreover, the ease of creating and erasing desired pixel-free emitting patterns through a non-invasive photopatterning process within a single OSPFD is demonstrated, thereby rendering this approach promising for commercial displaying devices and highly precise pixelated illuminants.
Collapse
Affiliation(s)
- Zehong Wang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shilong Dong
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenqiang Yuan
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Liu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Walden SL, Carroll JA, Unterreiner A, Barner‐Kowollik C. Photochemical Action Plots Reveal the Fundamental Mismatch Between Absorptivity and Photochemical Reactivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306014. [PMID: 37937391 PMCID: PMC10797470 DOI: 10.1002/advs.202306014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 11/09/2023]
Abstract
Over the last years, the authors' laboratory has employed monochromatic tuneable laser systems to reveal a fundamental mismatch between the absorptivity of a chromophore and its photochemical reactivity for the vast majority of covalent bond forming reactions as well as specific bond cleavage reactions. In the general chemistry community, however, the long-held assumption pervades that effective photochemical reactions are obtained in situations where there is strong overlap between the absorption spectrum and the excitation wavelength. The current Perspective illustrates that the absorption spectrum of a molecule only provides information about electronic excitations and remains entirely silent on other energy redistribution mechanisms that follow, which critically influence photochemical reactivity. Future avenues of enquiry on how action plots can be understood are proposed and the importance of action plots for tailoring photochemical applications with never-before-seen precision is explored.
Collapse
Affiliation(s)
- Sarah L. Walden
- School of Chemistry and Physics, Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Institute of Solid State Physics and Institute of Applied PhysicsAbbe Centre of PhotonicsFriedrich Schiller University JenaHelmholtzweg 307743JenaGermany
| | - Joshua A. Carroll
- School of Chemistry and Physics, Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| | - Andreas‐Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber‐Weg 276131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- School of Chemistry and Physics, Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
12
|
Huang J, Jiang Y, Chen Q, Xie H, Zhou S. Bioinspired thermadapt shape-memory polymer with light-induced reversible fluorescence for rewritable 2D/3D-encoding information carriers. Nat Commun 2023; 14:7131. [PMID: 37932322 PMCID: PMC10628284 DOI: 10.1038/s41467-023-42795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Fluorescent materials have attracted widespread attention for information encryption owing to their stimuli-responsive color-shifting. However, the 2D encoding of fluorescent images poses a risk of information leakage. Herein, inspired by the mimic octopus capable of camouflage by changing colors and shapes, we develop a thermadapt shape-memory fluorescent film (TSFF) for integrating 2D/3D encoding in one system. The TSFF is based on anthracene group with reversible photo-cross-linking and poly (ethylene-co-vinyl acetate) network with thermadapt shape-memory properties. The reversible photo-cross-linking of anthracene is accompanied by repeatable fluorescence-shifting and enables rewritable 2D encoding. Meanwhile, the thermadapt shape-memory properties not only enables the reconfiguration of the permanent shape for creating and erasing 3D patterns, i.e., rewritable 3D information, but also facilitates recoverable shape programming for 3D encoding. This rewritable 2D/3D encoding strategy can enhance information security because only designated inspectors can decode the information by providing sequential heating for shape recovery and UV exposure. Overall, TSFF capable of rewritable 2D/3D encoding will inspire the design of smart materials for high-security information carriers.
Collapse
Affiliation(s)
- Jinhui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yue Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Qiuyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China.
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, 610031, Chengdu, China.
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
13
|
Ionita D, Cristea M, Gaina C, Silion M, Simionescu BC. Evidence through Thermal Analysis of Retro Diels-Alder Reaction in Model Networks Based on Anthracene Modified Polyester Resins. Polymers (Basel) 2023; 15:4028. [PMID: 37836077 PMCID: PMC10575195 DOI: 10.3390/polym15194028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The present work is focused on polyester resins obtained from the diglycidyl ether of bisphenol A and anthracene modified 5-maleimidoisophthalic acid. Because the maleimide-anthracene Diels-Alder (DA) adduct is stable at high temperatures, it is considered a good option for high performance polymers. However, the information related to the retroDA reaction for this type of adduct is sometimes incoherent. A detailed thermal study (conventional TGA, HiRes TGA, MTGA, DSC, MDSC) was performed in order to establish whether the rDA reaction can be revealed for this type of anthracene modified polyester resins. The TGA method confirmed the cleavage of the anthracene-maleimide DA adduct, while the DSC demonstrated the presence of anthracene in the system. At high temperatures, unprotected maleimide homopolymerizes and/or reacts with allyl groups according to the -ene reaction. Therefore, the thermal DA reaction is not displayed anymore upon the subsequent cooling, and the glass transition region is registered at a higher temperature range during the second heating. The use of sample-controlled thermal analysis (HiRes TGA) and MTGA improved the TGA result; however, it was not possible to separate the very complex degradation processes that are interconnected.
Collapse
Affiliation(s)
| | - Mariana Cristea
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica 41A, 700487 Iasi, Romania; (D.I.); (C.G.); (M.S.); (B.C.S.)
| | | | | | | |
Collapse
|
14
|
Sun XQ, Qin GY, Li HY, Jin HY, Wang R, Li H, Ren AM, Guo JF. Theoretical insight on the charge transport properties: The formation of "head-to-tail" and "head-to-head" stacking of asymmetric aryl anthracene derivatives. J Chem Phys 2023; 158:2887560. [PMID: 37125711 DOI: 10.1063/5.0139904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
Organic semiconductors (OSCs) are widely used in flexible display, renewable energy, and biosensors, owing to their unique solid-state physical and optoelectronic properties. Among the abundant crystal library of OSCs, asymmetric aryl anthracene derivatives have irreplaceable advantages due to the interplay between their distinct π-conjugated geometry and molecular stacking as well as efficient light emission and charge transport properties that can be simultaneously utilized. However, the poor crystal stacking patterns of most asymmetric molecules limit their utility as excellent OSCs. Thus, it is crucial to clarify the structural features that enable the extremely ordered stacking and favorable electronic structure of asymmetric anthracene derivatives to become high-performance OSCs. This contribution investigates the charge transport properties of a series of asymmetric aryl anthracene derivatives to reveal the modulation factors of the molecular stacking modes and to explore the structural factors, which are beneficial to charge transport. The analysis demonstrated that the vinyl-linker facilitated the injection of hole carriers, and the alkynyl-linker effectively reduces the reorganization energy. Importantly, the linear polarizability and permanent dipole moment of a single molecule play a vital regulation to molecular stacking modes and the transfer integral of the dimer. The "head-to-head stacking" motif shows a compact stacking pattern and the maximum 2D anisotropic mobility more than 10 cm2 V-1 s-1. These findings sharpen our understanding of the charge transport properties in asymmetric organic semiconductors and are essential for developing a diverse range of high-performance OSC materials.
Collapse
Affiliation(s)
- Xiao-Qi Sun
- School of Physics, Northeast Normal University, Changchun 130024, China
| | - Gui-Ya Qin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Hui-Yuan Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Heng-Yu Jin
- School of Physics, Northeast Normal University, Changchun 130024, China
| | - Rui Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
15
|
Aydemir M, Haykir G, Selvitopi H, Yildirim OC, Arslan ME, Abay B, Turksoy F. Exploring the potential of anthracene derivatives as fluorescence emitters for biomedical applications. J Mater Chem B 2023; 11:4287-4295. [PMID: 37144344 DOI: 10.1039/d3tb00449j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Two novel anthracene derivatives were synthesized, and detailed photo-physical and biological investigations were carried out using a variety of spectroscopy techniques. The effect of cyano (-CN) substitution was found to be effective to alter the charge population and frontier orbital energy levels via Density Functional Theory (DFT) calculations. Particularly, the introduction of styryl and triphenylamine groups attached to the anthracene core helped to increase the conjugation relative to the anthracene moiety. The results revealed that the molecules have intramolecular charge transfer (ICT) properties, occurring from the electron donating triphenylamine to the electron accepting anthracene moiety in solutions. In addition, the photo-physical properties are strongly cyano-dependent, where the cyano-substituted (E/Z)-(2-anthracen-9-yl)-3-(4'-(diphenylamino)biphenyl-4yl)acrylonitrile molecule showed stronger electron affinity due to the enhanced internal steric hindrance compared to the (E)-4'-(2-(anthracen-9-yl)vinyl)-N,N-diphenylbiphenyl-4-amine molecule, which resulted in a lower photoluminescence quantum yield (PLQY) value and a shorter lifetime in the molecule. Besides, the Molecular Docking approach was used to investigate possible cellular staining targets to confirm cellular imaging potential of the compounds. Moreover, cell viability analyses put forth that synthesized molecules do not exhibit significant cytotoxicity under 125 μg mL-1 concentration on the human dermal fibroblast cell line (HDFa). Moreover, both of the compounds showed great potential in cellular imaging of HDFa cells. Compared to Hoechst 33258, a common fluorescent dye used for nuclear staining, the compounds showed higher magnification of cellular structure imaging capacity by staining the whole cellular compartment. On the other hand, bacterial staining showed that ethidium bromide has higher resolution in monitoring Staphylococcus aureus (S. aureus) cell culture.
Collapse
Affiliation(s)
- Murat Aydemir
- Department of Fundamental Sciences, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Gulcin Haykir
- TUBITAK Marmara Research Centre, Institute of Chemical Technology, p.b.21,41470, Gebze, Turkey.
| | - Harun Selvitopi
- Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ozge Caglar Yildirim
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Bahattin Abay
- Department of Physics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Figen Turksoy
- TUBITAK Marmara Research Centre, Institute of Chemical Technology, p.b.21,41470, Gebze, Turkey.
| |
Collapse
|
16
|
Kahraman G, Durçak B, Arsu N, Hey-Hawkins E, Eren T. Photodimerization of anthracene- and carborane-bearing polymers obtained by ring opening metathesis polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
17
|
Workman KT, Usher AJ, Henson DW, White NJ, Gichuhi WK. Predicted Negative Ion Photoelectron Spectra of 1-, 2-, and 9-Cyanoanthracene Radical Anions and Computed Thermochemical Values of the Three Cyanoanthracene Isomers. J Phys Chem A 2023; 127:4063-4076. [PMID: 37116201 DOI: 10.1021/acs.jpca.3c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
In this work, the negative ion photoelectron spectra of 1-, 2-, and 9-cyanoanthracene (anthracenecarbonitrile, ACN) radical anions, obtained via the calculation of Franck-Condon (FC) factors based on a harmonic oscillator model, are reported. The FC calculations utilize harmonic vibrational frequencies and normal mode vectors derived from density functional theory using the B3LYP/6-311++G (2d,2p) basis set. The removal of an electron from the doublet anion allows for the computation of the negative ion photoelectron spectra that represents the neutral ground singlet state (So) and the lowest triplet state (T1) in each of the three ACN molecules. The respective adiabatic electron affinity (EA) values for the So state in 1-, 2-, and 9-ACN isomers are calculated to be 1.353, 1.360, and 1.423 eV. The calculated EA of the 9-cyanoanthracene singlet isomer is in close agreement with the previously reported experimental value of 1.27 ± 0.1 eV. Calculations show that the T1 states in 1-, 2-, and 9-ACN are located 1.656, 1.663, and 1.599 eV above the So state. The calculated T1 negative ion spectra exhibit intense vibrational origins and weak FC activity beyond the origins, indicating little change in geometry following electron detachment from the doublet anionic state. Upon deprotonation, the EA values of the radical isomers increase by ∼400-700 meV, resulting in neutral deprotonated radicals with EAs between 1.740 and 2.220 eV. The calculated site-specific gas-phase acidity values of ACN isomers indicate that ACN molecules are more acidic than benzonitrile.
Collapse
|
18
|
Wang HH, Wei J, Bigdeli F, Rouhani F, Su HF, Wang LX, Kahlal S, Halet JF, Saillard JY, Morsali A, Liu KG. Monocarboxylate-protected two-electron superatomic silver nanoclusters with high photothermal conversion performance. NANOSCALE 2023; 15:8245-8254. [PMID: 37073517 DOI: 10.1039/d3nr00571b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first series of monocarboxylate-protected superatomic silver nanoclusters was synthesized and fully characterized by X-ray diffraction, fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and electrospray ionization mass spectrometry (ESI-MS). Specifically, compounds [Ag16(L)8(9-AnCO2)12]2+ (L = Ph3P (I), (4-ClPh)3P (II), (2-furyl)3P (III), and Ph3As (IV)) were prepared by a solvent-thermal method under alkaline conditions. These clusters exhibit a similar unprecedented structure containing a [Ag8@Ag8]6+ metal kernel, of which the 2-electron superatomic [Ag8]6+ inner core shows a flattened and puckered hexagonal bipyramid of S6 symmetry. Density functional theory calculations provide a rationalization of the structure and stability of these 2-electron superatoms. Results indicate that the 2 superatomic electrons occupy a superatomic molecular orbital 1S that has a substantial localization on the top and bottom vertices of the bipyramid. The π systems of the anthracenyl groups, as well as the 1S HOMO, are significantly involved in the optical and photothermal behavior of the clusters. The four characterized nanoclusters show high photothermal conversion performance in sunlight. These results show that the unprecedented use of mono-carboxylates in the stabilization of Ag nanoclusters is possible, opening the door for the introduction of various functional groups on their cluster surface.
Collapse
Affiliation(s)
- Hao-Hai Wang
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jianyu Wei
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France.
| | - Fahime Bigdeli
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115175, Iran.
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115175, Iran.
| | - Hai-Feng Su
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| | - Ling-Xiao Wang
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Samia Kahlal
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France.
| | - Jean-François Halet
- CNRS-Saint-Gobain-NIMS, IRL 3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) - UMR 6226, F-35000 Rennes, France.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115175, Iran.
| | - Kuan-Guan Liu
- Ningxia Key Laboratory for Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021, China.
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China
| |
Collapse
|
19
|
Luo D, Yuan ZJ, Ping LJ, Zhu XW, Zheng J, Zhou CW, Zhou XC, Zhou XP, Li D. Tailor-Made Pd n L 2n Metal-Organic Cages through Covalent Post-Synthetic Modification. Angew Chem Int Ed Engl 2023; 62:e202216977. [PMID: 36753392 DOI: 10.1002/anie.202216977] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Post-synthetic modification (PSM) is an effective approach for the tailored functionalization of metal-organic architectures, but its generalizability remains challenging. Herein we report a general covalent PSM strategy to functionalize Pdn L2n metal-organic cages (MOCs, n=2, 12) through an efficient Diels-Alder cycloaddition between peripheral anthracene substituents and various functional motifs bearing a maleimide group. As expected, the solubility of functionalized Pd12 L24 in common solvents can be greatly improved. Interestingly, concentration-dependent circular dichroism and aggregation-induced emission are achieved with chiral binaphthol (BINOL)- and tetraphenylethylene-modified Pd12 L24 , respectively. Furthermore, Pd12 L24 can be introduced with two different functional groups (e.g., chiral BINOL and achiral pyrene) through a step-by-step PSM route to obtain chirality-induced circularly polarized luminescence. Moreover, similar results are readily observed with a smaller Pd2 L4 system.
Collapse
Affiliation(s)
- Dong Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zi-Jun Yuan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Lin-Jie Ping
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, P. R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Chuang-Wei Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
20
|
Chen Q, Cui L, Zhou X, Guan Y, Zhang Y. Anthracene dimer cross-linked, washing- and sterilization-free hydrogel films for multicellular spheroid generation. J Mater Chem B 2022; 10:9914-9922. [PMID: 36448470 DOI: 10.1039/d2tb01878k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three-dimensional multicellular spheroids are better in vitro cell models than two-dimensional cell monolayers; however, their applications are limited by their difficult production. PHEMA hydrogel films with honeycomb-like wrinkled patterns have been developed for high-throughput generation of multicellular spheroids with a uniform shape and size; however, the films are prepared by polymerization of the HEMA monomer, and should be washed extensively before use. Here to synthesize washing-free PHEMA hydrogel films, linear anthracene-functionalized PHEMA polymers were first synthesized by the free-radical copolymerization of HEMA and an anthracene-containing vinyl monomer. Smooth films were then prepared from the linear polymers in the wells of cell culture plates by solution casting. They were cross-linked via photo-dimerization of anthracene groups by exposing to 365 nm UV light, and patterned spontaneously by adding water to swell them. The swelling degree of the films and hence the shape of the wrinkled patterns could be facilely adjusted by adjusting the anthracene content in the linear polymers. If necessary, the cross-link density of the film and thus the shape of the wrinkled patterns could be callbacked by irradiating with 254 nm UV light, thanks to the reversibility of the photo-dimerization of anthracene. The as-prepared films exhibit a high biocompatibility and support cell growth well even without washing and sterilization. The high biocompatibility is attributed to the facts that no low molecular weight monomer, crosslinker and initiator were involved in the film preparation, and the photo-dimerization of anthracene groups produces no by-products. The films are sterilized simultaneously when cross-linked with UV irradiation, thus avoiding an additional sterilization step. PHEMA films with long-range ordered hexagonal wrinkled patterns were selected to generate multicellular spheroids of tumor cell lines. The resulting spheroids exhibit a narrow size distribution and high cell viability. Preliminary tests demonstrated their potential in the screening of anti-cancer drugs.
Collapse
Affiliation(s)
- Qianbing Chen
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Cui
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoyong Zhou
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjun Zhang
- School of Chemistry, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
21
|
Synthesis, experimental and theoretical characterization of a new copolymer bearing pyrrole and anthracene units. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Li S, Ma C, Hou B, Liu H. Rational design of adhesives for effective underwater bonding. Front Chem 2022; 10:1007212. [DOI: 10.3389/fchem.2022.1007212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Underwater adhesives hold great promises in our daily life, biomedical fields and industrial engineering. Appropriate underwater bonding can reduce the huge cost from removing the target substance from water, and greatly lift working efficiency. However, different from bonding in air, underwater bonding is quite challenging. The existence of interfacial water prevents the intimate contact between the adhesives and the submerged surfaces, and water environment makes it difficult to achieve high cohesiveness. Even so, in recent years, various underwater adhesives with macroscopic adhesion abilities were emerged. These smart adhesives can ingeniously remove the interfacial water, and enhance cohesion by utilizing their special physicochemical properties or functional groups. In this mini review, we first give a detail introduction of the difficulties in underwater bonding. Further, we overview the recent strategies that are used to construct underwater adhesives, with the emphasis on how to overcome the difficulties of interfacial water and achieve high cohesiveness underwater. In addition, future perspectives of underwater adhesives from the view of practical applications are also discussed. We believe the review will provide inspirations for the discovery of new strategies to overcome the obstacles in underwater bonding, and therefore may contribute to designing effective underwater adhesives.
Collapse
|
23
|
Zhang B, Wang B, Ushakova EV, He B, Xing G, Tang Z, Rogach AL, Qu S. Assignment of Core and Surface States in Multicolor-Emissive Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022:e2204158. [PMID: 36216592 DOI: 10.1002/smll.202204158] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
It is important to reveal the luminescence mechanisms of carbon dots (CDs). Herein, CDs with two types of optical centers are synthesized from citric acid in formamide by a solvothermal method, and show high photoluminescence quantum yield reaching 42%. Their green/yellow emission exhibits pronounced vibrational structure and high resistance toward photobleaching, while broad red photoluminescence is sensitive to solvents, temperature, and UV-IR. Under UV-IR, the red emission is gradually bleached due to the photoinduced dehydration of the deprotonated surface of CDs in dimethyl sulfoxide, while this process is hindered in water. From the analysis of steady-state and time-resolved photoluminescence and transient absorption data together with density functional theory calculations, the green/ yellow emission is assigned to conjugated sp2 -domains (core state) similar to organic dye derivatives stacked within disk-shaped CDs; and the broad red emission-to oxygen-containing groups bound to sp2 -domains (surface state), whereas energy transfer from the core to the surface state can happen.
Collapse
Affiliation(s)
- Bohan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Elena V Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Bingchen He
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, P. R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
24
|
Inacker S, Fanelli J, Ivlev SI, Hampp NA. Intramolecular Coumarin-Dimer Containing Polyurethanes: Optical Tuning via Single- and Two-Photon Absorption Processes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Inacker
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| | - Julian Fanelli
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| | - Sergei I. Ivlev
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| | - Norbert A. Hampp
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| |
Collapse
|
25
|
Kristinaityte K, Mames A, Pietrzak M, Westermair FF, Silva W, Gschwind RM, Ratajczyk T, Urbańczyk M. Deeper Insight into Photopolymerization: The Synergy of Time-Resolved Nonuniform Sampling and Diffusion NMR. J Am Chem Soc 2022; 144:13938-13945. [PMID: 35852987 PMCID: PMC9354252 DOI: 10.1021/jacs.2c05944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The comprehensive real-time in situ monitoring of chemical processes is a crucial requirement for the in-depth understanding of these processes. This monitoring facilitates an efficient design of chemicals and materials with the precise properties that are desired. This work presents the simultaneous utilization and synergy of two novel time-resolved NMR methods, i.e., time-resolved diffusion NMR and time-resolved nonuniform sampling. The first method allows the average diffusion coefficient of the products to be followed, while the second method enables the particular products to be monitored. Additionally, the average mass of the system is calculated with excellent resolution using both techniques. Employing both methods at the same time and comparing their results leads to the unequivocal validation of the assignment in the second method. Importantly, such validation is possible only via the simultaneous combination of both approaches. While the presented methodology was utilized for photopolymerization, it can also be employed for any other polymerization process, complexation, or, in general, chemical reactions in which the evolution of mass in time is of importance.
Collapse
Affiliation(s)
- Kristina Kristinaityte
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Mames
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mariusz Pietrzak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Franz F. Westermair
- Faculty
of Chemistry and Pharmacy, Univeristy of
Regensburg, Universitätsstraßze 31, 93053 Regensburg, Germany
| | - Wagner Silva
- Faculty
of Chemistry and Pharmacy, Univeristy of
Regensburg, Universitätsstraßze 31, 93053 Regensburg, Germany
| | - Ruth M. Gschwind
- Faculty
of Chemistry and Pharmacy, Univeristy of
Regensburg, Universitätsstraßze 31, 93053 Regensburg, Germany
| | - Tomasz Ratajczyk
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Urbańczyk
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
26
|
Hu D, Huang H, Li R, Yuan J, Wei Y. “Living” fluorophores: Thermo-driven reversible ACQ-AIE transformation and ultra-sensitive in-situ monitor for dynamic Diels-Alder reactions. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
27
|
Bruzon DA, De Jesus AP, Bautista CD, Martinez IS, Paderes MC, Tapang GA. Enhanced photo-reactivity of polyanthracene in the VIS region. PLoS One 2022; 17:e0271280. [PMID: 35802661 PMCID: PMC9269904 DOI: 10.1371/journal.pone.0271280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
The wavelength-dependent photo-reactivity of polyanthracene was explored upon UV-C and VIS light irradiation. The material was prepared via one-pot chemical oxidation route using FeCl3 as oxidizing agent. A decrease in surface hydrophobicity of a polyanthracene-coated poly(methylmethacrylate) substrate from 109.11° to 60.82° was observed upon UV-C exposure for 48 hrs which was attributed to increase in oxygen content at the surface, as validated by energy dispersive X-ray spectroscopy. Upon exposure to ultraviolet-visible LEDs, photo-dimerization of polyanthracene in solution occurred and was monitored using UV-VIS spectroscopy. The photo-dimer product formation decreased from 381 nm to 468 nm and was found to be higher for the polyanthracene material compared to the monomer anthracene. At 381 nm, photo-dimerization of the material was found to be approx. 4x more efficient than the non-substituted monomer counterpart. Results obtained show that photo-dimerization of polyanthracene will proceed upon exposure with visible light LEDs with reduction in efficiency at longer wavelengths. To compensate, irradiation power of the light source and irradiation time were increased.
Collapse
Affiliation(s)
- Dwight Angelo Bruzon
- Materials Science and Engineering Program, College of Science, University of the Philippines Diliman, Quezon City, Philippines
- * E-mail:
| | - Anna Pamela De Jesus
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Banos, Laguna, Philippines
| | - Chris Dion Bautista
- National Institute of Physics, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Imee Su Martinez
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Monissa C. Paderes
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Giovanni A. Tapang
- National Institute of Physics, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
28
|
Wang W, Tasset A, Pyatnitskiy I, Mohamed HG, Taniguchi R, Zhou R, Rana M, Lin P, Capocyan SLC, Bellamkonda A, Chase Sanders W, Wang H. Ultrasound triggered organic mechanoluminescence materials. Adv Drug Deliv Rev 2022; 186:114343. [PMID: 35580814 PMCID: PMC10202817 DOI: 10.1016/j.addr.2022.114343] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Ultrasound induced organic mechanoluminescence materials have become one of the focal topics in wireless light sources since they exhibit high spatiotemporal resolution, biocompatibility and excellent tissue penetration depth. These properties promote great potential in ultrahigh sensitive bioimaging with no background noise and noninvasive nanodevices. Recent advances in chemistry, nanotechnology and biomedical research are revolutionizing ultrasound induced organic mechanoluminescence. Herein, we try to summarize some recent researches in ultrasound induced mechanoluminescence that use various materials design strategies based on the molecular conformational changes and cycloreversion reaction. Practical applications, like noninvasive bioimaging and noninvasive optogenetics, are also presented and prospected.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Aaron Tasset
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Heba G Mohamed
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Rayna Taniguchi
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Richard Zhou
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Manini Rana
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Lin
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Sam Lander C Capocyan
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Bellamkonda
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - W Chase Sanders
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
29
|
Xuan M, Schumacher C, Bolm C, Göstl R, Herrmann A. The Mechanochemical Synthesis and Activation of Carbon-Rich π-Conjugated Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105497. [PMID: 35048569 PMCID: PMC9259731 DOI: 10.1002/advs.202105497] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Indexed: 05/14/2023]
Abstract
Mechanochemistry uses mechanical force to break, form, and manipulate chemical bonds to achieve functional transformations and syntheses. Over the last years, many innovative applications of mechanochemistry have been developed. Specifically for the synthesis and activation of carbon-rich π-conjugated materials, mechanochemistry offers reaction pathways that either are inaccessible with other stimuli, such as light and heat, or improve reaction yields, energy consumption, and substrate scope. Therefore, this review summarizes the recent advances in this research field combining the viewpoints of polymer and trituration mechanochemistry. The highlighted mechanochemical transformations include π-conjugated materials as optical force probes, the force-induced release of small dye molecules, and the mechanochemical synthesis of polyacetylene, carbon allotropes, and other π-conjugated materials.
Collapse
Affiliation(s)
- Mingjun Xuan
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| | - Christian Schumacher
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1Aachen52074Germany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 50Aachen52056Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 1Aachen52074Germany
| |
Collapse
|
30
|
Bai J, Hu K, Zhang L, Shi Z, Zhang W, Yin J, Jiang X. The Evolution of Self-Wrinkles in a Single-Layer Gradient Polymer Film Based on Viscoelasticity. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Bai
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Kaiming Hu
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Luzhi Zhang
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zixing Shi
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Wenming Zhang
- State Key Laboratory of Mechanical Systems and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
31
|
Paderes MC, Diaz MJ, Pagtalunan CA, Bruzon DA, Tapang GA. Photo-Controlled [4+4] Cycloaddition of Anthryl-Polymer Systems: A Versatile Approach to Fabricate Functional Materials. Chem Asian J 2022; 17:e202200193. [PMID: 35452165 DOI: 10.1002/asia.202200193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/11/2022] [Indexed: 11/07/2022]
Abstract
The reversible photo-induced [4+4] cycloaddition reaction of anthracene enables multiple cycles of dimerization and scission, allowing phototunable linkage of molecular fragments for the synthesis of polymer scaffolds. New functional materials ranging from hydrogels to shape-memory polymers were designed from anthryl-polymer systems because of their diverse photochemical reactivity and responsiveness. Light as an external stimulus allows for the remote and precise spatiotemporal control of materials without the need for additional reagents. Depending on how the photoreactive anthracene moieties were introduced, the interaction of anthryl-polymer systems with light results in various processes such as polymerization, cyclization, and cross-linking. Structural modifications of anthracene derivatives could shift their absorption from the ultraviolet to the visible light region, widening their range of applications including biologically relevant studies. These applications are further diversified and enhanced by the reversibility of the dimerization reaction using light and heat as stimuli. In this review, current developments in the synthesis and photodimerization of anthracene-containing polymers and their emerging applications in the fabrication of new materials are discussed.
Collapse
Affiliation(s)
- Monissa C Paderes
- University of the Philippines Diliman, Institute of Chemistry, Regidor St., 1101, Quezon City, PHILIPPINES
| | - Mark Jeffrey Diaz
- University of the Philippines Diliman, Institute of Chemistry, 1101, Quezon City, PHILIPPINES
| | - Cris Angelo Pagtalunan
- University of the Philippines Diliman, Institute of Chemistry, 1101, Quezon City, PHILIPPINES
| | - Dwight Angelo Bruzon
- University of the Philippines Diliman, Materials Science and Engineering, 1101, Quezon City, PHILIPPINES
| | - Giovanni A Tapang
- University of the Philippines Diliman, National Institute of Physics, 1101, Quezon City, PHILIPPINES
| |
Collapse
|
32
|
Ichimura K, Sonoda T, Ubukata T. UV-Vis Higher-Order Derivative Spectra Disclose the Involvement of Two Processes in the Solid-State 4+4 Photocycloaddition of an Amorphous Bisanthracene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kunihiro Ichimura
- R & D centre, Murakami Co. Ltd., 1-6-12 Ohnodai, Midori-ku, Chiba 267-0056, Japan
| | - Taishi Sonoda
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Takashi Ubukata
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| |
Collapse
|
33
|
Liarou E, Houck HA, Du Prez FE. Reversible Transformations of Polymer Topologies through Visible Light and Darkness. J Am Chem Soc 2022; 144:6954-6963. [DOI: 10.1021/jacs.2c01622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Evelina Liarou
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Hannes A. Houck
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| |
Collapse
|
34
|
Visible Light Responsive Soft Actuator Based on Functional Anthracene Dye. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Bai J, Shi Z, Ma X, Yin J, Jiang X. Wavelength-Selective Photocycloadditions of Styryl-Anthracene. Macromol Rapid Commun 2022; 43:e2200055. [PMID: 35338541 DOI: 10.1002/marc.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/16/2022] [Indexed: 11/08/2022]
Abstract
Light-tunable covalent chemistry is highly urgent in the fields of chemistry, biology and material especially for the smart materials and surface, due to the spatiotemporal control and feasible operation. Here, we report a new type of wavelength-selective photo-cycloaddition of styryl-anthracene carboxylic acid (SACA). Upon the irradiation of 450 nm visible light or 365 nm UV light, SACA can undergo [2+2] or [2+4] photocycloaddition, respectively. Furthermore, the [2+2] photocycloaddition induced by vis-light of 450 nm is reversible and can be disrupted by 365 nm UV light to form dimer-24 which cannot be photo-cleavable. Owing to the feasibility and spatiotemporal characteristics of UV-Vis light-controlled photocycloaddition, the SACA possesses potential applications in various areas such as self-assembly, dynamic wrinkle and fluorescence patterns, which is also explored and exhibited in this work. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing Bai
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Zixing Shi
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
36
|
Truong VX, Barner-Kowollik C. Photodynamic covalent bonds regulated by visible light for soft matter materials. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Srdič M, Fessner ND, Yildiz D, Glieder A, Spiertz M, Schwaneberg U. Preparative Production of Functionalized (N- and O-Heterocyclic) Polycyclic Aromatic Hydrocarbons by Human Cytochrome P450 3A4 in a Bioreactor. Biomolecules 2022; 12:biom12020153. [PMID: 35204652 PMCID: PMC8961652 DOI: 10.3390/biom12020153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their N- and O-containing derivatives (N-/O-PAHs) are environmental pollutants and synthetically attractive building blocks in pharmaceuticals. Functionalization of PAHs can be achieved via C-H activation by cytochrome P450 enzymes (e.g., P450 CYP3A4) in an environmentally friendly manner. Despite its broad substrate scope, the contribution of CYP3A4 to metabolize common PAHs in humans was found to be small. We recently showcased the potential of CYP3A4 in whole-cell biocatalysis with recombinant yeast Komagataella phaffii (Pichia pastoris) catalysts for the preparative-scale synthesis of naturally occurring metabolites in humans. In this study, we aimed at exploring the substrate scope of CYP3A4 towards (N-/O)-PAHs and conducted a bioconversion experiment at 10 L scale to validate the synthetic potential of CYP3A4 for the preparative-scale production of functionalized PAH metabolites. Hydroxylated products were purified and characterized using HPLC and NMR analysis. In total, 237 mg of fluorenol and 48 mg of fluorenone were produced from 498 mg of fluorene, with peak productivities of 27.7 μmol/L/h for fluorenol and 5.9 μmol/L/h for fluorenone; the latter confirmed that CYP3A4 is an excellent whole-cell biocatalyst for producing authentic human metabolites.
Collapse
Affiliation(s)
- Matic Srdič
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Nico D. Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| | - Deniz Yildiz
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Markus Spiertz
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| |
Collapse
|
38
|
Wang Z, Lan Y, Liu P, Li X, Zhao Y. Rational design of a multi-in-one heterofunctional agent for versatile topological transformation of multisite multisegmented polystyrenes. Polym Chem 2022. [DOI: 10.1039/d2py00662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “seven-in-one” initiating, coupling and stimuli-labile agent is designed to achieve topological transformations with reduced, similar and enhanced molar masses.
Collapse
Affiliation(s)
- Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjia Lan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
39
|
Zhang C, Lu X, Wang Z, Xia H. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers. Macromol Rapid Commun 2021; 43:e2100768. [PMID: 34964192 DOI: 10.1002/marc.202100768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive structurally dynamic polymers are capable of mimicking the biological systems to adapt themselves to the surrounding environmental changes and subsequently exhibiting a wide range of responses ranging from self-healing to complex shape-morphing. Dynamic self-healing polymers (SHPs), shape-memory polymers (SMPs) and liquid crystal elastomers (LCEs), which are three representative examples of stimuli-responsive structurally dynamic polymers, have been attracting broad and growing interest in recent years because of their potential applications in the fields of electronic skin, sensors, soft robots, artificial muscles, and so on. We review recent advances and challenges in the developments towards dynamic SHPs, SMPs and LCEs, focusing on the chemistry strategies and the dynamic reaction mechanisms that enhance the performances of the materials including self-healing, reprocessing and reprogramming. We compare and discuss the different dynamic chemistries and their mechanisms on the enhanced functions of the materials, where three summary tables are presented: a library of dynamic bonds and the resulting characteristics of the materials. Finally, we provide a critical outline of the unresolved issues and future perspectives on the emerging developments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
40
|
Kristinaityte K, Urbańczyk M, Mames A, Pietrzak M, Ratajczyk T. Photoreactivity of an Exemplary Anthracene Mixture Revealed by NMR Studies, including a Kinetic Approach. Molecules 2021; 26:6695. [PMID: 34771104 PMCID: PMC8587725 DOI: 10.3390/molecules26216695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Anthracenes are an important class of acenes. They are being utilized more and more often in chemistry and materials sciences, due to their unique rigid molecular structure and photoreactivity. In particular, photodimerization can be harnessed for the fabrication of novel photoresponsive materials. Photodimerization between the same anthracenes have been investigated and utilized in various fields, while reactions between varying anthracenes have barely been investigated. Here, Nuclear Magnetic Resonance (NMR) spectroscopy is employed for the investigation of the photodimerization of two exemplary anthracenes: anthracene (A) and 9-bromoanthracene (B), in the solutions with only A or B, and in the mixture of A and B. Estimated k values, derived from the presented kinetic model, showed that the dimerization of A was 10 times faster in comparison with B when compounds were investigated in separate samples, and 2 times faster when compounds were prepared in the mixture. Notably, the photoreaction in the mixture, apart from AA and BB, additionally yielded a large amount of the AB mixdimer. Another important advantage of investigating a mixture with different anthracenes is the ability to estimate the relative reactivity for all the reactions under the same experimental conditions. This results in a better understanding of the photodimerization processes. Thus, the rational photofabrication of mix-anthracene-based materials can be facilitated, which is of crucial importance in the field of polymer and material sciences.
Collapse
Affiliation(s)
| | | | | | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, PL-01224 Warsaw, Poland; (K.K.); (M.U.); (A.M.)
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, PL-01224 Warsaw, Poland; (K.K.); (M.U.); (A.M.)
| |
Collapse
|
41
|
Baviera GS, Donate PM. Recent advances in the syntheses of anthracene derivatives. Beilstein J Org Chem 2021; 17:2028-2050. [PMID: 34457075 PMCID: PMC8372310 DOI: 10.3762/bjoc.17.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Anthracene and anthracene derivatives have been extensively studied over the years because of their interesting photophysical, photochemical, and biological properties. They are currently the subject of research in several areas, which investigate their use in the biological field and their application in OLEDs, OFETs, polymeric materials, solar cells, and many other organic materials. Their synthesis remains challenging, but some important preparative methods have been reported, especially in the last decade. This review presents an update of the recent strategies that have been employed to prepare anthracene derivatives. It encompasses papers published over the last twelve years (2008–2020) and focuses on direct and indirect methods to construct anthracene and anthraquinone frameworks.
Collapse
Affiliation(s)
- Giovanni S Baviera
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-091, Ribeirão Preto, SP, Brazil
| | - Paulo M Donate
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-091, Ribeirão Preto, SP, Brazil
| |
Collapse
|
42
|
Chemek M, Chebil S, Amor SB, Khlaifia D, Faulques E, Said AH, Alimi K. Chemical insertion of anthracene moiety into the backbone of a newly synthesized oligophenylene (OMPA): effect on the photo-physical properties. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04481-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Shao F, Wang W, Yang W, Yang Z, Zhang Y, Lan J, Dieter Schlüter A, Zenobi R. In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nat Commun 2021; 12:4557. [PMID: 34315909 PMCID: PMC8316434 DOI: 10.1038/s41467-021-24856-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Plasmon-induced chemical reactions (PICRs) have recently become promising approaches for highly efficient light-chemical energy conversion. However, an in-depth understanding of their mechanisms at the nanoscale still remains challenging. Here, we present an in-situ investigation by tip-enhanced Raman spectroscopy (TERS) imaging of the plasmon-induced [4+4]-cycloaddition polymerization within anthracene-based monomer monolayers physisorbed on Au(111), and complement the experimental results with density functional theory (DFT) calculations. This two-dimensional (2D) polymerization can be flexibly triggered and manipulated by the hot carriers, and be monitored simultaneously by TERS in real time and space. TERS imaging provides direct evidence for covalent bond formation with ca. 3.7 nm spatial resolution under ambient conditions. Combined with DFT calculations, the TERS results demonstrate that the lateral polymerization on Au(111) occurs by a hot electron tunneling mechanism, and crosslinks form via a self-stimulating growth mechanism. We show that TERS is promising to be plasmon-induced nanolithography for organic 2D materials.
Collapse
Affiliation(s)
- Feng Shao
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester, UK.
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute, East China Normal University, Shanghai, People's Republic of China
| | - Weimin Yang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhilin Yang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - A Dieter Schlüter
- Department of Materials, Polymer Chemistry, ETH Zurich, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Kocaarslan A, Yılmaz G, Topcu G, Demirel L, Yagcı Y. A Novel Photoinduced Ligation Approach for Cross-Linking Polymerization, Polymer Chain-End Functionalization, and Surface Modification Using Benzoyl Azides. Macromol Rapid Commun 2021; 42:e2100166. [PMID: 34142403 DOI: 10.1002/marc.202100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/29/2021] [Indexed: 11/11/2022]
Abstract
Various ligation processes have recently become a powerful tool in synthetic polymer chemistry. Herein, the use of a new photochemical ligation process as a versatile approach for the cross-linking polymerization, functionalization of polymer chain ends, and surface modification of various materials such as silica and graphene oxide, is demonstrated. The process is based on the formation of urethane linkages by the reaction of photochemically in situ generated isocyanates from benzoyl azides with hydroxyl moieties in the presence of organobase, bicyclo[2.2.2]-1,4-diazaoctane (DABCO) under ambient conditions. The intermediates and obtained materials are characterized by NMR, FTIR, TGA, and TEM analyses. It is believed that this simple and efficient ligation process will expand future applications to fabricate complex macromolecular structures, biomaterials, and gels.
Collapse
Affiliation(s)
- Azra Kocaarslan
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Gorkem Yılmaz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Gokhan Topcu
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| | - Levent Demirel
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| | - Yusuf Yagcı
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.,Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
45
|
Sun XQ, Qin GY, Lin PP, Wang J, Fan JX, Li HY, Ren AM, Guo JF. Theoretical investigations on the charge transport properties of anthracene derivatives with aryl substituents at the 2,6-position-thermally stable "herringbone" stacking motifs. Phys Chem Chem Phys 2021; 23:12679-12691. [PMID: 34036996 DOI: 10.1039/d1cp00178g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-performance organic semiconductor materials based on the small aromatic anthracene-core and its derivatives develop comparatively slowly due to the lack of a profound understanding of the influence of chemical modifications on their charge-transfer properties. Herein, the electronic properties and the charge transport characteristics of several typical anthracene-based derivatives with aryl groups substituted at the 2,6-site are systematically investigated by multi-scale simulation methods including Molecular Dynamics (MD) simulation and the full quantum nuclear tunneling model in the framework of density functional theory (DFT). To elucidate the origin of different charge transport properties of these anthracene-based materials, analysis of the molecular stacking and noncovalent intermolecular interaction caused by different substituents was carried out. The results indicate that the electron and hole injection capabilities and the air oxidation stability of the anthracene derivatives are greatly improved when the size of the aryl substituent increases. In addition, the incorporation of 2,6-site aryl substituents can inhibit the stretching vibration of the anthracene-core during charge transport, and allow molecular packing along the long axis (a-axis of DPA and BDBFAnt, and c-axis of dNaAnt) with almost no slippage, and the main transport channels remain unchanged, exhibiting more isotropic 2D transport properties. It should be emphasized that the edge-to-face dimers with smallest dihedral angles are closest to the thermally stable dimer model, with relatively larger π-orbital distributions in transmission channels (dimer 1, 2) and the largest spatial overlap, resulting in the largest hole transfer integral in DPA (Vh1/h2 = 57 meV). Although the analysis of the thermal disorder effect shows a phonon scattering effect, the maximum hole mobility of the DPA molecule is still as high as 1.5 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Xiao-Qi Sun
- School of Physics, Northeast Normal University, Changchun, 130024, China
| | - Gui-Ya Qin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Pan-Pan Lin
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Jin Wang
- School of Physics, Northeast Normal University, Changchun, 130024, China
| | - Jian-Xun Fan
- College of Chemistry and Materials Science, Weinan Normal University, Weinan 714000, China
| | - Hui-Yuan Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, P. R. China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
46
|
|
47
|
Fabrication of stimulus-responsive molecular layer comprising anthracene molecules. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Zhu M, Xu H, Zhang X, Zheng C, You S. Visible‐Light‐Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Hao Xu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Fujian Key Laboratory of Polymer Science Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University 8 Shangsan Lu Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
50
|
Zhu M, Xu H, Zhang X, Zheng C, You S. Visible‐Light‐Induced Intramolecular Double Dearomative Cycloaddition of Arenes. Angew Chem Int Ed Engl 2021; 60:7036-7040. [DOI: 10.1002/anie.202016899] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Hao Xu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Fujian Key Laboratory of Polymer Science Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering College of Chemistry and Materials Science Fujian Normal University 8 Shangsan Lu Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|