1
|
Qin Z, He X, Gao Q, Li Y, Zhang Y, Wang H, Qin N, Wang C, Huang B, Shi Y, Liu C, Wang S, Zhang H, Li Y, Shi H, Tian X, Song L. Postweaning sodium citrate exposure induces long-lasting and sex-dependent effects on social behaviours in mice. Pharmacol Biochem Behav 2024; 242:173807. [PMID: 38925482 DOI: 10.1016/j.pbb.2024.173807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Postweaning is a pivotal period for brain development and individual growth. As an important chemical used in medicines, foods and beverages, sodium citrate (SC) is commonly available. Although some effects of SC exposure on individual physiology have been demonstrated, the potential long-lasting effects of postweaning dietary SC exposure on social behaviours are still elusive. METHODS Both postweaning male and female C57BL/6 mice were exposed to SC through drinking water for a total of 3 weeks. A series of behavioural tests, including social dominance test (SDT), social interaction test (SIT), bedding preference test (BPT) and sexual preference test (SPT), were performed in adolescence and adulthood. After these tests, serum oxytocin (OT) levels and gut microbiota were detected. RESULTS The behavioural results revealed that postweaning SC exposure decreased the social dominance of male mice in adulthood and female mice in both adolescence and adulthood. SC exposure also reduced the sexual preference rates of both males and females, while it had no effect on social interaction behaviour. ELISA results indicated that SC exposure decreased the serum OT levels of females but not males. 16S rRNA sequencing analysis revealed a significant difference in β-diversity after SC exposure in both males and females. The correlation coefficient indicated the correlation between social behaviours, OT levels and dominant genera of gut microbiota. CONCLUSION Our findings suggest that postweaning SC exposure may have enduring and sex-dependent effects on social behaviours, which may be correlated with altered serum OT levels and gut microbiota composition.
Collapse
Affiliation(s)
- Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Huajian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Na Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Chen Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Congcong Liu
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Huifeng Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Youdong Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyu Tian
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China.
| |
Collapse
|
2
|
Rybka KA, Lafrican JJ, Rosinger ZJ, Ariyibi DO, Brooks MR, Jacobskind JS, Zuloaga DG. Sex differences in androgen receptor, estrogen receptor alpha, and c-Fos co-expression with corticotropin releasing factor expressing neurons in restrained adult mice. Horm Behav 2023; 156:105448. [PMID: 38344954 PMCID: PMC10861933 DOI: 10.1016/j.yhbeh.2023.105448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Gonadal hormone actions through androgen receptor (AR) and estrogen receptor alpha (ERα) regulate sex differences in hypothalamic-pituitary-adrenal (HPA) axis responsivity and stress-related behaviors. Here we tested whether corticotropin releasing factor (CRF) expressing neurons, which are widely known to regulate neuroendocrine and behavioral stress responses, co-express AR and ERα as a potential mechanism for gonadal hormone regulation of these responses. Using Crh-IRES-Cre::Ai9 reporter mice we report high co-localization of AR in CRF neurons within the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), and ventromedial hypothalamus (VMH), moderate levels within the central amygdala (CeA) and low levels in the paraventricular hypothalamus (PVN). Sex differences in CRF/AR co-expression were found in the principal nucleus of the BST (BSTmpl), CeA, MeA, and VMH (males>females). CRF co-localization with ERα was generally lower relative to AR co-localization. However, high co-expression was found within the MPOA, AVPV, and VMH, with moderate co-expression in the arcuate nucleus (ARC), BST, and MeA and low levels in the PVN and CeA. Sex differences in CRF/ERα co-localization were found in the BSTmpl and PVN (males>females). Finally, we assessed neural activation of CRF neurons in restraint-stressed mice and found greater CRF/c-Fos co-expression in females in the BSTmpl and periaqueductal gray, while co-expression was higher in males within the ARC and dorsal CA1. Given the known role of CRF in regulating behavioral stress responses and the HPA axis, AR/ERα co-expression and sex-specific activation of CRF cell groups indicate potential mechanisms for modulating sex differences in these functions.
Collapse
Affiliation(s)
- Krystyna A Rybka
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jennifer J Lafrican
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Deborah O Ariyibi
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Mecca R Brooks
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America.
| |
Collapse
|
3
|
Wakeford A, Nye JA, Grieb ZA, Voisin DA, Mun J, Huhman KL, Albers E, Michopoulos V. Sex influences the effects of social status on socioemotional behavior and serotonin neurochemistry in rhesus monkeys. Biol Sex Differ 2023; 14:75. [PMID: 37898775 PMCID: PMC10613371 DOI: 10.1186/s13293-023-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Despite observed sex differences in the prevalence of stress-related psychiatric conditions, most preclinical and translational studies have only included male subjects. Therefore, it has not been possible to effectively assess how sex interacts with other psychosocial risk factors to impact the etiology and maintenance of stress-related psychopathology. One psychosocial factor that interacts with sex to impact risk for stress-related behavioral and physiological deficits is social dominance. The current study was designed to assess sex differences in the effects of social status on socioemotional behavior and serotonin neurochemistry in socially housed rhesus monkeys. We hypothesized that sex and social status interact to influence socioemotional behaviors as well as serotonin 1A receptor binding potential (5HT1AR-BP) in regions of interest (ROIs) implicated in socioemotional behavior. METHODS Behavioral observations were conducted in gonadally intact adult female (n = 14) and male (n = 13) rhesus monkeys. 5HT1AR-BP was assessed via positron emission tomography using 4-(2'-Methoxyphenyl)-1-[2'-(N-2"-pyridinyl)-p[18F]fluorobenzamido]ethylpiperazine ([18F]MPPF). RESULTS Aggression emitted was greater in dominant compared to subordinate animals, regardless of sex. Submission emitted was significantly greater in subordinate versus dominant animals and greater in females than males. Affiliative behaviors emitted were not impacted by sex, status, or their interaction. Anxiety-like behavior emitted was significantly greater in females than in males regardless of social status. Hypothalamic 5HT1AR-BP was significantly greater in females than in males, regardless of social status. 5HT1AR-BP in the dentate gyrus of the hippocampus was significantly impacted by a sex by status interaction whereby 5HT1AR-BP in the dentate gyrus was greater in dominant compared to subordinate females but was not different between dominant and subordinate males. There were no effects of sex, status, or their interaction on 5HT1AR-BP in the DRN and in the regions of the PFC studied. CONCLUSIONS These data have important implications for the treatment of stress-related behavioral health outcomes, as they suggest that sex and social status are important factors to consider in the context of serotonergic drug efficacy.
Collapse
Affiliation(s)
- Alison Wakeford
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Jonathon A Nye
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Zachary A Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jiyoung Mun
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Emory National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Hassett TC, Hampton RR. Control of Attention in Rhesus Monkeys Measured Using a Flanker Task. Atten Percept Psychophys 2022; 84:2155-2166. [PMID: 35174464 PMCID: PMC9885799 DOI: 10.3758/s13414-022-02452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
Abstract
At least three processes determine whether information we encounter is attended to or ignored. First, attentional capture occurs when attention is drawn automatically by "bottom up" processes, to distinctive, salient, rewarding, or unexpected stimuli when they enter our sensory field. Second, "top down" attentional control can direct cognitive processing towards goal-relevant targets. Third, selection history, operates through repeated exposure to a stimulus, particularly when associated with reward. Attentional control is measured using tasks that require subjects to selectively attend to goal-relevant stimuli in the face of distractions. In the Eriksen flanker task, human participants report which direction a centrally placed arrow is facing, while ignoring "flanking" arrows that may point in the opposite direction. Attentional control is evident to the extent that performance reflects only the direction of the central arrow. We describe four experiments in which we systematically assessed attentional control in rhesus monkeys using a flanker task. In Experiment 1, monkeys responded according to the identity of a central target, and accuracy and latency varied systematically with manipulations of flanking stimuli, validating our adaptation of the Eriksen flanker task. We then tested for converging evidence of attentional control across three experiments in which flanker performance was modulated by the distance separating targets from flankers (Experiment 2), luminance differences (Experiment 3), and differences in associative value (Experiment 4). The approach described is a new and reliable measure of attentional control in rhesus monkeys that can be applied to a wide range of situations with freely behaving animals.
Collapse
Affiliation(s)
- Thomas C Hassett
- Department of Psychology, Yerkes National Primate Research Center, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| | - Robert R Hampton
- Department of Psychology, Yerkes National Primate Research Center, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Castell N, Guerrero-Martin SM, Rubin LH, Shirk EN, Brockhurst JK, Lyons CE, Najarro KM, Queen SE, Carlson BW, Adams RJ, Morrell CN, Gama L, Graham DR, Zink C, Mankowski JL, Clements JE, Metcalf Pate KA. Effect of Single Housing on Innate Immune Activation in Immunodeficiency Virus-Infected Pigtail Macaques ( Macaca nemestrina ) as a Model of Psychosocial Stress in Acute HIV Infection. Psychosom Med 2022; 84:966-975. [PMID: 36162063 PMCID: PMC9553260 DOI: 10.1097/psy.0000000000001132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/27/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Simian immunodeficiency virus (SIV) infection of macaques recapitulates many aspects of HIV pathogenesis and is similarly affected by both genetic and environmental factors. Psychosocial stress is associated with immune system dysregulation and worse clinical outcomes in people with HIV. This study assessed the impact of single housing, as a model of psychosocial stress, on innate immune responses of pigtailed macaques ( Macaca nemestrina ) during acute SIV infection. METHODS A retrospective analysis of acute SIV infection of 2- to si6-year-old male pigtailed macaques was performed to compare the innate immune responses of socially ( n = 41) and singly ( n = 35) housed animals. Measures included absolute monocyte count and subsets, and in a subset ( n ≤ 18) platelet counts and activation data. RESULTS SIV infection resulted in the expected innate immune parameter changes with a modulating effect from housing condition. Monocyte number increased after infection for both groups, driven by classical monocytes (CD14 + CD16 - ), with a greater increase in socially housed animals (227%, p < .001, by day 14 compared with preinoculation time points). Platelet numbers recovered more quickly in the socially housed animals. Platelet activation (P-selectin) increased by 65% ( p = .004) and major histocompatibility complex class I surface expression by 40% ( p = .009) from preinoculation only in socially housed animals, whereas no change in these measures occurred in singly housed animals. CONCLUSIONS Chronic psychosocial stress produced by single housing may play an immunomodulatory role in the innate immune response to acute retroviral infection. Dysregulated innate immunity could be one of the pathways by which psychosocial stress contributes to immune suppression and increased disease severity in people with HIV.
Collapse
|
6
|
Koyasu H, Takahashi H, Yoneda M, Naba S, Sakawa N, Sasao I, Nagasawa M, Kikusui T. Correlations between behavior and hormone concentrations or gut microbiome imply that domestic cats (Felis silvestris catus) living in a group are not like ‘groupmates’. PLoS One 2022; 17:e0269589. [PMID: 35895662 PMCID: PMC9328509 DOI: 10.1371/journal.pone.0269589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Domestic cats (Felis silvestris catus) can live in high densities, although most feline species are solitary and exclusively territorial animals; it is possible that certain behavioral strategies enable this phenomenon. These behaviors are regulated by hormones and the gut microbiome, which, in turn, is influenced by domestication. Therefore, we investigated the relationships between the sociality, hormone concentrations, and gut microbiome of domestic cats by conducting three sets of experiments for each group of five cats and analyzing their behavior, hormone concentrations (cortisol, oxytocin, and testosterone), and their gut microbiomes. We observed that individuals with high cortisol and testosterone concentrations established less contact with others, and individuals with high oxytocin concentrations did not exhibit affiliative behaviors as much as expected. Additionally, the higher the frequency of contact among the individuals, the greater the similarity in gut microbiome; gut microbial composition was also related to behavioral patterns and cortisol secretion. Notably, individuals with low cortisol and testosterone concentrations were highly tolerant, making high-density living easy. Oxytocin usually functions in an affiliative manner within groups, but our results suggest that even if typically solitary and territorial animals live in high densities, their oxytocin functions are opposite to those of typically group-living animals.
Collapse
Affiliation(s)
- Hikari Koyasu
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Kanagawa, Japan
- * E-mail:
| | - Hironobu Takahashi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Kanagawa, Japan
| | - Moeka Yoneda
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Kanagawa, Japan
| | - Syunpei Naba
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Kanagawa, Japan
| | - Natsumi Sakawa
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Kanagawa, Japan
| | - Ikuto Sasao
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Kanagawa, Japan
| | - Miho Nagasawa
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Kanagawa, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Kanagawa, Japan
| |
Collapse
|
7
|
Voisin DA, Wakeford A, Nye J, Mun J, Jones SR, Locke J, Huhman KL, Wilson ME, Albers HE, Michopoulos V. Sex and social status modify the effects of fluoxetine on socioemotional behaviors in Syrian hamsters and rhesus macaques. Pharmacol Biochem Behav 2022; 215:173362. [PMID: 35219757 PMCID: PMC8983589 DOI: 10.1016/j.pbb.2022.173362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Social subordination increases risk for psychiatric disorders, while dominance increases resilience to these disorders. Fluoxetine, a selective serotonin (5HT) reuptake inhibitor whose actions are mediated in part by the 5HT1A receptor (5HT1AR), has sex- and social status-specific effects on socioemotional behavior and aggressive behavior. However, the impact of social status on these sex-specific effects remains unclear. The current study evaluated the impact of acute fluoxetine treatment and social status on dominance-related behaviors in female and male hamsters, and the impact of chronic fluoxetine treatment on socioemotional behavior and 5HT1AR binding potential (5HT1ARBP) in female rhesus macaques. We hypothesized that sex differences in the effects of fluoxetine on aggression in hamsters would be diminished in dominant and enhanced in subordinate males and that aggression in female hamsters would be enhanced in dominants and diminished in subordinates. In female rhesus macaques, we hypothesized that chronic fluoxetine would alter socioemotional behaviors and site-specific 5HT1ARBP in a status-dependent manner. Male (n = 46) and female (n = 56) hamsters were paired with conspecifics for three days to establish social rank. Hamsters received a single dose of 20 mg/kg fluoxetine or vehicle two-hours prior to a test with a non-aggressive intruder. Female rhesus monkeys (n = 14) housed were administered fluoxetine (2.8 mg/kg/day) or vehicle injections chronically for 14-days, separated by a three-week washout period. On Day 15, positron emission tomography neuroimaging for 5HT1ARBP was conducted. Fluoxetine treatment decreased aggression in subordinate female monkeys and subordinate female hamsters but not in dominant females of either species. Fluoxetine decreased aggression in dominant but not in subordinate male hamsters. Fluoxetine also reduced and increased prefrontal 5HT1ARBP in dominant and subordinate females, respectively. Taken together, these results provide cross-species evidence that social status and sex impact how increased 5HT modulates agonistic behavior.
Collapse
Affiliation(s)
- Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Alison Wakeford
- Yerkes National Primate Research Center, Atlanta, GA, United States of America
| | - Jonathon Nye
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Jiyoung Mun
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Molecular Imaging Department, Charles River Laboratories, Mattawan, MI, United States of America
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Jason Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Mark E Wilson
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America
| | - H Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America; Center for Behavioral Neuroscience, Atlanta, GA, United States of America
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Atlanta, GA, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
8
|
Smith A, Woodside B, Abizaid A. Ghrelin and the Control of Energy Balance in Females. Front Endocrinol (Lausanne) 2022; 13:904754. [PMID: 35909536 PMCID: PMC9334675 DOI: 10.3389/fendo.2022.904754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ghrelin is considered one of the most potent orexigenic peptide hormones and one that promotes homeostatic and hedonic food intake. Research on ghrelin, however, has been conducted predominantly in males and particularly in male rodents. In female mammals the control of energy metabolism is complex and it involves the interaction between ovarian hormones like estrogen and progesterone, and metabolic hormones. In females, the role that ghrelin plays in promoting feeding and how this is impacted by ovarian hormones is not well understood. Basal ghrelin levels are higher in females than in males, and ghrelin sensitivity changes across the estrus cycle. Yet, responses to ghrelin are lower in female and seem dependent on circulating levels of ovarian hormones. In this review we discuss the role that ghrelin plays in regulating homeostatic and hedonic food intake in females, and how the effects of ghrelin interact with those of ovarian hormones to regulate feeding and energy balance.
Collapse
Affiliation(s)
- Andrea Smith
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
- Stress, Trauma and Relience (STAR) Work Group Carleton University, Ottawa, ON, Canada
- *Correspondence: Alfonso Abizaid,
| |
Collapse
|
9
|
Pincus M, Godfrey JR, Feczko E, Earl E, Miranda-Dominguez O, Fair D, Wilson ME, Sanchez MM, Kelly C. Chronic psychosocial stress and experimental pubertal delay affect socioemotional behavior and amygdala functional connectivity in adolescent female rhesus macaques. Psychoneuroendocrinology 2021; 127:105154. [PMID: 33647571 PMCID: PMC11578542 DOI: 10.1016/j.psyneuen.2021.105154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/24/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
In females, pubertal onset appears to signal the opening of a window of increased vulnerability to the effects of stress on neurobehavioral development. What is the impact of pubertal timing on this process? We assessed the effects of pubertal timing and stress on behavior and amygdala functional connectivity (FC) in adolescent female macaques, whose social hierarchy provides an ethologically valid model of chronic psychosocial stress. Monkeys experienced puberty spontaneously (n = 34) or pubertal delay via Lupron treatment from age 16-33 months (n = 36). We examined the effects of stress (continuous dimension spanning dominant/low-stress to subordinate/high-stress) and experimental pubertal delay (Lupron-treated vs. Control) on socioemotional behavior and FC at 43-46 months, after all animals had begun puberty. Regardless of treatment, subordinate monkeys were more submissive and less affiliative, and exhibited weaker FC between amygdala and dorsolateral prefrontal cortex and stronger FC between amygdala and temporal pole. Regardless of social rank, Lupron-treated monkeys were also more submissive and less affiliative but were less anxious and exhibited less displacement behavior in a "Human Intruder" task than untreated monkeys; they exhibited stronger FC between amygdala and orbitofrontal cortex. No interactions between rank and Lupron treatment were observed. These similar behavioral outcomes may reflect the common factor of delayed puberty - whether this is stress-related (untreated subordinate animals) or pharmacologically-induced (treated animals). In the brain, however, delayed puberty and subordination stress had separable effects, suggesting that the overlapping socioemotional outcomes may be mediated by distinct neuroplastic mechanisms. To gain further insights, additional longitudinal studies are required.
Collapse
Affiliation(s)
- Melanie Pincus
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jodi R Godfrey
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain (MIDB), University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Eric Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain (MIDB), University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Damien Fair
- Masonic Institute for the Developing Brain (MIDB), University of Minnesota, Minneapolis, MN, USA; Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Mark E Wilson
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Psychiatry & Behavioral Sciences, Emory University, USA
| | - Mar M Sanchez
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry at the School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
10
|
Vasiliev G, Chadaeva I, Rasskazov D, Ponomarenko P, Sharypova E, Drachkova I, Bogomolov A, Savinkova L, Ponomarenko M, Kolchanov N, Osadchuk A, Oshchepkov D, Osadchuk L. A Bioinformatics Model of Human Diseases on the Basis of Differentially Expressed Genes (of Domestic Versus Wild Animals) That Are Orthologs of Human Genes Associated with Reproductive-Potential Changes. Int J Mol Sci 2021; 22:2346. [PMID: 33652917 PMCID: PMC7956675 DOI: 10.3390/ijms22052346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Earlier, after our bioinformatic analysis of single-nucleotide polymorphisms of TATA-binding protein-binding sites within gene promoters on the human Y chromosome, we suggested that human reproductive potential diminishes during self-domestication. Here, we implemented bioinformatics models of human diseases using animal in vivo genome-wide RNA-Seq data to compare the effect of co-directed changes in the expression of orthologous genes on human reproductive potential and during the divergence of domestic and wild animals from their nearest common ancestor (NCA). For example, serotonin receptor 3A (HTR3A) deficiency contributes to sudden death in pregnancy, consistently with Htr3a underexpression in guinea pigs (Cavia porcellus) during their divergence from their NCA with cavy (C. aperea). Overall, 25 and three differentially expressed genes (hereinafter, DEGs) in domestic animals versus 11 and 17 DEGs in wild animals show the direction consistent with human orthologous gene-markers of reduced and increased reproductive potential. This indicates a reliable association between DEGs in domestic animals and human orthologous genes reducing reproductive potential (Pearson's χ2 test p < 0.001, Fisher's exact test p < 0.05, binomial distribution p < 0.0001), whereas DEGs in wild animals uniformly match human orthologous genes decreasing and increasing human reproductive potential (p > 0.1; binomial distribution), thus enforcing the norm (wild type).
Collapse
Affiliation(s)
- Gennady Vasiliev
- Novosibirsk State University, 630090 Novosibirsk, Russia;
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Alexander Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| |
Collapse
|
11
|
Reding KM, Styner MM, Wilson ME, Toufexis D, Sanchez MM. Social subordination alters estradiol-induced changes in cortico-limbic brain volumes in adult female rhesus monkeys. Psychoneuroendocrinology 2020; 114:104592. [PMID: 32023501 PMCID: PMC7178918 DOI: 10.1016/j.psyneuen.2020.104592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022]
Abstract
Women have a higher risk of developing stress-related disorders compared to men and the experience of a stressful life event is a potent risk-factor. The rodent literature suggests that chronic exposure to stressors as well as 17β-estradiol (E2) can result in alterations in neuronal structure in corticolimbic brain regions, however the translation of these data to humans is limited by the nature of the stressor experienced and issues of brain homology. To address these limitations, we used a well-validated rhesus monkey model of social subordination to examine effects of E2 treatment on subordinate (high stress) and dominant (low stress) female brain structure, including regional gray matter and white matter volumes using structural magnetic resonance imaging. Our results show that one month of E2 treatment in ovariectomized females, compared to control (no) treatment, decreased frontal cortex gray matter volume regardless of social status. In contrast, in the cingulate cortex, an area associated with stress-induced emotional processing, E2 decreased grey matter volume in subordinates but increased it in dominant females. Together these data suggest that physiologically relevant levels of E2 alter cortical gray matter volumes in females after only one month of treatment and interact with chronic social stress to modulate these effects on brain structure.
Collapse
Affiliation(s)
| | - Martin M. Styner
- Department of Psychiatry, University of North Carolina – Chapel Hill
| | - Mark E. Wilson
- Yerkes National Primate Research Center, Emory University,,Department of Psychiatry & Behavioral Sciences, Emory University
| | - Donna Toufexis
- Department of Psychological Science, University of Vermont
| | - Mar M. Sanchez
- Yerkes National Primate Research Center, Emory University,,Department of Psychiatry & Behavioral Sciences, Emory University
| |
Collapse
|
12
|
Reding KM, Grayson DS, Miranda-Dominguez O, Ray S, Wilson ME, Toufexis D, Fair DA, Sanchez MM. Effects of social subordination and oestradiol on resting-state amygdala functional connectivity in adult female rhesus monkeys. J Neuroendocrinol 2020; 32:e12822. [PMID: 31846515 PMCID: PMC7066536 DOI: 10.1111/jne.12822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/17/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022]
Abstract
Preclinical studies demonstrate that chronic stress modulates the effects of oestradiol (E2) on behaviour through the modification of the amygdala and the medial prefrontal cortex (mPFC) neuronal structure. Clinical studies suggest that alterations in amygdala functional connectivity (FC) with the mPFC may be associated with stress-related phenotypes, including mood and anxiety disorders. Thus, identifying the effects of stress and E2 on amygdala-mPFC circuits is critical for understanding the neurobiology underpinning the vulnerability to stress-related disorders in women. In the present study, we used a well-validated rhesus monkey model of chronic psychosocial stress (subordinate social rank) to examine effects of E2 on subordinate (SUB) (i.e. high stress) and dominant (DOM) (i.e. low stress) female resting-state amygdala FC with the mPFC and with the whole-brain. In the non-E2 treatment control condition, SUB was associated with stronger left amygdala FC to subgenual cingulate (Brodmann area [BA] 25: BA25), a region implicated in several psychopathologies in people. In SUB females, E2 treatment strengthened right amygdala-BA25 FC, induced a net positive amygdala-visual cortex FC that was positively associated with frequency of submissive behaviours, and weakened positive amygdala-para/hippocampus FC. Our findings show that subordinate social rank alters amygdala FC and the impact of E2 on amygdala FC with BA25 and with regions involved in visual processing and memory encoding.
Collapse
Affiliation(s)
- Katherine M. Reding
- Division of Developmental and Cognitive Neuroscience,
Yerkes National Primate Research Center, Emory University
| | - David S. Grayson
- Center for Neuroscience, University of California –
Davis
- Departments of Behavioral Neuroscience, Psychiatry, and
Advanced Imaging Research Center, Oregon Health and Science University
| | - Oscar Miranda-Dominguez
- Departments of Behavioral Neuroscience, Psychiatry, and
Advanced Imaging Research Center, Oregon Health and Science University
| | - Siddarth Ray
- Departments of Behavioral Neuroscience, Psychiatry, and
Advanced Imaging Research Center, Oregon Health and Science University
| | - Mark E. Wilson
- Division of Developmental and Cognitive Neuroscience,
Yerkes National Primate Research Center, Emory University
- Department of Psychiatry & Behavioral Sciences, Emory
University
| | - Donna Toufexis
- Department of Psychological Science, University of
Vermont
| | - Damien A. Fair
- Departments of Behavioral Neuroscience, Psychiatry, and
Advanced Imaging Research Center, Oregon Health and Science University
| | - Mar M. Sanchez
- Division of Developmental and Cognitive Neuroscience,
Yerkes National Primate Research Center, Emory University
- Department of Psychiatry & Behavioral Sciences, Emory
University
| |
Collapse
|
13
|
Oshchepkov D, Ponomarenko M, Klimova N, Chadaeva I, Bragin A, Sharypova E, Shikhevich S, Kozhemyakina R. A Rat Model of Human Behavior Provides Evidence of Natural Selection Against Underexpression of Aggressiveness-Related Genes in Humans. Front Genet 2019; 10:1267. [PMID: 31921305 PMCID: PMC6923764 DOI: 10.3389/fgene.2019.01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
Aggressiveness is a hereditary behavioral pattern that forms a social hierarchy and affects the individual social rank and accordingly quality and duration of life. Thus, genome-wide studies of human aggressiveness are important. Nonetheless, the aggressiveness-related genome-wide studies have been conducted on animals rather than humans. Recently, in our genome-wide study, we uncovered natural selection against underexpression of human aggressiveness-related genes and proved it using F1 hybrid mice. Simultaneously, this natural selection equally supports two opposing traits in humans (dominance and subordination) as if self-domestication could have happened with its disruptive natural selection. Because there is still not enough scientific evidence that this could happen, here, we verified this natural selection pattern using quantitative PCR and two outbred rat lines (70 generations of artificial selection for aggressiveness or tameness, hereinafter: domestication). We chose seven genes—Cacna2d3, Gad2, Gria2, Mapk1, Nos1, Pomc, and Syn1—over- or underexpression of which corresponds to aggressive or domesticated behavior (in humans or mice) that has the same direction as natural selection. Comparing aggressive male rats with domesticated ones, we found that these genes are overexpressed statistically significantly in the hypothalamus (as a universal behavior regulator), not in the periaqueductal gray, where there was no aggressiveness-related expression of the genes in males. Database STRING showed statistically significant associations of the human genes homologous to these rat genes with long-term depression, circadian entrainment, Alzheimer’s disease, and the central nervous system disorders during chronic IL-6 overexpression. This finding more likely supports positive perspectives of further studies on self-domestication syndromes.
Collapse
Affiliation(s)
- Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Natural Science Department, Novosibirsk State University, Novosibirsk, Russia
| | - Natalya Klimova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Natural Science Department, Novosibirsk State University, Novosibirsk, Russia
| | - Anatoly Bragin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Natural Science Department, Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana Shikhevich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Rimma Kozhemyakina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Natural Science Department, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
14
|
MacCormack JK, Muscatell KA. The metabolic mind: A role for leptin and ghrelin in affect and social cognition. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2019. [DOI: 10.1111/spc3.12496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Wakeford AGP, Morin EL, Bramlett SN, Howell BR, McCormack KM, Meyer JS, Nader MA, Sanchez MM, Howell LL. Effects of early life stress on cocaine self-administration in post-pubertal male and female rhesus macaques. Psychopharmacology (Berl) 2019; 236:2785-2796. [PMID: 31115612 DOI: 10.1007/s00213-019-05254-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
RATIONALE Early life stress (ELS), including childhood maltreatment, is a predictive factor for the emergence of cocaine use disorders (CUDs) in adolescence. OBJECTIVE Accordingly, we examined whether post-pubertal male and female rhesus macaques that experienced infant maltreatment (maltreated, n = 7) showed greater vulnerability to cocaine self-administration in comparison with controls (controls, n = 7). METHODS Infant emotional reactivity was measured to assess differences in behavioral distress between maltreated and control animals as a result of early life caregiving. Animals were then surgically implanted with indwelling intravenous catheters and trained to self-administer cocaine (0.001-0.3 mg/kg/infusion) under fixed-ratio schedules of reinforcement. Days to acquisition, and sensitivity to (measured by the EDMax dose of cocaine) and magnitude (measured by response rates) of the reinforcing effects of cocaine were examined in both groups. RESULTS Maltreated animals demonstrated significantly higher rates of distress (e.g., screams) in comparison with control animals. When given access to cocaine, control males required significantly more days to progress through terminal performance criteria compared with females and acquired cocaine self-administration slower than the other three experimental groups. The dose that resulted in peak response rates did not differ between groups or sex. Under 5-week, limited-access conditions, males from both groups had significantly higher rates of responding compared with females. CONCLUSIONS In control monkeys, these data support sex differences in cocaine self-administration, with females being more sensitive than males. These findings also suggest that ELS may confer enhanced sensitivity to the reinforcing effects of cocaine, especially in males.
Collapse
Affiliation(s)
- Alison G P Wakeford
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA. .,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA.
| | - Elyse L Morin
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Sara N Bramlett
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Brittany R Howell
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA.,Institute of Child Development, University of Minnesota, 51 E River Rd, Minneapolis, MN, 55455, USA
| | - Kai M McCormack
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychology, Spelman College, 350 Spelman Lane, Box 209, Atlanta, GA, 30345, USA
| | - Jerrold S Meyer
- Department of Psychological & Brain Sciences, University of Massachusetts, 441 Tobin Hall, Amherst, MA, 01003, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Mar M Sanchez
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Leonard L Howell
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA.,Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
| |
Collapse
|
16
|
Chadaeva I, Ponomarenko P, Rasskazov D, Sharypova E, Kashina E, Kleshchev M, Ponomarenko M, Naumenko V, Savinkova L, Kolchanov N, Osadchuk L, Osadchuk A. Natural Selection Equally Supports the Human Tendencies in Subordination and Domination: A Genome-Wide Study With in silico Confirmation and in vivo Validation in Mice. Front Genet 2019; 10:73. [PMID: 30873204 PMCID: PMC6404730 DOI: 10.3389/fgene.2019.00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
We proposed the following heuristic decision-making rule: "IF {an excess of a protein relating to the nervous system is an experimentally known physiological marker of low pain sensitivity, fast postinjury recovery, or aggressive, risk/novelty-seeking, anesthetic-like, or similar agonistic-intolerant behavior} AND IF {a single nucleotide polymorphism (SNP) causes overexpression of the gene encoding this protein} THEN {this SNP can be a SNP marker of the tendency in dominance} WHILE {underexpression corresponds to subordination} AND vice versa." Using this decision-making rule, we analyzed 231 human genes of neuropeptidergic, non-neuropeptidergic, and neurotrophinergic systems that encode neurotrophic and growth factors, interleukins, neurotransmitters, receptors, transporters, and enzymes. These proteins are known as key factors of human social behavior. We analyzed all the 5,052 SNPs within the 70 bp promoter region upstream of the position where the protein-coding transcript starts, which were retrieved from databases Ensembl and dbSNP using our previously created public Web service SNP_TATA_Comparator (http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl). This definition of the promoter region includes all TATA-binding protein (TBP)-binding sites. A total of 556 and 552 candidate SNP markers contributing to the dominance and the subordination, respectively, were uncovered. On this basis, we determined that 231 human genes under study are subject to natural selection against underexpression (significance p < 0.0005), which equally supports the human tendencies in domination and subordination such as the norm of a reaction (plasticity) of the human social hierarchy. These findings explain vertical transmission of domination and subordination traits previously observed in rodent models. Thus, the results of this study equally support both sides of the century-old unsettled scientific debate on whether both aggressiveness and the social hierarchy among humans are inherited (as suggested by Freud and Lorenz) or are due to non-genetic social education, when the children are influenced by older individuals across generations (as proposed by Berkowitz and Fromm).
Collapse
Affiliation(s)
- Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - Maxim Kleshchev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir Naumenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexandr Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Social status predicts response to dietary cycling in female rhesus monkeys. Appetite 2019; 132:230-237. [PMID: 30032952 DOI: 10.1016/j.appet.2018.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 11/22/2022]
Abstract
With the prevalence of obesity among women the United States surpassing 40%, it is critical to understand how environmental factors influence appetite, body fat accumulation, and the ability to lose weight and maintain weight loss. Psychosocial stress exposure is a risk factor for increased consumption of calorically dense diets (CDD), which are high in fat and sugars and promote both increased food intake and weight gain. However, it remains unclear how appetite is affected by psychosocial factors when people striving to lose weight restrict intake of unhealthy, calorically dense foods. Using a translational non-human primate model of chronic psychosocial stressor exposure in females (n = 16), mediated by social subordination, we examined ad libitum food intake, weight change, and social behavior during three consecutive, 15-week dietary conditions: 1) obesogenic, dietary choice; 2) chow-only; and 3) a switch back to dietary choice. Data showed that a choice dietary environment that includes both chow and CDD promotes increased calorie consumption of CDD in subordinate female rhesus monkeys during the baseline choice and back-to-choice phases (p = 0.016). Removal of the CDD during the chow-only phase resulted in mild inappetence (p = 0.005) and a loss in body weight (p < 0.001) in subordinate females. Reintroduction of the CDD to subordinate, but not dominant, females was associated with increased calorie intake that surpassed baseline intake (p < 0.001), and greater body weight gain (p = 0.026). There were no effects of diet cycling on total food intake and body weight change in dominant females (p's > 0.05). Overall, our results suggest that adverse psychosocial experience is associated with increased preference for highly palatable, calorically dense food in a choice dietary environment.
Collapse
|
18
|
Social status alters chromatin accessibility and the gene regulatory response to glucocorticoid stimulation in rhesus macaques. Proc Natl Acad Sci U S A 2018; 116:1219-1228. [PMID: 30538209 PMCID: PMC6347725 DOI: 10.1073/pnas.1811758115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Low social status is an important predictor of disease susceptibility and mortality risk in humans and other social mammals. These effects are thought to stem in part from dysregulation of the glucocorticoid (GC)-mediated stress response. However, the molecular mechanisms that connect low social status and GC dysregulation to downstream health outcomes remain elusive. Here, we used an in vitro GC challenge to investigate the consequences of experimentally manipulated social status (i.e., dominance rank) for immune cell gene regulation in female rhesus macaques, using paired control and GC-treated peripheral blood mononuclear cell samples. We show that social status not only influences immune cell gene expression but also chromatin accessibility at hundreds of regions in the genome. Social status effects on gene expression were less pronounced following GC treatment than under control conditions. In contrast, social status effects on chromatin accessibility were stable across conditions, resulting in an attenuated relationship between social status, chromatin accessibility, and gene expression after GC exposure. Regions that were more accessible in high-status animals and regions that become more accessible following GC treatment were enriched for a highly concordant set of transcription factor binding motifs, including motifs for the GC receptor cofactor AP-1. Together, our findings support the hypothesis that social status alters the dynamics of GC-mediated gene regulation and identify chromatin accessibility as a mechanism involved in social stress-driven GC resistance. More broadly, they emphasize the context-dependent nature of social status effects on gene regulation and implicate epigenetic remodeling of chromatin accessibility as a contributing factor.
Collapse
|
19
|
Wakeford AG, Morin EL, Bramlett SN, Howell LL, Sanchez MM. A review of nonhuman primate models of early life stress and adolescent drug abuse. Neurobiol Stress 2018; 9:188-198. [PMID: 30450384 PMCID: PMC6236515 DOI: 10.1016/j.ynstr.2018.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/30/2018] [Accepted: 09/12/2018] [Indexed: 01/03/2023] Open
Abstract
Adolescence represents a developmental stage in which initiation of drug use typically occurs and is marked by dynamic neurobiological changes. These changes present a sensitive window during which perturbations to normative development lead to alterations in brain circuits critical for stress and emotional regulation as well as reward processing, potentially resulting in an increased susceptibility to psychopathologies. The occurrence of early life stress (ELS) is related to a greater risk for the development of substance use disorders (SUD) during adolescence. Studies using nonhuman primates (NHP) are ideally suited to examine how ELS may alter the development of neurobiological systems modulating the reinforcing effects of drugs, given their remarkable neurobiological, behavioral, and developmental homologies to humans. This review examines NHP models of ELS that have been used to characterize its effects on sensitivity to drug reinforcement, and proposes future directions using NHP models of ELS and drug abuse in an effort to develop more targeted intervention and prevention strategies for at risk clinical populations. ELS has long-lasting neurobiological and behavioral consequences. ELS is a major risk factor for the initiation of adolescent drug use. Sex differences are apparent in the consequences of ELS, including drug use. Nonhuman primate models of ELS are critical for understanding ELS effects on neurobiology and risk for adolescent drug use.
Collapse
Affiliation(s)
- Alison G.P. Wakeford
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
- Corresponding author. Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States.
| | - Elyse L. Morin
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| | - Sara N. Bramlett
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| | - Leonard L. Howell
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| | - Mar M. Sanchez
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, United States
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, United States
| |
Collapse
|
20
|
Stammen RL, Cohen JK, Meeker TL, Crane MM, Amara RR, Hicks SL, Meyer JS, Ethun KF. Effect of Chronic Social Stress on Prenatal Transfer of Antitetanus Immunity in Captive Breeding Rhesus Macaques ( Macaca mulatta). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2018; 57:357-367. [PMID: 29764539 PMCID: PMC6059219 DOI: 10.30802/aalas-jaalas-17-000102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Because tetanus can cause significant morbidity and mortality in NHP, colonywide vaccination with tetanus toxoid is recommended for outdoor breeding colonies of rhesus macaques, with primary immunizations commonly given to infants at 6 mo of age followed by booster vaccines every 10 y. Maternal antibodies are thought to offer protective immunity to infants younger than 6 mo. However, historical colony data from the Yerkes National Primate Research Center show a higher incidence of tetanus among infants (≤ 6 mo old) born to subordinate dams. Whether this higher incidence of infantile tetanus is due to a higher incidence of trauma among subordinate animals or is a stress-induced impairment of maternal antibody protection is unknown. Studies in other NHP species suggest that chronic exposure to social stressors interferes with the receptor-mediated transplacental transfer of IgG. Therefore, the primary aim of this study was to determine whether chronic stress associated with social subordination impairs prenatal transfer of antitetanus immunity in breeding female rhesus macaques. Subjects included 26 high- and 26 low-ranking adult female rhesus macaques that were nearly 5 or 10 y after their initial immunization and their nonimmunized infants. We hypothesized that infants born to subordinate dams that were nearly 10 y after immunization would have the lowest infant-to-dam antibody ratios and thus would be at greatest risk for infection. Results revealed no significant intergroup differences in infant antitetanus IgG levels. However, infant-to-dam IgG ratios against tetanus were significantly lower among subordinate animals compared with dominant macaques, after accounting for the number of years since the dam's initial vaccination. In addition, higher maternal hair cortisol levels predicted lower infantto-dam tetanus toxoid IgG ratios. Together, these findings suggest that chronic social stress in female rhesus macaques may hamper the prenatal transfer of antitetanus immunity to offspring.
Collapse
Affiliation(s)
- Rachelle L Stammen
- Divisions of Animal Resources, Emory University School of Medicine, Atlanta, Georgia
| | - Joyce K Cohen
- Divisions of Animal Resources, Emory University School of Medicine, Atlanta, Georgia
| | - Tracy L Meeker
- Divisions of Animal Resources, Emory University School of Medicine, Atlanta, Georgia
| | - Maria M Crane
- Divisions of Animal Resources, Emory University School of Medicine, Atlanta, Georgia
| | - Rama R Amara
- Divisions of Microbiology and Immunology, Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Sakeenah L Hicks
- Divisions of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia
| | - Jerrold S Meyer
- Departments of Neuroscience and Behavior Program, Department of Psychology, University of Massachusetts, Amherst, Massachusetts
| | - Kelly F Ethun
- Divisions of Animal Resources, Developmental and Cognitive Neurosciences, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, Departments of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia;,
| |
Collapse
|
21
|
Godfrey JR, Diaz MP, Pincus M, Kovacs-Balint Z, Feczko E, Earl E, Miranda-Dominguez O, Fair D, Sanchez MM, Wilson ME, Michopoulos V. Diet matters: Glucocorticoid-related neuroadaptations associated with calorie intake in female rhesus monkeys. Psychoneuroendocrinology 2018; 91:169-178. [PMID: 29567621 PMCID: PMC5899678 DOI: 10.1016/j.psyneuen.2018.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/31/2018] [Accepted: 03/13/2018] [Indexed: 01/22/2023]
Abstract
Exposure to psychosocial stressors increases consumption of palatable, calorically dense diets (CDD) and the risk for obesity, especially in females. While consumption of an obesogenic diet and chronic stress have both been shown to decrease dopamine 2 receptor (D2R) binding and alter functional connectivity (FC) within the prefrontal cortex (PFC) and the nucleus accumbens (NAcc), it remains uncertain how social experience and dietary environment interact to affect reward pathways critical for the regulation of motivated behavior. Using positron emission tomography (PET) and resting state functional connectivity magnetic resonance neuroimaging (rs-fMRI), in female rhesus monkeys maintained in a low calorie chow (n = 18) or a dietary choice condition (chow and a CDD; n = 16) for 12 months, the current study tested the overarching hypothesis that the adverse social experience resulting from subordinate social status would interact with consumption of an obesogenic diet to increase caloric intake that would be predicted by greater cortisol, lower prefrontal D2R binding potential (D2R-BP) and lower PFC-NAcc FC. Results showed that the consequences of adverse social experience imposed by chronic social subordination vary significantly depending on the dietary environment and are associated with alterations in prefrontal D2R-BP and FC in NAcc-PFC sub-regions that predict differences in caloric intake, body weight gain, and fat accumulation. Higher levels of cortisol in the chow-only condition were associated with mild inappetence, as well as increased orbitofrontal (OFC) D2R-BP and greater FC between the NAcc and the dorsolateral PFC (dlPFC) and ventromedial PFC (vmPFC). However, increased cortisol release in females in the dietary choice condition was associated with reduced prefrontal D2R-BP, and opposite FC between the NAcc and the vmPFC and dlPFC observed in the chow-only females. Importantly, the degree of these glucocorticoid-related neuroadaptations predicted significantly more total calorie intake as well as more consumption of the CDD for females having a dietary choice, but had no relation to calorie intake in the chow-only condition. Overall, the current findings suggest that dietary environment modifies the consequences of adverse social experience on reward pathways and appetite regulation and, in an obesogenic dietary environment, may reflect impaired cognitive control of food intake.
Collapse
Affiliation(s)
| | | | - Melanie Pincus
- Yerkes National Primate Research Center, Atlanta, Georgia
| | | | - Eric Feczko
- Department Of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Eric Earl
- Department Of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | | | - Damien Fair
- Department Of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Mar M. Sanchez
- Yerkes National Primate Research Center, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Mark E. Wilson
- Yerkes National Primate Research Center, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
22
|
Increased brain glucocorticoid actions following social defeat in rats facilitates the long-term establishment of social subordination. Physiol Behav 2018; 186:31-36. [DOI: 10.1016/j.physbeh.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/22/2022]
|
23
|
Toufexis D, King SB, Michopoulos V. Socially Housed Female Macaques: a Translational Model for the Interaction of Chronic Stress and Estrogen in Aging. Curr Psychiatry Rep 2017; 19:78. [PMID: 28905316 DOI: 10.1007/s11920-017-0833-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Estrogen's role in cognitive aging remains unclear. Despite evidence implicating stress in pathological aging, the interaction of stress with estrogen on cognition in older women has received little attention, and few animal models exist with which to examine this interaction. RECENT FINDINGS We present evidence that aging socially subordinate female macaques that experience chronic psychosocial stress constitute a suitable model to investigate this. First, we review studies showing that estrogen modulates cognition in animal models, as well as studies demonstrating that estrogen's action on certain types of cognition is impaired by stress. Next, we discuss data showing that middle-aged socially subordinate female macaques exhibit distinct stress-induced phenotypes, and review our investigations indicating that estrogen modulates behavior and physiology differently in subordinate female monkeys. We conclude that socially housed female macaques represent a translational animal model for investigating the interplay of chronic stress and estrogen on cognitive aging in women.
Collapse
Affiliation(s)
- Donna Toufexis
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA.,Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - S Bradley King
- Department of Psychological Science, The University of Vermont, Burlington, VT, USA
| | - Vasiliki Michopoulos
- Division of Development and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA. .,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
24
|
Masdrakis VG, Papageorgiou C, Markianos M. Associations of plasma leptin to clinical manifestations in reproductive aged female patients with panic disorder. Psychiatry Res 2017; 255:161-166. [PMID: 28551488 DOI: 10.1016/j.psychres.2017.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/16/2017] [Accepted: 05/14/2017] [Indexed: 12/14/2022]
Abstract
Preclinical studies suggest the implication of the adipocyte hormone leptin in anxiety and fear processes. We explored for potential differences regarding plasma leptin, cortisol and the ratio leptin/Body Mass Index (BMI) between 27 medication-free female patients with Panic Disorder (PD) and 42 age-matched female controls, and for potential associations between plasma leptin and psychometric evaluations including number of panic attacks during last week, Clinical Global Impression-Severity of Illness (CGI-S) and Symptoms Checklist-90-Revised (SCL-90-R). Cortisol levels showed no differences between patients and controls, or correlations to leptin or to any clinical features. Both groups demonstrated a strong positive correlation between leptin and BMI and similar leptin and leptin/BMI, despite patients' lower BMI. However, patients -but not controls- demonstrated significant negative correlations of leptin to the 'somatization', 'anxiety', and 'phobic anxiety' SCL-90-R subscales. Moreover, there was a significant negative correlation of leptin and of leptin/BMI ratio to the number of panic attacks during last week, while higher CGI-S was associated with lower leptin/BMI ratio. Our results, limited to PD female patients, suggest that lower leptin serum levels are significantly associated with greater severity of psychopathological manifestations, including number of panic attacks, symptoms of somatization, anxiety and phobic anxiety and overall clinical presentation.
Collapse
Affiliation(s)
- Vasilios G Masdrakis
- National and Kapodistrian University of Athens, School of Medicine, First Department of Psychiatry, Eginition Hospital, 74 Vas. Sofias Avenue, 11528 Athens, Greece.
| | - Charalambos Papageorgiou
- National and Kapodistrian University of Athens, School of Medicine, First Department of Psychiatry, Eginition Hospital, 74 Vas. Sofias Avenue, 11528 Athens, Greece
| | - Manolis Markianos
- National and Kapodistrian University of Athens, School of Medicine, First Department of Psychiatry, Eginition Hospital, 74 Vas. Sofias Avenue, 11528 Athens, Greece
| |
Collapse
|
25
|
Small TW, Bebus SE, Bridge ES, Elderbrock EK, Ferguson SM, Jones BC, Schoech SJ. Stress-responsiveness influences baseline glucocorticoid levels: Revisiting the under 3min sampling rule. Gen Comp Endocrinol 2017; 247:152-165. [PMID: 28189590 DOI: 10.1016/j.ygcen.2017.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 11/29/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
Abstract
Plasma glucocorticoid (CORT) levels collected within 3min of capture are commonly believed to reflect pre-stressor, baseline CORT levels. Differences in these "baseline" values are often interpreted as reflecting differences in health, or the amount of social and environmental stress recently experienced by an individual. When interpreting "baseline" values it is generally assumed that any effect of capture-and-handling during the initial sampling period is small enough and consistent enough among individuals to not obscure pre-capture differences in CORT levels. However, plasma CORT increases in less than 3min post-capture in many free-living, endothermic species in which timing has been assessed. In addition, the rate of CORT secretion and the maximum level attained (i.e., the degree of stress-responsiveness) during a severe stressor often differs among individuals of the same species. In Florida scrub-jays (Aphelocoma coerulescens), an individual's stress-responsiveness during a 30min post-capture stressor is correlated with CORT levels in samples collected within 1.5min of capture, suggesting there is an intrinsic connection between stress-responsiveness and pre-capture CORT levels. Although differences in stress-responsiveness accounted for just 11% of the variance in these samples, on average, higher stress-responsive jays (top third of individuals) had baseline values twice that of lower stress-responsive jays (bottom third). Further, plasma CORT levels begin to increase around 2min post-capture in this species, but the rate of increase between 2 and 3min differs markedly with CORT increasing more rapidly in jays with higher stress-responsiveness. Together, these data indicate that baseline CORT values can be influenced by an individual's stress response phenotype and the differences due to stress-responsiveness can be exaggerated during sample collection. In some cases, the effects of differences in stress-responsiveness and the increase in CORT during sample collection could obscure, or supersede, differences in pre-capture plasma CORT levels that are caused by extrinsic factors.
Collapse
Affiliation(s)
- Thomas W Small
- Department of Biological Sciences, University of Memphis, United States.
| | - Sara E Bebus
- Department of Biological Sciences, University of Memphis, United States
| | - Eli S Bridge
- Oklahoma Biological Survey, University of Oklahoma, United States
| | | | | | - Blake C Jones
- Department of Biological Sciences, University of Memphis, United States
| | - Stephan J Schoech
- Department of Biological Sciences, University of Memphis, United States
| |
Collapse
|
26
|
Bacqué-Cazenave J, Cattaert D, Delbecque JP, Fossat P. Social harassment induces anxiety-like behaviour in crayfish. Sci Rep 2017; 7:39935. [PMID: 28045136 PMCID: PMC5206779 DOI: 10.1038/srep39935] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/28/2016] [Indexed: 01/30/2023] Open
Abstract
Social interactions leading to dominance hierarchies often elicit psychological disorders in mammals including harassment and anxiety. Here, we demonstrate that this sequence also occurs in an invertebrate, the crayfish Procambarus clarkii. When placed in the restricted space of an aquarium, crayfish dyads generally fight until one of the opponents suddenly escapes, thereafter clearly expressing a submissive behaviour. Nevertheless, the winner frequently keeps on displaying excessive aggressive acts, having deleterious consequences in losers and interpreted as harassment behaviour. We indeed observed that, contrary to winners, losers expressed anxiety-like behaviour (ALB) in correlation with the stress intensity they suffered during the harassment period mainly. Injections of an anxiolytic abolished ALB, confirming its homology with anxiety. A serotonin (5-HT) antagonist had the same effect, suggesting a role for 5-HT, whose brain concentrations increased much more in losers than in winners. Our findings suggest that the bases of harassment and of its anxiogenic consequences have emerged very early during evolution, and emphasize crayfish as an unexpected but potentially fruitful model for the study of these social disorders.
Collapse
Affiliation(s)
- Julien Bacqué-Cazenave
- INCIA - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, CNRS UMR 5287, 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Daniel Cattaert
- INCIA - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, CNRS UMR 5287, 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Jean-Paul Delbecque
- INCIA - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, CNRS UMR 5287, 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Pascal Fossat
- INCIA - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, CNRS UMR 5287, 146 Rue Leo Saignat, 33076 Bordeaux, France
| |
Collapse
|
27
|
Terranova JI, Ferris CF, Albers HE. Sex Differences in the Regulation of Offensive Aggression and Dominance by Arginine-Vasopressin. Front Endocrinol (Lausanne) 2017; 8:308. [PMID: 29184535 PMCID: PMC5694440 DOI: 10.3389/fendo.2017.00308] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023] Open
Abstract
Arginine-vasopressin (AVP) plays a critical role in the regulation of offensive aggression and social status in mammals. AVP is found in an extensive neural network in the brain. Here, we discuss the role of AVP in the regulation of aggression in the limbic system with an emphasis on the critical role of hypothalamic AVP in the control of aggression. In males, activation of AVP V1a receptors (V1aRs) in the hypothalamus stimulates offensive aggression, while in females activation of V1aRs inhibits aggression. Serotonin (5-HT) also acts within the hypothalamus to modulate the effects of AVP on aggression in a sex-dependent manner. Activation of 5-HT1a receptors (5-HT1aRs) inhibits aggression in males and stimulates aggression in females. There are also striking sex differences in the mechanisms underlying the acquisition of dominance. In males, the acquisition of dominance is associated with the activation of AVP-containing neurons in the hypothalamus. By contrast, in females, the acquisition of dominance is associated with the activation of 5-HT-containing neurons in the dorsal raphe. AVP and 5-HT also play critical roles in the regulation of a form of social communication that is important for the maintenance of dominance relationships. In both male and female hamsters, AVP acts via V1aRs in the hypothalamus, as well as in other limbic structures, to communicate social status through the stimulation of a form of scent marking called flank marking. 5-HT acts on 5-HT1aRs as well as other 5-HT receptors within the hypothalamus to inhibit flank marking induced by AVP in both males and females. Interestingly, while AVP and 5-HT influence the expression of aggression in opposite ways in males and females, there are no sex differences in the effects of AVP and 5-HT on the expression of social communication. Given the profound sex differences in the incidence of many psychiatric disorders and the increasing evidence for a relationship between aggressiveness/dominance and the susceptibility to these disorders, understanding the neural regulation of aggression and social status will have significant import for translational studies.
Collapse
Affiliation(s)
- Joseph I. Terranova
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Craig F. Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - H. Elliott Albers
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- *Correspondence: H. Elliott Albers,
| |
Collapse
|
28
|
Chadaeva IV, Ponomarenko MP, Rasskazov DA, Sharypova EB, Kashina EV, Matveeva MY, Arshinova TV, Ponomarenko PM, Arkova OV, Bondar NP, Savinkova LK, Kolchanov NA. Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2016; 17:995. [PMID: 28105927 PMCID: PMC5249025 DOI: 10.1186/s12864-016-3353-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aggressiveness in humans is a hereditary behavioral trait that mobilizes all systems of the body-first of all, the nervous and endocrine systems, and then the respiratory, vascular, muscular, and others-e.g., for the defense of oneself, children, family, shelter, territory, and other possessions as well as personal interests. The level of aggressiveness of a person determines many other characteristics of quality of life and lifespan, acting as a stress factor. Aggressive behavior depends on many parameters such as age, gender, diseases and treatment, diet, and environmental conditions. Among them, genetic factors are believed to be the main parameters that are well-studied at the factual level, but in actuality, genome-wide studies of aggressive behavior appeared relatively recently. One of the biggest projects of the modern science-1000 Genomes-involves identification of single nucleotide polymorphisms (SNPs), i.e., differences of individual genomes from the reference genome. SNPs can be associated with hereditary diseases, their complications, comorbidities, and responses to stress or a drug. Clinical comparisons between cohorts of patients and healthy volunteers (as a control) allow for identifying SNPs whose allele frequencies significantly separate them from one another as markers of the above conditions. Computer-based preliminary analysis of millions of SNPs detected by the 1000 Genomes project can accelerate clinical search for SNP markers due to preliminary whole-genome search for the most meaningful candidate SNP markers and discarding of neutral and poorly substantiated SNPs. RESULTS Here, we combine two computer-based search methods for SNPs (that alter gene expression) {i} Web service SNP_TATA_Comparator (DNA sequence analysis) and {ii} PubMed-based manual search for articles on aggressiveness using heuristic keywords. Near the known binding sites for TATA-binding protein (TBP) in human gene promoters, we found aggressiveness-related candidate SNP markers, including rs1143627 (associated with higher aggressiveness in patients undergoing cytokine immunotherapy), rs544850971 (higher aggressiveness in old women taking lipid-lowering medication), and rs10895068 (childhood aggressiveness-related obesity in adolescence with cardiovascular complications in adulthood). CONCLUSIONS After validation of these candidate markers by clinical protocols, these SNPs may become useful for physicians (may help to improve treatment of patients) and for the general population (a lifestyle choice preventing aggressiveness-related complications).
Collapse
Affiliation(s)
- Irina V. Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Mikhail P. Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Dmitry A. Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ekaterina B. Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Elena V. Kashina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Marina Yu Matveeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Tatjana V. Arshinova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Petr M. Ponomarenko
- Children’s Hospital Los Angeles, 4640 Hollywood Boulevard, University of Southern California, Los Angeles, CA 90027 USA
| | - Olga V. Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Vector-Best Inc, Koltsovo, Novosibirsk Region 630559 Russia
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ludmila K. Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| |
Collapse
|
29
|
Gonzales HK, O'Reilly M, Lang R, Sigafoos J, Lancioni G, Kajian M, Kuhn M, Longino D, Rojeski L, Watkins L. Research involving anxiety in non-human primates has potential implications for the assessment and treatment of anxiety in autism spectrum disorder: A translational literature review. Dev Neurorehabil 2016; 19:175-92. [PMID: 25057887 DOI: 10.3109/17518423.2014.941117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The purpose of this translational review (i.e. moving from basic primate research toward possible human applications) was to summarize non-human primate literature on anxiety to inform the development of future assessments of anxiety in non-verbal individuals with autism spectrum disorder (ASD). METHODS Systematic searches of databases identified 67 studies that met inclusion criteria. Each study was analysed and summarised in terms of (a) strategies used to evoke anxiety, (b) non-verbal behavioural indicators of anxiety and (c) physiological indicators of anxiety. RESULTS Eighteen strategies were used to evoke anxiety, 48 non-verbal behavioural indicators and 17 physiological indicators of anxiety were measured. CONCLUSIONS A number of the strategies used with non-human primates, if modified carefully, could be considered in the ongoing effort to study anxiety in individuals with ASD. Potential applications to the assessment of anxiety in humans with ASD are discussed.
Collapse
Affiliation(s)
- Heather K Gonzales
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Mark O'Reilly
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Russell Lang
- b Department of Curriculum and Instruction , Clinic for Autism Research Evaluation and Support, Texas State University , San Marcos , TX , USA
| | - Jeff Sigafoos
- c Department of Special Education , Victoria University of Wellington , Wellington , New Zealand , and
| | - Giulio Lancioni
- d Department of Education , University of Bari , Bari , Italy
| | - Mandana Kajian
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Michelle Kuhn
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Deanna Longino
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Laura Rojeski
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| | - Laci Watkins
- a Department of Special Education , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
30
|
Stress-induced alterations in estradiol sensitivity increase risk for obesity in women. Physiol Behav 2016; 166:56-64. [PMID: 27182047 DOI: 10.1016/j.physbeh.2016.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 04/04/2016] [Accepted: 05/11/2016] [Indexed: 02/02/2023]
Abstract
The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity exclusively in females.
Collapse
|
31
|
Michopoulos V, Diaz MP, Wilson ME. Social change and access to a palatable diet produces differences in reward neurochemistry and appetite in female monkeys. Physiol Behav 2016; 162:102-11. [PMID: 27090229 DOI: 10.1016/j.physbeh.2016.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/14/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
Abstract
Understanding factors that contribute to the etiology of obesity is critical for minimizing the effects of obesity-related adverse physical health outcomes. Emotional eating or the inability to control intake of calorically dense diets (CDD) under conditions of psychosocial stress exposure is a potential risk factor for the development of obesity in people. Decreases in dopamine 2 receptors (D2R) availability have been documented in substance abuse and obesity in humans, as well as animal models of chronic stressor exposure. Social subordination in macaques is a well-established animal model of a chronic psychogenic stressor that results in stress axis dysregulation, attenuated striatal D2R levels, and stress-induced hyperphagia in complex dietary environment. However, it remains unclear how these phenotypes emerge as the stressor becomes chronic during the formation of new social groups. Thus, the goal of the current study was to assess how the imposition of social subordination over a four-month period would affect food intake, socioemotional behavior, and D2R binding potential (D2R-BP) in female rhesus monkeys maintained on a typical laboratory chow diet (LCD) compared with those having a choice between a LCD and a CDD. Results showed that access to a CDD leads to increased total caloric intake and preference for a CDD over a LCD. For the dietary choice condition, females directing less aggression towards group mates during the four-month period, a characteristic of lower social status, consumed progressively more calories over the four-month period than more aggressive females. This relation between agonistic behavior and appetite was not observed for females in LCD-only condition. Finally, decreased D2R-BP in the orbitofrontal cortex was predictive of increased overall caloric intake in all females regardless of dietary environment, suggesting that reduced availability of D2R within the prefrontal cortex is associated with unrestrained eating. Studies are continuing to determine how newly imposed dominance ranks continue to affect reward neurochemistry and appetite over time, and how this is influenced by the dietary environment.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States.
| | - Maylen Perez Diaz
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Mark E Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, United States
| |
Collapse
|
32
|
Perceived childhood inequality predicts schizotypy in adulthood. PERSONALITY AND INDIVIDUAL DIFFERENCES 2016. [DOI: 10.1016/j.paid.2015.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Snyder-Mackler N, Kohn JN, Barreiro LB, Johnson ZP, Wilson ME, Tung J. Social status drives social relationships in groups of unrelated female rhesus macaques. Anim Behav 2016; 111:307-317. [PMID: 26769983 PMCID: PMC4707678 DOI: 10.1016/j.anbehav.2015.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Strong social relationships confer health and fitness benefits in a number of species, motivating the need to understand the processes through which they arise. In female cercopithecine primates, both kinship and dominance rank are thought to influence rates of affiliative behaviour and social partner preference. Teasing apart the relative importance of these factors has been challenging, however, as female kin often occupy similar positions in the dominance hierarchy. Here, we isolated the specific effects of rank on social relationships in female rhesus macaques by analysing grooming patterns in 18 social groups that did not contain close relatives, and in which dominance ranks were experimentally randomized. We found that grooming was asymmetrically directed towards higher-ranking females and that grooming bouts temporarily decreased the likelihood of aggression between grooming partners, supporting the idea that grooming is associated with social tolerance. Even in the absence of kin, females formed the strongest grooming relationships with females adjacent to them in rank, a pattern that was strongest for the highest-ranking females. Using simulations, we show that three rules for allocating grooming based on dominance rank recapitulated most of the relationships we observed. Finally, we evaluated whether a female's tendency to engage in grooming behaviour was stable across time and social setting. We found that one measure, the rate of grooming females provided to others (but not the rate of grooming females received), exhibited modest stability after accounting for the primary effect of dominance rank. Together, our findings indicate that dominance rank has strong effects on social relationships in the absence of kin, suggesting the importance of considering social status and social connectedness jointly when investigating their health and fitness consequences.
Collapse
Affiliation(s)
| | - Jordan N. Kohn
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, U.S.A
| | - Luis B. Barreiro
- Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Zachary P. Johnson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, U.S.A
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Mark E. Wilson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, U.S.A
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, U.S.A
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
- Department of Biology, Duke University, Durham, NC, U.S.A
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- Duke Population Research Institute, Duke University, Durham, NC, U.S.A
| |
Collapse
|
34
|
Caldwell HK, Albers HE. Oxytocin, Vasopressin, and the Motivational Forces that Drive Social Behaviors. Curr Top Behav Neurosci 2016; 27:51-103. [PMID: 26472550 DOI: 10.1007/7854_2015_390] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motivation to engage in social behaviors is influenced by past experience and internal state, but also depends on the behavior of other animals. Across species, the oxytocin (Oxt) and vasopressin (Avp) systems have consistently been linked to the modulation of motivated social behaviors. However, how they interact with other systems, such as the mesolimbic dopamine system, remains understudied. Further, while the neurobiological mechanisms that regulate prosocial/cooperative behaviors have been extensively examined, far less is understood about competitive behaviors, particularly in females. In this chapter, we highlight the specific contributions of Oxt and Avp to several cooperative and competitive behaviors and discuss their relevance to the concept of social motivation across species, including humans. Further, we discuss the implications for neuropsychiatric diseases and suggest future areas of investigation.
Collapse
|
35
|
Kromrey SA, Czoty PW, Nader SH, Register TC, Nader MA. Preclinical laboratory assessments of predictors of social rank in female cynomolgus monkeys. Am J Primatol 2015; 78:402-417. [PMID: 26684077 DOI: 10.1002/ajp.22514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 11/12/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022]
Abstract
Physiological and behavioral differences between dominant and subordinate monkeys have been useful in preclinical models investigating numerous disease states. In captivity, it has been inferred that subordinate monkeys live in a context of chronic social stress and may be at risk for a variety of dysfunctions; however, the factors that influence eventual rank are not entirely known. The goal of the present study was to first evaluate several phenotypic characteristics as potential trait markers for eventual social rank and then to determine the consequences of social hierarchy on these measures (i.e., state markers). Baseline estradiol, progesterone, cortisol and testosterone concentrations were obtained from 16 pair-housed female cynomolgus monkeys before and after introduction into new social groups (n = 4/group). Furthermore, effects of the initial week of social rank establishment on outcome measures of cognitive performance and homecage activity were examined. Baseline body weight and mean serum estradiol concentrations were the only statistically significant predictors of eventual rank, with future subordinate monkeys weighing less and having higher estradiol concentrations. During initial hierarchy establishment, future subordinate monkeys had increased morning and afternoon cortisol concentrations, increased locomotor activity and impaired cognitive performance on a working memory task. After 3 months of social housing, subordinate monkeys had blunted circulating estradiol and progesterone concentrations. These findings demonstrate differential effects on gonadal hormones and cortisol as a function of social context in normally cycling female monkeys. Furthermore, disruptions in cognitive performance were associated with subordinate status, suggesting strong face validity of this model to the study of factors related to the etiology and treatment of human diseases associated with chronic stress. Am. J. Primatol. 78:402-417, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah A Kromrey
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Susan H Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas C Register
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
36
|
Coplan JD, Karim A, Chandra P, St Germain G, Abdallah CG, Altemus M. Neurobiology of Maternal Stress: Role of Social Rank and Central Oxytocin in Hypothalamic-Pituitary Adrenal Axis Modulation. Front Psychiatry 2015; 6:100. [PMID: 26217242 PMCID: PMC4493323 DOI: 10.3389/fpsyt.2015.00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chronic stress may conceivably require plasticity of maternal physiology and behavior to cope with the conflicting primary demands of infant rearing and foraging for food. In addition, social rank may play a pivotal role in mandating divergent homeostatic adaptations in cohesive social groups. We examined cerebrospinal fluid (CSF) oxytocin (OT) levels and hypothalamic-pituitary adrenal (HPA) axis regulation in the context of maternal social stress and assessed the contribution of social rank to dyadic distance as reflective of distraction from normative maternal-infant interaction. METHODS Twelve socially housed mother-infant bonnet macaque dyads were studied after variable foraging demand (VFD) exposure compared to 11 unstressed dyads. Dyadic distance was determined by behavioral observation. Social ranking was performed blindly by two observers. Post-VFD maternal plasma cortisol and CSF OT were compared to corresponding measures in non-VFD-exposed mothers. RESULTS High-social rank was associated with increased dyadic distance only in VFD-exposed dyads and not in control dyads. In mothers unexposed to VFD, social rank was not related to maternal cortisol levels, whereas VFD-exposed dominant versus subordinate mothers exhibited increased plasma cortisol. Maternal CSF OT directly predicted maternal cortisol only in VFD-exposed mothers. CSF OT was higher in dominant versus subordinate mothers. VFD-exposed mothers with "high" cortisol specifically exhibited CSF OT elevations in comparison to control groups. CONCLUSION Pairing of maternal social rank to dyadic distance in VFD presumably reduces maternal contingent responsivity, with ensuing long-term sequelae. VFD-exposure dichotomizes maternal HPA-axis response as a function of social rank with relatively reduced cortisol in subordinates. OT may serve as a homeostatic buffer during maternal stress exposure.
Collapse
Affiliation(s)
- Jeremy D Coplan
- Department of Psychiatry and Behavioral Sciences, Nonhuman Primate Facility, State University of New York Downstate Medical Center , Brooklyn, NY , USA
| | - Asif Karim
- Department of Psychiatry and Behavioral Sciences, Nonhuman Primate Facility, State University of New York Downstate Medical Center , Brooklyn, NY , USA
| | - Prakash Chandra
- Department of Psychiatry and Behavioral Sciences, Kansas University Medical Center , Kansas City, KS , USA
| | - Garleen St Germain
- Department of Psychiatry and Behavioral Sciences, Nonhuman Primate Facility, State University of New York Downstate Medical Center , Brooklyn, NY , USA
| | - Chadi G Abdallah
- Department of Psychiatry, Yale School of Medicine , New Haven, CT , USA
| | - Margaret Altemus
- Department of Psychiatry, Weill Cornell Medical College , New York, NY , USA
| |
Collapse
|
37
|
Moore CJ, Johnson ZP, Higgins M, Toufexis D, Wilson ME. Antagonism of corticotrophin-releasing factor type 1 receptors attenuates caloric intake of free feeding subordinate female rhesus monkeys in a rich dietary environment. J Neuroendocrinol 2015; 27:33-43. [PMID: 25674637 PMCID: PMC4309459 DOI: 10.1111/jne.12232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Social subordination in macaque females is a known chronic stressor and previous studies have shown that socially subordinate female rhesus monkeys consume fewer kilocalories than dominant animals when a typical laboratory chow diet is available. However, in a rich dietary environment that provides access to chow in combination with a more palatable diet (i.e. high in fat and refined sugar), subordinate animals consume significantly more daily kilocalories than dominant conspecifics. Substantial literature is available supporting the role of stress hormone signals in shaping dietary preferences and promoting the consumption of palatable, energy-dense foods. The present study was conducted using stable groups of adult female rhesus monkeys to test the hypothesis that pharmacological treatment with a brain penetrable corticotrophin-releasing factor type 1 receptor (CRF1) antagonist would attenuate the stress-induced consumption of a palatable diet among subordinate animals in a rich dietary environment but would be without effect in dominant females. The results show that administration of the CRF1 receptor antagonist significantly reduced daily caloric intake of both available diets among subordinate females compared to dominant females. Importantly, multiple regression analyses showed that the attenuation in caloric intake in response to Antalarmin (Sigma-Aldrich, St Louis, MO, USA) was significantly predicted by the frequency of submissive and aggressive behaviour emitted by females, independent of social status. Taken together, the findings support the involvement of activation of CRF1 receptors in the stress-induced consumption of excess calories in a rich dietary environment and also support the growing literature concerning the importance of CRF for sustaining emotional feeding.
Collapse
|
38
|
Abstract
This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions.
Collapse
Affiliation(s)
- Yvonne M. Ulrich-Lai
- Dept. of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45219
| | - Stephanie Fulton
- CRCHUM, Dept. of Nutrition, Université de Montréal, Montreal, QC, Canada, H1W 4A4
| | - Mark Wilson
- Division of Developmental and Cognitive Neuroscience, Emory, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
| | | | - Linda Rinaman
- Dept. of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
39
|
Chu XX, Dominic Rizak J, Yang SC, Wang JH, Ma YY, Hu XT. A natural model of behavioral depression in postpartum adult female cynomolgus monkeys (Macaca fascicularis). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2014; 35:174-81. [PMID: 24866487 DOI: 10.11813/j.issn.0254-5853.2014.3.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Postpartum depression (PPD) is a modified form of major depressive disorders (MDD) that can exert profound negative effects on both mothers and infants than MDD. Within the postpartum period, both mothers and infants are susceptible; but because PPD typically occurs for short durations and has moderate symptoms, there exists challenges in exploring and addressing the underlying cause of the depression. This fact highlights the need for relevant animal models. In the present study, postpartum adult female cynomolgus monkeys (Macaca fascicularis) living in breeding groups were observed for typical depressive behavior. The huddle posture behavior was utilized as an indicator of behavioral depression postpartum (BDP) as it has been established as the core depressive-like behavior in primates. Monkeys were divided into two groups: A BDP group (n=6), which were found to spend more time huddling over the first two weeks postpartum than other individuals that formed a non-depression control group (n=4). The two groups were then further analyzed for locomotive activity, stressful events, hair cortisol levels and for maternal interactive behaviors. No differences were found between the BDP and control groups in locomotive activity, in the frequencies of stressful events experienced and in hair cortisol levels. These findings suggested that the postpartum depression witnessed in the monkeys was not related to external factors other than puerperium period. Interestingly, the BDP monkeys displayed an abnormal maternal relationship consisting of increased infant grooming. Taken together, these findings suggest that the adult female cynomolgus monkeys provide a natural model of behavioral postpartum depression that holds a number of advantages over commonly used rodent systems in PPD modeling. The cynomolgus monkeys have a highly-organized social hierarchy and reproductive characteristics without seasonal restriction-similar to humans-as well as much greater homology to humans than rodents. As such, this model may provide a greater translational efficiency and research platform for systematically investigating the etiology, treatment, prevention of PPD.
Collapse
Affiliation(s)
- Xun-Xun Chu
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China;University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua Dominic Rizak
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shang-Chuan Yang
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Jian-Hong Wang
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuan-Ye Ma
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Xin-Tian Hu
- Laboratory of Primate Neuroscience Research and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
40
|
Toufexis D, Rivarola MA, Lara H, Viau V. Stress and the reproductive axis. J Neuroendocrinol 2014; 26:573-86. [PMID: 25040027 PMCID: PMC4166402 DOI: 10.1111/jne.12179] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022]
Abstract
There exists a reciprocal relationship between the hypothalamic-pituitary-adrenal (HPA) and the hypothalamic-pituitary-gonadal (HPG) axes, wherein the activation of one affects the function of the other and vice versa. For example, both testosterone and oestrogen modulate the response of the HPA axis, whereas activation of the stress axis, especially activation that is repeating or chronic, has an inhibitory effect upon oestrogen and testosterone secretion. Alterations in maternal care can produce significant effects on both HPG and HPA physiology, as well as behaviour in the offspring at adulthood. For example, changes in reproductive behaviour induced by altered maternal care may alter the expression of sex hormone receptors such as oestrogen receptor (ER)α that govern sexual behaviour, and may be particularly important in determining the sexual strategies utilised by females. Stress in adulthood continues to mediate HPG activity in females through activation of a sympathetic neural pathway originating in the hypothalamus and releasing norepinephrine into the ovary, which produces a noncyclic anovulatory ovary that develops cysts. In the opposite direction, sex differences and sex steroid hormones regulate the HPA axis. For example, although serotonin (5-HT) has a stimulatory effect on the HPA axis in humans and rodents that is mediated by the 5-HT1A receptor, only male rodents respond to 5-HT1A antagonism to show increased corticosterone responses to stress. Furthermore, oestrogen appears to decrease 5-HT1A receptor function at presynaptic sites, yet increases 5-HT1A receptor expression at postsynaptic sites. These mechanisms could explain the heightened stress HPA axis responses in females compared to males. Studies on female rhesus macaques show that chronic stress in socially subordinate female monkeys produces a distinct behavioural phenotype that is largely unaffected by oestrogen, a hyporesponsive HPA axis that is hypersensitive to the modulating effects of oestrogen, and changes in 5-HT1A receptor binding in the hippocampus and hypothalamus of social subordinate female monkeys that are restored or inverted by oestrogen replacement. This review summarises all of these studies, emphasising the profound effect that the interaction of the reproductive and stress axes may have on human reproductive health and emotional wellbeing.
Collapse
Affiliation(s)
- Donna Toufexis
- Department of Psychological Sciences, University of Vermont, Burlington VT USA
- Yerkes National Primate Research Center, Emory University, Atlanta GA USA
| | | | - Hernan Lara
- Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile. Santiago, Chile
| | - Victor Viau
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Anacker AMJ, Smith ML, Ryabinin AE. Establishment of stable dominance interactions in prairie vole peers: relationships with alcohol drinking and activation of the paraventricular nucleus of the hypothalamus. Soc Neurosci 2014; 9:484-94. [PMID: 24963825 DOI: 10.1080/17470919.2014.931885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dominance hierarchies are an important aspect of group-living as they determine individual access to resources. The existence of dominance ranks in access to space has not been described in socially monogamous, communally nesting prairie voles (Microtus ochrogaster). Here, we tested whether dominance could be assessed using the tube test. We also tested whether dominance related to alcohol intake, similar to what has been demonstrated in nonmonogamous species. Same-sex pairs of unfamiliar peers were tested in a series of three trials of the tube test, then paired and allowed individual access to alcohol and water for 4 days, and then tested again in the tube test. For all pairs, the same subjects won the majority of trials before and after alcohol drinking. The number of wins negatively correlated with alcohol intake on the first day of drinking and positively correlated with levels of Fos in the paraventricular nucleus of the hypothalamus following the tube test in a separate group of voles. Dominance was not related to Fos levels in other brain regions examined. Together, these results indicate that prairie voles quickly establish stable dominance ranks through a process possibly involving the hypothalamus and suggest that dominance is linked to alcohol drinking.
Collapse
Affiliation(s)
- Allison M J Anacker
- a Department of Behavioral Neuroscience , Oregon Health & Science University , Portland , OR 97239 , USA
| | | | | |
Collapse
|
42
|
Wilson ME, Moore CJ, Ethun KF, Johnson ZP. Understanding the control of ingestive behavior in primates. Horm Behav 2014; 66:86-94. [PMID: 24727080 PMCID: PMC4051844 DOI: 10.1016/j.yhbeh.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 01/08/2023]
Abstract
This article is part of a Special Issue "Energy Balance". Ingestive behavior in free-ranging populations of nonhuman primates is influenced by resource availability and social group organization and provides valuable insight on the evolution of ecologically adaptive behaviors and physiological systems. As captive populations were established, questions regarding proximate mechanisms that regulate food intake in these animals could be more easily addressed. The availability of these captive populations has led to the use of selected species to understand appetite control or metabolic physiology in humans. Recognizing the difficulty of quantitating food intake in free-ranging groups, the use of captive, singly-housed animals provided a distinct advantage though, at the same time, produced a different social ecology from the animals' natural habitat. However, the recent application of novel technologies to quantitate caloric intake and energy expenditure in free-feeding, socially housed monkeys permits prospective studies that can accurately define how food intake changes in response to any number of interventions in the context of a social environment. This review provides an overview of studies examining food intake using captive nonhuman primates organized into three areas: a) neurochemical regulation of food intake in nonhuman primates; b) whether exposure to specific diets during key developmental periods programs differences in diet preferences or changes the expression of feeding related neuropeptides; and c) how psychosocial factors influence appetite regulation. Because feeding patterns are driven by more than just satiety and orexigenic signals, appreciating how the social context influences pattern of feeding in nonhuman primates may be quite informative for understanding the biological complexity of feeding in humans.
Collapse
Affiliation(s)
- Mark E Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | - Carla J Moore
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Nutrition & Health Sciences, Emory University, Atlanta, GA 30322, USA
| | - Kelly F Ethun
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Zachary P Johnson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
PACAP in the BNST produces anorexia and weight loss in male and female rats. Neuropsychopharmacology 2014; 39:1614-23. [PMID: 24434744 PMCID: PMC4023158 DOI: 10.1038/npp.2014.8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 11/08/2022]
Abstract
Recent gene association studies have implicated pituitary adenylate cyclase-activating peptide (PACAP) systems in several psychiatric disorders associated with stressor exposure, and we have argued that many of the behavioral consequences of repeated stressor exposure may depend on the expression of PACAP in the bed nucleus of the stria terminalis (BNST). One behavioral consequence of the activation of stress systems can be anorexia and subsequent weight loss, and both the activation of central PACAP systems as well as neuronal activity in the BNST have also been associated with anorexic states in rodents. Hence, we investigated the regulation of food and water intake and weight loss following BNST PACAP infusion. BNST PACAP38 dose-dependently decreased body weight, as well as food and water intake in the first 24 h following infusion. Because different BNST subregions differentially regulate stress responding, we further examined the effects of PACAP38 in either the anterior or posterior BNST. Anterior BNST PACAP38 infusion did not alter weight gain, whereas posterior PACAP38 infusion resulted in weight loss. PACAP38 infused into the lateral ventricles did not alter weight, suggesting that the effects of BNST-infused PACAP were not mediated by leakage into the ventricular system. These data suggest that PACAP receptor activation in posterior BNST subregions can produce anorexia and weight loss, and corroborate growing data implicating central PACAP activation in mediating the consequences of stressor exposure.
Collapse
|
44
|
Population density-dependent hair cortisol concentrations in rhesus monkeys (Macaca mulatta). Psychoneuroendocrinology 2014; 42:59-67. [PMID: 24636502 PMCID: PMC3959662 DOI: 10.1016/j.psyneuen.2014.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 01/19/2023]
Abstract
Population density is known to influence acute measures of hypothalamic-pituitary-adrenal (HPA) axis activity in a variety of species, including fish, deer, birds, and humans. However, the effects of population density on levels of chronic stress are unknown. Given the fact that exposure to chronically elevated levels of circulating glucocorticoids results in a host of health disparities in animals and humans alike, it is important to understand how population density may impact chronic stress. We assessed hair cortisol concentrations (HCCs), which are reliable indicators of chronic HPA axis activity, in rhesus monkeys (Macaca mulatta) to determine the influence of population density on these values. In Experiment 1, we compared HCCs of monkeys living in high-density (HD; 1 monkey/0.87m(2)) and low-density (LD; 1 monkey/63.37m(2)) environments (N=236 hair samples) and found that HD monkeys exhibited higher hair cortisol across all age categories (infant, juvenile, young adult, adult, and aged) except infancy and aged (F(5)=4.240, p=0.001), for which differences were nearly significant. HD monkeys also received more severe fight wounds than LD monkeys (χ(2)=26.053, p<0.001), though no effects of dominance status emerged. In Experiment 2, we examined how HCCs change with fluctuating population levels across 5 years in the adult LD monkeys (N=155 hair samples) and found that increased population density was significantly positively correlated with HCCs in this semi-naturalistic population (r(s)=0.975, p=0.005). These are the first findings to demonstrate that increased population density is associated with increased chronic, endogenous glucocorticoid exposure in a nonhuman primate species. We discuss the implications of these findings with respect to laboratory research, population ecology, and human epidemiology.
Collapse
|
45
|
Kim YR, Kim CH, Park JH, Pyo J, Treasure J. The impact of intranasal oxytocin on attention to social emotional stimuli in patients with anorexia nervosa: a double blind within-subject cross-over experiment. PLoS One 2014; 9:e90721. [PMID: 24603863 PMCID: PMC3946210 DOI: 10.1371/journal.pone.0090721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023] Open
Abstract
Background and aim Social factors may be of importance causally and act as maintenance factors in patients with anorexia nervosa. Oxytocin is a neuromodulatory hormone involved in social emotional processing associated with attentional processes. This study aimed to examine the impact of oxytocin on attentional processes to social faces representing anger, disgust, and happiness in patients with anorexia nervosa. Method A double-blind, placebo-controlled within-subject crossover design was used. Intranasal oxytocin or placebo followed by a visual probe detection task with faces depicting anger, disgust, and happiness was administered to 64 female subjects: 31 patients with anorexia nervosa and 33 control students. Results Attentional bias to the disgust stimuli was observed in both groups under the placebo condition. The attentional bias to disgust was reduced under the oxytocin condition (a moderate effect in the patient group). Avoidance of angry faces was observed in the patient group under the placebo condition and vigilance was observed in the healthy comparison group; both of these information processing responses were moderated by oxytocin producing an increase in vigilance in the patients. Happy/smiling faces did not elicit an attentional response in controls or the patients under either the placebo or oxytocin conditions. Conclusion Oxytocin attenuated attentional vigilance to disgust in patients with anorexia nervosa and healthy controls. On the other hand, oxytocin changed the response to angry faces from avoidance to vigilance in patients but reduced vigilance to anger in healthy controls. We conclude that patients with anorexia nervosa appear to use different strategies/circuits to emotionally process anger from their healthy counterparts.
Collapse
Affiliation(s)
- Youl-Ri Kim
- Department of Neuropsychiatry, Seoul Paik Hospital, Inje University, Seoul, Republic of Korea
- * E-mail:
| | - Chan-Hyung Kim
- Department of Psychiatry, Severance Mental Hospital, Yonsei University College of Medicine, Gyeonggi Do, South Korea
| | - Jin Hong Park
- Department of Neuropsychiatry, Seoul Paik Hospital, Inje University, Seoul, Republic of Korea
- Department of Psychology, Carleton College, Northfield, Minnesota, United States of America
| | - Jimin Pyo
- Department of Neuropsychiatry, Seoul Paik Hospital, Inje University, Seoul, Republic of Korea
| | - Janet Treasure
- Section of Eating Disorders, Department of Psychological Medicine, King's College London, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
46
|
Zhou Q, Xu F, Wu Q, Gong W, Xie L, Wang T, Fang L, Yang D, Melgiri ND, Xie P. The mutual influences between depressed Macaca fascicularis mothers and their infants. PLoS One 2014; 9:e89931. [PMID: 24599092 PMCID: PMC3943858 DOI: 10.1371/journal.pone.0089931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023] Open
Abstract
Objective To assess the influence of infant rearing on the behavior of depressed adult female Macaca fascicularis and the influence of depressed infant-rearing adult female Macaca fascicularis on their infants in a free enclosure environment. Methods Here, 20 depressed subjects and then 20 healthy subjects were randomly selected from a total population of 1007 adult female Macaca fascicularis subjects. Four depressed subjects and eight healthy subjects were rearing infants. By focal observation, three trained observers video-recorded the selected subjects over a total observational period of 560 hours. The video footage was analyzed by qualified blinded analysts that coded the raw footage into quantitative behavioral data (i.e., durations of 53 pre-defined behavioral items across 12 behavioral categories) for statistical analysis. Results Between infant-rearing and non-rearing healthy subjects, ten differential behaviors distributed across five behavioral categories were identified. Between infant-rearing and non-rearing depressed subjects, nine behaviors distributed across five behavioral categories were identified. Between infant-rearing healthy and infant-rearing depressed subjects, fifteen behaviors distributed across six behavioral categories were identified. Conclusion Infant-rearing depressed adult female Macaca fascicularis subjects may have a worse psychological status as compared to non-rearing depressed counterparts. Infant rearing may negatively influence depressed Macaca fascicularis mothers. Infant-rearing depressed subjects were less adequate at raising infants as compared to infant-rearing healthy subjects. Thus, maternal depression in this macaque species may negatively impact infatile development, which is consistent with previous findings in humans.
Collapse
Affiliation(s)
- Qinming Zhou
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Qingyuan Wu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Gong
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Liang Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Tao Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Deyu Yang
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Narayan D. Melgiri
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
47
|
Michopoulos V, Diaz MP, Embree M, Reding K, Votaw JR, Mun J, Voll RJ, Goodman MM, Wilson M, Sanchez M, Toufexis D. Oestradiol alters central 5-HT1A receptor binding potential differences related to psychosocial stress but not differences related to 5-HTTLPR genotype in female rhesus monkeys. J Neuroendocrinol 2014; 26:80-8. [PMID: 24382202 PMCID: PMC3962807 DOI: 10.1111/jne.12129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
Abstract
Social subordination in female macaques represents a well-described model of chronic psychosocial stress. Additionally, a length polymorphism (5-HTTLPR) in the regulatory region of the serotonin (5-HT) transporter (5-HTT) gene (SLC6A4) is present in rhesus macaques, which has been linked to adverse outcomes similar to that described in humans with an analogous 5-HTTLPR polymorphism. The present study determined the effects of social status and the 5-HTTLPR genotype on 5-HT1A receptor binding potential (5-HT1A BP(ND)) in brain regions implicated in emotional regulation and stress reactivity in ovariectomised female monkeys, and then assessed how these effects were altered by 17β-oestradiol (E(2)) treatment. Areas analysed included the prefrontal cortex [anterior cingulate (ACC); medial prefrontal cortex (mPFC); dorsolateral prefrontal cortex; orbitofrontal prefrontal cortex], amygdala, hippocampus, hypothalamus and raphe nucleui. Positron emission tomography using p-[(18) F]MPPF was performed to determine the levels of 5-HT1A BP(ND) under a non-E(2) and a 3-week E(2) treatment condition. The short variant (s-variant) 5-HTTLPR genotype produced a significant reduction in 5-HT1A BP(ND) in the mPFC regardless of social status, and subordinate s-variant females showed a reduction in 5-HT1A BP(ND) within the ACC. Both these effects of 5-HTTLPR were unaffected by E(2). Additionally, E(2) reduced 5-HT1A BP(ND) in the dorsal raphe of all females irrespective of psychosocial stress or 5-HTTLPR genotype. Hippocampal 5-HT1A BP(ND) was attenuated in subordinate females regardless of 5-HTTLPR genotype during the non-E(2) condition, an effect that was normalised with E(2). Similarly, 5-HT1A BP(ND) in the hypothalamus was significantly lower in subordinate females regardless of 5-HTTLPR genotype, an effect reversed with E(2). Taken together, the data indicate that the effect of E(2) on modulation of central 5HT1A BP(ND) may only occur in brain regions that show no 5-HTTLPR genotype-linked control of 5-HT1A binding.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
- Department of Psychiatry & Behavioural Sciences, Emory University SOM, Atlanta, GA
| | - Maylen Perez Diaz
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Molly Embree
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Kathy Reding
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - John R. Votaw
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, USA
- Imaging Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jiyoung Mun
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, USA
- Imaging Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ronald J. Voll
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, USA
- Imaging Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mark M. Goodman
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, USA
- Imaging Core, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Mark Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Mar Sanchez
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
- Department of Psychiatry & Behavioural Sciences, Emory University SOM, Atlanta, GA
| | - Donna Toufexis
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
- Department of Psychology, University of Vermont, Burlington VT
| |
Collapse
|
48
|
Anacker AMJ, Beery AK. Life in groups: the roles of oxytocin in mammalian sociality. Front Behav Neurosci 2013; 7:185. [PMID: 24376404 PMCID: PMC3858648 DOI: 10.3389/fnbeh.2013.00185] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/14/2013] [Indexed: 12/17/2022] Open
Abstract
In recent decades, scientific understanding of the many roles of oxytocin (OT) in social behavior has advanced tremendously. The focus of this research has been on maternal attachments and reproductive pair-bonds, and much less is known about the substrates of sociality outside of reproductive contexts. It is now apparent that OT influences many aspects of social behavior including recognition, trust, empathy, and other components of the behavioral repertoire of social species. This review provides a comparative perspective on the contributions of OT to life in mammalian social groups. We provide background on the functions of OT in maternal attachments and the early social environment, and give an overview of the role of OT circuitry in support of different mating systems. We then introduce peer relationships in group-living rodents as a means for studying the importance of OT in non-reproductive affiliative behaviors. We review species differences in oxytocin receptor (OTR) distributions in solitary and group-living species of South American tuco-tucos and in African mole-rats, as well as singing mice. We discuss variation in OTR levels with seasonal changes in social behavior in female meadow voles, and the effects of OT manipulations on peer huddling behavior. Finally, we discuss avenues of promise for future investigation, and relate current findings to research in humans and non-human primates. There is growing evidence that OT is involved in social selectivity, including increases in aggression toward social outgroups and decreased huddling with unfamiliar individuals, which may support existing social structures or relationships at the expense of others. OT’s effects reach beyond maternal attachment and pair bonds to play a role in affiliative behavior underlying “friendships”, organization of broad social structures, and maintenance of established social relationships with individuals or groups.
Collapse
Affiliation(s)
| | - Annaliese K Beery
- Neuroscience Program, Smith College Northampton, MA, USA ; Departments of Psychology and Biology, Smith College Northampton, MA, USA
| |
Collapse
|
49
|
Li X, Xu F, Xie L, Ji Y, Cheng K, Zhou Q, Wang T, Shively C, Wu Q, Gong W, Fang L, Zhan Q, Melgiri ND, Xie P. Depression-like behavioral phenotypes by social and social plus visual isolation in the adult female Macaca fascicularis. PLoS One 2013; 8:e73293. [PMID: 24023857 PMCID: PMC3762720 DOI: 10.1371/journal.pone.0073293] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/18/2013] [Indexed: 01/26/2023] Open
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric mood disorder that affects millions of individuals globally. Our understanding of the biological basis of MDD is poor, and current treatments are ineffective in a significant proportion of cases. This current situation may relate to the dominant rodent animal models of depression, which possess translational limitations due to limited homologies with humans. Therefore, a more homologous primate model of depression is needed to advance investigation into the pathophysiological mechanisms underlying depression and to conduct pre-clinical therapeutic trials. Here, we report two convenient methods--social isolation and social plus visual isolation--which can be applied to construct a non-human primate model of depression in the adult female cynomolgus monkey (Macaca fascicularis). Both social and social plus visual isolation were shown to be effective in inducing depression-like behavior by significantly reducing socially dominant aggressive conflict behavior, communicative behavior, sexual behavior, and parental behavior. The addition of visual isolation produced more profound behavioral changes than social isolation alone by further reducing parental behavior and sexual behavior. Thus, the degree of behavioral pathology may be manipulated by the degree of isolation. These methods can be applied to construct a non-human primate model of depression in order to assess physiological, behavioral, and social phenomena in a controlled laboratory setting.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Fan Xu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Liang Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yongjia Ji
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Cheng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Qinmin Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Tao Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Carol Shively
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Qingyuan Wu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Wei Gong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Liang Fang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Qunlin Zhan
- Department of Neurology, the Fifth People’s Hospital, Chongqing, China
| | - N. D. Melgiri
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, and Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
50
|
Johnson ZP, Lowe J, Michopoulos V, Moore CJ, Wilson ME, Toufexis D. Oestradiol differentially influences feeding behaviour depending on diet composition in female rhesus monkeys. J Neuroendocrinol 2013; 25:729-41. [PMID: 23714578 PMCID: PMC4427903 DOI: 10.1111/jne.12054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/03/2013] [Accepted: 05/26/2013] [Indexed: 12/18/2022]
Abstract
In females, cyclical changes in the ovarian hormone oestradiol are known to modulate feeding behaviour. However, what is less clear is how these behavioural effects of oestradiol are modified by the macronutrient content of a diet. In the present study, we report data showing that oestradiol treatment results in both significantly smaller meals and a reduced total calorie intake in ovariectomised, socially-housed female rhesus macaques when only chow diet is available. Conversely, during a choice dietary condition where both palatable and chow options are available, oestradiol treatment had no observable, attenuating effect on calorie intake. During this choice dietary phase, all animals consumed more of the palatable diet than chow diet; however, oestradiol treatment appeared to further increase preference for the palatable diet. Finally, oestradiol treatment increased snacking behaviour (i.e. the consumption of calories outside of empirically defined meals), regardless of diet condition. These findings illustrate how oestradiol differentially influences feeding behaviour depending on the dietary environment and provides a framework in which we can begin to examine the mechanisms underlying these observed changes.
Collapse
Affiliation(s)
- Z P Johnson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | | | | | | | | | |
Collapse
|