1
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2025; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
2
|
Furukawa M, Izumo N, Aoki R, Nagashima D, Ishibashi Y, Matsuzaki H. Behavioural changes in young ovariectomized mice via GPR30-dependent serotonergic nervous system. Eur J Neurosci 2024; 60:5658-5670. [PMID: 39189108 DOI: 10.1111/ejn.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Fluctuations in estradiol levels at each stage of life in women are considered one of the causes of mental diseases through their effects on the central nervous system. During menopause, a decrease in estradiol levels has been reported to affect the serotonin nervous system and induce depression-like and anxiety symptoms. However, the regulation of brain and behaviour during childhood and adolescence is poorly understood. Moreover, the role of oestrogen receptors α and β in the regulation of the serotonergic nervous system has been reported, but little is known about the involvement of G protein-coupled receptor 30. Therefore, in this study, we used an ovariectomized childhood mouse model to analyse behaviour and investigate the effects on the serotonin nervous system. We showed that ovariectomy surgery at 4 weeks of age, which is the weaning period, induced a decrease in spontaneous locomotor activity during the active period and a preference for novel mice over familiar mice in the three-chamber social test at 10 weeks of age. In addition, the administration of G-1, a protein-coupled receptor 30 agonist, to ovariectomized mice suppressed spontaneous locomotor activity and the preference for novel mice. Furthermore, we demonstrated that childhood ovariectomy induces increased tryptophan hydroxylase gene expression in the raphe nucleus and increased serotonin release in the amygdaloid nucleus, and administration of G-1 ameliorated these effects. Our study suggests that G protein-coupled receptor 30-mediated regulation of serotonin synthesis is involved in changes in activity and social-cognitive behaviour due to decreased estradiol levels during childhood.
Collapse
Affiliation(s)
- Megumi Furukawa
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Suita, Japan
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama, Japan
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| | - Nobuo Izumo
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama, Japan
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama, Japan
| | - Ryoken Aoki
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Suita, Japan
- Center for Pharmaceutical Education, Yokohama University of Pharmacy, Yokohama, Japan
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| | - Daichi Nagashima
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama, Japan
- Laboratory of Clinical Pharmaceutics, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yukiko Ishibashi
- Laboratory of Drug Analysis, Yokohama University of Pharmacy, Yokohama, Japan
| | - Hideo Matsuzaki
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Suita, Japan
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| |
Collapse
|
3
|
Bendis PC, Zimmerman S, Onisiforou A, Zanos P, Georgiou P. The impact of estradiol on serotonin, glutamate, and dopamine systems. Front Neurosci 2024; 18:1348551. [PMID: 38586193 PMCID: PMC10998471 DOI: 10.3389/fnins.2024.1348551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Estradiol, the most potent and prevalent member of the estrogen class of steroid hormones and is expressed in both sexes. Functioning as a neuroactive steroid, it plays a crucial role in modulating neurotransmitter systems affecting neuronal circuits and brain functions including learning and memory, reward and sexual behaviors. These neurotransmitter systems encompass the serotonergic, dopaminergic, and glutamatergic signaling pathways. Consequently, this review examines the pivotal role of estradiol and its receptors in the regulation of these neurotransmitter systems in the brain. Through a comprehensive analysis of current literature, we investigate the multifaceted effects of estradiol on key neurotransmitter signaling systems, namely serotonin, dopamine, and glutamate. Findings from rodent models illuminate the impact of hormone manipulations, such as gonadectomy, on the regulation of neuronal brain circuits, providing valuable insights into the connection between hormonal fluctuations and neurotransmitter regulation. Estradiol exerts its effects by binding to three estrogen receptors: estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), and G protein-coupled receptor (GPER). Thus, this review explores the promising outcomes observed with estradiol and estrogen receptor agonists administration in both gonadectomized and/or genetically knockout rodents, suggesting potential therapeutic avenues. Despite limited human studies on this topic, the findings underscore the significance of translational research in bridging the gap between preclinical findings and clinical applications. This approach offers valuable insights into the complex relationship between estradiol and neurotransmitter systems. The integration of evidence from neurotransmitter systems and receptor-specific effects not only enhances our understanding of the neurobiological basis of physiological brain functioning but also provides a comprehensive framework for the understanding of possible pathophysiological mechanisms resulting to disease states. By unraveling the complexities of estradiol's impact on neurotransmitter regulation, this review contributes to advancing the field and lays the groundwork for future research aimed at refining understanding of the relationship between estradiol and neuronal circuits as well as their involvement in brain disorders.
Collapse
Affiliation(s)
- Peyton Christine Bendis
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Sydney Zimmerman
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
4
|
Power EM, Ganeshan D, Iremonger KJ. Estradiol regulates voltage-gated potassium currents in corticotropin-releasing hormone neurons. J Exp Biol 2023; 226:287072. [PMID: 36805713 PMCID: PMC10038157 DOI: 10.1242/jeb.245222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Corticotropin-releasing hormone (CRH) neurons are the primary neural population controlling the hypothalamic-pituitary-adrenal (HPA) axis and the secretion of adrenal stress hormones. Previous work has demonstrated that stress hormone secretion can be regulated by circulating levels of estradiol. However, the effect of estradiol on CRH neuron excitability is less clear. Here, we show that chronic estradiol replacement following ovariectomy increases two types of potassium channel currents in CRH neurons: fast inactivating voltage-gated A-type K+ channel currents (IA) and non-inactivating M-type K+ channel currents (IM). Despite the increase in K+ currents following estradiol replacement, there was no overall change in CRH neuron spiking excitability assessed with either frequency-current curves or current ramps. Together, these data reveal a complex picture whereby ovariectomy and estradiol replacement differentially modulate distinct aspects of CRH neuron and HPA axis function.
Collapse
Affiliation(s)
- Emmet M Power
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin9016, New Zealand
| | - Dharshini Ganeshan
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin9016, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin9016, New Zealand
| |
Collapse
|
5
|
Wnuk A, Przepiórska K, Pietrzak BA, Kajta M. Emerging Evidence on Membrane Estrogen Receptors as Novel Therapeutic Targets for Central Nervous System Pathologies. Int J Mol Sci 2023; 24:ijms24044043. [PMID: 36835454 PMCID: PMC9968034 DOI: 10.3390/ijms24044043] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Nuclear- and membrane-initiated estrogen signaling cooperate to orchestrate the pleiotropic effects of estrogens. Classical estrogen receptors (ERs) act transcriptionally and govern the vast majority of hormonal effects, whereas membrane ERs (mERs) enable acute modulation of estrogenic signaling and have recently been shown to exert strong neuroprotective capacity without the negative side effects associated with nuclear ER activity. In recent years, GPER1 was the most extensively characterized mER. Despite triggering neuroprotective effects, cognitive improvements, and vascular protective effects and maintaining metabolic homeostasis, GPER1 has become the subject of controversy, particularly due to its participation in tumorigenesis. This is why interest has recently turned toward non-GPER-dependent mERs, namely, mERα and mERβ. According to available data, non-GPER-dependent mERs elicit protective effects against brain damage, synaptic plasticity impairment, memory and cognitive dysfunctions, metabolic imbalance, and vascular insufficiency. We postulate that these properties are emerging platforms for designing new therapeutics that may be used in the treatment of stroke and neurodegenerative diseases. Since mERs have the ability to interfere with noncoding RNAs and to regulate the translational status of brain tissue by affecting histones, non-GPER-dependent mERs appear to be attractive targets for modern pharmacotherapy for nervous system diseases.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Correspondence: (A.W.); (M.K.); Tel.: +48-12-662-3339 (A.W.); +48-12-662-3235 (M.K.); Fax: +48-12-637-4500 (A.W. & M.K.)
| | | | | | - Małgorzata Kajta
- Correspondence: (A.W.); (M.K.); Tel.: +48-12-662-3339 (A.W.); +48-12-662-3235 (M.K.); Fax: +48-12-637-4500 (A.W. & M.K.)
| |
Collapse
|
6
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
7
|
Sheng JA, Tan SML, Hale TM, Handa RJ. Androgens and Their Role in Regulating Sex Differences in the Hypothalamic/Pituitary/Adrenal Axis Stress Response and Stress-Related Behaviors. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2022; 2:261-274. [PMID: 35024695 PMCID: PMC8744007 DOI: 10.1089/andro.2021.0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Androgens play a pivotal role during development. These gonadal hormones and their receptors exert organizational actions that shape brain morphology in regions controlling the stress regulatory systems in a male-specific manner. Specifically, androgens drive sex differences in the hypothalamic/pituitary/adrenal (HPA) axis and corresponding hypothalamic neuropeptides. While studies have examined the role of estradiol and its receptors in sex differences in the HPA axis and associated behaviors, the role of androgens remains far less studied. Androgens are generally thought to modulate the HPA axis through the activation of androgen receptors (ARs). They can also impact the HPA axis through reduction to estrogenic metabolites that can bind estrogen receptors in the brain and periphery. Such regulation of the HPA axis stress response by androgens can often result in sex-biased risk factors for stress-related disorders, such as anxiety and depression. This review focuses on the biosynthesis pathways and molecular actions of androgens and their nuclear receptors. The impact of androgens on hypothalamic neuropeptide systems (corticotropin-releasing hormone, arginine vasopressin, oxytocin, dopamine, and serotonin) that control the stress response and stress-related disorders is discussed. Finally, this review discusses potential therapeutics involving androgens (androgen replacement therapies, selective AR modulator therapies) and ongoing clinical trials.
Collapse
Affiliation(s)
- Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taben M Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Regulation of Serotonin 1A Receptor SUMOylation by SENP2 and PIASxα. Int J Mol Sci 2021; 22:ijms222413176. [PMID: 34947973 PMCID: PMC8706138 DOI: 10.3390/ijms222413176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/21/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
Serotonin 1A receptors (5-HT1ARs) are implicated in the control of mood, cognition, and memory and in various neuropsychiatric disorders such as depression and anxiety. As such, understanding the regulation of 5-HT1ARs will inform the development of better treatment approaches. We previously demonstrated 5-HT1ARs are SUMOylated by SUMO1 in the rat brain. Agonist stimulation increased SUMOylation and was further enhanced when combined with 17β-estradiol-3-benzoate (EB), which are treatments that cause the transient and prolonged desensitization of 5-HT1AR signaling, respectively. In the current study, we identified the protein inhibitor of activated STAT (PIAS)xα as the enzyme that facilitates SUMOylation, and SENP2 as the protein that catalyzes the deSUMOylation of 5-HT1ARs. We demonstrated that PIASxα significantly increased in the membrane fraction of rats co-treated with EB and an agonist, compared to either the EB-treated or vehicle-treated groups. The acute treatment with an agonist alone shifted the location of SENP2 from the membrane to the cytoplasmic fraction, but it has little effect on PIASxα. Hence, two separate mechanisms regulate SUMOylation and the activity of 5-HT1ARs by an agonist and EB. The effects of EB on 5-HT1AR SUMOylation and signaling may be related to the higher incidence of mood disorders in women during times with large fluctuations in estrogens. Targeting the SUMOylation of 5-HT1ARs could have important clinical relevance for the therapy for several neuropsychiatric disorders in which 5-HT1ARs are implicated.
Collapse
|
9
|
Giandalia A, Giuffrida AE, Gembillo G, Cucinotta D, Squadrito G, Santoro D, Russo GT. Gender Differences in Diabetic Kidney Disease: Focus on Hormonal, Genetic and Clinical Factors. Int J Mol Sci 2021; 22:5808. [PMID: 34071671 PMCID: PMC8198374 DOI: 10.3390/ijms22115808] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most serious complications of both type 1 (T1DM) and type 2 diabetes mellitus (T2DM). Current guidelines recommend a personalized approach in order to reduce the burden of DM and its complications. Recognizing sex and gender- differences in medicine is considered one of the first steps toward personalized medicine, but the gender issue in DM has been scarcely explored so far. Gender differences have been reported in the incidence and the prevalence of DKD, in its phenotypes and clinical manifestations, as well as in several risk factors, with a different impact in the two genders. Hormonal factors, especially estrogen loss, play a significant role in explaining these differences. Additionally, the impact of sex chromosomes as well as the influence of gene-sex interactions with several susceptibility genes for DKD have been investigated. In spite of the increasing evidence that sex and gender should be included in the evaluation of DKD, several open issues remain uncovered, including the potentially different effects of newly recommended drugs, such as SGLT2i and GLP1Ras. This narrative review explored current evidence on sex/gender differences in DKD, taking into account hormonal, genetic and clinical factors.
Collapse
Affiliation(s)
- Annalisa Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| | - Alfio Edoardo Giuffrida
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (G.G.); (D.S.)
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (G.G.); (D.S.)
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Domenico Cucinotta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.E.G.); (G.G.); (D.S.)
| | - Giuseppina T. Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (A.G.); (D.C.); (G.S.)
| |
Collapse
|
10
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
Roque C, Mendes-Oliveira J, Duarte-Chendo C, Baltazar G. The role of G protein-coupled estrogen receptor 1 on neurological disorders. Front Neuroendocrinol 2019; 55:100786. [PMID: 31513775 DOI: 10.1016/j.yfrne.2019.100786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023]
Abstract
G protein-coupled estrogen receptor 1 (GPER) is a membrane-associated estrogen receptor (ER) associated with rapid estrogen-mediated effects. Over recent years GPER emerged has a potential therapeutic target to induce neuroprotection, avoiding the side effects elicited by the activation of classical ERs. The putative neuroprotection triggered by GPER selective activation was demonstrated in mood disorders, Alzheimer's disease or Parkinson's disease of male and female in vivo rodent models. In others, like ischemic stroke, the results are contradictory and currently there is no consensus on the role played by this receptor. However, it seems clear that sex is a biological variable that may impact the results. The major objective of this review is to provide an overview about the physiological effects of GPER in the brain and its putative contribution in neurodegenerative disorders, discussing the data about the signaling pathways involved, as well as, the diverse effects observed.
Collapse
Affiliation(s)
- C Roque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - J Mendes-Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - C Duarte-Chendo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - G Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
12
|
Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis' response to stress: an important role for gonadal hormones. Neuropsychopharmacology 2019; 44:45-58. [PMID: 30111811 PMCID: PMC6235871 DOI: 10.1038/s41386-018-0167-9] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine network that controls hormonal responses to internal and external challenges in an organism's environment, exhibits strikingly sex-biased activity. In adult female rodents, acute HPA function following a stressor is markedly greater than it is in males, and this difference has largely been attributed to modulation by the gonadal hormones testosterone and estradiol. These gonadal hormones are produced by the hypothalamic-pituitary-gonadal (HPG) axis and have been shown to determine sex differences in adult HPA function after acute stress via their activational and organizational effects. Although these actions of gonadal hormones are well supported, the possibility that sex chromosomes similarly influence HPA activity is unexplored. Moreover, questions remain regarding sex differences in the activity of the HPA axis following chronic stress and the underlying contributions of gonadal hormones and sex chromosomes. The present review examines what is currently known about sex differences in the neuroendocrine response to stress, as well as outstanding questions regarding this sex bias. Although it primarily focuses on the rodent literature, a brief discussion of sex differences in the human HPA axis is also included.
Collapse
Affiliation(s)
- Ashley L. Heck
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Robert J. Handa
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
13
|
Adhya D, Annuario E, Lancaster MA, Price J, Baron‐Cohen S, Srivastava DP. Understanding the role of steroids in typical and atypical brain development: Advantages of using a "brain in a dish" approach. J Neuroendocrinol 2018; 30:e12547. [PMID: 29024164 PMCID: PMC5838783 DOI: 10.1111/jne.12547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/02/2023]
Abstract
Steroids have an important role in growth, development, sexual differentiation and reproduction. All four classes of steroids, androgens, oestrogens, progestogens and glucocorticoids, have varying effects on the brain. Androgens and oestrogens are involved in the sexual differentiation of the brain, and also influence cognition. Progestogens such as progesterone and its metabolites have been shown to be involved in neuroprotection, although their protective effects are timing-dependent. Glucocorticoids are linked with stress and memory performance, also in a dose- and time-dependent manner. Importantly, dysfunction in steroid function has been implicated in the pathogenesis of disease. Moreover, regulating steroid-signalling has been suggested as potential therapeutic avenue for the treatment of a number of neurodevelopmental, psychiatric and neurodegenerative disorders. Therefore, clarifying the role of steroids in typical and atypical brain function is essential for understanding typical brain functions, as well as determining their potential use for pharmacological intervention in the atypical brain. However, the majority of studies have thus far have been conducted using animal models, with limited work using native human tissue or cells. Here, we review the effect of steroids in the typical and atypical brain, focusing on the cellular, molecular functions of these molecules determined from animal models, and the therapeutic potential as highlighted by human studies. We further discuss the promise of human-induced pluripotent stem cells, including advantages of using three-dimensional neuronal cultures (organoids) in high-throughput screens, in accelerating our understanding of the role of steroids in the typical brain, and also with respect to their therapeutic value in the understanding and treatment of the atypical brain.
Collapse
Affiliation(s)
- D. Adhya
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - E. Annuario
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | | | - J. Price
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
- National Institute for Biological Standards and ControlSouth MimmsUK
| | - S. Baron‐Cohen
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
| | - D. P. Srivastava
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
14
|
Lu CL, Herndon C. New roles for neuronal estrogen receptors. Neurogastroenterol Motil 2017; 29. [PMID: 28597596 DOI: 10.1111/nmo.13121] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/02/2017] [Indexed: 02/08/2023]
Abstract
Estrogens encompass steroid hormones which display physiological roles not only in the female reproductive system but also in other organ systems of non-reproductive controls, including the peripheral and central nervous systems. Traditionally, estrogen signals in neurons through a "genomic pathway": binding to estrogen receptors (ERs) which then interact with nuclear estrogen response elements to initiate transcription. This effect is usually delayed at onset (within several hours to days) and prolonged in duration. In addition to these classical ERs, recent data suggest that other ERs function through pregenomic signaling pathways. Estrogen's pregenomic pathways cause intracellular changes within seconds to minutes and go through a novel, 7-transmembrane spanning G protein-coupled receptor (GPER, formerly known as GPR30). In this review, we will briefly cover the cellular and molecular mechanisms of GPER and then discuss newly discovered roles of GPER in cognition, depression, homeostasis, pain processing, and other associated neuronal functions.
Collapse
Affiliation(s)
- C-L Lu
- Institute of Brain Science, Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - C Herndon
- University of California, Los Angeles
| |
Collapse
|
15
|
Borrow AP, Handa RJ. Estrogen Receptors Modulation of Anxiety-Like Behavior. VITAMINS AND HORMONES 2016; 103:27-52. [PMID: 28061972 DOI: 10.1016/bs.vh.2016.08.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems.
Collapse
Affiliation(s)
- A P Borrow
- Colorado State University, Fort Collins, CO, United States
| | - R J Handa
- Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
16
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
17
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
18
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
19
|
Kwon O, Kang ES, Kim I, Shin S, Kim M, Kwon S, Oh SR, Ahn YS, Kim CH. GPR30 mediates anorectic estrogen-induced STAT3 signaling in the hypothalamus. Metabolism 2014; 63:1455-61. [PMID: 25200186 DOI: 10.1016/j.metabol.2014.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 07/12/2014] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Estrogen plays an important role in the control of energy balance in the hypothalamus. Leptin-independent STAT3 activation (i.e., tyrosine(705)-phosphorylation of STAT3, pSTAT3) in the hypothalamus is hypothesized as the primary mechanism of the estrogen-induced anorexic response. However, the type of estrogen receptor that mediates this regulation is unknown. We investigated the role of the G protein-coupled receptor 30 (GPR30) in estradiol (E2)-induced STAT3 activation in the hypothalamus. MATERIALS/METHODS Regulation of STAT3 activation by E2, G-1, a specific agonist of GPR30 and G-15, a specific antagonist of GPR30 was analyzed in vitro and in vivo. Effect of GPR30 activation on eating behavior was analyzed in vivo. RESULTS E2 stimulated pSTAT3 in cells expressing GPR30, but not expressing estrogen receptor ERα and ERβ. G-1 induced pSTAT3, and G-15 inhibited E2-induced pSTAT3 in primary cultures of hypothalamic neurons. A cerebroventricular injection of G-1 increased pSTAT3 in the arcuate nucleus of mice, which was associated with a decrease in food intake and body weight gain. CONCLUSIONS These results suggest that GPR30 is the estrogen receptor that mediates the anorectic effect of estrogen through the STAT3 pathway in the hypothalamus.
Collapse
Affiliation(s)
- Obin Kwon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Insook Kim
- Division of Metabolic Disease, Department of Biomedical Science, National Institutes of Health, Osong, Korea
| | - Sora Shin
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mijung Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Somin Kwon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - So Ra Oh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Soo Ahn
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea.
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Borrow AP, Cameron NM. Estrogenic mediation of serotonergic and neurotrophic systems: implications for female mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:13-25. [PMID: 24865152 DOI: 10.1016/j.pnpbp.2014.05.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/17/2023]
Abstract
Clinical research has demonstrated a significant sex difference in the occurrence of depressive disorders. Beginning at pubertal onset, women report a higher incidence of depression than men. Women are also vulnerable to the development of depressive disorders such as premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression. These disorders are associated with reproductive stages involving changes in gonadal hormone levels. Specifically, female depression and female affective behaviors are influenced by estradiol levels. This review argues two major mechanisms by which estrogens influence depression and depressive-like behavior: through interactions with neurotrophic factors and through an influence on the serotonergic system. In particular, estradiol increases brain derived neurotrophic factor (BDNF) levels within the brain, and alters serotonergic expression in a receptor subtype-specific manner. We will take a regional approach, examining these effects of estrogens in the major brain areas implicated in depression. Finally, we will discuss the gaps in our current knowledge of the effects of estrogens on female depression, and the potential utility for estrogen receptor modulators in treatment for this disorder.
Collapse
|
21
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
22
|
Li Q, He TC. Recombinant Adenovirus in Neurobiology. NEUROMETHODS 2014:11-25. [DOI: 10.1007/978-1-62703-610-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
McAllister CE, Mi Z, Mure M, Li Q, Muma NA. GPER1 stimulation alters posttranslational modification of RGSz1 and induces desensitization of 5-HT1A receptor signaling in the rat hypothalamus. Neuroendocrinology 2014; 100:228-39. [PMID: 25402859 PMCID: PMC4305009 DOI: 10.1159/000369467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/18/2014] [Indexed: 12/28/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal axis is a consistent biological characteristic of depression, and response normalization coincides with clinical responsiveness to antidepressant medications. Desensitization of serotonin 1A receptor (5-HT1AR) signaling in the hypothalamic paraventricular nucleus of the hypothalamus (PVN) follows selective serotonin reuptake inhibitor (SSRI) antidepressant treatment and contributes to the antidepressant response. Estradiol alone produces a partial desensitization of 5-HT1AR signaling and synergizes with SSRIs to result in a complete and more rapid desensitization than with SSRIs alone as measured by a decrease in the oxytocin and adrenocorticotrophic hormone (ACTH) responses to 5-HT1AR stimulation. G protein-coupled estrogen receptor 1 (GPER1) is necessary for estradiol-induced desensitization of 5-HT1AR signaling, although the underlying mechanisms are still unclear. We now find that stimulation of GPER1 with the selective agonist G-1 and nonselective stimulation of estrogen receptors dramatically alter isoform expression of a key component of the 5-HT1AR signaling pathway, RGSz1, a GTPase-activating protein selective for Gαz, the Gα subunit necessary for 5-HT1AR-mediated hormone release. RGSz1 isoforms are differentially glycosylated, SUMOylated, and phosphorylated, and differentially distributed in subcellular organelles. High-molecular-weight RGSz1 is SUMOylated and glycosylated, localized to the detergent-resistant microdomain (DRM) of the cell membrane, and increased by estradiol and G-1 treatment. Because activated Gαz also localizes to the DRM, increased DRM-localized RGSz1 by estradiol and G-1 could reduce Gαz activity, functionally uncoupling 5-HT1AR signaling. Peripheral G-1 treatment produced a partial reduction in oxytocin and ACTH responses to 5-HT1AR stimulation similar to direct injections into the PVN. Together, these results identify GPER1 and RGSz1 as novel targets for the treatment of depression.
Collapse
Affiliation(s)
| | - Zhen Mi
- Department of Pharmacology and Toxicology, University of Kansas
| | - Minae Mure
- Department of Chemistry, University of Kansas
| | - Qian Li
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine
| | - Nancy A Muma
- Department of Pharmacology and Toxicology, University of Kansas
- Corresponding Author: Nancy A. Muma, Malott Hall Rm 5064, 1251 Wescoe Hall Dr., Lawrence, KS 66045-7572, , Telephone: +1 785 864 4002, Fax: +1 785 864 5219
| |
Collapse
|
24
|
Li Q, Muma NA. Estradiol potentiates 8-OH-DPAT-induced sumoylation of 5-HT₁A receptor: characterization and subcellular distribution of sumoylated 5-HT₁A receptors. Psychoneuroendocrinology 2013; 38:2542-53. [PMID: 23786880 PMCID: PMC3797200 DOI: 10.1016/j.psyneuen.2013.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
Sumoylation is a recently described post-translational modification and only a few sumoylated neurotransmitter receptors are known. Through the present studies, we discovered that serotonin1A receptors (5-HT1A-Rs) can be sumoylated by SUMO1 (small-ubiquitin-related modifier 1) protein. The SUMO1-5-HT1A-R is ∼55kDa, is located in the membrane fraction, but not the cytosol, and is distributed in all of the brain regions expressing 5-HT1A-Rs examined. Acute stimulation of 5-HT1A-Rs significantly increased SUMO1-5-HT1A-R in rat hypothalamus. Pre-treatment with estradiol for 2 days, which causes a partial desensitization of 5-HT1A-R signaling, potentiated agonist-induced increases in SUMO1-5-HT1A-Rs in the hypothalamus of ovariectomized rats. Using discontinuous gradient centrifugation followed by digitonin treatment, we found that the majority of SUMO1-5-HT1A-Rs is co-localized with endoplasmic-reticulum and trans-Golgi-network markers. Although a small proportion of SUMO1-5-HT1A-Rs are located in the detergent resistant microdomain (DRM) that contain active G-protein coupled receptors, their distribution was different from that of the Gαz protein that couples to the receptors. These data suggest that the SUMO1-5-HT1A-Rs are an inactive form of 5-HT1A-Rs, a finding further supported by results showing minimal 5-HT1A-R agonist binding to SUMO1-5-HT1A-Rs. Furthermore, SUMO1-5-HT1A-Rs in the DRM were increased by treatment with a 5-HT1A-R agonist, 8-OH-DPAT ((+)8-hydroxy-2-dipropylaminotetralin). Together, these data suggest that sumoylation of 5-HT1A-Rs may be related to 5-HT1A-R trafficking and internalization, which may contribute to 5-HT1A-R desensitization. Since 5-HT1A-Rs play an important role in mood regulation, the present results significantly impact on the understanding of the pathogenesis of affective disorders and development of better therapeutic approaches for these diseases.
Collapse
Affiliation(s)
| | - Nancy A. Muma
- Corresponding author: Nancy A. Muma, Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 5064 Malott Hall, Lawrence, Kansas 66045, , Phone: 785-864-4002, Fax: 785-864-5219
| |
Collapse
|
25
|
Li Q, Sullivan NR, McAllister CE, Van de Kar LD, Muma NA. Estradiol accelerates the effects of fluoxetine on serotonin 1A receptor signaling. Psychoneuroendocrinology 2013; 38:1145-57. [PMID: 23219224 PMCID: PMC3610798 DOI: 10.1016/j.psyneuen.2012.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 11/17/2022]
Abstract
A major problem with current anti-depressant therapy is that it takes on average 6-7 weeks for remission. Since desensitization of serotonin (5-HT)1A receptor signaling contributes to the anti-depressive response, acceleration of the desensitization may reduce this delay in response to antidepressants. The purpose of the present study was to test the hypothesis that estradiol accelerates fluoxetine-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus (PVN) of rats, via alterations in components of the 5-HT1A receptor signaling pathway. Ovariectomized rats were injected with estradiol and/or fluoxetine, then adrenocorticotropic hormone (ACTH) and oxytocin responses to a 5-HT1A receptor agonist (+)-8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT) were examined to assess the function of 5-HT1A receptors in the PVN. Treatment with estradiol for either 2 or 7 days or fluoxetine for 2 days produced at most a partial desensitization of 5-HT1A receptor signaling, whereas 7 days of fluoxetine produced full desensitization. Combined treatment with estradiol and fluoxetine for 2 days produced nearly a full desensitization, demonstrating an accelerated response compared to either treatment alone. With two days of combined treatments, estradiol prevented the fluoxetine-induced increase in 5-HT1A receptor protein, which could contribute to the more rapid desensitization. Furthermore, EB treatment for 2 days decreased the abundance of the 35 kD Gαz protein which could contribute to the desensitization response. We found two isoforms of Gαz proteins with molecular mass of 35 and 33 kD, which differentially distributed in the detergent resistant microdomain (DRM) and in Triton X-100 soluble membrane region, respectively. The 35 kD Gαz proteins in the DRM can be sumoylated by SUMO1. Stimulation of 5-HT1A receptors with 8-OH-DPAT increases the sumoylation of Gαz proteins and reduces the 33 kD Gαz proteins, suggesting that these responses may be related to the desensitization of 5-HT1A receptors. Treatment with estradiol for 2 days also reduced the levels of the G-protein coupled estrogen receptor GPR30, possibly limiting to the ability of estradiol to produce only a partial desensitization response. These data provide evidence that estradiol may be effective as a short-term adjuvant to SSRIs to accelerate the onset of therapeutic effects.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Nicole R. Sullivan
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Carrie E. McAllister
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS
| | - Louis D Van de Kar
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS,Corresponding author: Nancy A. Muma, Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 5064 Malott Hall, Lawrence, Kansas 66045, , Phone: 785-864-4002, Fax: 785-864-5219
| |
Collapse
|
26
|
Ruiz-Palmero I, Hernando M, Garcia-Segura LM, Arevalo MA. G protein-coupled estrogen receptor is required for the neuritogenic mechanism of 17β-estradiol in developing hippocampal neurons. Mol Cell Endocrinol 2013; 372:105-15. [PMID: 23545157 DOI: 10.1016/j.mce.2013.03.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 02/28/2013] [Accepted: 03/21/2013] [Indexed: 01/29/2023]
Abstract
Estradiol promotes neuritogenesis in developing hippocampal neurons by a mechanism involving the upregulation of neurogenin 3, a Notch-regulated transcription factor. In this study we have explored whether G-protein coupled estrogen receptor 1 (GPER) participates in this hormonal action. GPER agonists (17β-estradiol, G1, ICI 182,780) increased neurogenin 3 expression and neuritogenesis in mouse primary hippocampal neurons and this effect was blocked by the GPER antagonist G15 and by a siRNA for GPER. In addition, GPER agonists increased Akt phosphorylation in ser473, which is indicative of the activation of phosphoinositide-3-kinase (PI3K). G15 or GPER silencing prevented the estrogenic induction of Akt phosphorylation. Furthermore, the PI3K inhibitor wortmannin prevented the effect of G1 and estradiol on neurogenin 3 expression and the effect of estradiol on neuritogenesis. These findings suggest that GPER participates in the control of hippocampal neuritogenesis by a mechanism involving the activation of PI3K signaling.
Collapse
|