1
|
Pandey HR, Singh A, Arya A, Agarwal V, Kumar U. Neuroanatomical landscapes: Delineating the cortical signatures of pediatric major depressive disorder and bipolar disorder. J Psychiatr Res 2025; 186:72-83. [PMID: 40220455 DOI: 10.1016/j.jpsychires.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/04/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Pediatric mood disorders, including Major Depressive Disorder (MDD) and Bipolar Disorder (BD), exhibit overlapping symptomatology and complex neurodevelopmental trajectories, necessitating a comprehensive investigation of their neuroanatomical underpinnings. This study aimed to characterize structural brain differences in children with MDD and euthymic BD using high-resolution structural magnetic resonance imaging (MRI). A total of 51 children (aged 10-14 years) were categorized into MDD, euthymic BD, and typically developing (TD) controls. Utilizing advanced surface-based morphometry, we examined four cortical features: fractal dimension, gyrification, sulcal depth, and cortical thickness, to delineate disorder-specific and shared neuroanatomical alterations. Additionally, we explored the interaction between white matter volumetrics and these surface-based metrics to assess its modulatory role in structural brain differences. Our results revealed significant cortical alterations, with distinct and overlapping patterns in both MDD and BD. The findings demonstrated disruptions in cortical complexity, folding patterns, and sulcal morphology, particularly in regions implicated in emotion regulation and cognitive processing. These structural variations provide critical insights into the neurodevelopmental alterations associated with pediatric mood disorders. By integrating multiple morphometric parameters, this study offers a comprehensive framework for understanding the neuroanatomical changes in MDD and BD, contributing to more precise diagnostic biomarkers. The results underscore the importance of incorporating surface-based morphometry and white matter interactions in future research to refine early diagnosis and targeted interventions for mood disorders in children.
Collapse
Affiliation(s)
- Himanshu R Pandey
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshita Singh
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India; Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Amit Arya
- Department of Psychiatry, King George Medical University, Lucknow, India
| | - Vivek Agarwal
- Department of Psychiatry, King George Medical University, Lucknow, India
| | - Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Wang R, Wang C, Zhang G, Mundinano IC, Zheng G, Xiao Q, Zhong Y. Causal mechanisms of quadruple networks in pediatric bipolar disorder. Psychol Med 2024; 54:1-12. [PMID: 39679552 PMCID: PMC11769912 DOI: 10.1017/s0033291724002885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/12/2024] [Accepted: 10/22/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Pediatric bipolar disorder (PBD) is characterized by abnormal functional connectivity among distributed brain regions. Increasing evidence suggests a role for the limbic network (LN) and the triple network model in the pathophysiology of bipolar disorder (BD). However, the specific relationship between the LN and the triple network in PBD remains unclear. This study aimed to investigate the aberrant causal connections among these four core networks in PBD. METHOD Resting-state functional MRI scans from 92 PBD patients and 40 healthy controls (HCs) were analyzed. Dynamic Causal Modeling (DCM) was employed to assess effective connectivity (EC) among the four core networks. Parametric empirical Bayes (PEB) analysis was conducted to identify ECs associated with group differences, as well as depression and mania severity. Leave-one-out cross-validation (LOOCV) was used to test predictive accuracy. RESULT Compared to HCs, PBD patients exhibited primarily excitatory bottom-up connections from the LN to the salience network (SN) and bidirectional excitatory connections between the default mode network (DMN) and SN. In PBD, top-down connectivity from the triple network to the LN was excitatory in individuals with higher depression severity but inhibitory in those with higher mania severity. LOOCV identified dysconnectivity circuits involving the caudate and hippocampus as being associated with mania and depression severity, respectively. CONCLUSIONS Disrupted bottom-up connections from the LN to the triple network distinguish PBD patients from healthy controls, while top-down disruptions from the triple network to LN relate to mood state differences. These findings offer insight into the neural mechanisms of PBD.
Collapse
Affiliation(s)
- Rong Wang
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Chun Wang
- Department of Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Gui Zhang
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Inaki-Carril Mundinano
- Cognitive Neuroscience Laboratory, Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Victoria 3800, Australia
| | - Qian Xiao
- Mental Health Centre of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| |
Collapse
|
3
|
Bahrami S, Nordengen K, Rokicki J, Shadrin AA, Rahman Z, Smeland OB, Jaholkowski PP, Parker N, Parekh P, O'Connell KS, Elvsåshagen T, Toft M, Djurovic S, Dale AM, Westlye LT, Kaufmann T, Andreassen OA. The genetic landscape of basal ganglia and implications for common brain disorders. Nat Commun 2024; 15:8476. [PMID: 39353893 PMCID: PMC11445552 DOI: 10.1038/s41467-024-52583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
The basal ganglia are subcortical brain structures involved in motor control, cognition, and emotion regulation. We conducted univariate and multivariate genome-wide association analyses (GWAS) to explore the genetic architecture of basal ganglia volumes using brain scans obtained from 34,794 Europeans with replication in 4,808 white and generalization in 5,220 non-white Europeans. Our multivariate GWAS identified 72 genetic loci associated with basal ganglia volumes with a replication rate of 55.6% at P < 0.05 and 87.5% showed the same direction, revealing a distributed genetic architecture across basal ganglia structures. Of these, 50 loci were novel, including exonic regions of APOE, NBR1 and HLAA. We examined the genetic overlap between basal ganglia volumes and several neurological and psychiatric disorders. The strongest genetic overlap was between basal ganglia and Parkinson's disease, as supported by robust LD-score regression-based genetic correlations. Mendelian randomization indicated genetic liability to larger striatal volume as potentially causal for Parkinson's disease, in addition to a suggestive causal effect of greater genetic liability to Alzheimer's disease on smaller accumbens. Functional analyses implicated neurogenesis, neuron differentiation and development in basal ganglia volumes. These results enhance our understanding of the genetic architecture and molecular associations of basal ganglia structure and their role in brain disorders.
Collapse
Grants
- R01 MH129742 NIMH NIH HHS
- Stiftelsen Kristian Gerhard Jebsen (Kristian Gerhard Jebsen Foundation)
- Norwegian Health Association (22731, 25598), the South-Eastern Norway Regional Health Authority (2013-123, 2017-112, 2019-108, 2014-097, 2015-073, 2016-083), the Research Council of Norway (276082, 323961. 213837, 223273, 248778, 273291, 262656, 229129, 283798, 311993, 324499. 204966, 249795, 273345).
Collapse
Affiliation(s)
- Shahram Bahrami
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway.
| | - Kaja Nordengen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Jaroslav Rokicki
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Alexey A Shadrin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Zillur Rahman
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Olav B Smeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Nadine Parker
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pravesh Parekh
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Torbjørn Elvsåshagen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Department of Behavioral Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Lars T Westlye
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway.
- Department of Psychiatry, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Luciano M, Di Vincenzo M, Mancuso E, Marafioti N, Di Cerbo A, Giallonardo V, Sampogna G, Fiorillo A. Does the Brain Matter? Cortical Alterations in Pediatric Bipolar Disorder: A Critical Review of Structural and Functional Magnetic Resonance Studies. Curr Neuropharmacol 2023; 21:1302-1318. [PMID: 36173069 PMCID: PMC10324338 DOI: 10.2174/1570159x20666220927114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Pediatric bipolar disorder (PBD) is associated with significant psychosocial impairment, high use of mental health services and a high number of relapses and hospitalization. Neuroimaging techniques provide the opportunity to study the neurodevelopmental processes underlying PBD, helping to identify the endophenotypic markers of illness and early biological markers of PBD. The aim of the study is to review available studies assessing structural and functional brain correlates associated with PBD. PubMed, ISI Web of Knowledge and PsychINFO databases have been searched. Studies were included if they enrolled patients aged 0-18 years with a main diagnosis of PBD according to ICD or DSM made by a mental health professional, adopted structural and/or functional magnetic resonance as the main neuroimaging method, were written in English and included a comparison with healthy subjects. Of the 400 identified articles, 46 papers were included. Patients with PBD present functional and anatomic alterations in structures normally affecting regulations and cognition. Structural neuroimaging revealed a significant reduction in gray matter, with cortical thinning in bilateral frontal, parietal and occipital cortices. Functional neuroimaging studies reported a reduced engagement of the frontolimbic and hyperactivation of the frontostriatal circuitry. Available studies on brain connectivity in PBD patients potentially indicate less efficient connections between regions involved in cognitive and emotional functions. A greater functional definition of alteration in brain functioning of PBD patients will be useful to set up a developmentally sensitive targeted pharmacological and nonpharmacological intervention.
Collapse
Affiliation(s)
- Mario Luciano
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Matteo Di Vincenzo
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Emiliana Mancuso
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Niccolò Marafioti
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Arcangelo Di Cerbo
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Gaia Sampogna
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Andrea Fiorillo
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
5
|
Bame M, McInnis MG, O'Shea KS. MicroRNA Alterations in Induced Pluripotent Stem Cell-Derived Neurons from Bipolar Disorder Patients: Pathways Involved in Neuronal Differentiation, Axon Guidance, and Plasticity. Stem Cells Dev 2020; 29:1145-1159. [PMID: 32438891 PMCID: PMC7469698 DOI: 10.1089/scd.2020.0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Bipolar disorder (BP) is a complex psychiatric condition characterized by severe fluctuations in mood for which underlying pathological mechanisms remain unclear. Family and twin studies have identified a hereditary component to the disorder, but a single causative gene (or set of genes) has not been identified. MicroRNAs (miRNAs) are small, noncoding RNAs ∼20 nucleotides in length, that are responsible for the posttranslational regulation of multiple genes. They have been shown to play important roles in neural development as well as in the adult brain, and several miRNAs have been reported to be dysregulated in postmortem brain tissue isolated from bipolar patients. Because there are no viable cellular models to study BP, we have taken advantage of the recent discovery that somatic cells can be reprogrammed to pluripotency then directed to form the full complement of neural cells. Analysis of RNAs extracted from Control and BP patient-derived neurons identified 58 miRNAs that were differentially expressed between the two groups. Using quantitative polymerase chain reaction we validated six miRNAs that were elevated and two miRNAs that were expressed at lower levels in BP-derived neurons. Analysis of the targets of the miRNAs indicate that they may regulate a number of cellular pathways, including axon guidance, Mapk, Ras, Hippo, Neurotrophin, and Wnt signaling. Many are involved in processes previously implicated in BP, such as cell migration, axon guidance, dendrite and synapse development, and function. We have validated targets of several different miRNAs, including AXIN2, BDNF, RELN, and ANK3 as direct targets of differentially expressed miRNAs using luciferase assays. Identification of pathways altered in patient-derived neurons suggests that disruption of these regulatory networks that may contribute to the complex phenotypes in BP.
Collapse
Affiliation(s)
- Monica Bame
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - K. Sue O'Shea
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Mucci F, Avella MT, Marazziti D. ADHD with Comorbid Bipolar Disorders: A Systematic Review of Neurobiological, Clinical and Pharmacological Aspects Across the Lifespan. Curr Med Chem 2020; 26:6942-6969. [PMID: 31385763 DOI: 10.2174/0929867326666190805153610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/05/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Attention deficit hyperactivity (ADHD) disorder is a neurodevelopmental disorder characterized by inattention, hyperactivity, disruptive behaviour, and impulsivity. Despite considered typical of children for a long time, the persistence of ADHD symptoms in adulthood gained increasing interest during the last decades. Indeed, its diagnosis, albeit controversial, is rarely carried out even because ADHD is often comorbid with several other psychiatric diosrders, in particular with bipolar disorders (BDs), a condition that complicates the clinical picture, assessment and treatment. AIMS The aim of this paper was to systematically review the scientific literature on the neurobiological, clinical features and current pharmacological management of ADHD comorbid with BDs across the entire lifespan, with a major focus on the adulthood. DISCUSSION The pharmacology of ADHD-BD in adults is still empirical and influenced by the individual experience of the clinicians. Stimulants are endowed of a prompt efficacy and safety, whilst non-stimulants are useful when a substance abuse history is detected, although they require some weeks in order to be fully effective. In any case, an in-depth diagnostic and clinical evaluation of the single individual is mandatory. CONCLUSION The comorbidity of ADHD with BD is still a controversial matter, as it is the notion of adult ADHD as a distinct nosological category. Indeed, some findings highlighted the presence of common neurobiological mechanisms and overlapping clinical features, although disagreement does exist. In any case, while expecting to disentangle this crucial question, a correct management of this comorbidity is essential, which requires the co-administration of mood stabilizers. Further controlled clinical studies in large samples of adult ADHD-BD patients appear extremely urgent in order to better define possible therapeutic guidelines, as well as alternative approaches for this potentially invalidating condition.
Collapse
Affiliation(s)
- Federico Mucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Fondazione BRF, Istituto per la Ricerca Scientifica in Psichiatria e Neuroscienze, Lucca, Italy
| | - Maria Teresa Avella
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Fondazione BRF, Istituto per la Ricerca Scientifica in Psichiatria e Neuroscienze, Lucca, Italy
| |
Collapse
|
7
|
Fernandes HM, Cabral J, van Hartevelt TJ, Lord LD, Gleesborg C, Møller A, Deco G, Whybrow PC, Petrovic P, James AC, Kringelbach ML. Disrupted brain structural connectivity in Pediatric Bipolar Disorder with psychosis. Sci Rep 2019; 9:13638. [PMID: 31541155 PMCID: PMC6754428 DOI: 10.1038/s41598-019-50093-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BD) has been linked to disrupted structural and functional connectivity between prefrontal networks and limbic brain regions. Studies of patients with pediatric bipolar disorder (PBD) can help elucidate the developmental origins of altered structural connectivity underlying BD and provide novel insights into the aetiology of BD. Here we compare the network properties of whole-brain structural connectomes of euthymic PBD patients with psychosis, a variant of PBD, and matched healthy controls. Our results show widespread changes in the structural connectivity of PBD patients with psychosis in both cortical and subcortical networks, notably affecting the orbitofrontal cortex, frontal gyrus, amygdala, hippocampus and basal ganglia. Graph theoretical analysis revealed that PBD connectomes have fewer hubs, weaker rich club organization, different modular fingerprint and inter-modular communication, compared to healthy participants. The relationship between network features and neurocognitive and psychotic scores was also assessed, revealing trends of association between patients’ IQ and affective psychotic symptoms with the local efficiency of the orbitofrontal cortex. Our findings reveal that PBD with psychosis is associated with significant widespread changes in structural network topology, thus strengthening the hypothesis of a reduced capacity for integrative processing of information across brain regions. Localised network changes involve core regions for emotional processing and regulation, as well as memory and executive function, some of which show trends of association with neurocognitive faculties and symptoms. Together, our findings provide the first comprehensive characterisation of the alterations in local and global structural brain connectivity and network topology, which may contribute to the deficits in cognition and emotion processing and regulation found in PBD.
Collapse
Affiliation(s)
- Henrique M Fernandes
- Center for Music in the Brain (MIB), Aarhus University, Aarhus, Denmark. .,Department of Psychiatry, University of Oxford, Oxford, UK. .,Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark.
| | - Joana Cabral
- Center for Music in the Brain (MIB), Aarhus University, Aarhus, Denmark.,Department of Psychiatry, University of Oxford, Oxford, UK.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Tim J van Hartevelt
- Center for Music in the Brain (MIB), Aarhus University, Aarhus, Denmark.,Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Carsten Gleesborg
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark.,Sino-Danish Center for Education and Research (SDC), Aarhus, Denmark
| | - Arne Møller
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Peter C Whybrow
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, USA
| | - Predrag Petrovic
- Cognitive Neurophysiology Research Group, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Anthony C James
- Department of Psychiatry, University of Oxford, Oxford, UK.,Highfield Unit, Warneford Hospital, Oxford, UK
| | - Morten L Kringelbach
- Center for Music in the Brain (MIB), Aarhus University, Aarhus, Denmark.,Department of Psychiatry, University of Oxford, Oxford, UK.,Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
8
|
Toma S, Islam AH, Metcalfe AWS, Mitchell RHB, Fiksenbaum L, MacIntosh BJ, Goldstein BI. Cortical Volume and Thickness Across Bipolar Disorder Subtypes in Adolescents: A Preliminary Study. J Child Adolesc Psychopharmacol 2019; 29:141-151. [PMID: 30359542 DOI: 10.1089/cap.2017.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Neuroimaging studies of adults with bipolar disorder (BD) have identified several BD subtype distinctions, including greater deficits in prefrontal gray matter volumes in BD-I (bipolar I disorder) compared to BD-II (bipolar II disorder). We sought to investigate BD subtype differences in brain structure among adolescents and young adults. METHODS Forty-four youth with BD (14 BD-I, 16 BD-II, and 14 BD-not otherwise specified [NOS], mean age 17) underwent 3T-MRI and images were analyzed using FreeSurfer software. Cortical volume and thickness were analyzed for region of interest (ROI): ventrolateral prefrontal cortex, ventromedial prefrontal cortex, anterior cingulate cortex (ACC), subgenual cingulate cortex, and amygdala, controlling for age, sex, and total intracranial volume. ROIs were selected as found to be implicated in BD in prior studies. A whole brain vertex-wise exploratory analysis was also performed. Uncorrected results are presented. RESULTS There were group differences in ACC thickness (F = 3.88, p = 0.03, η2 = 0.173 uncorrected), which was reduced in BD-II in comparison to BD-I (p = 0.027 uncorrected) and BD-NOS (p = 0.019 uncorrected). These results did not survive correction for multiple comparisons and no other group differences were observed. The exploratory vertex-wise analysis found a similar pattern of lower cortical thickness in BD-II in the left and right superior frontal gyrus and left caudal middle frontal gyrus. CONCLUSIONS This study found reduced cortical thickness for youth with BD-II, relative to BD-I, in regions associated with cognitive control. Further neurostructural differences between subtypes may emerge later during the course of illness.
Collapse
Affiliation(s)
- Simina Toma
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Alvi H Islam
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Arron W S Metcalfe
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,3 Brain Sciences , Sunnybrook Health Sciences Centre, Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Rachel H B Mitchell
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Lisa Fiksenbaum
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bradley J MacIntosh
- 3 Brain Sciences , Sunnybrook Health Sciences Centre, Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada .,5 Department of Medical Biophysics, University of Toronto , Toronto, Canada .,6 Department of Physical Sciences, Sunnybrook Health Sciences Centre , Toronto, Canada
| | - Benjamin I Goldstein
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada .,7 Department of Pharmacology, University of Toronto , Toronto, Canada
| |
Collapse
|
9
|
Riva-Posse P, Holtzheimer PE, Mayberg HS. Cingulate-mediated depressive symptoms in neurologic disease and therapeutics. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:371-379. [PMID: 31731923 DOI: 10.1016/b978-0-444-64196-0.00021-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The depressive syndrome includes a number of symptoms that are clinically diverse. Research in the past decades has consistently demonstrated that the cingulate cortex plays an essential role in these manifestations. With anatomic studies initially showing volumetric changes, followed by the insights that functional imaging and physiology contributed to neuroscience and psychiatry, the distinct areas of the cingulate subdivisions were seen to have unique contributions. The subcallosal cingulate, with its functional responsivity to mood states and to antidepressant therapies, has been identified as a central node within the mood regulation network. In this chapter, detailed descriptions of the anatomic and functional changes that are seen in depression will be discussed. Finally, a focus on the development of deep brain stimulation in the subcallosal cingulate area will be used to emphasize the conceptualization of a network model with the cingulate as a hub, where engagement of remote areas of the depression network is needed to treat depression.
Collapse
Affiliation(s)
- Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Paul E Holtzheimer
- Departments of Psychiatry and Surgery, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Helen S Mayberg
- Departments of Neurology, Neurosurgery, Psychiatry, and Neuroscience, Center of Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
10
|
Yao X, Yin Z, Liu F, Wei S, Zhou Y, Jiang X, Wei Y, Xu K, Wang F, Tang Y. Shared and distinct regional homogeneity changes in bipolar and unipolar depression. Neurosci Lett 2018; 673:28-32. [PMID: 29466722 DOI: 10.1016/j.neulet.2018.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bipolar depression (BD) is easily misdiagnosed as unipolar depression (UD) or major depressive disorder (MDD) because the depressive symptoms can overlap. Regional homogeneity (ReHo), a measure commonly used for analyzing resting-state fMRI data, has been applied to the study of various neuropsychiatric disorders. However, to date, studies directly comparing BD and UD using ReHo have been relatively scarce. Further investigation is needed to study the latent pathophysiological mechanisms of BD and UD. METHODS Fifty-five patients with BD and 76 patients with UD, as well as 113 healthy controls (HC), underwent resting-state functional magnetic resonance imaging (fMRI). We compared the voxel-wise ReHo across the whole brain for subjects in each of the three groups. RESULTS Significant differences were found in the left frontal cluster (LFC) across the three groups. There were differences between BD and UD in the LFC and left temporal cluster (LTC). In addition, differences between UD and HC existed in the LFC and the occipital cluster (OC). When comparing BD subjects with HC subjects, significant differences were found in all three clusters. No correlations were observed between the 17-item Hamilton Depression Rating Scale (HDRS-17) scores or sub-scores and the ReHo values of BD or UD patients. CONCLUSION ReHo values in the LFC differed significantly among BD, UD, and HC subjects. ReHo in the LTC showed significant differences between BD and UD that might serve as neuroimaging markers of BD. Further, BD and UD shared ReHo changes in the cuneus, suggesting that the cuneus might provide a depressive state neuroimaging marker of BD and UD patients.
Collapse
Affiliation(s)
- Xudong Yao
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; The 7th People's Hospital, Dalian, Liaoning, PR China
| | - Zhiyang Yin
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Fang Liu
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; The 7th People's Hospital, Dalian, Liaoning, PR China
| | - Shengnan Wei
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yifang Zhou
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Geriatric Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Xiaowei Jiang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Yange Wei
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Ke Xu
- Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China
| | - Fei Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China.
| | - Yanqing Tang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Department of Geriatric Medicine, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China; Brain Function Research Section, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
11
|
Abbass M, Trought K, Long D, Semechko A, Wong AHC. Automated immunohistochemical method to analyze large areas of the human cortex. J Neurosci Methods 2018; 294:81-90. [PMID: 29126813 DOI: 10.1016/j.jneumeth.2017.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND There have been inconsistencies in the histological abnormalities found in the cerebral cortex from patients with schizophrenia, bipolar disorder and major depression. Discrepancies in previously published reports may arise from small sample sizes, inconsistent methodology and biased cell counting. METHODS We applied automated quantification of neuron density, neuron size and cortical layer thickness in large regions of the cerebral cortex in psychiatric patients. This method accurately segments DAPI positive cells that are also stained with CUX2 and FEZF2. Cortical layer thickness, neuron density and neuron size were automatically computed for each cortical layer in numerous Brodmann areas. RESULTS We did not find pronounced cytoarchitectural abnormalities in the anterior cingulate cortex or orbitofrontal cortex in patients with schizophrenia, bipolar disorder or major depressive disorder. There were no significant differences in layer thickness measured in immunohistochemically stained slides compared with traditional Nissl stained slides. Automated cell counts were correlated, reliable and consistent with manual counts, while being much less time-consuming. CONCLUSION We demonstrate the validity of using a novel automated analysis approach to post-mortem brain tissue. We were able to analyze large cortical areas and quantify specific cell populations using immunohistochemical markers. Future analyses could benefit from efficient automated analysis.
Collapse
Affiliation(s)
- Mohamad Abbass
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kathleen Trought
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - David Long
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Anton Semechko
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
12
|
Huber RS, Kondo DG, Shi XF, Prescot AP, Clark E, Renshaw PF, Yurgelun-Todd DA. Relationship of executive functioning deficits to N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) in youth with bipolar disorder. J Affect Disord 2018; 225:71-78. [PMID: 28800423 DOI: 10.1016/j.jad.2017.07.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although cognitive deficits in bipolar disorder (BD) have been repeatedly observed, our understanding of these impairments at a mechanistic level remains limited. Few studies that investigated cognitive impairments in bipolar illness have examined the association with brain biochemistry. This pilot study utilized proton magnetic resonance spectroscopy (1H-MRS) to evaluate the relationship between neurocognitive performance and brain metabolites in youth with BD. METHODS Thirty participants, twenty depressed BD participants and ten healthy comparison participants, ages 13-21, completed mood and executive function measures. 1H-MRS data were also acquired from the anterior cingulate cortex (ACC) using two-dimensional (2D) J-resolved 1H-MRS sequence. Proton metabolites including N-acetyl aspartate (NAA) and gamma-aminobutyric acid (GABA) were quantified for both groups. RESULTS Participants with BD performed significantly lower on executive functioning measures than comparison participants. There were significant positive correlations between Wisconsin Card Sorting Test (WCST) performance and NAA (p < .001) and GABA (p < .01) in the ACC in bipolar youth, such that as WCST performance increased, both NAA and GABA levels increased. LIMITATIONS Small sample size and lack of control for medications. CONCLUSIONS These findings build on previous observations of biochemical alterations associated with BD and indicate that executive functioning deficits in bipolar youth are correlated with NAA and GABA. These results suggest that cognitive deficits occur early in the course of illness and may reflect risk factors associated with altered neurochemistry. Further investigation of the relationship between brain metabolites and cognition in BD may lead to important information for developing novel, targeted interventions.
Collapse
Affiliation(s)
- Rebekah S Huber
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States.
| | - Douglas G Kondo
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States; Veterans Affairs VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, United States
| | - Xian-Feng Shi
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States
| | - Andrew P Prescot
- University of Utah School of Medicine, Department of Radiology, Salt Lake City, UT, United States
| | - Elaine Clark
- University of Utah, Department of Educational Psychology, Salt Lake City, UT, United States
| | - Perry F Renshaw
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States; Veterans Affairs VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, United States
| | - Deborah A Yurgelun-Todd
- University of Utah School of Medicine, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT 84108, United States; Veterans Affairs VISN 19 Mental Illness Research, Education and Clinical Center, Salt Lake City, UT, United States
| |
Collapse
|
13
|
|
14
|
Akbaş S, Nahir M, Pirzirenli ME, Dündar C, Ceyhan M, Sarısoy G, Şahin B. Quantitative analysis of the amygdala, thalamus and hippocampus on magnetic resonance images in paediatric bipolar disorders and compared with the children of bipolar parents and healthy control. Psychiatry Res Neuroimaging 2017; 270:61-67. [PMID: 29065344 DOI: 10.1016/j.pscychresns.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 06/29/2017] [Accepted: 08/29/2017] [Indexed: 12/28/2022]
Abstract
MR imaging studies in paediatric bipolar disorder have particularly focused on the amygdala and hippocampus, subcortical structures, and to a lesser extent on the thalamus. The purpose of this study was to perform structural analysis of the regions of interest (ROI) associated with mood regulation. In this study 18 children (between the ages of 12-18) were matched according to their age and sex and were divided into three groups. These were: a paediatric bipolar disorder group, risk group and a healthy control group. The structured diagnostic interviews were performed with children and their parents. T1 weighted MR images in the sagittal plane with a thickness of 1mm were taken from the subjects. Automatic structural brain analysis was performed, and the volume and volume fraction (VF) of the ROIs were obtained. Brain size in the patients with paediatric bipolar disorder (742.4 ± 110.1cm3) was significantly smaller than the healthy control group (880.7 ± 73.8cm3) (p≤0.05). MRI analysis between the paediatric bipolar disorder, risk group and healthy control group revealed no difference between them in terms of amygdala, thalamus or hippocampal volumes. In this study, there was no difference between the volumes of amygdala, thalamus or hippocampus.
Collapse
Affiliation(s)
- Seher Akbaş
- Department of Child and Adolescent Psychiatry, Erenkoy Mental Health and Neurology Training and Research Hospital, Istanbul, Turkey.
| | - Mert Nahir
- Ondokuz Mayıs University Faculty of Medicine Department of Anatomy, Turkey
| | | | - Cihat Dündar
- Ondokuz Mayıs University Faculty of Medicine Department of Public Health, Turkey
| | - Meltem Ceyhan
- Ondokuz Mayıs University Faculty of Medicine Department of Radiology, Turkey
| | - Gökhan Sarısoy
- Ondokuz Mayıs University Faculty of Medicine Department of Psychiatry, Turkey
| | - Bünyamin Şahin
- Ondokuz Mayıs University Faculty of Medicine Department of Anatomy, Turkey
| |
Collapse
|
15
|
Arjmand S, Behzadi M, Stephens GJ, Ezzatabadipour S, Seifaddini R, Arjmand S, Shabani M. A Brain on a Roller Coaster: Can the Dopamine Reward System Act as a Protagonist to Subdue the Ups and Downs of Bipolar Disorder? Neuroscientist 2017; 24:423-439. [DOI: 10.1177/1073858417714226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the most interesting but tenebrous parts of the bipolar disorder (BD) story is the switch between (hypo)mania and depression, which can give bipolar patients a thrilling, but somewhat perilous, ‘ride’. Numerous studies have pointed out that there are some recognizable differences (either state-dependent or state-independent) in several brain regions of people with BD, including components of the brain’s reward system. Understanding the underpinning mechanisms of high and low mood statuses in BD has potential, not only for the development of highly specific and selective pharmaceutical agents, but also for better treatment approaches and psychological interventions to manage BD and, thus, give patients a safer ride. Herein, we review evidence that supports involvement of the reward system in the pathophysiology of mood swings, with the main focus on the mesocorticolimbic dopaminergic neural circuitry. Principally using findings from neuroimaging studies, we aim to signpost readers as to how mood alterations may affect different areas of the reward system and how antipsychotic drugs can influence the activity of these brain areas. Finally, we critically evaluate the hypothesis that the mesocorticolimbic dopamine reward system may act as a functional rheostat for different mood states.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Behzadi
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Gary J. Stephens
- School of Pharmacy, Reading University, Whiteknights, Reading, UK
| | - Sara Ezzatabadipour
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Rostam Seifaddini
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrad Arjmand
- Department of Psychology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Ganzola R, Duchesne S. Voxel-based morphometry meta-analysis of gray and white matter finds significant areas of differences in bipolar patients from healthy controls. Bipolar Disord 2017; 19:74-83. [PMID: 28444949 DOI: 10.1111/bdi.12488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We present a retrospective meta-analysis of voxel-based morphometry (VBM) of gray (GM) and white matter (WM) differences between patients with bipolar disorder (BD) and behaviorally healthy controls. METHODS We used the activation likelihood estimation and Sleuth software for our meta-analysis, considering P-value maps at the cluster level inference of .05 with uncorrected P<.001. Results were visualized with the software MANGO. RESULTS We included twenty-five articles in the analysis, and separated the comparisons where BD patients had lower GM or WM concentrations than controls (573 subjects, 21 experiments, and 117 locations/180 subjects, five experiments, and 15 locations, respectively) and the comparisons where BD patients had greater GM concentrations than controls (217 subjects, nine experiments, and 49 locations). Higher WM concentrations in BD patients were not detected. We observed for BD reduced GM concentrations in the left medial frontal gyrus and right inferior/precentral gyri encompassing the insular cortex, and greater GM concentrations in the left putamen. Further, lower WM concentrations were detected in the left inferior longitudinal fasciculus, left superior corona radiata, and left posterior cingulum. CONCLUSIONS This meta-analysis confirms deterioration of frontal and insular regions as already found in previous meta-analysis. GM reductions in these regions could be related to emotional processing and decision making, which are typically impaired in BD. Moreover, we found abnormalities in precentral frontal areas and putamen that have been linked to more basic functions, which could point to sensory and specific cognitive deficits. Finally, WM reductions involved circuitry that may contribute to emotional dysregulation in BD.
Collapse
Affiliation(s)
- Rossana Ganzola
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada
| | - Simon Duchesne
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada.,Départment de Radiologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
17
|
Increased cerebral blood flow among adolescents with bipolar disorder at rest is reduced following acute aerobic exercise. J Affect Disord 2017; 208:205-213. [PMID: 27792964 DOI: 10.1016/j.jad.2016.08.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Cerebral blood flow (CBF) is altered in mood disorders but has not been examined among adolescents with bipolar disorder (BD). Similarly, little is known about the acute neurophysiologic effects of aerobic exercise in BD. We therefore compared CBF between adolescents with and without BD at rest and acutely following a single exercise session. METHODS Thirty-one adolescents with BD and 20 age and sex-matched controls participated in this study. CBF magnetic resonance images (MRI) were acquired using arterial spin labeling at a baseline as well as 15 and 45min after a single 20-min session of recumbent cycling. Voxel-based CBF analyses compared groups at baseline and after exercise. Clinical, body mass index (BMI) and exercise-induced feelings inventory (EFI) data were examined for their influence on CBF findings. RESULTS Baseline CBF was increased in medial frontal and middle cingulate regions in BD compared to controls. Analysis of the acute CBF changes revealed pronounced exercise-related decreases in CBF in BD. Exercise-related feelings of exhaustion were associated with CBF changes in frontal but not parietal regions. DISCUSSION A single bout of moderate-intensity aerobic exercise reduced regional CBF to a greater extent in BD compared to controls; these time dependent CBF responses were associated with exercise-induced feelings of exhaustion.
Collapse
|
18
|
Lopez-Larson MP, Shah LM, Weeks HR, King JB, Mallik AK, Yurgelun-Todd DA, Anderson JS. Abnormal Functional Connectivity Between Default and Salience Networks in Pediatric Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:85-93. [PMID: 29560889 PMCID: PMC6422527 DOI: 10.1016/j.bpsc.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pediatric bipolar disorder (PBD) (occurring prior to 18 years of age) is a developmental brain disorder that is among the most severe and disabling psychiatric conditions affecting youth. Despite increasing evidence that brain connectivity is atypical in adults with bipolar disorder, it is not clear how brain connectivity may be altered in youths with PBD. METHODS This cross-sectional resting-state functional magnetic resonance imaging study included 80 participants recruited over 4 years: 32 youths with PBD, currently euthymic (13 males; 15.1 years old), and 48 healthy control (HC) subjects (27 males; 14.5 years old). Functional connectivity between eight major intrinsic connectivity networks, along with connectivity measurements between 333 brain regions, was compared between PBD and HC subjects. Additionally, connectivity differences were evaluated between PBD and HC samples in negatively correlated connections, as defined by 839 subjects of the Human Connectome Project dataset. RESULTS We found increased inter- but not intranetwork functional connectivity in PBD between the default mode and salience networks (p = .0017). Throughout the brain, atypical connections showed failure to develop anticorrelation with age during adolescence in PBD but not HC samples among connections that exhibit negative correlation in adulthood. CONCLUSIONS Youths with PBD demonstrate reduced anticorrelation between default mode and salience networks. Further evaluation of the interaction between these networks is needed in development and with other mood states such as depression and mania to clarify if this atypical connectivity is a PBD trait biomarker.
Collapse
Affiliation(s)
- Melissa P Lopez-Larson
- The Brain Institute, U.S. Department of Veterans Affairs, Salt Lake City, Utah; University of Utah, University of Utah Medical School, U.S. Department of Veterans Affairs, Salt Lake City, Utah.
| | - Lubdha M Shah
- The Brain Institute, U.S. Department of Veterans Affairs, Salt Lake City, Utah; Department of Radiology, U.S. Department of Veterans Affairs, Salt Lake City, Utah; University of Utah, University of Utah Medical School, U.S. Department of Veterans Affairs, Salt Lake City, Utah
| | - Howard R Weeks
- University of Utah, University of Utah Medical School, U.S. Department of Veterans Affairs, Salt Lake City, Utah
| | - Jace B King
- The Brain Institute, U.S. Department of Veterans Affairs, Salt Lake City, Utah; Department of Radiology, U.S. Department of Veterans Affairs, Salt Lake City, Utah; Interdepartmental Program in Neuroscience, U.S. Department of Veterans Affairs, Salt Lake City, Utah
| | - Atul K Mallik
- Department of Radiology, U.S. Department of Veterans Affairs, Salt Lake City, Utah
| | - Deborah A Yurgelun-Todd
- The Brain Institute, U.S. Department of Veterans Affairs, Salt Lake City, Utah; Interdepartmental Program in Neuroscience, U.S. Department of Veterans Affairs, Salt Lake City, Utah; University of Utah, University of Utah Medical School, U.S. Department of Veterans Affairs, Salt Lake City, Utah; VISN 19 MIRECC, U.S. Department of Veterans Affairs, Salt Lake City, Utah
| | - Jeffrey S Anderson
- The Brain Institute, U.S. Department of Veterans Affairs, Salt Lake City, Utah; Department of Radiology, U.S. Department of Veterans Affairs, Salt Lake City, Utah; Interdepartmental Program in Neuroscience, U.S. Department of Veterans Affairs, Salt Lake City, Utah; Department of Bioengineering, U.S. Department of Veterans Affairs, Salt Lake City, Utah; University of Utah, University of Utah Medical School, U.S. Department of Veterans Affairs, Salt Lake City, Utah
| |
Collapse
|
19
|
Comparing Brain Morphometry Across Multiple Childhood Psychiatric Disorders. J Am Acad Child Adolesc Psychiatry 2016; 55:1027-1037.e3. [PMID: 27871637 DOI: 10.1016/j.jaac.2016.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/30/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In both children and adults, psychiatric illness is associated with structural brain alterations, particularly in the prefrontal cortex (PFC). However, most studies compare gray matter volume (GMV) in healthy volunteers (HVs) to one psychiatric group. We compared GMV among youth with anxiety disorders, bipolar disorder (BD), disruptive mood dysregulation disorder (DMDD), attention-deficit/hyperactivity disorder (ADHD), and HVs. METHOD 3-Tesla T1-weighted magnetic resonance imaging scans were acquired in 184 youths (39 anxious, 20 BD, 52 DMDD, 20 ADHD, and 53 HV). Voxel-based morphometry analyses were conducted. One-way analysis of variance tested GMV differences with whole-brain familywise error (p < .05) correction; secondary, exploratory whole-brain analyses used a threshold of p < .001, ≥200 voxels. Given recent frameworks advocating dimensional approaches in psychopathology research, we also tested GMV associations with continuous anxiety, irritability, and inattention symptoms. RESULTS Specificity emerged in the left dorsolateral PFC (dlPFC), which differed among youth with BD, anxiety, and HVs; GMV was increased in youth with anxiety, but decreased in BD, relative to HVs. Secondary analyses revealed BD-specific GMV decreases in the right lateral PFC, right dlPFC, and dorsomedial PFC, and also anxiety-specific GMV increases in the left dlPFC, right ventrolateral PFC, frontal pole, and right parahippocampal gyrus/lingual gyrus. Both BD and DMDD showed decreased GMV relative to HVs in the right dlPFC/superior frontal gyrus. GMV was not associated with dimensional measures of anxiety, irritability, or ADHD symptoms. CONCLUSION Both disorder-specific and shared GMV differences manifest in pediatric psychopathology. Some differences were specific to anxiety disorders, others specific to BD, and others shared between BD and DMDD. Further developmental research might map commonalities and differences of structure and function in diverse pediatric psychopathologies.
Collapse
|
20
|
Porcu M, Balestrieri A, Siotto P, Lucatelli P, Anzidei M, Suri JS, Zaccagna F, Argiolas GM, Saba L. Clinical neuroimaging markers of response to treatment in mood disorders. Neurosci Lett 2016; 669:43-54. [PMID: 27737806 DOI: 10.1016/j.neulet.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/01/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022]
Abstract
Mood disorders (MD) are important and frequent psychiatric illness. The management of patients affected by these conditions represents an important factor of disability as well as a significant social and economic burden. The "in-vivo" studies can help researchers to understand the first developmental events of the pathology and to identify the molecular and non-molecular targets of therapies. However, they have strong limitations due to the fact that human brain circuitry can not be reproduced in animal models. In addition, these neural pathways are difficult to be selectively studied with the modern imaging (such as Magnetic Resonance and Positron Emitted Tomography/Computed Tomography) and non-imaging (such as electroencephalography, magnetoencephalography, transcranial magnetic stimulation and evoked potentials) methods. In comparison with other methods, the "in-vivo" imaging investigations have higher temporal and spatial resolution compared to the "in-vivo" non-imaging techniques. All these factors make difficult to fully understand the aetiology and pathophysiology of these disorders, and consequently hinder the analysis of the effects of pharmacological and non-pharmacological therapies, which have been demonstrated effective in clinical settings. In this review, we will focus our attention on the current state of the art of imaging in the assessment of treatment efficacy in MD. We will analyse briefly the actual classification of MD; then we will focus on the "in vivo" imaging methods used in research and clinical activity, the current knowledge about the neural models at the base of MD. Finally the last part of the review will focus on the analysis of the main markers of response to treatment.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy
| | | | - Paolo Siotto
- Department of Radiology, AOB Azienda Ospedaliera Brotzu, CA, Italy
| | - Pierleone Lucatelli
- Vascular and Interventional Radiology Unit, Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michele Anzidei
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, USA; Electrical Engineering Department, Idaho State University (Aff.), Pocatello, ID, USA
| | - Fulvio Zaccagna
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | - Luca Saba
- Department of Radiology, AOU of Cagliari, SS 554 Monserrato, CA, Italy.
| |
Collapse
|
21
|
Hanford LC, Hall GB, Minuzzi L, Sassi RB. Gray matter volumes in symptomatic and asymptomatic offspring of parents diagnosed with bipolar disorder. Eur Child Adolesc Psychiatry 2016; 25:959-67. [PMID: 26767977 DOI: 10.1007/s00787-015-0809-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Children of parents diagnosed with bipolar disorder (BD), termed high-risk offspring (HRO), are at greater risk of developing psychiatric disorders compared to healthy children of healthy parents (HCO). Gray matter volume (GMV) abnormalities have been observed in HRO, however, these reports are inconsistent. We posit that this variability may be attributed to differences in methodology among offspring studies; in particular, the presence of psychiatric symptoms in HRO. Here, we directly compared GMVs between symptomatic and asymptomatic HRO, and HCO. High-resolution T1-weighted MR images were collected from 31 HRO (18 symptomatic and 13 asymptomatic) and 20 age- and sex-matched HCO. HRO had at least one parent diagnosed with BD. Symptomatic HRO were defined as having a psychiatric diagnosis other than BD, while asymptomatic HRO were required to be free of any psychiatric diagnosis. Scans were processed using voxel-based morphometry methods and between group analyses were performed in SPM. Compared to HCO, the HRO group showed decreased GMV in the right inferior orbitofrontal, right middle frontal, and bilateral superior and middle temporal regions. Both symptomatic and asymptomatic HRO groups showed decreased GMV in these regions separately when compared to HCO. When comparing symptomatic and asymptomatic HRO, GMVs were comparable in all regions except the lateral occipital cortex. Our study compared symptomatic and asymptomatic HRO directly. In doing so, we provided further support for the presence of discrete GMV deficits in HRO, and confirmed that these deficits are present irrespective of the presence of symptoms in HRO.
Collapse
Affiliation(s)
- Lindsay C Hanford
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, 100 West 5th St., Hamilton, ON, L8N3K7, Canada
| | - Roberto B Sassi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, 100 West 5th St., Hamilton, ON, L8N3K7, Canada.
| |
Collapse
|
22
|
Sensory migraine aura is not associated with structural grey matter abnormalities. NEUROIMAGE-CLINICAL 2016; 11:322-327. [PMID: 27298761 PMCID: PMC4893014 DOI: 10.1016/j.nicl.2016.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Migraine with aura (MA) is characterized by cortical dysfunction. Frequent aura attacks may alter cerebral cortical structure in patients, or structural grey matter abnormalities may predispose MA patients to aura attacks. In the present study we aimed to investigate cerebral grey matter structure in a large group of MA patients with and without sensory aura (i.e. gradually developing, transient unilateral sensory disturbances). We included 60 patients suffering from migraine with typical visual aura and 60 individually age and sex-matched controls. Twenty-nine of the patients additionally experienced sensory aura regularly. We analysed high-resolution structural MR images using two complimentary approaches and compared patients with and without sensory aura. Patients were also compared to controls. We found no differences of grey matter density or cortical thickness between patients with and without sensory aura and no differences for the cortical visual areas between patients and controls. The somatosensory cortex was thinner in patients (1.92 mm vs. 1.96 mm, P = 0.043) and the anterior cingulate cortex of patients had a decreased grey matter density (P = 0.039) compared to controls. These differences were not correlated to the clinical characteristics. Our results suggest that sensory migraine aura is not associated with altered grey matter structure and that patients with visual aura have normal cortical structure of areas involved in visual processing. The observed decreased grey matter volume of the cingulate gyrus in patients compared to controls have previously been reported in migraine with and without aura, but also in a wide range of other neurologic and psychiatric disorders. Most likely, this finding reflects general bias between patients and healthy controls. Migraine aura per se is not associated with altered grey matter structure. Migraine patients have decreased cingulate cortical grey matter. This finding likely reflects general bias between patients and healthy controls.
Collapse
|
23
|
Savitz J, Morris HM, Drevets WC. Neuroimaging Studies of Bipolar Depression: Therapeutic Implications. BIPOLAR DEPRESSION: MOLECULAR NEUROBIOLOGY, CLINICAL DIAGNOSIS, AND PHARMACOTHERAPY 2016. [DOI: 10.1007/978-3-319-31689-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Inal-Emiroglu FN, Karabay N, Resmi H, Guleryuz H, Baykara B, Alsen S, Senturk-Pilan B, Akay A, Kose S. Correlations between amygdala volumes and serum levels of BDNF and NGF as a neurobiological markerin adolescents with bipolar disorder. J Affect Disord 2015; 182:50-6. [PMID: 25973783 DOI: 10.1016/j.jad.2015.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/10/2015] [Accepted: 04/08/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND The amygdala is repeatedly implicated as a critical component of the neurocircuitry regulating emotional valence. Studies have frequently reported reduced amygdala volumes in children and adolescents with bipolar disorder (BD). Brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) play critical roles in growth, differentiation, maintenance, and synaptic plasticity of neuronal systems in adolescent brain development. The aim of the present study was to assess amygdala volumesand its correlation with serum levels of NGF and BDNF in euthymic adolescents with BD and healthy controls. METHODS Using structural MRI, we compared the amygdala volumes of 30 euthymic subjects with BD with 23 healthy control subjects aged between 13 and 19 years during a naturalistic clinical follow-up. The boundaries of the amygdala were outlined manually. Serum BDNF and NGF levels were measured using sandwich-ELISA and compared between the study groups. RESULTS The right or left amygdala volume did not differ between the study groups.The right and left amygdala volumes were highly correlated with levels of BDNF in the combined BD group and the valproate-treated group.Both R and L amygdala volumes were correlated with BDNF levels in healthy controls. The left amygdala volumes were correlated with BDNF levels in the lithium-treated group. LIMITATIONS This cross-sectional study cannot inform longitudinal changes in brain structure. Further studies with larger sample sizes are needed to improve reliability. CONCLUSIONS The correlations between amygdala volumes and BDNF levels might be an early neuromarker for diagnosis and/or treatment response in adolescents with BD.
Collapse
Affiliation(s)
- F Neslihan Inal-Emiroglu
- Dokuz Eylul University Medical School, Child and Adolescent Psychiatry Department, Izmir, Turkey.
| | - Nuri Karabay
- Dokuz Eylul University Medical School, Radiology Department, Izmir, Turkey
| | - Halil Resmi
- Dokuz Eylul University Medical School, Medical Biochemistry Department, Izmir, Turkey
| | - Handan Guleryuz
- Dokuz Eylul University Medical School, Radiology Department, Izmir, Turkey
| | - Burak Baykara
- Dokuz Eylul University Medical School, Child and Adolescent Psychiatry Department, Izmir, Turkey
| | | | | | - Aynur Akay
- Dokuz Eylul University Medical School, Child and Adolescent Psychiatry Department, Izmir, Turkey
| | - Samet Kose
- University of Texas Medical School at Houston, Department of Psychiatry and Behavioral Sciences and Center for Neurobehavioral Research on Addiction (CNRA), Houston, TX, United States
| |
Collapse
|
25
|
Amygdala enlargement in unaffected offspring of bipolar parents. J Psychiatr Res 2014; 59:200-5. [PMID: 25263277 PMCID: PMC4254042 DOI: 10.1016/j.jpsychires.2014.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/23/2014] [Accepted: 08/28/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a devastating disorder with a strong genetic component. While the frontolimbic profile of individuals suffering from BD is relatively well-established, there is still disagreement over the neuroanatomical features of unaffected BD offspring. MATERIAL AND METHODS Brain volumetric measures were obtained for 82 children and adolescents including 18 unaffected BD offspring (10.50 ± 3.37 years), 19 BD offspring suffering from psychiatric disorders (12.87 ± 3.28 years) and 45 healthy controls (HC-10.50 ± 3.37 years). Clinical diagnoses were established according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria. Cortical reconstruction and volumetric segmentation were performed with the Freesurfer image analysis suite. Profile analyses compared frontolimbic volumes across groups. Age, gender, testing site, ethnicity and intracranial volume were entered as covariates. RESULTS The right amygdala was significantly larger in unaffected BD offspring compared to BD offspring with psychiatric disorders and HC. Volumes of striatal, hippocampal, cingulate, and temporal regions were comparable across groups. DISCUSSION The size of the amygdala may be a marker of disease susceptibility in offspring of BD parents. Longitudinal studies are needed to examine rates of conversion to BD as related to specific pre-morbid brain abnormalities.
Collapse
|
26
|
Serafini G, Pompili M, Borgwardt S, Houenou J, Geoffroy PA, Jardri R, Girardi P, Amore M. Brain changes in early-onset bipolar and unipolar depressive disorders: a systematic review in children and adolescents. Eur Child Adolesc Psychiatry 2014; 23:1023-41. [PMID: 25212880 DOI: 10.1007/s00787-014-0614-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/29/2014] [Indexed: 01/09/2023]
Abstract
Pediatric bipolar disorder (BD) and unipolar disorder (UD) share common symptomatic and functional impairments. Various brain imaging techniques have been used to investigate the integrity of brain white matter (WM) and gray matter (GM) in these disorders. Despite promising preliminary findings, it is still unclear whether these alterations may be considered as common trait markers or may be used to distinguish BD from UD. A systematic literature search of studies between 1980 and September 2013 which reported WM/GM changes in pediatric and adolescent BD/UD, as detected by diffusion tensor imaging and voxel-based analysis was conducted. Of the 34 articles judged as eligible, 17 fulfilled our inclusion criteria and were finally retained in this review. More abnormalities have been documented in the brains of children and adolescents with BD than UD. Reductions in the volume of basal ganglia and the hippocampus appeared more specific for pediatric UD, whereas reduced corpus callosum volume and increased rates of deep WM hyperintensities were more specific for pediatric BD. Seminal papers failed to address the possibility that the differences between unipolar and bipolar samples might be related to illness severity, medication status, comorbidity or diagnosis. UD and BD present both shared and distinctive impairments in the WM and GM compartments. More WM abnormalities have been reported in children and adolescents with bipolar disease than in those with unipolar disease, maybe as a result of a low number of DTI studies in pediatric UD. Future longitudinal studies should investigate whether neurodevelopmental changes are diagnosis-specific.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Section of Psychiatry, University of Genoa, IRCCS San Martino, Largo Rosanna Benzi 10, 16100, Genoa, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mwangi B, Spiker D, Zunta-Soares GB, Soares JC. Prediction of pediatric bipolar disorder using neuroanatomical signatures of the amygdala. Bipolar Disord 2014; 16:713-21. [PMID: 24917530 PMCID: PMC4234406 DOI: 10.1111/bdi.12222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/31/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Pediatric bipolar disorder is currently diagnosed based on signs and symptoms, and without objective diagnostic biomarkers. In the present study, we investigated the utility of structural neuroanatomical signatures of the amygdala to objectively differentiate individual subjects with pediatric bipolar disorder from matched healthy controls. METHODS Structural T1 -weighted neuroimaging scans were obtained from 16 children and adolescents with unmedicated DSM-IV bipolar disorder (11 males, five females) and 16 matched healthy controls (11 males, five females). Voxel-based gray matter morphometric features extracted from a bilateral region-of-interest within the amygdala were used to develop a multivariate pattern analysis model which was utilized in predicting novel or 'unseen' individual subjects as either bipolar disorder or healthy controls. RESULTS The model assigned 25 out of 32 subjects the correct label (bipolar disorder/healthy) translating to a 78.12% diagnostic accuracy, 81.25% sensitivity, 75.00% specificity, 76.47% positive predictive value, and 80.00% negative predictive value and an area under the receiver operating characteristic curve (ROC) of 0.81. The predictions were significant at p = 0.0014 (χ(2) test p-value). CONCLUSIONS These results reaffirm previous reports on the existence of neuroanatomical abnormalities in the amygdala of pediatric patients with bipolar disorder. Remarkably, the present study also demonstrates that neuroanatomical signatures of the amygdala can predict individual subjects with bipolar disorder with a relatively high specificity and sensitivity. To the best of our knowledge, this is the first study to present a proof-of-concept diagnostic marker of pediatric bipolar disorder based on structural neuroimaging scans of largely medication-naïve patients.
Collapse
Affiliation(s)
- Benson Mwangi
- Department of Psychiatry and Behavioral Sciences; University of Texas Center of Excellence on Mood Disorders; UT Houston Medical School; Houston TX USA
| | - Danielle Spiker
- Department of Psychiatry and Behavioral Sciences; University of Texas Center of Excellence on Mood Disorders; UT Houston Medical School; Houston TX USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences; University of Texas Center of Excellence on Mood Disorders; UT Houston Medical School; Houston TX USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences; University of Texas Center of Excellence on Mood Disorders; UT Houston Medical School; Houston TX USA
| |
Collapse
|
28
|
Redlich R, Almeida JJR, Grotegerd D, Opel N, Kugel H, Heindel W, Arolt V, Phillips ML, Dannlowski U. Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach. JAMA Psychiatry 2014; 71:1222-30. [PMID: 25188810 PMCID: PMC5538312 DOI: 10.1001/jamapsychiatry.2014.1100] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE The structural abnormalities in the brain that accurately differentiate unipolar depression (UD) and bipolar depression (BD) remain unidentified. OBJECTIVES First, to investigate and compare morphometric changes in UD and BD, and to replicate the findings at 2 independent neuroimaging sites; second, to differentiate UD and BD using multivariate pattern classification techniques. DESIGN, SETTING, AND PARTICIPANTS In a 2-center cross-sectional study, structural gray matter data were obtained at 2 independent sites (Pittsburgh, Pennsylvania, and Münster, Germany) using 3-T magnetic resonance imaging. Voxel-based morphometry was used to compare local gray and white matter volumes, and a novel pattern classification approach was used to discriminate between UD and BD, while training the classifier at one imaging site and testing in an independent sample at the other site. The Pittsburgh sample of participants was recruited from the Western Psychiatric Institute and Clinic at the University of Pittsburgh from 2008 to 2012. The Münster sample was recruited from the Department of Psychiatry at the University of Münster from 2010 to 2012. Equally divided between the 2 sites were 58 currently depressed patients with bipolar I disorder, 58 age- and sex-matched unipolar depressed patients, and 58 matched healthy controls. MAIN OUTCOMES AND MEASURES Magnetic resonance imaging was used to detect structural differences between groups. Morphometric analyses were applied using voxel-based morphometry. Pattern classification techniques were used for a multivariate approach. RESULTS At both sites, individuals with BD showed reduced gray matter volumes in the hippocampal formation and the amygdala relative to individuals with UD (Montreal Neurological Institute coordinates x = -22, y = -1, z = 20; k = 1938 voxels; t = 4.75), whereas individuals with UD showed reduced gray matter volumes in the anterior cingulate gyrus compared with individuals with BD (Montreal Neurological Institute coordinates x = -8, y = 32, z = 3; k = 979 voxels; t = 6.37; all corrected P < .05). Reductions in white matter volume within the cerebellum and hippocampus were found in individuals with BD. Pattern classification yielded up to 79.3% accuracy (P < .001) by differentiating the 2 depressed groups, training and testing the classifier at one site, and up to 69.0% accuracy (P < .001), training the classifier at one imaging site (Pittsburgh) and testing it at the other independent sample (Münster). Medication load did not alter the pattern of results. CONCLUSIONS AND RELEVANCE Individuals with UD and those with BD are differentiated by structural abnormalities in neural regions supporting emotion processing. Neuroimaging and multivariate pattern classification techniques are promising tools to differentiate UD from BD and show promise as future diagnostic aids.
Collapse
Affiliation(s)
- Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jorge J. R. Almeida
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | | | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany4Department of Psychiatry, University of Marburg, Marburg, Germany
| |
Collapse
|
29
|
Janssen J, Alemán-Gómez Y, Schnack H, Balaban E, Pina-Camacho L, Alfaro-Almagro F, Castro-Fornieles J, Otero S, Baeza I, Moreno D, Bargalló N, Parellada M, Arango C, Desco M. Cortical morphology of adolescents with bipolar disorder and with schizophrenia. Schizophr Res 2014; 158:91-9. [PMID: 25085384 DOI: 10.1016/j.schres.2014.06.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/12/2014] [Accepted: 06/24/2014] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification. METHOD This study analyzed cortical morphology using surface-based morphometry in 92 subjects (age range 11-18 years, 52 healthy controls and 40 adolescents with early-onset first-episode psychosis diagnosed with schizophrenia (n=20) or bipolar disorder with psychotic symptoms (n=20) based on a two year clinical follow up). Average lobar cortical thickness, surface area, gyrification index (GI) and sulcal width were compared between groups, and the relationship between the GI and sulcal width was assessed in the patient group. RESULTS Both patients groups showed decreased cortical thickness and increased sulcal width in the frontal cortex when compared to healthy controls. The schizophrenia subgroup also had increased sulcal width in all other lobes. In the frontal cortex of the combined patient group sulcal width was negatively correlated (r=-0.58, p<0.001) with the GI. CONCLUSIONS In adolescents with schizophrenia and bipolar disorder with psychotic symptoms there is cortical thinning, decreased GI and increased sulcal width of the frontal cortex present at the time of the first psychotic episode. Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area. These results suggest that abnormal growth (or more pronounced shrinkage during adolescence) of the frontal cortex represents a shared endophenotype for psychosis.
Collapse
Affiliation(s)
- Joost Janssen
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Yasser Alemán-Gómez
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid, Spain
| | - Hugo Schnack
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Evan Balaban
- Behavioral Neurosciences Program, McGill University, N8-15 Stewart Biological Sciences Building, 1205 Docteur Penfield Avenue, Montreal QC H3A 1B1, Canada
| | - Laura Pina-Camacho
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, King's College London, 16 de Crespigny Park, London SE5 8AF, UK
| | - Fidel Alfaro-Almagro
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Josefina Castro-Fornieles
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic of Neurosciences, Hospital Clínic Universitari of Barcelona, Villarroel, 170, Barcelona 08036, Spain; Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Casanovas, 143, Barcelona 08036, Spain
| | - Soraya Otero
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Mental Health Unit, Department of Psychiatry and Psychology, Hospital Universitario Marqués de Valdecilla, Avda. Valdecilla nº 25, 39008 Santander, Spain
| | - Inmaculada Baeza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic of Neurosciences, Hospital Clínic Universitari of Barcelona, Villarroel, 170, Barcelona 08036, Spain
| | - Dolores Moreno
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Nuria Bargalló
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Magnetic Resonance Image Core Facility, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain; Image Diagnostic Center, Hospital Clínic, Barcelona, Spain
| | - Mara Parellada
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Celso Arango
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Dr. Esquerdo, 46, 28007 Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Dr. Esquerdo, 46, 28007 Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
30
|
Teng S, Lu CF, Wang PS, Li CT, Tu PC, Hung CI, Su TP, Wu YT. Altered resting-state functional connectivity of striatal-thalamic circuit in bipolar disorder. PLoS One 2014; 9:e96422. [PMID: 24788849 PMCID: PMC4008631 DOI: 10.1371/journal.pone.0096422] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 04/07/2014] [Indexed: 01/04/2023] Open
Abstract
Bipolar disorder is characterized by internally affective fluctuations. The abnormality of inherently mental state can be assessed using resting-state fMRI data without producing task-induced biases. In this study, we hypothesized that the resting-state connectivity related to the frontal, striatal, and thalamic regions, which were associated with mood regulations and cognitive functions, can be altered for bipolar disorder. We used the Pearson's correlation coefficients to estimate functional connectivity followed by the hierarchical modular analysis to categorize the resting-state functional regions of interest (ROIs). The selected functional connectivities associated with the striatal-thalamic circuit and default mode network (DMN) were compared between bipolar patients and healthy controls. Significantly decreased connectivity in the striatal-thalamic circuit and between the striatal regions and the middle and posterior cingulate cortex was observed in the bipolar patients. We also observed that the bipolar patients exhibited significantly increased connectivity between the thalamic regions and the parahippocampus. No significant changes of connectivity related to the frontal regions in the DMN were observed. The changed resting-state connectivity related to the striatal-thalamic circuit might be an inherent basis for the altered emotional and cognitive processing in the bipolar patients.
Collapse
Affiliation(s)
- Shin Teng
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chia-Feng Lu
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Po-Shan Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
- The Neurological Institute, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Pei-Chi Tu
- Department of Medical Education and Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-I Hung
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yu-Te Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
31
|
White-matter microstructure and gray-matter volumes in adolescents with subthreshold bipolar symptoms. Mol Psychiatry 2014; 19:462-70. [PMID: 23628983 PMCID: PMC3965837 DOI: 10.1038/mp.2013.44] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 02/27/2013] [Accepted: 03/18/2013] [Indexed: 02/02/2023]
Abstract
Abnormalities in white-matter (WM) microstructure, as lower fractional anisotropy (FA), have been reported in adolescent-onset bipolar disorder and in youth at familial risk for bipolarity. We sought to determine whether healthy adolescents with subthreshold bipolar symptoms (SBP) would have early WM microstructural alterations and whether those alterations would be associated with differences in gray-matter (GM) volumes. Forty-two adolescents with three core manic symptoms and no psychiatric diagnosis, and 126 adolescents matched by age and sex, with no psychiatric diagnosis or symptoms, were identified after screening the IMAGEN database of 2223 young adolescents recruited from the general population. After image quality control, voxel-wise statistics were performed on the diffusion parameters using tract-based spatial statistics in 25 SBP adolescents and 77 controls, and on GM and WM images using voxel-based morphometry in 30 SBP adolescents and 106 controls. As compared with healthy controls, adolescents with SBP displayed lower FA values in a number of WM tracts, particularly in the corpus callosum, cingulum, bilateral superior and inferior longitudinal fasciculi, uncinate fasciculi and corticospinal tracts. Radial diffusivity was mainly higher in posterior parts of bilateral superior and inferior longitudinal fasciculi, inferior fronto-occipital fasciculi and right cingulum. As compared with controls, SBP adolescents had lower GM volume in the left anterior cingulate region. This is the first study to investigate WM microstructure and GM morphometric variations in adolescents with SBP. The widespread FA alterations in association and projection tracts, associated with GM changes in regions involved in mood disorders, suggest altered structural connectivity in those adolescents.
Collapse
|
32
|
Savitz JB, Price JL, Drevets WC. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 2014; 42:132-47. [PMID: 24603026 DOI: 10.1016/j.neubiorev.2014.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Abstract
The question of whether BD is primarily a developmental disorder or a progressive, neurodegenerative disorder remains unresolved. Here, we review the morphometric postmortem and neuroimaging literature relevant to the neuropathology of bipolar disorder (BD). We focus on the medial prefrontal cortex (mPFC) network, a key system in the regulation of emotional, behavioral, endocrine, and innate immunological responses to stress. We draw four main conclusions: the mPFC is characterized by (1) a decrease in volume, (2) reductions in neuronal size, and/or changes in neuronal density, (3) reductions in glial cell density, and (4) changes in gene expression. These data suggest the presence of dendritic atrophy of neurons and the loss of oligodendroglial cells in BD, although some data additionally suggest a reduction in the cell counts of specific subpopulations of GABAergic interneurons. Based on the weight of the postmortem and neuroimaging literature discussed herein, we favor a complex hypothesis that BD primarily constitutes a developmental disorder, but that additional, progressive, histopathological processes also are associated with recurrent or chronic illness. Conceivably BD may be best conceptualized as a progressive neurodevelopmental disorder.
Collapse
Affiliation(s)
- Jonathan B Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA; Faculty of Community Medicine, University of Tulsa, Tulsa, OK, USA.
| | - Joseph L Price
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wayne C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA; Janssen Pharmaceuticals of Johnson & Johnson, Inc., Titusville, NJ, USA
| |
Collapse
|
33
|
Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proc Natl Acad Sci U S A 2013; 111:1156-61. [PMID: 24379394 DOI: 10.1073/pnas.1321399111] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There remains much scientific, clinical, and ethical controversy concerning the use of electroconvulsive therapy (ECT) for psychiatric disorders stemming from a lack of information and knowledge about how such treatment might work, given its nonspecific and spatially unfocused nature. The mode of action of ECT has even been ascribed to a "barbaric" form of placebo effect. Here we show differential, highly specific, spatially distributed effects of ECT on regional brain structure in two populations: patients with unipolar or bipolar disorder. Unipolar and bipolar disorders respond differentially to ECT and the associated local brain-volume changes, which occur in areas previously associated with these diseases, correlate with symptom severity and the therapeutic effect. Our unique evidence shows that electrophysical therapeutic effects, although applied generally, take on regional significance through interactions with brain pathophysiology.
Collapse
|
34
|
Disorder-specific volumetric brain difference in adolescent major depressive disorder and bipolar depression. Brain Imaging Behav 2013; 8:119-27. [DOI: 10.1007/s11682-013-9264-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Gao W, Jiao Q, Qi R, Zhong Y, Lu D, Xiao Q, Lu S, Xu C, Zhang Y, Liu X, Yang F, Lu G, Su L. Combined analyses of gray matter voxel-based morphometry and white matter tract-based spatial statistics in pediatric bipolar mania. J Affect Disord 2013; 150:70-6. [PMID: 23477846 DOI: 10.1016/j.jad.2013.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ample evidence has suggested the presence of gray matter (GM) and white matter (WM) abnormalities in bipolar disorder (BD) patients, including pediatric bipolar disorder (PBD). However, little research has been done in PBD patients that carefully classify the mood states. The aim of the present study is to investigate the brain structural changes in PBD-mania children and adolescents. METHODS Eighteen children and adolescents with bipolar mania (male/female, 6/12) aged 10-18 years old and 18 age- and sex-matched healthy controls were included in the present study. The 3D T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) data were obtained on a Siemens 3.0 T scanner. Voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) analysis were conducted to compare the gray matter volume and white matter fractional anisotropy (FA) value between patients and controls. Correlations of the MRI data of each survived area with clinical characteristics in PBD patients were further analyzed. RESULTS As compared with the control group, PBD-mania children showed decreased gray matter volume in the left hippocampus. Meanwhile, significant lower FA value was detected in the right anterior cingulate (AC) in the patient group. No region of increased gray matter volume or FA value was observed in PBD-mania. The hippocampal volume was negatively associated with the Young Mania Rating Scale (YMRS) score when controlling for clinical characteristics in PBD-mania patients, however, there was no significant correlation of FA value of the survived area with illness duration, the onset age, number of episodes, or the YMRS score in PBD-mania patients. LIMITATION The present outcomes require replication in larger samples and verification in medication free subjects. CONCLUSIONS Our findings highlighted that extensive brain structural lesions (including GM and WM) were existed in PBD-mania. The widespread occurrence of structural abnormalities mainly located in the anterior limbic network (ALN) which suggested that this network might contribute to emotional and cognitive dysregulations in PBD.
Collapse
Affiliation(s)
- Weijia Gao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wu M, Lu LH, Passarotti AM, Wegbreit E, Fitzgerald J, Pavuluri MN. Altered affective, executive and sensorimotor resting state networks in patients with pediatric mania. J Psychiatry Neurosci 2013; 38:232-40. [PMID: 23735583 PMCID: PMC3692720 DOI: 10.1503/jpn.120073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The aim of the present study was to map the pathophysiology of resting state functional connectivity accompanying structural and functional abnormalities in children with bipolar disorder. METHODS Children with bipolar disorder and demographically matched healthy controls underwent resting-state functional magnetic resonance imaging. A model-free independent component analysis was performed to identify intrinsically interconnected networks. RESULTS We included 34 children with bipolar disorder and 40 controls in our analysis. Three distinct resting state networks corresponding to affective, executive and sensorimotor functions emerged as being significantly different between the pediatric bipolar disorder (PBD) and control groups. All 3 networks showed hyperconnectivity in the PBD relative to the control group. Specifically, the connectivity of the dorsal anterior cingulate cortex (ACC) differentiated the PBD from the control group in both the affective and the executive networks. Exploratory analysis suggests that greater connectivity of the right amygdala within the affective network is associated with better executive function in children with bipolar disorder, but not in controls. LIMITATIONS Unique clinical characteristics of the study sample allowed us to evaluate the pathophysiology of resting state connectivity at an early state of PBD, which led to the lack of generalizability in terms of comorbid disorders existing in a typical PBD population. CONCLUSION Abnormally engaged resting state affective, executive and sensorimotor networks observed in children with bipolar disorder may reflect a biological context in which abnormal task-based brain activity can occur. Dual engagement of the dorsal ACC in affective and executive networks supports the neuroanatomical interface of these networks, and the amygdala's engagement in moderating executive function illustrates the intricate interplay of these neural operations at rest.
Collapse
Affiliation(s)
- Minjie Wu
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research and Colbeth Clinic, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Lai CH. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Res 2013; 211:37-46. [PMID: 23146253 DOI: 10.1016/j.pscychresns.2012.06.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/27/2012] [Accepted: 06/14/2012] [Indexed: 12/13/2022]
Abstract
We designed this study to perform a meta-analysis of gray matter (GM) findings in major depressive disorder (MDD) by using the signed differential mapping (SDM) toolbox. The Pubmed, ScienceDirect and Scopus databases were searched, and only studies published or published online before November 2010 have been included. Twenty voxel-based morphometry (VBM) studies of adult MDD patients were entered in the meta-analysis by SDM toolbox with threshold criteria set as error probability less than 0.00005 and cluster more than 50 voxels. Onset age, numbers of patients and controls, gender ratio of both groups, ratio of medicated patients, depression rating scores, illness duration, co-morbidity and existence of corrected p value were also meta-regressed as covariates to exclude confounding biases. Voxel-wise meta-analytic results of these 20 VBM studies in MDD patients revealed that GM deficits were observed in the right anterior cingulate cortex and left anterior cingulate cortex when patients were compared with controls. The findings remained mostly unchanged in jackknife sensitivity analyses. The potential confounding factors had little impact on the results. This meta-analysis suggested GM deficits of the anterior cingulate cortex might be important in the etiology of MDD.
Collapse
Affiliation(s)
- Chien-Han Lai
- Division of Psychiatry, Cheng Hsin General Hospital, Taipei City, Taiwan, ROC.
| |
Collapse
|
38
|
Towards automated detection of depression from brain structural magnetic resonance images. Neuroradiology 2013; 55:567-84. [PMID: 23338839 DOI: 10.1007/s00234-013-1139-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/07/2013] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Depression is a major issue worldwide and is seen as a significant health problem. Stigma and patient denial, clinical experience, time limitations, and reliability of psychometrics are barriers to the clinical diagnoses of depression. Thus, the establishment of an automated system that could detect such abnormalities would assist medical experts in their decision-making process. This paper reviews existing methods for the automated detection of depression from brain structural magnetic resonance images (sMRI). METHODS Relevant sources were identified from various databases and online sites using a combination of keywords and terms including depression, major depressive disorder, detection, classification, and MRI databases. Reference lists of chosen articles were further reviewed for associated publications. RESULTS The paper introduces a generic structure for representing and describing the methods developed for the detection of depression from sMRI of the brain. It consists of a number of components including acquisition and preprocessing, feature extraction, feature selection, and classification. CONCLUSION Automated sMRI-based detection methods have the potential to provide an objective measure of depression, hence improving the confidence level in the diagnosis and prognosis of depression.
Collapse
|
39
|
SHIZUKUISHI T, ABE O, AOKI S. Diffusion Tensor Imaging Analysis for Psychiatric Disorders. Magn Reson Med Sci 2013; 12:153-9. [DOI: 10.2463/mrms.2012-0082] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
40
|
Wang F, Bobrow L, Liu J, Spencer L, Blumberg HP. Corticolimbic functional connectivity in adolescents with bipolar disorder. PLoS One 2012; 7:e50177. [PMID: 23185566 PMCID: PMC3503984 DOI: 10.1371/journal.pone.0050177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Convergent evidence supports regional dysfunction within a corticolimbic neural system that subserves emotional processing and regulation in adolescents and adults with bipolar disorder (BD), with abnormalities prominent within the amygdala and its major anterior paralimbic cortical connection sites including ventral anterior cingulate, orbitofrontal, insular and temporopolar cortices. Recent studies of adults with BD demonstrate abnormalities in the functional connectivity between the amygdala and anterior paralimbic regions suggesting an important role for the connections between these regions in the development of the disorder. This study tests the hypothesis that these functional connectivity abnormalities are present in adolescents with BD. Fifty-seven adolescents, twenty-one with BD and thirty-six healthy comparison (HC) adolescents, participated in functional magnetic resonance imaging while processing emotional face stimuli. The BD and HC groups were compared in the strength of functional connectivity from amygdala to the anterior paralimbic cortical regions, and explored in remaining brain regions. Functional connectivity was decreased in the BD group, compared to the HC group, during processing of emotional faces in ventral anterior cingulate (VACC), orbitofrontal, insular and temporopolar cortices (p<0.005). Orbitofrontal and VACC findings for the happy condition, and additionally right insula for the neutral condition, survived multiple comparison correction. Exploratory analyses did not reveal additional regions of group differences. This study provides evidence for decreased functional connectivity between the amygdala and anterior paralimbic cortices in adolescents with BD. This suggests that amygdala-anterior paralimbic connectivity abnormalities are early features of BD that emerge at least by adolescence in the disorder.
Collapse
Affiliation(s)
- Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Laurel Bobrow
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jie Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, United States of America
- Child Study Center, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
41
|
Sinka L, Kovari E, Santos M, Herrmann FR, Gold G, Hof PR, Bouras C, Giannakopoulos P. Microvascular changes in late-life schizophrenia and mood disorders: stereological assessment of capillary diameters in anterior cingulate cortex. Neuropathol Appl Neurobiol 2012; 38:696-709. [DOI: 10.1111/j.1365-2990.2012.01263.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Adleman NE, Fromm SJ, Razdan V, Kayser R, Dickstein DP, Brotman MA, Pine DS, Leibenluft E. Cross-sectional and longitudinal abnormalities in brain structure in children with severe mood dysregulation or bipolar disorder. J Child Psychol Psychiatry 2012; 53:1149-56. [PMID: 22650379 PMCID: PMC3472043 DOI: 10.1111/j.1469-7610.2012.02568.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is debate as to whether chronic irritability (operationalized as severe mood dysregulation, SMD) is a developmental form of bipolar disorder (BD). Although structural brain abnormalities in BD have been demonstrated, no study compares neuroanatomy among SMD, BD, and healthy volunteers (HV) either cross-sectionally or over time. Furthermore, the developmental trajectories of structural abnormalities in BD or SMD are unknown. This study provides such data in BD, SMD, and HV. METHODS An optimized, modulated voxel-based morphometry (VBM) analysis was conducted on structural MRI scans from 201 children (78 SMD, 55 BD, and 68 HV). In addition, 92 children (31 SMD, 34 BD, and 27 HV) were rescanned after 2 years (mean interval 1.99 ± 0.94 years), to compare time-related changes among the three groups. RESULTS Cross-sectionally, the groups differed in gray matter (GM) volume in presupplementary motor area (pre-SMA), dorsolateral prefrontal cortex (DLPFC), insula, and globus pallidus. The cortical differences were driven mainly by increased GM volume in HV compared with BD and SMD. In globus pallidus, there was increased GM in BD compared with HV and SMD. Longitudinally, group-by-time interactions were evident in two clusters in the superior/inferior parietal lobule (R SPL/IPL) and in the precuneus. In both clusters, the interactions were driven by an abnormal increase in volume in BD. CONCLUSIONS Cross-sectionally, both BD and SMD are associated with structural abnormalities in frontal cortex, insula, and basal ganglia. Although some of these deficits overlap (insula and DLPFC), others differentiate SMD and BD (pre-SMA and globus pallidus). Abnormal developmental trajectories in lateral parietal cortex and precuneus are present in, and unique to, BD. Because of the high proportion of co-occurring ADHD in the SMD subjects, we could not separate effects of ADHD from those of SMD, and future research including a nonirritable ADHD group must address this issue.
Collapse
Affiliation(s)
- Nancy E Adleman
- National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Singh MK, Chang KD, Chen MC, Kelley RG, Garrett A, Mitsunaga MM, Bararpour L, Howe M, Reiss AL, Gotlib IH. Volumetric reductions in the subgenual anterior cingulate cortex in adolescents with bipolar I disorder. Bipolar Disord 2012; 14:585-96. [PMID: 22938166 PMCID: PMC3433284 DOI: 10.1111/j.1399-5618.2012.01043.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES A range of prefrontal and subcortical volumetric abnormalities have been found in adults and adolescents with bipolar disorder. It is unclear, however, if these deficits are present early in the onset of mania or are a consequence of multiple mood episodes or prolonged exposure to medication. The goal of this study was to examine whether youth with bipolar I disorder who recently experienced their first episode of mania are characterized by brain volumetric abnormalities. METHODS Anatomical images from magnetic resonance imaging of 26 13- to 18-year-old adolescents with bipolar I disorder and 24 age-comparable healthy controls with no personal or family history of psychopathology were analyzed using whole-brain voxel-based morphometry (VBM). RESULTS Compared with healthy controls, adolescents with bipolar I disorder had significantly less gray matter volume in the left subgenual cingulate cortex [p<0.05, family-wise error (FWE)-corrected]. CONCLUSIONS Adolescents with a recent single episode of mania have smaller subgenual cingulate cortex volume than do their healthy counterparts, suggesting that this anomaly occurs early in the onset of, or may predate the disorder. Longitudinal studies are needed to examine the impact of this volumetric reduction on the course and outcome of this disorder.
Collapse
Affiliation(s)
- Manpreet K Singh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305-5719, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cortical-basal ganglia imbalance in schizophrenia patients and unaffected first-degree relatives. Schizophr Res 2012; 138:120-7. [PMID: 22464726 DOI: 10.1016/j.schres.2012.02.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/06/2012] [Accepted: 02/29/2012] [Indexed: 11/22/2022]
Abstract
Structural brain changes are amongst the most robust biological alterations in schizophrenia, and their investigation in unaffected relatives is important for an assessment of the contribution of genetic factors. In this cross-sectional morphometry study we investigated whether volume changes in SZ are linked with genetic vulnerability and whether these effects are separated from secondary illness effects. We compared density of grey and white matter using high-resolution 3D-anatomical MRI imaging data in 31 SZ patients, 29 first-degree relatives and 38 matched healthy controls, using Voxel-Based Morphometry (VBM) with SPM8. Volume of basal ganglia was also compared by manual segmentation. We found increased grey matter in the striatum, globus pallidus internus and thalamus and decreased grey matter in the parahippocampal and cingulate gyri both in SZ patients and relatives. Additionally, SZ patients had decreased volume of temporal, frontal and limbic grey and white matter in comparison with relatives and controls. Relatives showed intermediate values in many of these areas. Increased volume in the thalamus and parts of the basal ganglia and decreased volume of cortical areas and underlying white matter were thus associated with schizophrenia and its genetic vulnerability. These results suggest that brain morphological changes associated with SZ are in part determined by genetic risk factors and are not entirely explained by effects of medication or changes secondary to illness.
Collapse
|
45
|
Blond BN, Fredericks CA, Blumberg HP. Functional neuroanatomy of bipolar disorder: structure, function, and connectivity in an amygdala-anterior paralimbic neural system. Bipolar Disord 2012; 14:340-55. [PMID: 22631619 PMCID: PMC3880745 DOI: 10.1111/j.1399-5618.2012.01015.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES In past decades, neuroimaging research in bipolar disorder has demonstrated a convergence of findings in an amygdala-anterior paralimbic cortex neural system. This paper reviews behavioral neurology literature that first suggested a central role for this neural system in the disorder and the neuroimaging evidence that supports it. METHODS Relevant articles are reviewed to provide an amygdala-anterior paralimbic cortex neural system model of bipolar disorder, including articles from the fields of behavioral neurology and neuroanatomy, and neuroimaging. RESULTS The literature is highly supportive of key roles for the amygdala, anterior paralimbic cortices, and connections among these structures in the emotional dysregulation of bipolar disorder. The functions subserved by their more widely distributed connection sites suggest that broader system dysfunction could account for the range of functions-from neurovegetative to cognitive-disrupted in the disorder. Abnormalities in some components of this neural system are apparent by adolescence, while others, such as those in rostral prefrontal regions, appear to progress over adolescence and young adulthood, suggesting a neurodevelopmental model of the disorder. However, some findings conflict, which may reflect the small sample sizes of some studies, and clinical heterogeneity and methodological differences across studies. CONCLUSIONS Consistent with models derived from early behavioral neurology studies, neuroimaging studies support a central role for an amygdala-anterior paralimbic neural system in bipolar disorder, and implicate abnormalities in the development of this system in the disorder. This system will be an important focus of future studies on the developmental pathophysiology, detection, treatment, and prevention of the disorder.
Collapse
Affiliation(s)
- Benjamin N Blond
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Carolyn A Fredericks
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,Department of Diagnostic Radiology, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,The Child Study Center, Yale School of Medicine, New Haven, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA,Research Enhancement Award Program Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
46
|
Liu J, Blond BN, van Dyck LI, Spencer L, Wang F, Blumberg HP. Trait and state corticostriatal dysfunction in bipolar disorder during emotional face processing. Bipolar Disord 2012; 14:432-41. [PMID: 22524493 PMCID: PMC3361579 DOI: 10.1111/j.1399-5618.2012.01018.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Convergent evidence supports limbic, anterior paralimbic, and prefrontal cortex (PFC) abnormalities in emotional processing in bipolar disorder (BD) and suggests that some abnormalities are mood-state dependent and others persist into euthymia. However, few studies have assessed elevated, depressed, and euthymic mood states while individuals processed emotional stimuli of varying valence to investigate trait- and state-related neural system responses. Here, regional brain responses to positive, negative, and neutral emotional stimuli were assessed in individuals with BD during elevated, depressed, and euthymic mood states. METHODS One hundred and thirty-four subjects participated in functional magnetic resonance imaging scanning while processing faces depicting happy, fearful, and neutral expressions: 76 with BD (18 in elevated mood states, 19 depressed, 39 euthymic) and 58 healthy comparison (HC) individuals. Analyses were performed for BD trait- and mood state-related features. RESULTS Ventral anterior cingulate cortex (VACC), orbitofrontal cortex (OFC), and ventral striatum responses to happy and neutral faces were decreased in the BD group, compared to the HC group, and were not influenced by mood state. Elevated mood states were associated with decreased right rostral PFC activation to fearful and neutral faces, and depression was associated with increased left OFC activation to fearful faces. CONCLUSIONS The findings suggest that abnormal VACC, OFC, and ventral striatum responses to happy and neutral stimuli are trait features of BD. Acute mood states may be associated with additional lateralized abnormalities of diminished right rostral PFC responses to fearful and neutral stimuli in elevated states and increased left OFC responses to fearful stimuli in depressed states.
Collapse
Affiliation(s)
- Jie Liu
- Department of Psychiatry, Yale School of Medicine, New Haven
| | | | | | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven
| | - Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven,Department of Diagnostic Radiology, Yale School of Medicine, New Haven,The Child Study Center, Yale School of Medicine, New Haven,Research Enhancement Award Program Depression Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
47
|
Abstract
OBJECTIVE Recent theories regarding the neuropathology of bipolar disorder suggest that both neurodevelopmental and neurodegenerative processes may play a role. While magnetic resonance imaging has provided significant insight into the structural, functional, and connectivity abnormalities associated with bipolar disorder, research assessing longitudinal changes has been more limited. However, such research is essential to elucidate the pathophysiology of the disorder. The aim of our review is to examine the extant literature for developmental and progressive structural and functional changes in individuals with and at risk for bipolar disorder. METHODS We conducted a literature review using MEDLINE and the following search terms: bipolar disorder, risk, child, adolescent, bipolar offspring, MRI, fMRI, DTI, PET, SPECT, cross-sectional, longitudinal, progressive, and developmental. Further relevant articles were identified by cross-referencing with identified manuscripts. CONCLUSIONS There is some evidence for developmental and progressive neurophysiological alterations in bipolar disorder, but the interpretation of correlations between neuroimaging findings and measures of illness exposure or age in cross-sectional studies must be performed with care. Prospective longitudinal studies placed in the context of normative developmental and atrophic changes in neural structures and pathways thought to be involved in bipolar disorder are needed to improve our understanding of the neurodevelopmental underpinnings and progressive changes associated with bipolar disorder.
Collapse
Affiliation(s)
- Marguerite Reid Schneider
- Physician Scientist Training Program, Neuroscience Graduate Program Department, University of Cincinnati College of Medicine, Cincinnati, OH 45219-0516, USA
| | | | | | | | | |
Collapse
|
48
|
Baykara B, Inal-Emiroglu N, Karabay N, Çakmakçı H, Cevher N, Şentürk Pilan B, Alşen S. Increased hippocampal volumes in lithium treated adolescents with bipolar disorders: a structural MRI study. J Affect Disord 2012; 138:433-9. [PMID: 22325693 DOI: 10.1016/j.jad.2011.12.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/08/2011] [Accepted: 12/29/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND Structural neuroimaging studies in bipolar disorder (BD) have consistently identified several anatomical abnormalities in many brain areas related to mood regulation. Hippocampus is one of the key components of emotional regulatory networks in the brain. Evidence about hippocampal changes in BD is quite limited and inconsistent particularly for adolescent onset BD. It is aimed to compare hippocampus volumes of euthymic BD-I adolescents with healthy controls using structural MRI. METHODS Hippocampal volumes of seventeen youths between 13 and 19 age period with DSM-IV BD (seven boys) and twelve healthy comparison subjects (five boys) were compared using structural MRI. Differences in hippocampal volumes between groups were tested. RESULTS There was no significant difference between the right and left hippocampus volumes of patients with BD and the control group. However boys tended to have significantly larger right hippocampal volumes than girls both in BD and control group. Right hippocampal volumes were enlarged in lithium treated bipolar patients. This enlargement is not related to sex. LIMITATIONS Future, longitudinal follow-up studies need large enough sample sizes of both sexes and a sex-matched healthy comparison group to sort out developmental, gender and medication influences on brain structures over time in BD. CONCLUSIONS Lithium treatment in adolescent-onset BD has a significant effect on hippocampus volumes.
Collapse
Affiliation(s)
- Burak Baykara
- Dokuz Eylul University, School of Medicine, Department of Child Psychiatry, Izmir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ong D, Walterfang M, Malhi GS, Styner M, Velakoulis D, Pantelis C. Size and shape of the caudate nucleus in individuals with bipolar affective disorder. Aust N Z J Psychiatry 2012; 46:340-51. [PMID: 22368240 PMCID: PMC3328643 DOI: 10.1177/0004867412440191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The caudate nucleus (CN) is a crucial component of the ventral striatum, which is part of a prefrontal-striatal-thalamic circuit that is modulated by limbic structures to subserve emotional processing. Bipolar disorder is thought to be underpinned by dysfunctional anterior limbic networks, although MRI studies examining the CN have shown equivocal results. As gross volumetric analyses may not detect subtle regional change, we aimed to clarify the role of the CN in bipolar disorder by undertaking shape analysis to detect regional reductions. METHODS The CN was manually traced on MRI scans from 27 patients with bipolar-I disorder and 24 matched controls. A non-parametric spherical harmonic shape analysis was undertaken using the SPHARM toolkit. RESULTS Whilst the left CN volume was consistently larger in the sample, there was no effect of group or gender or significant interactions between these variables. Volume did not correlate with illness duration or lithium dosage, but was larger in those with a history of psychosis at trend level. However, left caudate shape differed significantly between groups, with deflation in an area along the ventromedial surface (connecting to dorsolateral prefrontal regions) in bipolar patients. Psychotic patients showed increases in the dorsal head and body at trend level overall, in regions connecting to medial and orbitofrontal regions. CONCLUSIONS These findings suggest that subtle rather than gross structural changes occur in the CN, which may not be detectable by volumetric analysis alone, and reflect alterations in specific frontostriatal circuitry in the disorder.
Collapse
Affiliation(s)
- Daniel Ong
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Voxel based morphometric and diffusion tensor imaging analysis in male bipolar patients with first-episode mania. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:231-8. [PMID: 22119745 DOI: 10.1016/j.pnpbp.2011.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/18/2011] [Accepted: 11/05/2011] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Structural abnormality of both gray and white matter has been detected in patients with bipolar disorder (BD). But results were greatly inconsistent across studies which were most likely attributed to heterogeneous populations as well as processing techniques. The present study aimed to investigate brain structural and microstructural alterations in a relative homogenous sample of bipolar mania. METHODS 3D T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) were conducted in 18 patients with BD and 27 healthy volunteers. Gray matter (GM) and white matter (WM) differences were evaluated using voxel-based morphometry (VBM) and voxel-based analysis of fractional anisotropy (FA) maps derived from DTI, respectively. RESULTS Patients with BD had a larger volume of GM in the left thalamus and bilateral basal ganglia, including the bilateral putamen and extending to the left claustrum, as well as reduced FA values in the left posterior corona radiata. CONCLUSIONS By combined analysis, alterations in subcortical GM areas and part of the corresponding association fiber area were detected. Compared with observations in homogeneous samples, our findings indicate that disruption of the limbic network may be intrinsic to BD.
Collapse
|