1
|
Alkan E, Kumari V, Evans SL. Frontal brain volume correlates of impaired executive function in schizophrenia. J Psychiatr Res 2024; 178:397-404. [PMID: 39216276 DOI: 10.1016/j.jpsychires.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cognitive impairments affect functional capacity in individuals with schizophrenia (SZH), but their neural basis remains unclear. The Wisconsin Card Sorting Test (WCST), and the Stroop Task (SCWT), are paradigmatic tests which have been used extensively for examining executive function in SZH. However, few studies have explored how deficits on these tasks link to brain volume differences commonly seen in SZH. Here, for the first time, we tested associations between FreeSurfer-derived frontal brain volumes and performance on both WCST and SCWT, in a well-matched sample of 57 SZH and 32 control subjects. We also explored whether these associations were dissociable from links to symptom severity in SZH. Results revealed correlations between volumes and task performance which were unique to SZH. In SZH only, volumes of right middle frontal regions correlated with both WCST and Stroop performance: correlation coefficients were significantly different to those present in the control group, highlighting their specificity to the patient group. In the Stroop task, superior frontal regions also showed associations with Stroop interference scores which were unique to SZH. These findings provide important detail around how deficits on these two paradigmatic executive function tasks link to brain structural differences in SZH. Results align with converging evidence suggesting that neuropathology within right middle frontal regions (BA9 and BA46) might be of particular import in SZH. No volumetric associations with symptom severity were found, supporting the notion that the structural abnormalities underpinning cognitive deficits in SZH differ from those associated with symptomatology.
Collapse
Affiliation(s)
- Erkan Alkan
- Faculty of Health, Science, Social Care and Education, Kingston University, London, United Kingdom
| | - Veena Kumari
- Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University of London, London, United Kingdom
| | - Simon L Evans
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom.
| |
Collapse
|
2
|
Bracher KM, Wohlschlaeger A, Koch K, Knolle F. Cognitive subgroups of affective and non-affective psychosis show differences in medication and cortico-subcortical brain networks. Sci Rep 2024; 14:20314. [PMID: 39223185 PMCID: PMC11369100 DOI: 10.1038/s41598-024-71316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Cognitive deficits are prevalent in individuals with psychosis and are associated with neurobiological changes, potentially serving as an endophenotype for psychosis. Using the HCP-Early-Psychosis-dataset (n = 226), we aimed to investigate cognitive subtypes (deficit/intermediate/spared) through data-driven clustering in affective (AP) and non-affective psychosis patients (NAP) and controls (HC). We explored differences between three clusters in symptoms, cognition, medication, and grey matter volume. Applying principal component analysis, we selected features for clustering. Features that explained most variance were scores for intelligence, verbal recognition and comprehension, auditory attention, working memory, reasoning and executive functioning. Fuzzy K-Means clustering on those features revealed that the subgroups significantly varied in cognitive impairment, clinical symptoms, and, importantly, also in medication and grey matter volume in fronto-parietal and subcortical networks. The spared cluster (86%HC, 37%AP, 17%NAP) exhibited unimpaired cognition, lowest symptoms/medication, and grey matter comparable to controls. The deficit cluster (4%HC, 10%AP, 47%NAP) had impairments across all domains, highest symptoms scores/medication dosage, and pronounced grey matter alterations. The intermediate deficit cluster (11%HC, 54%AP, 36%NAP) showed fewer deficits than the second cluster, but similar symptoms/medication/grey matter to the spared cluster. Controlling for medication, cognitive scores correlated with grey matter changes and negative symptoms across all patients. Our findings generally emphasize the interplay between cognition, brain structure, symptoms, and medication in AP and NAP, and specifically suggest a possible mediating role of cognition, highlighting the potential of screening cognitive changes to aid tailoring treatments and interventions.
Collapse
Affiliation(s)
- Katharina M Bracher
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152, Martinsried, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
3
|
Chaves C, Dursun SM, Tusconi M, Hallak JEC. Neuroinflammation and schizophrenia - is there a link? Front Psychiatry 2024; 15:1356975. [PMID: 38389990 PMCID: PMC10881867 DOI: 10.3389/fpsyt.2024.1356975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Cristiano Chaves
- NeuroMood Lab, School of Medicine and Kingston Health Sciences Center (KHSC), Department of Psychiatry, Queen's University, Kingston, ON, Canada
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Massimo Tusconi
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil
- Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Williams JC, Zheng ZJ, Tubiolo PN, Luceno JR, Gil RB, Girgis RR, Slifstein M, Abi-Dargham A, Van Snellenberg JX. Medial Prefrontal Cortex Dysfunction Mediates Working Memory Deficits in Patients With Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:990-1002. [PMID: 37881571 PMCID: PMC10593895 DOI: 10.1016/j.bpsgos.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 02/18/2023] Open
Abstract
Background Schizophrenia (SCZ) is marked by working memory (WM) deficits, which predict poor functional outcome. While most functional magnetic resonance imaging studies of WM in SCZ have focused on the dorsolateral prefrontal cortex (PFC), some recent work suggests that the medial PFC (mPFC) may play a role. We investigated whether task-evoked mPFC deactivation is associated with WM performance and whether it mediates deficits in SCZ. In addition, we investigated associations between mPFC deactivation and cortical dopamine release. Methods Patients with SCZ (n = 41) and healthy control participants (HCs) (n = 40) performed a visual object n-back task during functional magnetic resonance imaging. Dopamine release capacity in mPFC was quantified with [11C]FLB457 in a subset of participants (9 SCZ, 14 HCs) using an amphetamine challenge. Correlations between task-evoked deactivation and performance were assessed in mPFC and dorsolateral PFC masks and were further examined for relationships with diagnosis and dopamine release. Results mPFC deactivation was associated with WM task performance, but dorsolateral PFC activation was not. Deactivation in the mPFC was reduced in patients with SCZ relative to HCs and mediated the relationship between diagnosis and WM performance. In addition, mPFC deactivation was significantly and inversely associated with dopamine release capacity across groups and in HCs alone, but not in patients. Conclusions Reduced WM task-evoked mPFC deactivation is a mediator of, and potential substrate for, WM impairment in SCZ, although our study design does not rule out the possibility that these findings could relate to cognition in general rather than WM specifically. We further present preliminary evidence of an inverse association between deactivation during WM tasks and dopamine release capacity in the mPFC.
Collapse
Affiliation(s)
- John C. Williams
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Zu Jie Zheng
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Philip N. Tubiolo
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jacob R. Luceno
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Roberto B. Gil
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, Presbyterian/Columbia University Irving Medical Center, New York, New York
- New York State Psychiatric Institute, New York, New York
| | - Ragy R. Girgis
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, Presbyterian/Columbia University Irving Medical Center, New York, New York
- New York State Psychiatric Institute, New York, New York
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, Presbyterian/Columbia University Irving Medical Center, New York, New York
- New York State Psychiatric Institute, New York, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, Presbyterian/Columbia University Irving Medical Center, New York, New York
- New York State Psychiatric Institute, New York, New York
| | - Jared X. Van Snellenberg
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, Presbyterian/Columbia University Irving Medical Center, New York, New York
- New York State Psychiatric Institute, New York, New York
- Department of Psychology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
5
|
Chen C, Khanthiyong B, Charoenlappanit S, Roytrakul S, Reynolds GP, Thanoi S, Nudmamud-Thanoi S. Cholinergic-estrogen interaction is associated with the effect of education on attenuating cognitive sex differences in a Thai healthy population. PLoS One 2023; 18:e0278080. [PMID: 37471329 PMCID: PMC10358962 DOI: 10.1371/journal.pone.0278080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/30/2023] [Indexed: 07/22/2023] Open
Abstract
The development of human brain is shaped by both genetic and environmental factors. Sex differences in cognitive function have been found in humans as a result of sexual dimorphism in neural information transmission. Numerous studies have reported the positive effects of education on cognitive functions. However, little work has investigated the effect of education on attenuating cognitive sex differences and the neural mechanisms behind it based on healthy population. In this study, the Wisconsin Card Sorting Test (WCST) was employed to examine sex differences in cognitive function in 135 Thai healthy subjects, and label-free quantitative proteomic method and bioinformatic analysis were used to study sex-specific neurotransmission-related protein expression profiles. The results showed sex differences in two WCST sub-scores: percentage of Total corrects and Total errors in the primary education group (Bayes factor>100) with males performed better, while such differences eliminated in secondary and tertiary education levels. Moreover, 11 differentially expressed proteins (DEPs) between men and women (FDR<0.1) were presented in both education groups, with majority of them upregulated in females. Half of those DEPs interacted directly with nAChR3, whereas the other DEPs were indirectly connected to the cholinergic pathways through interaction with estrogen. These findings provided a preliminary indication that a cholinergic-estrogen interaction relates to, and might underpin, the effect of education on attenuating cognitive sex differences in a Thai healthy population.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Centre for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Gavin P. Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Mae Ka, Phayao, Thailand
| | - Sutisa Nudmamud-Thanoi
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
6
|
Chen J, Wei Y, Xue K, Han S, Wang C, Wen B, Cheng J. The interaction between first-episode drug-naïve schizophrenia and age based on gray matter volume and its molecular analysis: a multimodal magnetic resonance imaging study. Psychopharmacology (Berl) 2023; 240:813-826. [PMID: 36719459 DOI: 10.1007/s00213-023-06323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Schizophrenia is a neurodevelopmental disorder characterized by progressive and widespread gray matter (GM) atrophy. Studies have shown that normal brain development has an impact on schizophrenia-induced GM alterations. However, the neuropathology and underlying molecular mechanisms of interaction between age and schizophrenia are unclear. METHODS This study enrolled 66/84 first-episode drug-naïve patients with early-onset/adult-onset schizophrenia ((EOS)/(AOS)) and matched normal controls (NC) (46 adolescents/73 adults), undergoing T1-weighted high-resolution magnetic resonance imaging. Gray matter volume (GMV) in four groups was detected using 2-way analyses of variance with diagnosis and age as factors. Then, factors-related volume maps and neurotransmitter maps were spatially correlated using JuSpace to determine the relationship to molecular structure. RESULTS Compared to AOS, EOS and adult NC had larger GMV in right middle frontal gyrus. Compared to adolescent NC, EOS and adult NC had smaller GMV in right lingual gyrus, right fusiform gyrus, and right cerebellum_6. Disease-induced GMV reductions were mainly distributed in frontal, parietal, thalamus, visual, motor cortex, and medial temporal lobe structures. Age-induced GMV alterations were mainly distributed in visual and motor cortex. The changed GMV induced by schizophrenia, age, and their interaction was related to dopaminergic and serotonergic receptors. Age is also related to glutamate receptors, and schizophrenia is also associated with GABAaergic and noradrenergic receptors. CONCLUSIONS Our results revealed the multimodal neural mechanism of interaction between disease and age. We emphasized age-related GM abnormalities of ventral stream of visual perceptual pathways and high-level cognitive brain in EOS, which may be affected by imbalance of excitatory and inhibitory neurotransmitters.
Collapse
Affiliation(s)
- Jingli Chen
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China.
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| |
Collapse
|
7
|
Vargas TG, Mittal VA. The Critical Roles of Early Development, Stress, and Environment in the Course of Psychosis. ANNUAL REVIEW OF DEVELOPMENTAL PSYCHOLOGY 2022; 4:423-445. [PMID: 36712999 PMCID: PMC9879333 DOI: 10.1146/annurev-devpsych-121020-032354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Psychotic disorders are highly debilitating with poor prognoses and courses of chronic illness. In recent decades, conceptual models have shaped understanding, informed treatment, and guided research questions. However, these models have classically focused on the adolescent and early adulthood stages immediately preceding onset while conceptualizing early infancy through all of childhood as a unitary premorbid period. In addition, models have paid limited attention to differential effects of types of stress; contextual factors such as local, regional, and country-level characteristics or sociocultural contexts; and the timing of the stressor or environmental risk. This review discusses emerging research suggesting that (a) considering effects specific to neurodevelopmental stages prior to adolescence is highly informative, (b) understanding specific stressors and levels of environmental exposures (i.e., systemic or contextual features) is necessary, and (c) exploring the dynamic interplay between development, levels and types of stressors, and environments can shed new light, informing a specified neurodevelopmental and multifaceted diathesis-stress model.
Collapse
Affiliation(s)
- T G Vargas
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
| | - V A Mittal
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
- Departments of Psychiatry and Medical Social Sciences, Institute for Innovations in Developmental Sciences, and Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
8
|
Karantonis JA, Carruthers SP, Rossell SL, Pantelis C, Hughes M, Wannan C, Cropley V, Van Rheenen TE. A Systematic Review of Cognition-Brain Morphology Relationships on the Schizophrenia-Bipolar Disorder Spectrum. Schizophr Bull 2021; 47:1557-1600. [PMID: 34097043 PMCID: PMC8530395 DOI: 10.1093/schbul/sbab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nature of the relationship between cognition and brain morphology in schizophrenia-spectrum disorders (SSD) and bipolar disorder (BD) is uncertain. This review aimed to address this, by providing a comprehensive systematic investigation of links between several cognitive domains and brain volume, cortical thickness, and cortical surface area in SSD and BD patients across early and established illness stages. An initial search of PubMed and Scopus databases resulted in 1486 articles, of which 124 met inclusion criteria and were reviewed in detail. The majority of studies focused on SSD, while those of BD were scarce. Replicated evidence for specific regions associated with indices of cognition was minimal, however for several cognitive domains, the frontal and temporal regions were broadly implicated across both recent-onset and established SSD, and to a lesser extent BD. Collectively, the findings of this review emphasize the significance of both frontal and temporal regions for some domains of cognition in SSD, while highlighting the need for future BD-related studies on this topic.
Collapse
Affiliation(s)
- James A Karantonis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- St Vincent’s Mental Health, St Vincent’s Hospital, Melbourne, Australia
| | - Christos Pantelis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
| | - Matthew Hughes
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Cassandra Wannan
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Vanessa Cropley
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| |
Collapse
|
9
|
Fronto-Parietal Gray Matter Volume Loss Is Associated with Decreased Working Memory Performance in Adolescents with a First Episode of Psychosis. J Clin Med 2021; 10:jcm10173929. [PMID: 34501377 PMCID: PMC8432087 DOI: 10.3390/jcm10173929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cognitive maturation during adolescence is modulated by brain maturation. However, it is unknown how these processes intertwine in early onset psychosis (EOP). Studies examining longitudinal brain changes and cognitive performance in psychosis lend support for an altered development of high-order cognitive functions, which parallels progressive gray matter (GM) loss over time, particularly in fronto-parietal brain regions. We aimed to assess this relationship in a subsample of 33 adolescents with first-episode EOP and 47 matched controls over 2 years. Backwards stepwise regression analyses were conducted to determine the association and predictive value of longitudinal brain changes over cognitive performance within each group. Fronto-parietal GM volume loss was positively associated with decreased working memory in adolescents with psychosis (frontal left (B = 0.096, p = 0.008); right (B = 0.089, p = 0.015); parietal left (B = 0.119, p = 0.007), right (B = 0.125, p = 0.015)) as a function of age. A particular decrease in frontal left GM volume best predicted a significant amount (22.28%) of the variance of decreased working memory performance over time, accounting for variance in age (14.9%). No such association was found in controls. Our results suggest that during adolescence, EOP individuals seem to follow an abnormal neurodevelopmental trajectory, in which fronto-parietal GM volume reduction is associated with the differential age-related working memory dysfunction in this group.
Collapse
|
10
|
Cuesta MJ, Lecumberri P, Moreno-Izco L, López-Ilundain JM, Ribeiro M, Cabada T, Lorente-Omeñaca R, de Erausquin G, García-Martí G, Sanjuan J, Sánchez-Torres AM, Gómez M, Peralta V. Motor abnormalities and basal ganglia in first-episode psychosis (FEP). Psychol Med 2021; 51:1625-1636. [PMID: 32114994 DOI: 10.1017/s0033291720000343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Motor abnormalities (MAs) are the primary manifestations of schizophrenia. However, the extent to which MAs are related to alterations of subcortical structures remains understudied. METHODS We aimed to investigate the associations of MAs and basal ganglia abnormalities in first-episode psychosis (FEP) and healthy controls. Magnetic resonance imaging was performed on 48 right-handed FEP and 23 age-, gender-, handedness-, and educational attainment-matched controls, to obtain basal ganglia shape analysis, diffusion tensor imaging techniques (fractional anisotropy and mean diffusivity), and relaxometry (R2*) to estimate iron load. A comprehensive motor battery was applied including the assessment of parkinsonism, catatonic signs, and neurological soft signs (NSS). A fully automated model-based segmentation algorithm on 1.5T MRI anatomical images and accurate corregistration of diffusion and T2* volumes and R2* was used. RESULTS FEP patients showed significant local atrophic changes in left globus pallidus nucleus regarding controls. Hypertrophic changes in left-side caudate were associated with higher scores in sensory integration, and in right accumbens with tremor subscale. FEP patients showed lower fractional anisotropy measures than controls but no significant differences regarding mean diffusivity and iron load of basal ganglia. However, iron load in left basal ganglia and right accumbens correlated significantly with higher extrapyramidal and motor coordination signs in FEP patients. CONCLUSIONS Taken together, iron load in left basal ganglia may have a role in the emergence of extrapyramidal signs and NSS of FEP patients and in consequence in the pathophysiology of psychosis.
Collapse
Affiliation(s)
- Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Pablo Lecumberri
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Movalsys S. L., NavarraBiomed, Pamplona, Spain
| | - Lucia Moreno-Izco
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Jose M López-Ilundain
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Ribeiro
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Teresa Cabada
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Neuroradiology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Ruth Lorente-Omeñaca
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gabriel de Erausquin
- Zachry Foundation, The Glenn Biggs Institute of Alzheimer's & Neurodegenerative Disorders, UT Heath San Antonio, Texas, USA
| | - Gracian García-Martí
- Radiology Department, CIBERSAM, Valencia, España, Quirón Salud Hospital, Valencia, España
| | - Julio Sanjuan
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
- Department of Psychiatric, University of Valencia School of Medicine, Valencia, Spain
| | - Ana M Sánchez-Torres
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Marisol Gómez
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Movalsys S. L., NavarraBiomed, Pamplona, Spain
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Victor Peralta
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain
| |
Collapse
|
11
|
Gyori NG, Clark CA, Alexander DC, Kaden E. On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol. Neuroimage 2021; 239:118303. [PMID: 34174390 PMCID: PMC8363942 DOI: 10.1016/j.neuroimage.2021.118303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
B-tensor encoding enables estimation of spherical cellular structures in the brain. Spherical compartments may provide markers for apparent neural soma density. Model parameters can be estimated in a fast and robust way using deep learning. Practical acquisition times are achievable on widely available clinical scanners.
Diffusion MRI is a valuable tool for probing tissue microstructure in the brain noninvasively. Today, model-based techniques are widely available and used for white matter characterisation where their development is relatively mature. Conversely, tissue modelling in grey matter is more challenging, and no generally accepted models exist. With advances in measurement technology and modelling efforts, a clinically viable technique that reveals salient features of grey matter microstructure, such as the density of quasi-spherical cell bodies and quasi-cylindrical cell projections, is an exciting prospect. As a step towards capturing the microscopic architecture of grey matter in clinically feasible settings, this work uses a biophysical model that is designed to disentangle the diffusion signatures of spherical and cylindrical structures in the presence of orientation heterogeneity, and takes advantage of B-tensor encoding measurements, which provide additional sensitivity compared to standard single diffusion encoding sequences. For the fast and robust estimation of microstructural parameters, we leverage recent advances in machine learning and replace conventional fitting techniques with an artificial neural network that fits complex biophysical models within seconds. Our results demonstrate apparent markers of spherical and cylindrical geometries in healthy human subjects, and in particular an increased volume fraction of spherical compartments in grey matter compared to white matter. We evaluate the extent to which spherical and cylindrical geometries may be interpreted as correlates of neural soma and neural projections, respectively, and quantify parameter estimation errors in the presence of various departures from the modelling assumptions. While further work is necessary to translate the ideas presented in this work to the clinic, we suggest that biomarkers focussing on quasi-spherical cellular geometries may be valuable for the enhanced assessment of neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi G Gyori
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Christopher A Clark
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
12
|
Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging Biomarkers in Schizophrenia. Am J Psychiatry 2021; 178:509-521. [PMID: 33397140 PMCID: PMC8222104 DOI: 10.1176/appi.ajp.2020.20030340] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a complex neuropsychiatric syndrome with a heterogeneous genetic, neurobiological, and phenotypic profile. Currently, no objective biological measures-that is, biomarkers-are available to inform diagnostic or treatment decisions. Neuroimaging is well positioned for biomarker development in schizophrenia, as it may capture phenotypic variations in molecular and cellular disease targets, or in brain circuits. These mechanistically based biomarkers may represent a direct measure of the pathophysiological underpinnings of the disease process and thus could serve as true intermediate or surrogate endpoints. Effective biomarkers could validate new treatment targets or pathways, predict response, aid in selection of patients for therapy, determine treatment regimens, and provide a rationale for personalized treatments. In this review, the authors discuss a range of mechanistically plausible neuroimaging biomarker candidates, including dopamine hyperactivity, N-methyl-d-aspartate receptor hypofunction, hippocampal hyperactivity, immune dysregulation, dysconnectivity, and cortical gray matter volume loss. They then focus on the putative neuroimaging biomarkers for disease risk, diagnosis, target engagement, and treatment response in schizophrenia. Finally, they highlight areas of unmet need and discuss strategies to advance biomarker development.
Collapse
Affiliation(s)
- Nina V. Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,Corresponding Author: Nina Vanessa Kraguljac, MD, Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, SC 501, 1720 7th Ave S, Birmingham, AL 35294-0017, 205-996-7171,
| | - William M. McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Charles B. Nemeroff
- Department of Psychiatry, University of Texas Dell Medical School, Austin, TX
| |
Collapse
|
13
|
Wan M, Xia R, Lin H, Qiu P, He J, Ye Y, Tao J, Chen L, Zheng G. Volumetric and Diffusion Abnormalities in Subcortical Nuclei of Older Adults With Cognitive Frailty. Front Aging Neurosci 2020; 12:202. [PMID: 32848700 PMCID: PMC7399332 DOI: 10.3389/fnagi.2020.00202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/11/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Cognitive frailty (CF) is defined as the simultaneous presence of physical frailty and cognitive impairment among older adults without dementia. Previous studies have revealed that neuropathological changes may contribute to the degeneration of subcortical nuclei in the process of cognitive impairment. However, it is unclear in CF. The aim of this study is to investigate the changes in subcortical nuclei in older adults with CF and their relationship with cognitive decline and physical frailty. Methods: A total of 26 older adults with CF and 26 matched healthy subjects were enrolled. Cognitive function and physical frailty were assessed with the Montreal Cognitive Assessment (MoCA) scale (Fuzhou version) and the Chinese version of the Edmonton Frailty Scale (EFS). Volumetric and diffusion tensor imaging (DTI) parameters of subcortical nuclei were measured with structural and DTI brain magnetic resonance imaging (MRI) and compared between groups. Partial correlation analysis was conducted between subcortical nuclei volumes, MoCA scores, and physical frailty indexes. Results: Significant volume reductions were found in five subcortical nuclei, including the bilateral thalami, left caudate, right pallidum, and accumbens area, in older adults with CF (P < 0.05), and the bilateral thalami was most obvious. Decreased fractional anisotropy and relative anisotropy values were observed only in the left thalamus in the CF group (P < 0.05). No group differences were found in apparent diffusion coefficient (ADC) values. The MoCA scores were positively correlated with the volumes of the bilateral thalami, right pallidum, and accumbens area (P < 0.05). Negative correlations were found between the physical frailty index and the volumes of the bilateral thalami, caudate, pallidum, and right accumbens area (P < 0.05). Conclusion: Microstructural changes occur in the subcortical nuclei of older adults with CF, and these changes are correlated with cognitive decline and physical frailty. Therefore, microstructural atrophy of the subcortical nuclei may be involved in the pathological progression of CF.
Collapse
Affiliation(s)
- Mingyue Wan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huiying Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pingting Qiu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianquan He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yu Ye
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guohua Zheng
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
14
|
Abstract
Psychotic disorders are severe, debilitating, and even fatal. The development of targeted and effective interventions for psychosis depends upon on clear understanding of the timing and nature of disease progression to target processes amenable to intervention. Strong evidence suggests early and ongoing neuroprogressive changes, but timing and inflection points remain unclear and likely differ across cognitive, clinical, and brain measures. Additionally, granular evidence across modalities is particularly sparse in the "bridging years" between first episode and established illness-years that may be especially critical for improving outcomes and during which interventions may be maximally effective. Our objective is the systematic, multimodal characterization of neuroprogression through the early course of illness in a cross-diagnostic sample of patients with psychosis. We aim to (1) interrogate neurocognition, structural brain measures, and network connectivity at multiple assessments over the first eight years of illness to map neuroprogressive trajectories, and (2) examine trajectories as predictors of clinical and functional outcomes. We will recruit 192 patients with psychosis and 36 healthy controls. Assessments will occur at baseline and 8- and 16-month follow ups using clinical, cognitive, and imaging measures. We will employ an accelerated longitudinal design (ALD), which permits ascertainment of data across a longer timeframe and at more frequent intervals than would be possible in a single cohort longitudinal study. Results from this study are expected to hasten identification of actionable treatment targets that are closely associated with clinical outcomes, and identify subgroups who share common neuroprogressive trajectories toward the development of individualized treatments.
Collapse
|
15
|
Doostdar N, Kim E, Grayson B, Harte MK, Neill JC, Vernon AC. Global brain volume reductions in a sub-chronic phencyclidine animal model for schizophrenia and their relationship to recognition memory. J Psychopharmacol 2019; 33:1274-1287. [PMID: 31060435 DOI: 10.1177/0269881119844196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive deficits and structural brain changes co-occur in patients with schizophrenia. Improving our understanding of the relationship between these is important to develop improved therapeutic strategies. Back-translation of these findings into rodent models for schizophrenia offers a potential means to achieve this goal. AIMS The purpose of this study was to determine the extent of structural brain changes and how these relate to cognitive behaviour in a sub-chronic phencyclidine rat model. METHODS Performance in the novel object recognition task was examined in female Lister Hooded rats at one and six weeks after sub-chronic phencyclidine (2 mg/kg intra-peritoneal, n=15) and saline controls (1 ml/kg intra-peritoneal, n=15). Locomotor activity following acute phencyclidine challenge was also measured. Brain volume changes were assessed in the same animals using ex vivo structural magnetic resonance imaging and computational neuroanatomical analysis at six weeks. RESULTS Female sub-chronic phencyclidine-treated Lister Hooded rats spent significantly less time exploring novel objects (p<0.05) at both time-points and had significantly greater locomotor activity response to an acute phencyclidine challenge (p<0.01) at 3-4 weeks of washout. At six weeks, sub-chronic phencyclidine-treated Lister Hooded rats displayed significant global brain volume reductions (p<0.05; q<0.05), without apparent regional specificity. Relative volumes of the perirhinal cortex however were positively correlated with novel object exploration time only in sub-chronic phencyclidine rats at this time-point. CONCLUSION A sustained sub-chronic phencyclidine-induced cognitive deficit in novel object recognition is accompanied by global brain volume reductions in female Lister Hooded rats. The relative volumes of the perirhinal cortex however are positively correlated with novel object exploration, indicating some functional relevance.
Collapse
Affiliation(s)
- Nazanin Doostdar
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ben Grayson
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Joanna C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
16
|
Katagiri N, Pantelis C, Nemoto T, Tsujino N, Saito J, Hori M, Yamaguchi T, Funatogawa T, Mizuno M. Longitudinal changes in striatum and sub-threshold positive symptoms in individuals with an 'at risk mental state' (ARMS). Psychiatry Res Neuroimaging 2019; 285:25-30. [PMID: 30716687 DOI: 10.1016/j.pscychresns.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/23/2018] [Accepted: 01/26/2019] [Indexed: 10/27/2022]
Abstract
Recent studies have revealed that several psychotic symptom changes observed in the 'at risk mental state' (ARMS) are associated with changes in the striatum. We investigated if structural changes in the striatum are associated with recovery of sub-threshold psychotic symptoms in subjects with an ARMS who did not develop psychosis (ARMS-N). Sixteen healthy controls and 42 subjects with an ARMS participated in this study. Striatal volumes (caudate, putamen, and nucleus accumbens) were analyzed using MRI. The sub-threshold psychotic symptoms of the subjects with an ARMS were measured using the SOPS. Imaging and symptoms were reevaluated after 52 weeks. Significant right putamen volume reduction was observed at the follow-up in ARMS-N subjects. Improvement in sub-threshold positive symptoms significantly correlated with an increase in volume in the right accumbens at follow up. No relationship was found for negative symptoms. From these findings, the association between improvement in sub-threshold positive symptoms and an increase in the volume of the right accumbens may suggest that changes in the accumbens, which is a major site for dopamine innervation, are associated with symptom recovery. These findings may point to neurobiological resilience that may be associated with lower transition to psychosis.
Collapse
Affiliation(s)
- Naoyuki Katagiri
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan.
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Carlton South, Victoria, Australia; Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Victoritoka, Australia
| | - Takahiro Nemoto
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan; Saiseikai Yokohamashi Tobu Hospital Psychiatry, Yokohama-City, Kanagawa, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan; Saiseikai Yokohamashi Tobu Hospital Psychiatry, Yokohama-City, Kanagawa, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| | - Tomoyuki Funatogawa
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, School of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, 143-8541, Tokyo, Japan
| |
Collapse
|
17
|
MacKenzie NE, Kowalchuk C, Agarwal SM, Costa-Dookhan KA, Caravaggio F, Gerretsen P, Chintoh A, Remington GJ, Taylor VH, Müeller DJ, Graff-Guerrero A, Hahn MK. Antipsychotics, Metabolic Adverse Effects, and Cognitive Function in Schizophrenia. Front Psychiatry 2018; 9:622. [PMID: 30568606 PMCID: PMC6290646 DOI: 10.3389/fpsyt.2018.00622] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
Cognitive impairment is a core symptom domain of schizophrenia. The effect of antipsychotics, the cornerstone of treatment in schizophrenia, on this domain is not fully clear. There is some evidence suggesting that antipsychotics may partially improve cognitive function, and that this improvement may vary depending on the specific cognitive domain. However, this research is confounded by various factors, such as age, duration/stage of illness, medication adherence, and extrapyramidal side effects that complicate the relationship between antipsychotics and cognitive improvement. Furthermore, antipsychotics-particularly the second generation, or "atypical" antipsychotics-can induce serious metabolic side effects, such as obesity, dyslipidemia and type 2 diabetes, illnesses which themselves have been linked to impairments in cognition. Thus, the inter-relationships between cognition and metabolic side effects are complex, and this review aims to examine them in the context of schizophrenia and antipsychotic treatment. The review also speculates on potential mechanisms underlying cognitive functioning and metabolic risk in schizophrenia. We conclude that the available literature examining the inter-section of antipsychotics, cognition, and metabolic effects in schizophrenia is sparse, but suggests a relationship between metabolic comorbidity and worse cognitive function in patients with schizophrenia. Further research is required to determine if there is a causal connection between the well-recognized metabolic adverse effects of antipsychotics and cognitive deficits over the course of the illness of schizophrenia, as well as, to determine underlying mechanisms. In addition, findings from this review highlight the importance of monitoring metabolic disturbances in parallel with cognition, as well as, the importance of interventions to minimize metabolic abnormalities for both physical and cognitive health.
Collapse
Affiliation(s)
| | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kenya A. Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Araba Chintoh
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gary J. Remington
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Valerie H. Taylor
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Women's College Hospital, Toronto, ON, Canada
| | - Daniel J. Müeller
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|