1
|
Sikdar O, Harris C, Greenough A. Improving early diagnosis of bronchopulmonary dysplasia. Expert Rev Respir Med 2024; 18:283-294. [PMID: 38875260 DOI: 10.1080/17476348.2024.2367584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Bronchopulmonary disease (BPD) is associated with long-term neurodevelopmental and cardiorespiratory complications, often requiring significant use of resources. To reduce this healthcare burden, it is essential that those at high risk of BPD are identified early so that strategies are introduced to prevent disease progression. Our aim was to discuss potential methods for improving early diagnosis in the first week after birth. AREAS COVERED A narrative review was undertaken. The search strategy involved searching PubMed, Embase and Cochrane databases from 1967 to 2024. The results of potential biomarkers and imaging modes are discussed. Furthermore, the value of scoring systems is explored. EXPERT OPINION BPD occurs as a result of disruption to pulmonary vascular and alveolar development, thus abnormal levels of factors regulating those processes are promising avenues to explore with regard to early detection of high-risk infants. Data from twin studies suggests genetic factors can be attributed to 82% of the observed difference in moderate to severe BPD, but large genome-wide studies have yielded conflicting results. Comparative studies are required to determine which biomarker or imaging mode may most accurately diagnose early BPD development. Models which include the most predictive factors should be evaluated going forward.
Collapse
Affiliation(s)
- Oishi Sikdar
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christopher Harris
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Anne Greenough
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Vázquez-Mera S, Martelo-Vidal L, Miguéns-Suárez P, Saavedra-Nieves P, Arias P, González-Fernández C, Mosteiro-Añón M, Corbacho-Abelaira MD, Blanco-Aparicio M, Méndez-Brea P, Salgado FJ, Nieto-Fontarigo JJ, González-Barcala FJ. Serum exosome inflamma-miRs are surrogate biomarkers for asthma phenotype and severity. Allergy 2023; 78:141-155. [PMID: 35971848 DOI: 10.1111/all.15480] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Asthma is a heterogeneous disease with several phenotypes, endotypes and severity degrees, in which different T-cell subpopulations are involved. These cells express specific miRNAs (i.e. inflamma-miRs) that can be released to serum in exosomes after activation and be used as biomarkers of underlying inflammation. Thus, we aim to evaluate specific T-cell miRNA signatures in serum exosomes from different subgroups of asthmatic patients. METHODS Samples from healthy donors (N = 30) and patients (N = 119) with different asthma endotypes (T2high -Atopic/T2high -Non-atopic/T2low ) and severity degrees (mild/MA and moderate-severe/MSA) were used. Demographic, clinical, haematological and biochemical characteristics were collected. Twelve miRNAs previously associated with different Th subsets were preselected and their levels in serum exosome samples were measured using RTqPCR. RESULTS We detected five miRNAs with high confidence in serum exosomes: miR-16-5p, miR-21-5p, miR-126-3p, miR146a-5p and miR-215-5p. All of them, except miR-16-5p were upregulated in MSA patients compared to MA. A logistic regression model including each of these miRNAs was created to discriminate both conditions, rendering a ROC curve AUC of 0.896 (0.830-0.961). miR-21-5p and miR-126-3p, both involved in Th1/Th2 differentiation, were specifically augmented in T2high -Atopic patients. Of note, all these changes were found in samples collected in autumn. On the contrary, IL-6high patients with MSA, which were more obese, older, with higher neutrophil and basophil counts and TNF levels, displayed a decrease of miR-21-5p, miR-126-3p and miR-146a-5p. CONCLUSION Immune-related miRNAs, including miR-21-5p, miR-126-3p, miR-146a-5p and miR-215-5p, can be used as clinically relevant non-invasive biomarkers of the phenotype/endotype and severity of asthma.
Collapse
Affiliation(s)
- Sara Vázquez-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Laura Martelo-Vidal
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Miguéns-Suárez
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Paula Saavedra-Nieves
- Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Mar Mosteiro-Añón
- Department of Respiratory Medicine, University Hospital Alvaro Cunqueiro, Vigo, Spain
| | | | | | - Paula Méndez-Brea
- Allergy Service, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Javier Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan José Nieto-Fontarigo
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Javier González-Barcala
- Translational Research In Airway Diseases Group (TRIAD), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Respiratory Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,Spanish Biomedical Research Networking Centre in Respiratory Diseases (CIBERES), Barcelona, Spain
| |
Collapse
|
3
|
Tan Y, Zou YF, Zhang HB, Liu X, Qian CY, Liu MW. The protective mechanism of salidroside modulating miR-199a-5p/TNFAIP8L2 on lipopolysaccharide-induced MLE-12 cells. Int J Immunopathol Pharmacol 2022; 36:3946320221132712. [PMID: 36214213 PMCID: PMC9551330 DOI: 10.1177/03946320221132712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Salidroside is used for treating inflammation-based diseases; however, its molecular mechanism is unclear. In this study, we determined the protective role of salidroside on the endotoxin-induced damage caused to the mouse alveolar epithelial type II (MLE-12) cells and its underlying mechanism. METHODS An in vitro model for acute lung injury was constructed by inducing the MLE-12 cells using lipopolysaccharide (lipopolysaccharides, 1 mg/L). Then, The MTT assay was conducted to assess the survival rate of the MLE-12 cells in the different groups. After the treatment, apoptosis of MLE-12 cells was determined, and the mRNA and protein expression of miR-199a-5p, HMGB1, NF-kB65, TNFAIP8L2, p-IkB-α, and TLR4 was estimated by Western Blotting and RT-PCR. ELISA was also used to measure the concentration of inflammatory cytokine molecules IL-1β, IL-6, TNF-α, and IL-18 in the cell-free supernatant. Lastly, cell morphology was examined using the AO/EB technique. RESULTS We showed that salidroside reduced the protein and gene expression of HMGB1, NF-kB65, miR-199a-5p, p-IkB-α, and TLR4, whereas it increased the gene and protein expression of TNFAIP8L2. Furthermore, it decreased the concentrations of cytokine molecules like IL-1β, IL-6, TNF-α, and IL-18 in the cell-free supernatant. MLE-12 also showed a lower apoptosis rate, higher survival rate, and better cell morphology. CONCLUSION Salidroside significantly inhibited the LPS-induced MLE-12 cell damage. Our results suggest that this could be by reducing miR-199a-5p and enhancing TNFAIP8L2 expression.
Collapse
Affiliation(s)
- Yang Tan
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Yong-fan Zou
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Huang-bo Zhang
- Trauma Center,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Xu Liu
- Department of Infectious Diseases,
Yan-an Hospital
of Kunming City, Kunming, China
| | - Chuan-yun Qian
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Ming-Wei Liu
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
- Ming-Wei Liu, Department of Emergency
Medicine, The First Affiliated Hospital of Kunming Medical University, 295
Xichang Road, Wuhua District, Kunming 650032, China.
| |
Collapse
|
4
|
Bao T, Zhu H, Zheng Y, Hu J, Wang H, Cheng H, Zhang Y, Tian Z. Expression of long noncoding RNA uc.375 in bronchopulmonary dysplasia and its function in the proliferation and apoptosis of mouse alveolar epithelial cell line MLE 12. Front Physiol 2022; 13:971732. [PMID: 36111163 PMCID: PMC9468891 DOI: 10.3389/fphys.2022.971732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: According to our previous gene ChIP results, long noncoding RNA uc.375 was down-regulated in lung tissue of bronchopulmonary dysplasia (BPD) mice induced by hyperoxia. FoxA1 gene showed higher levels in lung tissue of BPD mice and is reported to promote the apoptosis of alveolar epithelial cells. We aimed to clarify the expression pattern of uc.375 in BPD and explore the interaction between uc.375 and FoxA1.Methods: Newborn mice were placed in a 95% high-oxygen environment for 7 days. Lung tissue samples from mice were used for lncRNA microarray to screen BPD related lncRNAs. Mouse alveolar epithelial cell line MLE 12 was stably transfected with uc.375 and FoxA1 silencing or overexpression lentiviral vectors. The proliferation activity of MLE 12 cells was detected by a cell counting kit 8 (CCK-8) assay. MLE 12 cell apoptosis was determined by Hoechst/PI staining and flow cytometry analysis. The protein levels of Cleaved Caspase-3, FoxA1, SP-C and UCP2 were investigated by western blot. The relative mRNA expression levels were detected by quantitative real-time PCR.Results: uc.375 is mainly distributed in the nucleus of alveolar epithelial cells, as revealed by In Situ Hybridization assay results. uc.375 was lowly expressed in the lung tissues of BPD mice. According to the results of CCK-8 assay, analysis of Hoechst/PI staining and western blotting, uc.375 silencing inhibited cell proliferation, facilitated apoptosis of MLE 12 cells, promoted caspase 3 and FoxA1 expression, and inhibited the expression of SP-C and UCP2. On the contrary, after overexpressing uc.375, the opposite results were obtained. Silencing FoxA1 inhibited MLE 12 apoptosis, promoted proliferation, inhibited apoptosis-related factor caspase 3, and promoted the expression of SP-C and UCP2. FoxA1 silencing also reversed the effect induced by uc.375 knockdown on the proliferation and apoptosis of MLE 12 cells.Conclusion: Based on the biomedical images-derived analysis results, uc.375 negatively regulates FoxA1 expression, affects alveolar development, and plays an important role in the initiation and progression of BPD, providing a new molecular target for the prevention and treatment of BPD.
Collapse
|
5
|
Levanova AA, Lampi M, Kalke K, Hukkanen V, Poranen MM, Eskelin K. Native RNA Purification Method for Small RNA Molecules Based on Asymmetrical Flow Field-Flow Fractionation. Pharmaceuticals (Basel) 2022; 15:261. [PMID: 35215370 PMCID: PMC8876226 DOI: 10.3390/ph15020261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
RNA molecules provide promising new possibilities for the prevention and treatment of viral infections and diseases. The rapid development of RNA biology and medicine requires advanced methods for the purification of RNA molecules, which allow fast and efficient RNA processing, preferably under non-denaturing conditions. Asymmetrical flow field-flow fractionation (AF4) enables gentle separation and purification of macromolecules based on their diffusion coefficients. The aim of the study was to develop an AF4 method for efficient purification of enzymatically produced antiviral small interfering (si)RNA molecules and to evaluate the overall potential of AF4 in the separation of short single-stranded (ss) and double-stranded (ds) RNA molecules. We show that AF4 separates monomeric ssRNA from dsRNA molecules of the same size and monomeric ssRNA from multimeric forms of the same ssRNA. The developed AF4 method enabled the separation of enzymatically produced 27-nt siRNAs from partially digested substrate dsRNA, which is potentially toxic for mammalian cells. The recovery of AF4-purified enzymatically produced siRNA molecules was about 70%, which is about 20% higher than obtained using anion-exchange chromatography. The AF4-purified siRNAs were not toxic for mammalian cells and fully retained their biological activity as confirmed by efficient inhibition of herpes simplex virus 1 replication in cell culture. Our work is the first to develop AF4 methods for the separation of short RNA molecules.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Mirka Lampi
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Kiira Kalke
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Katri Eskelin
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| |
Collapse
|
6
|
Liang J, Liu XH, Chen XM, Song XL, Li W, Huang Y. Emerging Roles of Non-Coding RNAs in Childhood Asthma. Front Pharmacol 2022; 13:856104. [PMID: 35656293 PMCID: PMC9152219 DOI: 10.3389/fphar.2022.856104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease in children characterized by airway inflammation, airway hyperresponsiveness and airway remodeling. Childhood asthma is usually associated with allergy and atopy, unlike adult asthma, which is commonly associated with obesity, smoking, etc. The pathogenesis and diagnosis of childhood asthma also remains more challenging than adult asthma, such as many diseases showing similar symptoms may coexist and be confused with asthma. In terms of the treatment, although most childhood asthma can potentially be self-managed and controlled with drugs, approximately 5-10% of children suffer from severe uncontrolled asthma, which carries significant health and socioeconomic burdens. Therefore, it is necessary to explore the pathogenesis of childhood asthma from a new perspective. Studies have revealed that non-coding RNAs (ncRNAs) are involved in the regulation of respiratory diseases. In addition, altered expression of ncRNAs in blood, and in condensate of sputum or exhalation affects the progression of asthma via regulating immune response. In this review, we outline the regulation and pathogenesis of asthma and summarize the role of ncRNAs in childhood asthma. We also hold promise that ncRNAs may be used for the development of biomarkers and support a new therapeutic strategy for childhood asthma.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Hua Liu
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xue-Mei Chen
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiu-Ling Song
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
7
|
Role of Epigenetics in the Pathogenesis, Treatment, Prediction, and Cellular Transformation of Asthma. Mediators Inflamm 2021; 2021:9412929. [PMID: 34566492 PMCID: PMC8457970 DOI: 10.1155/2021/9412929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma is a mysterious disease with heterogeneity in etiology, pathogenesis, and clinical phenotypes. Although ongoing studies have provided a better understanding of asthma, its natural history, progression, pathogenesis, diversified phenotypes, and even the exact epigenetic linkage between childhood asthma and adult-onset/old age asthma remain elusive in many aspects. Asthma heritability has been established through genetic studies, but genetics is not the only influencing factor in asthma. The increasing incidence and some unsolved queries suggest that there may be other elements related to asthma heredity. Epigenetic mechanisms link genetic and environmental factors with developmental trajectories in asthma. This review provides an overview of asthma epigenetics and its components, including several epigenetic studies on asthma, and discusses the epigenetic linkage between childhood asthma and adult-onset/old age asthma. Studies involving asthma epigenetics present valuable novel approaches to solve issues related to asthma. Asthma epigenetic research guides us towards gene therapy and personalized T cell therapy, directs the discovery of new therapeutic agents, predicts long-term outcomes in severe cases, and is also involved in the cellular transformation of childhood asthma to adult-onset/old age asthma.
Collapse
|
8
|
Lv Y, Li Y, Wang J, Li M, Zhang W, Zhang H, Shen Y, Li C, Du Y, Jiang L. MiR-382-5p suppresses M1 macrophage polarization and inflammatory response in response to bronchopulmonary dysplasia through targeting CDK8: Involving inhibition of STAT1 pathway. Genes Cells 2021; 26:772-781. [PMID: 34228857 DOI: 10.1111/gtc.12883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is an inflammation-related respiratory disorder in infants. MiR-382-5p has displayed low expression in developing lungs with BPD, while the effect of miR-382-5p on BPD remains elusive. Here, a hyperoxia (85% oxygen)-induced BPD model in neonatal mice was established. On postnatal days 10 and 15, hyperoxia reduced miR-382-5p expression in lungs of mice. Besides, CDK8, CD68 and CD86 levels were elevated on day 15 after birth, implying the involvement of CDK8 in M1 macrophage polarization. In addition, in vitro injury in RAW264.7 macrophages was induced by IFN-γ and LPS stimulation. Lentivirus-encoding miR-382-5p decreased CDK8 expression, alleviated the production of inflammatory cytokines TNF-α, IL-1β and IL-6, and restricted the levels of CD40 and CD86 in response to IFN-γ and LPS. Moreover, miR-382-5p inhibited the phosphorylation of STAT1. Luciferase reporter assay verified that miR-382-5p might target the 3'UTR of CDK8. Rescue assays revealed that CDK8 reversed the mitigating roles of miR-382-5p in inflammatory response and M1 macrophage polarization, as reflected by increased IL-6 and CD40 levels. Taken together, these findings indicate that miR-382-5p may suppress M1 macrophage activation and inflammatory response via inhibiting CDK8, thereby regulating the development of BPD, which is possibly mediated by STAT1 signaling.
Collapse
Affiliation(s)
- Yuanyuan Lv
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Pediatrics, Baoding First Central Hospital, Baoding, China
| | - Yang Li
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiangya Wang
- Department of Pediatrics, Hebei General Hospital, Shijiazhuang, China
| | - Mei Li
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenhao Zhang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huifen Zhang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Shen
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Li
- Department of Pediatrics, Baoding First Central Hospital, Baoding, China
| | - Yuan Du
- Department of Laboratory Medicine, Baoding No. 1 Hospital of TCM, Baoding, China
| | - Lian Jiang
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, Schmidt‐Weber CB, Maes T, Rebane A, Krauss‐Etschmann S, Rådinger M. Spotlight on microRNAs in allergy and asthma. Allergy 2021; 76:1661-1678. [PMID: 33128813 PMCID: PMC8246745 DOI: 10.1111/all.14646] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
In past 10 years, microRNAs (miRNAs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases and their potential as biomarkers in liquid biopsies. They act as master post‐transcriptional regulators that control most cellular processes. As one miRNA can target several mRNAs, often within the same pathway, dysregulated expression of miRNAs may alter particular cellular responses and contribute, or lead, to the development of various diseases. In this review, we give an overview of the current research on miRNAs in allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma. Specifically, we discuss how individual miRNAs function in the regulation of immune responses in epithelial cells and specialized immune cells in response to different environmental factors and respiratory viruses. In addition, we review insights obtained from experiments with murine models of allergic airway and skin inflammation and offer an overview of studies focusing on miRNA discovery using profiling techniques and bioinformatic modeling of the network effect of multiple miRNAs. In conclusion, we highlight the importance of research into miRNA function in allergy and asthma to improve our knowledge of the molecular mechanisms involved in the pathogenesis of this heterogeneous group of diseases.
Collapse
Affiliation(s)
- Julie Weidner
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Sabine Bartel
- Department of Pathology and Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ayse Kılıç
- Channing Division of Network Medicine Brigham and Women's Hospital Boston MA USA
| | - Ulrich M. Zissler
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Harald Renz
- Institut für Laboratoriumsmedizin und Pathobiochemie Philipps University of Marburg Marburg Germany
| | - Jürgen Schwarze
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Carsten B. Schmidt‐Weber
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Tania Maes
- Department of Respiratory Medicine Ghent University Ghent Belgium
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Susanne Krauss‐Etschmann
- Research Center Borstel Borstel Germany
- Institute of Experimental Medicine Christian‐Albrechts University Kiel Kiel Germany
| | - Madeleine Rådinger
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| |
Collapse
|
10
|
Luo Q, Zhu J, Zhang Q, Xie J, Yi C, Li T. MicroRNA-486-5p Promotes Acute Lung Injury via Inducing Inflammation and Apoptosis by Targeting OTUD7B. Inflammation 2021; 43:975-984. [PMID: 31940107 DOI: 10.1007/s10753-020-01183-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this article is to study the effect of miR-486-5p in acute lung injury (ALI). MiR-486-5p expression in peripheral blood was determined in ALI patients and healthy volunteers by qRT-PCR. ALI mouse model were reproduced by LPS treatment, and miR-486-5p NC and miRNA-486 inhibitors were injected through trachea. ALI patients' peripheral blood and LPS-induced acute lung injury in mice had significantly higher miR-486-5p levels than control subjects. Inhibition of miR-486-5p by injection with antagomiR-486-5p markedly reduced LPS-induced lung inflammation. Moreover, knockdown of miR-486-5p can reduce protects A549 cell against LPS-induced injury and its corresponding inflammatory response. In addition, Mechanistic analysis indicated that miR-486-5p on the occurrence of ALI is related to the inhibition of OTUD7B activity, which induces the downregulation of inflammatory in ALI. Our results identified miR-486-5p independently associated with ALI. miR-486-5p can mediate the formation of ALI by promoting inflammation.
Collapse
Affiliation(s)
- Qiang Luo
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhu
- Department of Anesthesiology, The Fourth Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xie
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
MicroRNA Targets for Asthma Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:89-105. [PMID: 33788189 DOI: 10.1007/978-3-030-63046-1_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory obstructive lung disease that is stratified into endotypes. Th2 high asthma is due to an imbalance of Th1/Th2 signaling leading to abnormally high levels of Th2 cytokines, IL-4, IL-5, and IL-13 and in some cases a reduction in type I interferons. Some asthmatics express Th2 low, Th1/Th17 high phenotypes with or without eosinophilia. Most asthmatics with Th2 high phenotype respond to beta-adrenergic agonists, muscarinic antagonists, and inhaled corticosteroids. However, 5-10% of asthmatics are not well controlled by these therapies despite significant advances in lung immunology and the pathogenesis of severe asthma. This problem is being addressed by developing novel classes of anti-inflammatory agents. Numerous studies have established efficacy of targeting pro-inflammatory microRNAs in mouse models of mild/moderate and severe asthma. Current approaches employ microRNA mimics and antagonists designed for use in vivo. Chemically modified oligonucleotides have enhanced stability in blood, increased cell permeability, and optimized target specificity. Delivery to lung tissue limits clinical applications, but it is a tractable problem. Future studies need to define the most effective microRNA targets and effective delivery systems. Successful oligonucleotide drug candidates must have adequate lung cell uptake, high target specificity, and efficacy with tolerable off-target effects.
Collapse
|
12
|
Yangi R, Huang H, Zhou Q. Long noncoding RNA MALAT1 sponges miR-129-5p to regulate the development of bronchopulmonary dysplasia by increasing the expression of HMGB1. J Int Med Res 2021; 48:300060520918476. [PMID: 32397779 PMCID: PMC7223211 DOI: 10.1177/0300060520918476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To explore the function and mechanism of long noncoding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in bronchopulmonary dysplasia. METHODS Alveolar epithelial cell line BEAS-2B was used as the cell model. The role of MALAT1 and microRNA miR-129-5p in regulating cellular viability and migration were examined by using the CCK-8 and Transwell assays, respectively, in vitro. The luciferase reporter assay and real-time (RT)-PCR were performed to confirm that miR-129-5p was a target of MALAT1. ELISA was conducted to validate MALAT1 and show that miR-129-5p regulated the gene encoding high-mobility group protein 1 (HMGB1). RESULTS Overexpression of MALAT1 significantly promoted cellular viability, whereas miR-129-5p had the opposite effect. miR-129-5p was shown to be a target of MALAT1, and HMGB1 could be upregulated by MALAT1 overexpression or miR-129-5p inhibition. CONCLUSION MALAT1 reduced the expression of miR-129-5p, promoting the viability of cells and blocking the development of bronchopulmonary dysplasia. In addition, MALAT1 increased the expression of HMGB1, which contributed to inflammation as the disease progressed.
Collapse
Affiliation(s)
- Rongwe Yangi
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| | - Huafei Huang
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| | - Qingnv Zhou
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, China
| |
Collapse
|
13
|
Siddaiah R, Oji-Mmuo CN, Montes DT, Fuentes N, Spear D, Donnelly A, Silveyra P. MicroRNA Signatures Associated with Bronchopulmonary Dysplasia Severity in Tracheal Aspirates of Preterm Infants. Biomedicines 2021; 9:biomedicines9030257. [PMID: 33807742 PMCID: PMC8000397 DOI: 10.3390/biomedicines9030257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/04/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease that develops in neonates as a consequence of preterm birth, arrested fetal lung development, and inflammation. The incidence of BPD remains on the rise as a result of increasing survival of extremely preterm infants. Severe BPD contributes to significant health care costs and is associated with prolonged hospitalizations, respiratory infections, and neurodevelopmental deficits. In this study, we aimed to detect novel biomarkers of BPD severity. We collected tracheal aspirates (TAs) from preterm babies with mild/moderate (n = 8) and severe (n = 17) BPD, and we profiled the expression of 1048 miRNAs using a PCR array. Associations with biological pathways were determined with the Ingenuity Pathway Analysis (IPA) software. We found 31 miRNAs differentially expressed between the two disease groups (2-fold change, false discovery rate (FDR) < 0.05). Of these, 4 miRNAs displayed significantly higher expression levels, and 27 miRNAs had significantly lower expression levels in the severe BPD group when compared to the mild/moderate BPD group. IPA identified cell signaling and inflammation pathways associated with miRNA signatures. We conclude that TAs of extremely premature infants contain miRNA signatures associated with severe BPD. These may serve as potential biomarkers of disease severity in infants with BPD.
Collapse
Affiliation(s)
- Roopa Siddaiah
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
| | - Christiana N. Oji-Mmuo
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
| | - Deborah T. Montes
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Nathalie Fuentes
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Debra Spear
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
| | - Ann Donnelly
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (R.S.); (C.N.O.-M.); (D.S.); (A.D.)
- Biobehavioral Laboratory, School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA
- Correspondence:
| |
Collapse
|
14
|
Cheng H, Chen L, Wei Y, Hu T, Li D, Wu B. Knockdown of miR-203a-3p alleviates the development of bronchopulmonary dysplasia partly via the up-regulation of vascular endothelial growth factor A. J Bioenerg Biomembr 2021; 53:13-23. [PMID: 33415607 DOI: 10.1007/s10863-020-09863-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by impaired vascular and alveolar development, and the underlying molecular mechanisms have remained elusive. MicroRNAs are important players in various biological functions including the pathogenesis of BPD. The present study aimed to examine the expression of miR-203a-3p in the peripheral blood of BPD patients and elucidate the mechanisms underlying miR-203a-3p-mediated progression of BPD. We examined the expression of miR-203a-3p in the peripheral blood of BPD patients and found that miR-203a-3p was up-regulated in the patients. Additionally, the mRNA expression levels of vascular endothelial growth factor A (VEGFA) and hypoxia-inducible factor-1alpha were down-regulated in the BPD patients. Further in vitro studies showed that miR-203a-3p suppressed the expression of VEGFA in RLE-6TN cells by targeting the VEGFA 3' untranslated region. Overexpression of miR-203a-3p inhibited the viability of RLE-6TN cells and induced cell apoptosis, whereas the knockdown of miR-203a-3p exerted opposite effects. VEGFA treatment significantly attenuated the increase in the RLE-6TN cell apoptotic rates induced by miR-203a-3p overexpression; while VEGFA knockdown significantly increased the cell apoptotic rates of RLE-6TN cells, which was partially reversed by the treatment with miR-203a-3p inhibitor. Furthermore, miR-203a-3p was up-regulated, whereas VEGFA was down-regulated in the lung tissues of BPD rats, and sequestration of the expression of miR-203a-3p prevented hyperoxia-induced lung damage, increased VEGFA mRNA and protein expression levels, and promoted the protein expression of ERK, PI3K, and p38 in the lung tissues of BDP rats. In summary, the findings of our study indicate that miR-203a-3p knockdown alleviates hyperoxia-induced lung tissue damage in the BPD rat model, and its effect may be associated with the up-regulation of VEGF.
Collapse
Affiliation(s)
- Hanrong Cheng
- Institute of Respiratory Diseases, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Li Chen
- Institute of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yongli Wei
- Institute of Pediatrics, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Tianyong Hu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, 518172, China
| | - Dongcai Li
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, 518172, China.
| | - Benqing Wu
- Department of Neonatology, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
15
|
miR-296-5p Inhibits the Secretion of Pulmonary Surfactants in Pulmonary Epithelial Cells via the Downregulation of Wnt7b/ β-Catenin Signaling. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4051504. [PMID: 33490270 PMCID: PMC7803427 DOI: 10.1155/2021/4051504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/12/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022]
Abstract
Neonatal respiratory distress syndrome (NRDS) is a common disease that occurs in premature infants. However, the mechanisms underlying the disease remain unclear. microRNAs (miRNAs) have been indicated to play a crucial role in the development of NRDS. In this study, we aimed to explore the regulatory mechanisms of miR-296-5p in NRDS. The expression levels of miR-296-5p in preterm infants with NRDS were determined using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). A549 cells were transfected with lentiviral vectors encoding miR-296-5p, and the transfection efficiency was determined using RT-qPCR. Flow cytometry and CCK8 assay were performed to measure apoptosis and proliferation of A549 cells, respectively. The protein levels of pulmonary surfactant SP-A (SFTPA1), SP-B, Wnt7b, and β-catenin were measured using western blotting. We demonstrated an upregulation of miR-296-5p in NRDS. The miR-296-5p was successfully overexpressed in A549 cells via lentivirus transfection, and the upregulation of miR-296-5p inhibited cell proliferation and secretion of SP-A and SP-B and also induced downregulation of the Wnt7b/β-catenin in vitro. Therefore, miR-296-5p inhibits cell proliferation and secretion of pulmonary surfactants in A549 cells via downregulation of Wnt7b/β-catenin signaling.
Collapse
|
16
|
Gong J, Yan Z, Liu Q. Progress in experimental research on SPRED protein family. J Int Med Res 2020; 48:300060520929170. [PMID: 32851895 PMCID: PMC7457668 DOI: 10.1177/0300060520929170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology-1 (EVH-1) domain (SPRED) family of proteins was discovered in 2001. These Sprouty-related tyrosine kinase-binding proteins negatively regulate a variety of growth factor-induced Ras/ERK signaling pathways. In recent years, SPRED proteins have been found to regulate vital activities such as cell development, movement, and proliferation, and to participate in pathophysiological processes such as tumor metastasis, hematopoietic regulation, and allergic reactions. The findings of these studies have important implications regarding the involvement of SPRED proteins in disease. Early studies of SPRED proteins focused mainly on various tumors, cardiovascular diseases, and organ development. However, in recent years, great progress has been made in elucidating the role of SPRED proteins in neuropsychiatric, inflammatory, endocrine, and ophthalmic diseases. This article provides a review of the experimental studies performed in recent years on the SPRED proteins and their role in the pathogenesis of certain diseases.
Collapse
Affiliation(s)
- Jian Gong
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Zhangren Yan
- Department of Dermatology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Qiao Liu
- Department of Dermatology, The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
17
|
Weidner J, Ekerljung L, Malmhäll C, Miron N, Rådinger M. Circulating microRNAs correlate to clinical parameters in individuals with allergic and non-allergic asthma. Respir Res 2020; 21:107. [PMID: 32381094 PMCID: PMC7203878 DOI: 10.1186/s12931-020-01351-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/02/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Asthma is a chronic airway disease affecting millions of people. Better methods to define asthma subgroups using clinical parameters and molecular biomarkers are crucial in the development of personalized medicine. OBJECTIVE The aim of this study was to determine if circulating microRNAs (miRNAs) may be used to distinguish well-defined asthma groups. METHODS Blood serum from 116 well-defined subjects, including healthy controls and individuals with allergic or non-allergic asthma, from the West Sweden Asthma Study were included. Serum was analyzed for circulating miRNA expression of miR-126, - 145, -146a, - 155, - 223, and -374a and eosinophil cationic protein (ECP). Correlations between clinical characteristics and circulating miRNA expression as well as potential miRNA gene targets were investigated. RESULTS A subset of miRNAs were differentially expressed between allergic and non-allergic asthmatic individuals. Alterations in expression of miR-155, -146a, -374a and - 145 were observed in allergic asthmatics in response to inhaled corticosteroid usage. Additionally, miR-223 and miR-374a expression varied in non-allergic asthmatics based on blood eosinophil numbers. Numerous clinical parameters, including lung function measurements, correlated with subsets of miRNAs. Finally, pathway analysis revealed a potential role for inhaled corticosteroid induced miRNAs in leukocyte regulation, IL-6 signaling and glucocorticoid response. CONCLUSION Circulating miRNA expression was altered in subjects with allergic and non-allergic asthma and correlated to clinical parameters including lung function and potential gene targets involved in immune processes. This combination of clinical and molecular data may be a basis for the further, more precise classification of asthma subgroups. Taken together, these findings would further asthma research and benefit future patients through the discovery of molecular mechanisms as well as identifying asthma subgroups contributing to the development of personalized medicine.
Collapse
Affiliation(s)
- Julie Weidner
- Krefting Research Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linda Ekerljung
- Krefting Research Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicolae Miron
- Clinical Immunology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
Yang F, Lei P, Zeng W, Gao J, Wu N. Long Noncoding RNA LINC00173 Promotes the Malignancy of Melanoma by Promoting the Expression of IRS4 Through Competitive Binding to microRNA-493. Cancer Manag Res 2020; 12:3131-3144. [PMID: 32440211 PMCID: PMC7211300 DOI: 10.2147/cmar.s243869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Long intergenic non-protein-coding RNA 173 (LINC00173) plays crucial roles in lung cancer. However, the expression and biological functions of LINC00173 in melanoma have not yet been investigated. In this study, we aimed to characterize the involvement of LINC00173 in melanoma and elucidate its mechanisms of action. Materials and Methods Reverse-transcription quantitative PCR was performed to measure LINC00173 expression in melanoma. A CCK-8 assay, flow cytometry, and migration and invasion assays were applied to examine melanoma cell proliferation, apoptosis, migration, and invasion, respectively. A xenograft tumor experiment was performed to determine the tumorous growth of melanoma cells in vivo. Results We found that LINC00173 was upregulated in melanoma tissues and cell lines. High LINC00173 expression was closely associated with TNM stage, lymph node metastasis, and shorter overall survival of patients with melanoma. Functional assays revealed that LINC00173 downregulation inhibited melanoma cell proliferation, migration, and invasion and induced apoptosis, suggesting that LINC00173 acts as an oncogenic RNA. LINC00173 knockdown retarded the tumorous growth of melanoma cells in vivo. Mechanistically, LINC00173 increased insulin receptor substrate 4 (IRS4) expression by sponging microRNA-493 (miR-493), thereby acting as a competing endogenous RNA. The effects of LINC00173 knockdown on the malignant phenotype of melanoma cells were reversed by overexpression of IRS4 or knockdown of miR-493. Conclusion The LINC00173–miR-493–IRS4 pathway regulates melanoma characteristics by increasing the expression of IRS4 via competitive binding of LINC00173 to miR-493, suggesting that this pathway is a potential target for the diagnosis, prognosis, and/or treatment of melanoma.
Collapse
Affiliation(s)
- Fan Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Pengzhen Lei
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710048, People's Republic of China
| | - Jianwu Gao
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Na Wu
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| |
Collapse
|
19
|
Abstract
Bronchopulmonary dysplasia (BPD) remains a common and challenging complication of prematurity, with limited effective strategies at the neonatologist's disposal. Throughout the years, our understanding of this complex syndrome has broadened. Instead of solely attributing this disease to the effects of prematurity and injuries to the lung from mechanical ventilation, it is now accepted to be a multifactorial disease. Recent research efforts have focused on investigating the gene-environment interactions that may influence an infant's susceptibility toward the development of BPD. So far, success has been limited but promising, offering hope that in the future, novel therapies will be available to ameliorate the risk for BPD.
Collapse
Affiliation(s)
- Melanie Leong
- Division of Newborn Medicine, The Regional Neonatal Center, Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY
| |
Collapse
|
20
|
Ramelli SC, Comer BS, McLendon JM, Sandy LL, Ferretti AP, Barrington R, Sparks J, Matar M, Fewell J, Gerthoffer WT. Nanoparticle Delivery of Anti-inflammatory LNA Oligonucleotides Prevents Airway Inflammation in a HDM Model of Asthma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1000-1014. [PMID: 32044723 PMCID: PMC7013130 DOI: 10.1016/j.omtn.2019.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/16/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
To address the problem of poor asthma control due to drug resistance, an antisense oligonucleotide complementary to mmu-miR-145a-5p (antimiR-145) was tested in a house dust mite mouse model of mild/moderate asthma. miR-145 was targeted to reduce inflammation, regulate epithelial-mesenchymal transitions, and promote differentiation of structural cells. In addition, several chemical variations of a nontargeting oligonucleotide were tested to define sequence-dependent effects of the miRNA antagonist. After intravenous administration, oligonucleotides complexed with a pegylated cationic lipid nanoparticle distributed to most cells in the lung parenchyma but were not present in smooth muscle or the mucosal epithelium of the upper airways. Treatment with antimiR-145 and a nontargeting oligonucleotide both reduced eosinophilia, reduced obstructive airway remodeling, reduced mucosal metaplasia, and reduced CD68 immunoreactivity. Poly(A) RNA-seq verified that antimiR-145 increased levels of many miR-145 target transcripts. Genes upregulated in human asthma and the mouse model of asthma were downregulated by oligonucleotide treatments. However, both oligonucleotides significantly upregulated many genes of interferon signaling pathways. These results establish effective lung delivery and efficacy of locked nucleic acid/DNA oligonucleotides administered intravenously, and suggest that some of the beneficial effects of oligonucleotide therapy of lung inflammation may be due to normalization of interferon response pathways.
Collapse
Affiliation(s)
- Sabrina C Ramelli
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Brian S Comer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Jared M McLendon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Lydia L Sandy
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Andrew P Ferretti
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Robert Barrington
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Jeff Sparks
- Celsion Corporation, 601 Genome Way, Huntsville, AL, USA
| | - Majed Matar
- Celsion Corporation, 601 Genome Way, Huntsville, AL, USA
| | - Jason Fewell
- Celsion Corporation, 601 Genome Way, Huntsville, AL, USA
| | - William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
21
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
22
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
23
|
Zhang H, Zhao J, Shao P. Long noncoding RNA MIAT2 alleviates lipopolysaccharide-induced inflammatory damage in WI-38 cells by sponging microRNA-15. J Cell Physiol 2019; 235:3690-3697. [PMID: 31566734 DOI: 10.1002/jcp.29263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Neonatal pneumonia is a high neonatal mortality disease. We studied the function and mechanism of long noncoding RNA myocardial infarction-associated transcript 2 (lncRNA MIAT2) on lipopolysaccharide (LPS)-induced inflammation in WI-38 cells. Cell Counting Kit-8 and apoptosis assay were respectively used to detect the functions of LPS, MIAT2, and microRNA-15 (miR-15) on viability and apoptosis. MIAT2 and miR-15 expressions were changed by cell transfection. Moreover, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot, and enzyme-linked immunosorbent assay were used to detect the expressions of interleukin (IL)-6 and monocyte chemoattractant protein-1 (MCP-1). The levels of Bax, cleaved-caspase-3, and cell pathways-related proteins were tested by western blot. Besides, the levels of miR-15 and MIAT2 were tested by RT-qPCR. We found that LPS declined cell viability and heightened apoptosis and levels of Bax, cleaved-caspase-3, IL-6, and MCP-1. MIAT2 was negatively regulated by LPS and it alleviated LPS-induced damage. Furthermore, MIAT2 reversely regulated miR-15 and miR-15 mimic could reverse the effects of MIAT2. Finally, MIAT2 restrained the p38MAPK and NF-κB pathways by downregulating miR-15. In conclusion, MIAT2 alleviated LPS-induced inflammation damage in WI-38 cells by sponging miR-15 via p38MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jing Zhao
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Peng Shao
- Department of Pediatrics, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
24
|
Lai PY, Jing X, Michalkiewicz T, Entringer B, Ke X, Majnik A, Kriegel AJ, Liu P, Lane RH, Konduri GG. Adverse early-life environment impairs postnatal lung development in mice. Physiol Genomics 2019; 51:462-470. [PMID: 31373541 DOI: 10.1152/physiolgenomics.00016.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is a major risk factor for bronchopulmonary dysplasia (BPD). Maternal stress and poor diet are linked to FGR. Effect of perinatal stress on lung development remains unknown. OBJECTIVE Using a murine model of adverse early life environment (AELE), we hypothesized that maternal exposure to perinatal environmental stress and high-fat diet (Western diet) lead to impaired lung development in the offspring. METHODS Female mice were placed on either control diet or Western diet before conception. Those exposed to Western diet were also exposed to perinatal environmental stress, the combination referred to as AELE. Pups were either euthanized at postnatal day 21 (P21) or weaned to control diet and environment until adulthood (8-14 wk old). Lungs were harvested for histology, gene expression by quantitative RT-PCR, microRNA profiling, and immunoblotting. RESULTS AELE increased the mean linear intercept and decreased the radial alveolar count and secondary septation in P21 and adult mice. Capillary count was also decreased in P21 and adult mice. AELE lungs had decreased vascular endothelial growth factor A (VEGFA), VEGF receptor 2, endothelial nitric oxide synthase, and hypoxia inducible factor-1α protein levels and increased expression of genes that regulate DNA methylation and upregulation of microRNAs that target genes involved in lung development at P21. CONCLUSION AELE leads to impaired lung alveolar and vascular growth, which persists into adult age despite normalizing the diet and environment at P21. AELE also alters the expression of genes involved in lung remodeling.
Collapse
Affiliation(s)
- Pui Y Lai
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Teresa Michalkiewicz
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Brianna Entringer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Xingrao Ke
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Amber Majnik
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Alison J Kriegel
- Department of Physiology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Department of Physiology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert H Lane
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| | - Girija G Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin and
| |
Collapse
|
25
|
Shen YQ, Pan JJ, Sun ZY, Chen XQ, Zhou XG, Zhou XY, Cheng R, Yang Y. Differential expression of circRNAs during rat lung development. Int J Mol Med 2019; 44:1399-1413. [PMID: 31432143 PMCID: PMC6713411 DOI: 10.3892/ijmm.2019.4299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
At present, thousands of circular RNAs (circRNAs) have been found in cancer and various tissues from different species. However, the expression of circRNAs during rat lung development remains largely unknown. In the present study, circRNA expression profiles were screened in three mixed rat lung tissues at 3 time-points [embryonic day (E) 19, E21 and post-natal (P) day 3] during fetal rat development with circRNA high-throughput sequencing. Preliminary results were verified by reverse transcription-PCR (RT-PCR) at 4 time-points (E16, E19, E21 and P3). A total of 375 circRNAs were differently expressed in E19 vs. E21 (fold change ≥1.5; P<0.05). At the same time, a total of 358 circRNAs were differently expressed in E21 vs. P3 (fold change ≥1.5; P<0.05). A total of 3 circRNAs (rno_circ:chr7:24777879-24784993, r n o _c i r c:c h r14:14 62 0 910 −14 62 49 33 a n d r n o _circ:chr3:1988750- 1998592) were characterized by having consistent fold changes (≥1.5) between 3 time-points (E19, E21 and P3) and were selected for RT-PCR at 4 time-points (E16, E19, E21 and P3). Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of parent genes of the differentially expressed circRNAs revealed that these circRNAs may serve important roles in lung development. The present results support that these new found circRNAs participate in lung development. Furthermore, these findings may help to clarify the physiopathological mechanism of normal rat lung development, and may further provide a physiopatho-logical basis of lung developmental diseases.
Collapse
Affiliation(s)
- Yan-Qing Shen
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing-Jing Pan
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhong-Yi Sun
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Qing Chen
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Guang Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Yu Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Rui Cheng
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yang Yang
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
26
|
Leary S, Das P, Ponnalagu D, Singh H, Bhandari V. Genetic Strain and Sex Differences in a Hyperoxia-Induced Mouse Model of Varying Severity of Bronchopulmonary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:999-1014. [PMID: 30794808 DOI: 10.1016/j.ajpath.2019.01.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a disease prevalent in preterm babies with a need for supplemental oxygen, resulting in impaired lung development and dysregulated vascularization. Epidemiologic studies have shown that males are more prone to BPD and have a delayed recovery compared with females, for reasons unknown. Herein, we tried to recapitulate mild, moderate, and severe BPD, using two different strains of mice, in males and females: CD1 (outbred) and C57BL/6 (inbred). Aside from higher body weight in the CD1 strain, there were no other gross morphologic differences with respect to alveolar development between the two strains. With respect to lung morphology after oxygen exposure, females had less injury with better preservation of alveolar chord length and decreased alveolar protein leak and inflammatory cells in the bronchoalveolar lavage fluid. In addition, housekeeping genes, which are routinely used as loading controls, were expressed differently in males and females. In the BPD mouse model, gonadotropin-releasing hormone was increased in females compared with males. Specific miRNAs (miR-146 and miR-34a) were expressed differently in the sexes. In the severe BPD mouse model, administering miR-146 mimic to males attenuated lung damage, whereas administering miR-146 inhibitor to females increased pulmonary injury.
Collapse
Affiliation(s)
- Sean Leary
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pragnya Das
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology, Physiology and Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Harpreet Singh
- Department of Pharmacology, Physiology and Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania; Division of Neonatology, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and Regenerating the Lung Cell by Cell. Physiol Rev 2019; 99:513-554. [PMID: 30427276 DOI: 10.1152/physrev.00001.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unique architecture of the mammalian lung is required for adaptation to air breathing at birth and thereafter. Understanding the cellular and molecular mechanisms controlling its morphogenesis provides the framework for understanding the pathogenesis of acute and chronic lung diseases. Recent single-cell RNA sequencing data and high-resolution imaging identify the remarkable heterogeneity of pulmonary cell types and provides cell selective gene expression underlying lung development. We will address fundamental issues related to the diversity of pulmonary cells, to the formation and function of the mammalian lung, and will review recent advances regarding the cellular and molecular pathways involved in lung organogenesis. What cells form the lung in the early embryo? How are cell proliferation, migration, and differentiation regulated during lung morphogenesis? How do cells interact during lung formation and repair? How do signaling and transcriptional programs determine cell-cell interactions necessary for lung morphogenesis and function?
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Tanya V Kalin
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| |
Collapse
|
28
|
Pérez-Vázquez MS, Ochoa-Martínez ÁC, RuÍz-Vera T, Araiza-Gamboa Y, Pérez-Maldonado IN. Evaluation of epigenetic alterations (mir-126 and mir-155 expression levels) in Mexican children exposed to inorganic arsenic via drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28036-28045. [PMID: 28994022 DOI: 10.1007/s11356-017-0367-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Recently, a great number of epidemiological studies have shown evidence that exposure to inorganic arsenic could have harmful effects on the cardiovascular system of humans. However, the underlying mechanisms through which arsenic induces cardiovascular toxic effects remain unclear. In this regard, epigenetic mechanisms have emerged as a probable connection between environment and disease phenotypes, including cardiovascular diseases. Therefore, this study aimed to evaluate epigenetic changes related to cardiotoxicity (miR-126 and miR-155 expression levels) in children from San Luis Potosi, Mexico exposed to inorganic arsenic. From 2014 to 2015, in a cross-sectional study, children (aged 6-12 years; n = 73) attending public schools at the studied sites were enrolled to take part in this study. Urinary arsenic was used as an exposure biomarker and analyzed by an atomic absorption spectrophotometry technique. On the other hand, miR-126 and miR-155 expression levels were evaluated by qRT-PCR. A mean urinary arsenic level of 30.5 ± 25.5 μg/g of creatinine was found. Moreover, the data showed a significant negative association (p < 0.05) between urinary arsenic concentrations and plasma miR-126 levels. However, an association between urinary arsenic concentrations and plasma miR-155 levels was not found (p > 0.05). In this regard, some investigations have shown an association between diminished plasma miR-126 levels and cardiovascular illnesses. The results found in this study are of concern. However, more similar studies including a larger sample size are necessary in order to clarify the real significance of the data.
Collapse
Affiliation(s)
- Mónica S Pérez-Vázquez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Tania RuÍz-Vera
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Yesenia Araiza-Gamboa
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosi, SLP, Mexico.
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.
- Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, Rio-verde, San Luis Potosi, Mexico.
| |
Collapse
|
29
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|