1
|
Lizama-Schmeisser N, de Castro ES, Espinoza-Carniglia M, Herrera Y, Silva-de La Fuente MC, Lareschi M, Moreno L. Are Rattus rattus fleas invasive? Evaluation of flea communities in invasive and native rodents in Chile. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:599-613. [PMID: 38958518 DOI: 10.1111/mve.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Co-invasion, characterized by the simultaneous introduction of hosts and parasites with the latter establishing themselves in native hosts, is a phenomenon of ecological concern. Rattus rattus, a notorious invasive species, has driven the extinction and displacement of numerous avian and mammalian species and serves as a key vector for diseases affecting both humans and wildlife. Among the parasites hosted by R. rattus are fleas, which exhibit obligate parasitic behaviour, a generalist nature and high prevalence, increasing the likelihood of flea invasion. Simultaneously, invasive species can serve as hosts for native parasites, leading to potential amplification or dilution of parasite populations in the environment. In Chile, R. rattus has been present since the 17th century because of the arrival of the Spanish colonizers through the ports and has spread throughout urban, rural and wild Chilean territories. This study aims to evaluate whether co-invasion of native fleas of invasive rats occurs on native rodents in Chile and to determine whether black rats have acquired flea native to Chile during their invasion. For this, we captured 1132 rodents from 26 localities (20° S-53° S). Rattus rattus was found coexisting with 11 native rodent species and two species of introduced rodents. Among the native rodents, Abrothrix olivacea and Oligoryzomys longicaudatus exhibited more extensive sympatry with R. rattus. We identified 14 flea species associated with R. rattus, of which only three were native to rats: Xenopsylla cheopis, Leptopsylla segnis and Nosopsyllus fasciatus. These three species presented a higher parasite load in black rats compared to native fleas. Leptopsylla segnis and N. fasciatus were also found associated with native rodent species that cohabit with R. rattus. The remaining species associated with R. rattus were fleas of native rodents, although they were less abundant compared to those associated with native rodents, except for Neotyphloceras pardinasi and Sphinctopsylla ares. Although there has been evidence of flea transmission from rats to native species, the prevalence and abundance were relatively low. Therefore, it cannot be definitively concluded that these fleas have established themselves in native rodent populations, and hence, they cannot be classified as invasive fleas. This study underscores R. rattus' adaptability to diverse environmental and geographical conditions in Chile, including its capacity to acquire fleas from native rodents. This aspect has critical implications for public health, potentially facilitating the spread of pathogens across various habitats where these rats are found.
Collapse
Affiliation(s)
- Nicol Lizama-Schmeisser
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Elaine Serafin de Castro
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Mario Espinoza-Carniglia
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CONICET CCT-La Plata-UNLP), La Plata, Argentina
| | - Yessica Herrera
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | | | - Marcela Lareschi
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CONICET CCT-La Plata-UNLP), La Plata, Argentina
| | - Lucila Moreno
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
2
|
Veiga J, Baltà O, Figuerola J. Does bird life-history influence the prevalence of ticks? A citizen science study in North East Spain. One Health 2024; 18:100718. [PMID: 38644969 PMCID: PMC11026695 DOI: 10.1016/j.onehlt.2024.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
After mosquitoes, ticks are among the most important vector of pathogens of concern for animal and public health, but unless mosquitoes ticks remain attached to their hosts for long time periods providing an opportunity to analyse their role in the dispersal and dynamics of different zoonotic pathogens. Given their interest in public health it is important to understand which factors affect their incidence in different hosts and to stablish effective surveillance programs to determine the risk of transmission and spill-over of zoonotic pathogens. Taking benefit of a large network of volunteer ornithologists, we analysed the life-history traits associated to the presence of ticks using information of 620,609 individuals of 231 avian species. Bird phylogeny, locality and year explained a large amount of variance in tick prevalence. Non-colonial species non breeding in grasslands and non-spending the non-breeding season as gregarious groups or isolated individuals (e.g. thrushes, quails and finches) had the higher prevalence of ticks and appear as good candidates for zoonosis surveillance programs based on the analyses of ticks collected from wild birds. Ringers underestimated tick prevalence but can be considered as an important source of information of ticks for public and animal health surveillance programs if properly trained for the detection and collection of the different tick development phases.
Collapse
Affiliation(s)
- Jesus Veiga
- Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Oriol Baltà
- Institut Català d'Ornitologia, Barcelona, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana – CSIC, Sevilla, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
Aguilar-Aguilar R, Martorelli S. PREVALENCE OF OPECOELID TREMATODES (TREMATODA: DIGENEA: OPECOELIDAE) IN THE WOOLLY SCULPIN CLINOCOTTUS ANALIS FROM THE PACIFIC COAST OF THE BAJA CALIFORNIA PENINSULA. J Parasitol 2024; 110:195-199. [PMID: 38725304 DOI: 10.1645/23-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Prevalence values for 3 digenean species of the family Opecoelidae were calculated during a half-year period from 20 individuals per month of the fish species Clinocottus analis, collected from an intertidal environment of Baja California, Mexico. Trematode species recovered were Opecoelus adsphaericus, Opecoelus cameroni, and Opecoelus pacificus. Of these, only O. adsphaericus was present throughout the study, whereas O. pacificus and O. cameroni were recorded for 1 or 2 mo, respectively, exhibiting relatively low prevalence values. The decrease in prevalence of O. adsphaericus coincides with the appearance of O. pacificus and O. cameroni; these last 2 species were found only in the largest hosts, and their presence represents new records for Mexican marine fauna.
Collapse
Affiliation(s)
- Rogelio Aguilar-Aguilar
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.P. 04510, Ciudad Universitaria, México City, Mexico
| | - Sergio Martorelli
- Centro de Estudios Parasitológicos y de Vectores, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, boulevard 120 s/n e/60 y 64, La Plata, Argentina
| |
Collapse
|
4
|
Ferraguti M, Magallanes S, Mora-Rubio C, Bravo-Barriga D, Marzal A, Hernandez-Caballero I, Aguilera-Sepúlveda P, Llorente F, Pérez-Ramírez E, Guerrero-Carvajal F, Jiménez-Clavero MÁ, Frontera E, Ortiz JA, de Lope F. Implications of migratory and exotic birds and the mosquito community on West Nile virus transmission. Infect Dis (Lond) 2024; 56:206-219. [PMID: 38160682 DOI: 10.1080/23744235.2023.2288614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Vector-borne diseases like West Nile virus (WNV) pose a global health challenge, with rising incidence and distribution. Culex mosquitoes are crucial WNV vectors. Avian species composition and bird community diversity, along with vector communities, influence WNV transmission patterns. However, limited knowledge exists on their impact in southwestern Spain, an area with active WNV circulation in wild birds, mosquitoes, and humans. METHODS To address this, we conducted a comprehensive study investigating the contributions of migratory and exotic bird species to WNV transmission and the influence of mosquito community composition. RESULTS Analysing 1194 serum samples from 44 avian species, we detected WNV antibodies in 32 samples from 11 species, four for the first time in Europe. Migratory birds had higher WNV exposure likelihood than native and exotic species, and higher phylogenetic diversity in bird communities correlated with lower exposure rates. Moreover, in 5859 female mosquitoes belonging to 12 species, we identified WNV competent vectors like Cx. pipiens s.l. and the Univittatus subgroup. Birds with WNV antibodies were positively associated with competent vector abundance, but negatively with overall mosquito species richness. CONCLUSIONS These findings highlight the complex interactions between bird species, their phylogenetics, and mosquito vectors in WNV transmission. Understanding these dynamics will help to implement effective disease control strategies in southwestern Spain.
Collapse
Affiliation(s)
- Martina Ferraguti
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sergio Magallanes
- Estación Biológica de Doñana (EBD), CSIC, Departamento de Biología de la Conservación y Cambio Global, Seville, Spain
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carlos Mora-Rubio
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | - Daniel Bravo-Barriga
- Universidad de Córdoba, Departamento de Sanidad Animal, Grupo de Investigación en Zoonosis y Sanidad Animal (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Córdoba, Spain
- Universidad de Extremadura, Facultad de Veterinaria, Departamento de Sanidad Animal, Parasitología, Cáceres, Spain
| | - Alfonso Marzal
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | - Irene Hernandez-Caballero
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| | | | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | | | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Eva Frontera
- Universidad Nacional de San Martín, Grupo de Investigaciones en Fauna Silvestre, Tarapoto, Perú
| | | | - Florentino de Lope
- Universidad de Extremadura, Facultad de Biología, Departamento de Anatomía, Biología Celular y Zoología, Badajoz, Spain
| |
Collapse
|
5
|
Dubiec A, Atamas N, Ledwoń M. Very low prevalence of haemosporidian parasites in two species of marsh terns. Parasitol Res 2023; 122:3063-3075. [PMID: 37907627 PMCID: PMC10667446 DOI: 10.1007/s00436-023-07997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
Vector-transmitted haemosporidians are among the most common parasites in birds, but our knowledge of the inter-specific patterns of infection rates and the parasite community composition is far from complete because of the unequal distribution of the screening effort across bird families and genera. To assess infection rates and the diversity of haemosporidians from the genera Plasmodium, Haemoproteus, and Leucocytozoon in marsh terns, which represent poorly explored in this regard genus of the family gulls, terns, and skimmers (Laridae), we screened two species: the Whiskered Tern (Chlidonias hybrida) and the Black Tern (Chlidonias niger). We sampled these long-distance migratory birds on breeding grounds: the Whiskered Tern in south-central Poland and north-central Ukraine, and the Black Tern-in north-central Ukraine. We found that birds from both species were infected only sporadically, with prevalence at the population level not exceeding 3.4%. Only parasites from the genera Plasmodium and Leucocytozoon were detected. There was neither an inter-specific difference nor a difference between populations of the Whiskered Tern in infection rates. In total, we registered three lineages-one Plasmodium and two Leucocytozoon-that were previously recorded in other bird species, and two unidentified Plasmodium infections. One of the lineages (Leucocytozoon LARCAC02) represents a specialist parasite with the host range restricted to larids and geographic range restricted to Poland, and two others (Plasmodium SGS1 and Leucocytozoon CIAE02) represent generalist parasites with very broad host and geographic ranges. This study reinforces the existing evidence that terns host parasites from genera Haemoproteus, Plasmodium, and Leucocytozoon only sporadically.
Collapse
Affiliation(s)
- Anna Dubiec
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland.
| | - Natalia Atamas
- Department of Animal Monitoring and Conservation, Laboratory of Population Ecology, I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnytskoho Str., 15, Kyiv, 01601, Ukraine
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Cracow, Poland
| |
Collapse
|
6
|
Reinhard KJ, Arriaza B, Avery WA, Buikstra J, Camacho M, Goodman E, Obafunwa J, Owen B, Teixeira-Santos I. PALEOEPIDEMIOLOGY OF DIPHYLLOBOTHRIOSIS: CULTURAL AND ENVIRONMENTAL FACTORS AFFECTING ADENOCEPHALUS INTENSITY AND PREVALENCE. J Parasitol 2023; 109:565-573. [PMID: 38018746 DOI: 10.1645/19-115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Peruvian and Chilean mummies and coprolites provide a source of population-based parasitological information. This is especially true of the fish tapeworm, Adenocephalus pacificus. Our analysis of Chinchorro and Chiribaya mummies and diversified coprolite samples from Chile and Peru show variation in infection. There is a statistically significant difference in prevalence between Chinchorro hunter-gatherer and Chiribaya mixed-subsistence contexts. Furthermore, the most pronounced differences occur between populations within these groups. Chinchorro differences in cemeteries at the same location can be related to El Niño-Southern Oscillation variations. Pronounced prevalence variations between 3 Chiribaya villages within 7 km of each other relate to fish distribution and preparation variation. As with other recent archaeoparasitology studies, eggs-per-gram data exhibit overdispersion.
Collapse
Affiliation(s)
- Karl J Reinhard
- Harold W. Manter Laboratory of Parasitology, W 529 Nebraska Hall, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Bernardo Arriaza
- Instituto de Alta Investigación, Universidad de Tarapacá, Antofagasta 1520, Arica, Chile 582230334
| | - William Alexander Avery
- Nelson Institute for Environmental Studies, Freshwater & Marine Sciences, 122 Science Hall, 550 North Park Street, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jane Buikstra
- School of Evolution and Social Change, Room 233, Arizona State University, Tempe, Arizona 85287
| | - Morgana Camacho
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Leopoldo Bulhões 1.480-Manguinhos, Rio de Janeiro, RJ, Brazil, CEP: 21040-360
| | - Elizabeth Goodman
- Center for the Recovery and Identification of the Missing at University of Illinois Chicago; 601 S. Morgan Street, Chicago, Illinois 60607
| | - John Obafunwa
- Harold W. Manter Laboratory of Parasitology, W 529 Nebraska Hall, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Bruce Owen
- Anthropological Studies Center, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, California 94928
| | - Isabel Teixeira-Santos
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Leopoldo Bulhões 1.480-Manguinhos, Rio de Janeiro, RJ, Brazil, CEP: 21040-360
| |
Collapse
|
7
|
Ilahiane L, Colominas-Ciurò R, Bize P, Boano G, Cucco M, Ferri M, Masoero G, Meier CM, Pavia M, Ramello G, Voelker G, Pellegrino I. Molecular investigation on infection by haemosporidians in three Western Palearctic species of swift (Apodidae) and their ectoparasitic louse flies. Parasitol Res 2023:10.1007/s00436-023-07874-8. [PMID: 37233815 DOI: 10.1007/s00436-023-07874-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Swifts (Apodidae) are an unusual group of birds that spend most of their lives in flight, landing only when breeding. Although this aerial lifestyle greatly reduces their likelihood of being bitten by vectors and infected by vector-born parasites, swifts can still be heavily infested during breeding by nest-based vectors such as louse flies (Hippoboscidae). Here, we investigated host, vector, and vector-borne parasite relationships in the three most widespread swift species in the Western Palearctic (WP): common swifts (Apus apus), pallid swifts (A. pallidus), and alpine swifts (Tachymarptis melba), their nest-based louse flies (Crataerina pallida and C. melbae) and avian haemosporidians (genera Haemoproteus, Plasmodium, and Leucocytozoon). Studies of haemosporidian infections in Apodidae remain limited, with clear evidence of infection found to date in just four Neotropical and one Australasian species. The possible role of louse flies in transmitting haemosporidian infections has never been tested in swifts. We assessed the occurrence of haemosporidian infection by PCR screenings of DNA from blood samples from 34 common swifts and 44 pallid swifts from Italy, and 45 alpine swifts from Switzerland. We also screened 20 ectoparasitic louse flies present on 20 birds and identified them by both morphological features and cytochrome oxidase subunit 1 (COI) barcodes. Our results provide no evidence of haemosporidian infection in the 123 swifts tested or in the two louse fly species we identified. Our findings are consistent with available knowledge showing no haemosporidian occurrence in WP swift species and that the most likely infection route for these highly aerial species (via louse fly ectoparasites during nesting) is unlikely.
Collapse
Affiliation(s)
- Luca Ilahiane
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, Vercelli, Italy.
| | - Roger Colominas-Ciurò
- Department Ecology, Physiology & Ethology, CNRS, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, UMR, 7178, Strasbourg, France
| | - Pierre Bize
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Giovanni Boano
- Museo Civico di Storia Naturale di Carmagnola, Carmagnola, Italy
| | - Marco Cucco
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, Vercelli, Italy.
| | - Mauro Ferri
- AsOER - Associazione Ornitologi Emilia-Romagna, Bologna, Italy
| | - Giulia Masoero
- Department of Biology, University of Ottawa, Ottawa, Canada
| | | | - Marco Pavia
- Museo di Geologia e Paleontologia, Dipartimento di Scienze della Terra, University of Torino, Torino, Italy
| | - Gloria Ramello
- Museo Civico di Storia Naturale di Carmagnola, Carmagnola, Italy
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Gary Voelker
- Department of Ecology and Conservation Biology, Biodiversity Research and Teaching Collections, Texas A&M University, College Station, TX, USA
| | - Irene Pellegrino
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, Vercelli, Italy
| |
Collapse
|
8
|
Aydin C, Pekmezci GZ. Molecular identification and infection levels of Anisakis species (Nematoda: Anisakidae) in the red scorpionfish Scorpaena scrofa (Scorpaenidae) from the Aegean Sea. Parasitol Int 2023; 92:102691. [DOI: 10.1016/j.parint.2022.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
|
9
|
Gutiérrez-López R, Figuerola J, Martínez-de la Puente J. Methodological procedures explain observed differences in the competence of European populations of Aedes albopictus for the transmission of Zika virus. Acta Trop 2023; 237:106724. [DOI: 10.1016/j.actatropica.2022.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022]
|
10
|
Molecular assays for determining sulphadoxine-pyrimethamine drug resistance in India: a systematic review. Parasitol Res 2022; 121:2765-2774. [PMID: 35980472 DOI: 10.1007/s00436-022-07623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
A plethora of studies analyse the molecular markers of drug resistance and hence help in guiding the evidence-based malaria treatment policies in India. For reporting mutations, a number of techniques including DNA sequencing, restriction-fragment length polymorphism and mutation-specific polymerase chain reaction have been employed across numerous studies, including variations in the methodology used. However, there is no sufficient data from India comparing these methods as well as report the prevalence of polymorphisms in SP drug resistance molecular markers independently using such methods. Therefore, all data from Indian studies available for molecular marker studies of Plasmodium falciparum drug resistance to sulphadoxine-pyrimethamine was gathered, and a systematic review was performed. This systematic review identifies the molecular methods in use in India and compares each method for detecting sulphadoxine-pyrimethamine drug resistance marker. To delay the spread of drug-resistant parasite strains, a simplified and standardized molecular method is much needed which can be obtained by analysing the performance of each method in use and answering the necessity of newer methodological approaches.
Collapse
|
11
|
Pigeault R, Chevalier M, Cozzarolo CS, Baur M, Arlettaz M, Cibois A, Keiser A, Guisan A, Christe P, Glaizot O. Determinants of haemosporidian single- and co-infection risks in western palearctic birds. Int J Parasitol 2022; 52:617-627. [PMID: 35760376 DOI: 10.1016/j.ijpara.2022.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Understanding the drivers of infection risk helps us to detect the most at-risk species in a community and identify species whose intrinsic characteristics could act as potential reservoirs of pathogens. This knowledge is crucial if we are to predict the emergence and evolution of infectious diseases. To date, most studies have only focused on infections caused by a single parasite, leaving out co-infections. Yet, co-infections are of paramount importance in understanding the ecology and evolution of host-parasite interactions due to the wide range of effects they can have on host fitness and on the evolutionary trajectories of parasites. Here, we used a multinomial Bayesian phylogenetic modelling framework to explore the extent to which bird ecology and phylogeny impact the probability of being infected by one genus (hereafter single infection) or by multiple genera (hereafter co-infection) of haemosporidian parasites. We show that while nesting and migration behaviors influenced both the probability of being single- and co-infected, species position along the slow-fast life-history continuum and geographic range size were only pertinent in explaining variation in co-infection risk. We also found evidence for a phylogenetic conservatism regarding both single- and co-infections, indicating that phylogenetically related bird species tend to have similar infection patterns. This phylogenetic signal was four times stronger for co-infections than for single infections, suggesting that co-infections may act as a stronger selective pressure than single infections. Overall, our study underscores the combined influence of hosts' evolutionary history and attributes in determining infection risk in avian host communities. These results also suggest that co-infection risk might be under stronger deterministic control than single infection risk, potentially paving the way toward a better understanding of the emergence and evolution of infectious diseases.
Collapse
Affiliation(s)
- Romain Pigeault
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Laboratoire EBI, Equipe EES, UMR CNRS 7267, 86000 Poitiers, France.
| | - Mathieu Chevalier
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Ifremer, Centre de Bretagne, DYNECO-LEBCO, CS 10070, 29280 Plouzané, France
| | - Camille-Sophie Cozzarolo
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Biogéosciences, UMR 6282 CNRS, université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000 Dijon, France
| | - Molly Baur
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | | | - Alice Cibois
- Natural History Museum of Geneva, C.P. 6434, CH-1211 Genève 6, Switzerland
| | - André Keiser
- Musée cantonal de zoologie, CH-1014 Lausanne, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, CH-1015 Lausanne, Switzerland; Musée cantonal de zoologie, CH-1014 Lausanne, Switzerland
| |
Collapse
|
12
|
De La Torre GM, Fecchio A, Bell JA, Campião KM. Host evolutionary history rather than avian functional traits drives the
Plasmodium
regional assembly in the Atlantic Forest. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel M. De La Torre
- Programa de Pós‐Graduação em Ecologia e Conservação, Universidade Federal do Paraná Curitiba Brazil
- Laboratório de Interações Biológicas, Universidade Federal do Paraná Curitiba Brazil
| | - Alan Fecchio
- Programa de Pós‐graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Jeffrey A. Bell
- Department of Biology University of North Dakota Grand Forks North Dakota U.S.A
| | - Karla M. Campião
- Laboratório de Interações Biológicas, Universidade Federal do Paraná Curitiba Brazil
| |
Collapse
|
13
|
Roldán-Zurabián F, José Ruiz-López M, de la Puente JM, Figuerola J, Drummond H, Ancona S. Apparent absence of avian malaria and malaria-like parasites in northern blue-footed boobies breeding on Isla Isabel. Sci Rep 2022; 12:6892. [PMID: 35477963 PMCID: PMC9046203 DOI: 10.1038/s41598-022-11075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Haemosporidian parasites are common in birds but are seldom reported in seabirds. The absence of vectors or genetic resistance to infection have been proposed to explain this pattern. However, screening of blood parasites in many seabirds has been done only by visual inspection of blood smears, which can miss low-intensity infections, and molecular detection of blood parasites must be supported by detection in blood smears to confirm the presence of haemosporidians and avoid false positive cases. Here, we tested for the presence of blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon, combining inspection of blood smears and PCR-based detection methods in a highly philopatric colony of blue-footed boobies (Sula nebouxii) in the Tropical North Pacific. Our results indicate that adults in this colony are likely free of these blood parasites, probably due to unsuitable conditions for insect vectors in booby breeding sites, although potential genetic resistance of blue-footed boobies to infection deserves examination. Apparent absence of blood parasites in Isla Isabel boobies indirectly adds to the growing evidence of variation in parasite infections among avian host species that coexist locally.
Collapse
Affiliation(s)
- Federico Roldán-Zurabián
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.,Facultad de Estudios Superiores Zaragoza, Mexico City, 09230, Mexico
| | - María José Ruiz-López
- Estación Biológica de Doñana (EBD-CSIC), 41092, Sevilla, Spain.,Ciber de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
| | - Josué Martínez de la Puente
- Universidad de Granada, 18071, Granada, Spain.,Ciber de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), 41092, Sevilla, Spain.,Ciber de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
| | - Hugh Drummond
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Sergio Ancona
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
14
|
Blanco G, Morinha F, Carrete M, Tella JL. Apparent Lack of Circovirus Transmission from Invasive Parakeets to Native Birds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3196. [PMID: 35328884 PMCID: PMC8953828 DOI: 10.3390/ijerph19063196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022]
Abstract
The transmission of pathogens to native species has been highlighted as one of the most important impacts of biological invasions. In this study, we evaluated the presence of psittacine beak and feather disease virus (BFDV) and other circoviruses in native bird species cohabiting with invasive populations of wild rose-ringed (Psittacula krameri) and monk parakeets (Myiopsitta monachus) that were found positive for a particular BFDV genotype in Sevilla, southern Spain. None of the 290 individuals from the 18 native bird species captured showed typical signs of disease caused by BFDV. A sample of 79 individuals from 15 native species showed negative results for the presence of the BFDV genotype previously detected in the sympatric invasive parakeets, as well as any other of the circoviruses tested. Although preliminary, this study suggests a lack of circovirus transmission from invasive parakeets to native birds at the study site. Further research is needed to determine if this apparent absence in transmission depends on the BFDV genotype present in the parakeets, which requires additional screening in other invasive and native populations living in sympatry.
Collapse
Affiliation(s)
- Guillermo Blanco
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN), Spanish National Research Council (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Francisco Morinha
- Morinha Lab-Laboratory of Biodiversity and Molecular Genetics, 5000-562 Vila Real, Portugal
| | - Martina Carrete
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Ctra. de Utrera km. 1, 41013 Sevilla, Spain
| | - José L Tella
- Department of Conservation Biology, Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio, 41092 Sevilla, Spain
| |
Collapse
|
15
|
Muñoz-Caro T, Machuca A, Morales P, Verdugo J, Reyes R, García M, Rutaihwa L, Schindler T, Poppert S, Taubert A, Hermosilla C. Prevalence and molecular identification of zoonotic Anisakis and Pseudoterranova species in fish destined to human consumption in Chile. Parasitol Res 2022; 121:1295-1304. [PMID: 35230547 PMCID: PMC8993782 DOI: 10.1007/s00436-022-07459-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/30/2022] [Indexed: 10/26/2022]
Abstract
Zoonotic larvae of the family Anisakidae found in several fish species represent a serious risk in public health since they may cause food-borne anisakidosis in humans. Chile has culinary preferences including eating raw fish in many traditional preparations. In the present study, a total of 180 fish specimens representing three different fish species, i.e., Chilean hake (Merluccius gayi), snoek (Thyrsites atun), and sea bream (Brama australis), were caught at central coast of Chile. Parasitological examination was performed on musculature and abdominal cavity for subsequent extraction and quantification of anisakid larvae. Estimation of infection parameters, such as prevalence, was performed indicating 100% (CI: 0.94-1.0) prevalence of anisakid L3 in Chilean hakes and snoeks. Moreover, sea breams reached a prevalence of 35% (CI: 0.23-0.48). Prevalence of anisakid larvae in muscle was also analyzed showing values of 18.6% (CI: 0.097-0.309) in Chilean hakes, 15% (CI: 0.07-0.26) in snoeks, and 1.7% (CI: 0-0.089) in sea breams. Meanwhile, prevalence of anisakid larvae in internal organs showed highest values for peritoneum (100% and 83.3%) for snoeks and Chilean hakes, respectively, for liver (96.7%) and gonads (86.6%) in Chilean hakes, and for intestine (98.3%) in snoeks. Molecular analysis of collected anisakid L3 unveiled presence of two potentially zoonotic nematode species, i.e., Pseudoterranova cattani and Anisakis pegreffii. P. cattani was found in Chilean hakes and snoeks being the first molecular host species report for Chilean snoeks. Besides, A. pegreffii was also identified in these species being the first molecular report on this regard. These findings are relevant for better understanding of epidemiology of anisakiasis in Chilean coasts and for public health issues considering potential risk of human population due to its culinary preferences in eating raw fish.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Universidad Santo Tomás, Talca, Chile
| | - Alvaro Machuca
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Universidad Santo Tomás, Talca, Chile
| | - Pamela Morales
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Universidad Santo Tomás, Talca, Chile
| | - Javiera Verdugo
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Universidad Santo Tomás, Talca, Chile
| | - Rodrigo Reyes
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Universidad Santo Tomás, Talca, Chile
| | - Macarena García
- Escuela de Medicina Veterinaria, Facultad de Medicina Veterinaria Y Recursos Naturales, Universidad Santo Tomás, Talca, Chile
| | | | | | - Sven Poppert
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Bass AL, Bateman AW, Connors BM, Staton BA, Rondeau EB, Mordecai GJ, Teffer AK, Kaukinen KH, Li S, Tabata AM, Patterson DA, Hinch SG, Miller KM. Identification of infectious agents in early marine Chinook and Coho salmon associated with cohort survival. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent decades have seen an increased appreciation for the role infectious diseases can play in mass mortality events across a diversity of marine taxa. At the same time many Pacific salmon populations have declined in abundance as a result of reduced marine survival. However, few studies have explicitly considered the potential role pathogens could play in these declines. Using a multi-year dataset spanning 59 pathogen taxa in Chinook and Coho salmon sampled along the British Columbia coast, we carried out an exploratory analysis to quantify evidence for associations between pathogen prevalence and cohort survival and between pathogen load and body condition. While a variety of pathogens had moderate to strong negative correlations with body condition or survival for one host species in one season, we found that Tenacibaculum maritimum and Piscine orthoreovirus had consistently negative associations with body condition in both host species and seasons and were negatively associated with survival for Chinook salmon collected in the fall and winter. Our analyses, which offer the most comprehensive examination of associations between pathogen prevalence and Pacific salmon survival to date, suggest that pathogens in Pacific salmon warrant further attention, especially those whose distribution and abundance may be influenced by anthropogenic stressors.
Collapse
Affiliation(s)
- Arthur L. Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Andrew W. Bateman
- Pacific Salmon Foundation, Vancouver, BC V6J 4S6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Brendan M. Connors
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 5T5, Canada
| | - Benjamin A. Staton
- Fisheries Science Department, Columbia River Inter-Tribal Fish Commission, Portland, OR 97232, USA
| | - Eric B. Rondeau
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Gideon J. Mordecai
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V9T 6N7, Canada
| | - Amy K. Teffer
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karia H. Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Amy M. Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - David A. Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Science Branch, Burnaby, BC V5A 1S6, Canada
| | - Scott G. Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kristina M. Miller
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
17
|
Metwally DM, Alajmi R, Alsulami MN, Al-Turaiki IM, Abdel-Gaber R, Alkhuriji AF, Albohiri HH, Mohamed K, Baghdadi HB, El-Khadragy MF, Isaias GT, El-Ashram S. Identification of Theileria spp. in sheep and goats from Jeddah, Saudi Arabia, using molecular techniques. PeerJ 2021; 9:e12596. [PMID: 34966592 PMCID: PMC8667737 DOI: 10.7717/peerj.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background Thileriosis is a tick -born disease caused by hemoprotozoan parasites which has global veterinary and economic implications. Methods Blood samples were collected from 216 sheep and 83 goats from Jeddah, Saudi Arabia, were analyzed to determine whether the animals were infected with Theileria spp. parasites. The parasites were detected using a polymerase chain reaction (PCR) targeting the gene of 18S rRNA followed by sequencing. Results According to obtained findings, Theileria spp. were detected in sheep (57.8%, 48/83) and goats (51.9%, 112/216). Phylogenetic analysis to sequence data showed that T. ovis identified in this study were found to be closely connected to an isolate from Turkey, with 84.4–99.8% pairwise identity and 52.35–99.79% coverage.
Collapse
Affiliation(s)
- Dina M Metwally
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reem Alajmi
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muslimah N Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Isra M Al-Turaiki
- Department of Information Technology, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Afrah F Alkhuriji
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haleema H Albohiri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalil Mohamed
- Epidemioligy Department, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hanadi B Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam City, Saudi Arabia
| | - Manal F El-Khadragy
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, University of Helwan, Cairo, Egypt
| | - Guillermo T Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Saeed El-Ashram
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.,Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, Egypt.,College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| |
Collapse
|
18
|
Hurtado G, Mayer G, Mabry KE. Does urbanization ameliorate the effect of endoparasite infection in kangaroo rats? Ecol Evol 2021; 11:13390-13400. [PMID: 34646477 PMCID: PMC8495810 DOI: 10.1002/ece3.8062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/02/2022] Open
Abstract
Urban development can fragment and degrade remnant habitat. Such habitat alterations can have profound impacts on wildlife, including effects on population density, parasite infection status, parasite prevalence, and body condition. We investigated the influence of urbanization on populations of Merriam's kangaroo rat (Dipodomys merriami) and their parasites. We predicted that urban development would lead to reduced abundance, increased parasite prevalence in urban populations, increased probability of parasite infection for individual animals, and decreased body condition of kangaroo rats in urban versus wildland areas. We live trapped kangaroo rats at 5 urban and 5 wildland sites in and around Las Cruces, NM, USA from 2013 to 2015, collected fecal samples from 209 kangaroo rats, and detected endoparasites using fecal flotation and molecular barcoding. Seven parasite species were detected, although only two parasitic worms, Mastophorus dipodomis and Pterygodermatites dipodomis, occurred frequently enough to allow for statistical analysis. We found no effects of urbanization on population density or probability of parasite infection. However, wildland animals infected with P. dipodomis had lower body condition scores than infected animals in urban areas or uninfected animals in either habitat. Our results suggest that urban environments may buffer Merriam's kangaroo rats from the detrimental impacts to body condition that P. dipodomis infections can cause.
Collapse
Affiliation(s)
- Gizelle Hurtado
- Department of BiologyNew Mexico State UniversityLas CrucesNMUSA
- Norris Natural History MuseumUniversity of California Santa CruzSanta CruzCAUSA
| | | | - Karen E. Mabry
- Department of BiologyNew Mexico State UniversityLas CrucesNMUSA
| |
Collapse
|
19
|
Antibody signatures of asymptomatic Plasmodium falciparum malaria infections measured from dried blood spots. Malar J 2021; 20:378. [PMID: 34556121 PMCID: PMC8461960 DOI: 10.1186/s12936-021-03915-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Screening malaria-specific antibody responses on protein microarrays can help identify immune factors that mediate protection against malaria infection, disease, and transmission, as well as markers of past exposure to both malaria parasites and mosquito vectors. Most malaria protein microarray work has used serum as the sample matrix, requiring prompt laboratory processing and a continuous cold chain, thus limiting applications in remote locations. Dried blood spots (DBS) pose minimal biohazard, do not require immediate laboratory processing, and are stable at room temperature for transport, making them potentially superior alternatives to serum. The goals of this study were to assess the viability of DBS as a source for antibody profiling and to use DBS to identify serological signatures of low-density Plasmodium falciparum infections in malaria-endemic regions of Myanmar. METHODS Matched DBS and serum samples from a cross-sectional study in Ingapu Township, Myanmar were probed on protein microarrays populated with P. falciparum antigen fragments. Signal and trends in both sample matrices were compared. A case-control study was then performed using banked DBS samples from malaria-endemic regions of Myanmar, and a regularized logistic regression model was used to identify antibody signatures of ultrasensitive PCR-positive P. falciparum infections. RESULTS Approximately 30% of serum IgG activity was recovered from DBS. Despite this loss of antibody activity, antigen and population trends were well-matched between the two sample matrices. Responses to 18 protein fragments were associated with the odds of asymptomatic P. falciparum infection, albeit with modest diagnostic characteristics (sensitivity 58%, specificity 85%, negative predictive value 88%, and positive predictive value 52%). CONCLUSIONS Malaria-specific antibody responses can be reliably detected, quantified, and analysed from DBS, opening the door to serological studies in populations where serum collection, transport, and storage would otherwise be impossible. While test characteristics of antibody signatures were insufficient for individual diagnosis, serological testing may be useful for identifying exposure to asymptomatic, low-density malaria infections, particularly if sero-surveillance strategies target individuals with low previous exposure as sentinels for population exposure.
Collapse
|
20
|
García-Vásquez A, Pinacho-Pinacho CD, Guzmán-Valdivieso I, Calixto-Rojas M, Rubio-Godoy M. Morpho-molecular characterization of Gyrodactylus parasites of farmed tilapia and their spillover to native fishes in Mexico. Sci Rep 2021; 11:13957. [PMID: 34230589 PMCID: PMC8260806 DOI: 10.1038/s41598-021-93472-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022] Open
Abstract
Translocation of fishes for aquaculture has resulted in the co-introduction of some of their parasites. African cichlid fishes, generically called “tilapias” have been introduced worldwide, along with their monogenean parasites. In a nation-wide survey, we characterised monogeneans of the genus Gyrodactylus infecting farmed “tilapia” throughout Mexico. We also collected native fishes around farms, to look for potential parasite spillover from cultured fishes. Monogeneans were identified taxonomically using morphological and molecular characters. Originally African, pathogenic Gyrodactylus cichlidarum was recorded in every farm surveyed, infecting different “tilapia” varieties, as well as three native cichlid fish species. Previously, we had shown that G. cichlidarum also infects native, non-cichlid fishes in Mexico. We also recorded that Gyrodactylus yacatli is widely distributed in Mexico, infecting cultured “tilapia” and native fishes; and present data indicating that this is a further translocated African parasite. A third, unidentified gyrodactylid infected farmed and native fishes in Chiapas, southern Mexico; we describe the new species as Gyrodactylus shinni n. sp., and provide evidence that this is a third monogenean translocated with African fish. The wide distribution of exotic parasites co-introduced with “tilapia” and their spillover to native fishes may have an important impact on the ichthyofauna in Mexico, one the world’s megadiverse countries.
Collapse
Affiliation(s)
- Adriana García-Vásquez
- Instituto de Ecología, A.C., Red de Biología Evolutiva, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico
| | - Carlos Daniel Pinacho-Pinacho
- Investigador Cátedras CONACyT, Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico
| | - Ismael Guzmán-Valdivieso
- Instituto de Ecología, A.C., Red de Biología Evolutiva, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico
| | - Miguel Calixto-Rojas
- Instituto de Ecología, A.C., Red de Biología Evolutiva, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico
| | - Miguel Rubio-Godoy
- Instituto de Ecología, A.C., Red de Biología Evolutiva, Carretera antigua a Coatepec 351, 91073, Xalapa, Veracruz, Mexico.
| |
Collapse
|
21
|
Roadside Car Surveys: Methodological Constraints and Solutions for Estimating Parrot Abundances across the World. DIVERSITY 2021. [DOI: 10.3390/d13070300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parrots stand out among birds because of their poor conservation status and the lack of available information on their population sizes and trends. Estimating parrot abundance is complicated by the high mobility, gregariousness, patchy distributions, and rarity of many species. Roadside car surveys can be useful to cover large areas and increase the probability of detecting spatially aggregated species or those occurring at very low densities. However, such surveys may be biased due to their inability to handle differences in detectability among species and habitats. We conducted 98 roadside surveys, covering > 57,000 km across 20 countries and the main world biomes, recording ca. 120,000 parrots from 137 species. We found that larger and more gregarious species are more easily visually detected and at greater distances, with variations among biomes. However, raw estimates of relative parrot abundances (individuals/km) were strongly correlated (r = 0.86–0.93) with parrot densities (individuals/km2) estimated through distance sampling (DS) models, showing that variability in abundances among species (>40 orders of magnitude) overcomes any potential detectability bias. While both methods provide similar results, DS cannot be used to study parrot communities or monitor the population trends of all parrot species as it requires a minimum of encounters that are not reached for most species (64% in our case), mainly the rarest and more threatened. However, DS may be the most suitable choice for some species-specific studies of common species. We summarize the strengths and weaknesses of both methods to guide researchers in choosing the best–fitting option for their particular research hypotheses, characteristics of the species studied, and logistical constraints.
Collapse
|
22
|
Fratoni RDO, De La Torre GM, Freitas FJF, Guaraldo ADC, Manica LT. From unwanted squatters to good tenants: Ectosymbionts and their relationships with body condition of Atlantic Forest Passeriformes. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.12997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rafael de Oliveira Fratoni
- Behavioral Ecology and Ornithology Lab Departamento de Zoologia Setor de Ciências Biológicas Centro Politécnico Universidade Federal do Paraná Av. Cel. Francisco H. dos Santos, 100 Curitiba PR81531‐980Brazil
| | - Gabriel Massaccesi De La Torre
- Behavioral Ecology and Ornithology Lab Departamento de Zoologia Setor de Ciências Biológicas Centro Politécnico Universidade Federal do Paraná Av. Cel. Francisco H. dos Santos, 100 Curitiba PR81531‐980Brazil
- Graduate Program in Ecology and Conservation Universidade Federal do Paraná Curitiba PRBrazil
| | - Fernando José Ferneda Freitas
- Behavioral Ecology and Ornithology Lab Departamento de Zoologia Setor de Ciências Biológicas Centro Politécnico Universidade Federal do Paraná Av. Cel. Francisco H. dos Santos, 100 Curitiba PR81531‐980Brazil
- Graduate Program in Zoology Universidade Federal do Paraná Curitiba PRBrazil
| | - André de Camargo Guaraldo
- Behavioral Ecology and Ornithology Lab Departamento de Zoologia Setor de Ciências Biológicas Centro Politécnico Universidade Federal do Paraná Av. Cel. Francisco H. dos Santos, 100 Curitiba PR81531‐980Brazil
- Departamento de Zoologia Universidade Federal de Juiz de Fora Juiz de Fora MG Brazil
| | - Lilian Tonelli Manica
- Behavioral Ecology and Ornithology Lab Departamento de Zoologia Setor de Ciências Biológicas Centro Politécnico Universidade Federal do Paraná Av. Cel. Francisco H. dos Santos, 100 Curitiba PR81531‐980Brazil
| |
Collapse
|
23
|
Nematode Parasites in Baltic Sea Mammals, Grey Seal (Halichoerus grypus (Fabricius, 1791)) and Harbour Porpoise (Phocoena phocoena (L.)), from the German Coast. Acta Parasitol 2021; 66:26-33. [PMID: 32642980 PMCID: PMC7985102 DOI: 10.1007/s11686-020-00246-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Purpose Endoparasitic nematodes of six harbour porpoises Phocoena phocoena and four grey seals Halichoerus grypus, stranded at the eastern coast of the Baltic Sea in Germany in winter 2019, were analysed in order to identify nematode parasites and to compare with recent studies from the same area. Methods Endoparasitic nematodes were identified by using both morphological and molecular characters. The successfully obtained sequences of the rDNA marker regions ITS-1, 5.8S, ITS-2 from 29 anisakid and the rDNA marker region ITS-2 of 11 pseudalid nematodes were amplified. Results Analyses revealed the presence of three parasite species, the anisakid nematode Contracaecum osculatum from grey seals and the pseudalid nematodes Pseudalius inflexus and Stenurus minor from the harbour porpoises. Other anisakid nematodes regularly occurring in the Baltic Sea, e.g. Anisakis simplex or Pseudoterranova decipiens, were not found. Conclusions The prevalence of 100% and a severe parasite load in grey seals demonstrated a very high C. osculatum infection of Baltic Sea fish as their regular prey. Prevalence of 33% for parasites in harbour porpoises and minor infection rates, combined with a distinct lack of anisakid nematodes, are typical for the current situation of the porpoise parasite fauna in the Baltic Sea. Invasive parasite species as possible indicators for climate change could not be detected.
Collapse
|
24
|
Avian Haemosporidian Diversity on Sardinia: A First General Assessment for the Insular Mediterranean. DIVERSITY 2021. [DOI: 10.3390/d13020075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Western Palearctic is one of the most investigated regions for avian haemosporidian parasites (Haemoproteus, Plasmodium and Leucocytozoon), yet geographic gaps in our regional knowledge remain. Here, we report the first haemosporidian screening of the breeding birds from Sardinia (the second-largest Mediterranean Island and a biodiversity hotspot), and the first for the insular Mediterranean in general. We examined the occurrence of haemosporidians by amplifying their mtDNA cytb gene in 217 breeding birds, belonging to 32 species. The total prevalence of infected birds was 55.3%, and of the 116 haplotypes recovered, 84 were novel. Despite the high number of novel lineages, phylogenetic analysis did not highlight Sardinia-specific clades; instead, some Sardinian lineages were more closely related to lineages previously recovered from continental Europe. Host-parasite network analysis indicated a specialized host-parasite community. Binomial generalized linear models (GLMs), performed at the community level, suggested an elevational effect on haemosporidian occurrence probability (negative for Haemoproteus; positive for Leucocytozoon) likely due to differences in the abundance of insect vectors at different elevations. Furthermore, a GLM revealed that sedentary birds showed a higher probability of being infected by novel haplotypes and long-distance migrants showed a lower probability of novel haplotype infection. We hypothesize that the high diversity of haemosporidians is linked to the isolation of breeding bird populations on Sardinia. This study adds to the growing knowledge on haemosporidians lineage diversity and distribution in insular environments and presents new insights on potential host-parasite associations.
Collapse
|
25
|
Prevalence and genetic diversity of avian haemosporidian parasites in wild bird species of the order Columbiformes. Parasitol Res 2021; 120:1405-1420. [PMID: 33521839 PMCID: PMC7940316 DOI: 10.1007/s00436-021-07053-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 11/04/2022]
Abstract
Diseases can play a role in species decline. Among them, haemosporidian parasites, vector-transmitted protozoan parasites, are known to constitute a risk for different avian species. However, the magnitude of haemosporidian infection in wild columbiform birds, including strongly decreasing European turtle doves, is largely unknown. We examined the prevalence and diversity of haemosporidian parasites Plasmodium, Leucocytozoon and subgenera Haemoproteus and Parahaemoproteus in six species of the order Columbiformes during breeding season and migration by applying nested PCR, one-step multiplex PCR assay and microscopy. We detected infections in 109 of the 259 screened individuals (42%), including 15 distinct haemosporidian mitochondrial cytochrome b lineages, representing five H. (Haemoproteus), two H. (Parahaemoproteus), five Leucocytozoon and three Plasmodium lineages. Five of these lineages have never been described before. We discriminated between single and mixed infections and determined host species-specific prevalence for each parasite genus. Observed differences among sampled host species are discussed with reference to behavioural characteristics, including nesting and migration strategy. Our results support previous suggestions that migratory birds have a higher prevalence and diversity of blood parasites than resident or short-distance migratory species. A phylogenetic reconstruction provided evidence for H. (Haemoproteus) as well as H. (Parahaemoproteus) infections in columbiform birds. Based on microscopic examination, we quantified parasitemia, indicating the probability of negative effects on the host. This study provides a large-scale baseline description of haemosporidian infections of wild birds belonging to the order Columbiformes sampled in the northern hemisphere. The results enable the monitoring of future changes in parasite transmission areas, distribution and diversity associated with global change, posing a potential risk for declining avian species as the European turtle dove.
Collapse
|
26
|
DE LA Torre GM, Campião KM. Bird habitat preferences drive hemoparasite infection in the Neotropical region. Integr Zool 2021; 16:755-768. [PMID: 33452842 DOI: 10.1111/1749-4877.12515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role that the environment plays in vector-borne parasite infection is one of the central factors for understanding disease dynamics. We assessed how Neotropical bird foraging strata and habitat preferences determine infection by parasites of the genera Haemoproteus, Plasmodium, Leucocytozoon, and Trypanosoma and filarioids, and tested for phylogenetic signal in these host-parasite associations. We performed extensive searches of the scientific literature and created a database of hemoparasite surveys. We collected data on host body mass, foraging strata, habitat preference, and migratory status, and tested if host ecological traits predict each hemoparasite occurrence and prevalence using a phylogenetic Bayesian framework. Species of Plasmodium tend to infect birds from tropical forests while birds from altitudinal environments are likely to be infected by species of Leucocytozoon. The probability of a bird being infected by filarioid or Trypanosoma is higher in lowland forests. Bird species that occur in anthropic environments and dry habitats of tropical latitudes are more susceptible to infection by species of Haemoproteus. Host foraging strata is also influential and bird species that forage in the mid-high and canopy strata are more prone to infection by species of Haemoproteus and filarioids. We also identified phylogenetic signal for host-parasite associations with the probability of infection of Neotropical birds by any hemoparasite being more similar among more closely related species. We provided a useful framework to identify environments that correlate with hemoparasite infection, which is also helpful for detecting areas with potential suitability for hemoparasite infection due to land conversion and climate change.
Collapse
Affiliation(s)
- Gabriel Massaccesi DE LA Torre
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Karla Magalhães Campião
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
27
|
Martínez-de la Puente J, Gutiérrez-López R, Díez-Fernández A, Soriguer RC, Moreno-Indias I, Figuerola J. Effects of Mosquito Microbiota on the Survival Cost and Development Success of Avian Plasmodium. Front Microbiol 2021; 11:562220. [PMID: 33519724 PMCID: PMC7838439 DOI: 10.3389/fmicb.2020.562220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/09/2020] [Indexed: 01/04/2023] Open
Abstract
Both intrinsic and extrinsic factors affect the capacity of mosquitoes for the transmission of vector-borne pathogens. Among them, mosquito microbiota may play a key role determining the development of pathogens in mosquitoes and the cost of infections. Here, we used a wild avian malaria-mosquito assemblage model to experimentally test the role of vector microbiota on the cost of infection and their consequences for parasite development. To do so, a cohort of Culex pipiens mosquitoes were treated with antibiotics, including gentamicin sulfate and penicillin-streptomycin, to alter their microbiota, and other cohort was treated with sterilized water as controls. Subsequently, both cohorts were allowed to feed on Plasmodium infected or uninfected house sparrows (Passer domesticus). The antibiotic treatment significantly increased the survival rate of mosquitoes fed on infected birds while this was not the case of mosquitoes fed on uninfected birds. Additionally, a higher prevalence of Plasmodium in the saliva of mosquitoes was found in antibiotic treated mosquitoes than in mosquitoes of the control group at 20 days post exposure (dpe). Analyses of the microbiota of a subsample of mosquitoes at 20 dpe suggest that although the microbiota diversity did not differ between individuals of the two treatments, microbiota in control mosquitoes had a higher number of unique features and enriched in biochemical pathways related to the immune system than antibiotic treated ones. In sum, this study provides support for the role of mosquito microbiota on mosquito survival and the presence of parasite DNA in their saliva.
Collapse
Affiliation(s)
- Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | | | - Ramón C Soriguer
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
28
|
Valdebenito JO, Liker A, Halimubieke N, Figuerola J, Székely T. Mortality cost of sex-specific parasitism in wild bird populations. Sci Rep 2020; 10:20983. [PMID: 33268803 PMCID: PMC7710712 DOI: 10.1038/s41598-020-77410-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
Sex-specific mortality is frequent in animals although the causes of different male versus female mortalities remain poorly understood. Parasitism is ubiquitous in nature with widespread detrimental effects to hosts, making parasitism a likely cause of sex-specific mortalities. Using sex-specific blood and gastrointestinal parasite prevalence from 96 and 54 avian host species, respectively, we test the implications of parasites for annual mortality in wild bird populations using phylogenetic comparative methods. First, we show that parasite prevalence is not different between adult males and females, although Nematodes showed a statistically significant but small male-biased parasite prevalence. Second, we found no correlation between sex-biased host mortalities and sex-biased parasite prevalence. These results were consistent in both blood and gastrointestinal parasites. Taken together, our results show little evidence for sex-dependent parasite prevalence in adults in wild bird populations, and suggest that parasite prevalence is an unlikely predictor of sex difference in adult mortalities, not withstanding sampling limitations. We propose that to understand causes of sex-biased mortalities, more complex analyses are needed that incorporate various ecological and life history components of animals life that may include sex differences in exposure to predators, immune capacity and cost of reproduction.
Collapse
Affiliation(s)
- José O Valdebenito
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - András Liker
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary.,Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | - Naerhulan Halimubieke
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK. .,Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
29
|
Mesostigmatid mites (Acari: Mesostigmata) at the domestic-wildlife interface: Poultry and passerine birds of central Argentina. Vet Parasitol 2020; 284:109203. [PMID: 32827991 DOI: 10.1016/j.vetpar.2020.109203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Wild birds may be considered a possible source of parasitic mesostigmatid mites for poultry, but only few studies explored this hypothesis. In addition, there is very little information about the parasitic mites present in commercial poultry systems from southern South America. To contribute with data on parasitic mesostigmatid mites at the domestic-wildlife interface, we conducted a study in which samples were systematically collected from laying hens and wild birds (adults and nestlings), for two years at three commercial laying hen farms. The occurrence of mesostigmatid mites were compared among hosts. A proportion of the collected mites were morphologically identified to the species level, finding that host preference varied greatly depending on mite species: laying hens were only parasitized by Ornithonyssus sylviarum, wild bird nestlings were mostly parasitized by Ornithonyssus bursa, and in small proportion, by O. sylviarum, while adult passerines were parasitized by both Ornithonyssus species, and sporadically by Pellonyssus cf. reedi and Dermanyssus cf. triscutatus. In laying hens, there was intra- and inter-annual variability in mite occurrence, but no consistent seasonal pattern, whereas in adult wild birds, mites showed the highest prevalence in spring and the lowest in summer. Not coinciding with this general pattern, the occurrence of O. bursa matched the reproductive activity of wild birds. A phylogenetic analysis based on a fragment of the 16S rRNA gene was carried out for a subsample of the mites collected, showing that the O. sylviarum mites present on adult wild birds and laying hens had the same haplotype (100% identity). Additionally, mites obtained from wild birds morphologically identified as O. bursa presented two distinctive haplotypes (89.8% identity), one phylogenetically related to O. sylviarum and the other to O. monteiroi. These findings show that in central Argentina commercial laying hens are parasitized mainly by O. sylviarum while wild birds are also hosts to other mite species. Adult wild passerines, especially house sparrows, may be a source of O. sylviarum for commercial poultry.
Collapse
|
30
|
Abstract
The biodiversity and composition of endoparasites in fish obtained from the Antarctic and subantarctic zones are compared in this study. Several fish were collected in the summer from Antarctica (King George Island) and the Southern Pacific coast (Strait of Magellan and Almirante Montt Gulf). This database was complemented with published information on fish endoparasite communities from both zones, with specimens of fish sample size n ≥ 15. Thus, 31 fish species were analysed in this study, which altogether had 79 parasite species. Diversity indices were calculated for the parasite community of each fish species. Then they were compared between the Antarctic and subantarctic zones. Parasite species composition and host specificity (as the number of fish species used by a parasite species) were also analysed and compared between zones. The diversity indices and the abundance of parasites were significantly higher in the Antarctic than the subantarctic fish. Few parasite species (7.6%) were shared between fish from both zones, showing significant differences in parasite composition. Antarctic parasites were less host-specific than subantarctic parasites, which allowed the coexistence of several parasite species in the fish. The high parasite abundance in Antarctic fish could trigger sympatric speciation in certain parasitic lineages or the exploitation of new resources, resulting in more parasite species than those in subantarctic environments. The high abundance of Antarctic parasites implies different methods and rates of transmission than those of subantarctic parasites. In addition, more alternative fish hosts were used by the Antarctic than subantarctic parasites. This altogether indicates that host-parasite interaction dynamics significantly differ between the Antarctic and subantarctic systems.
Collapse
|
31
|
Ma Z(S. Estimating the Optimum Coverage and Quality of Amplicon Sequencing With Taylor's Power Law Extensions. Front Bioeng Biotechnol 2020; 8:372. [PMID: 32500062 PMCID: PMC7242763 DOI: 10.3389/fbioe.2020.00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Theoretical analysis of DNA sequencing coverage problem has been investigated with complex mathematical models such as Lander-Waterman expectation theory and Stevens' theorem for randomly covering a domain. In the field of metagenomics sequencing, several approaches have been developed to estimate the coverage of whole-genome shotgun sequencing, but surprisingly few studies addressed the coverage problem for marker-gene amplicon sequencing, for which arguably the biggest challenge is the complexity or heterogeneity of microbial communities. Overall, much of the practice still relies variously on speculation, semi-empirical and ad hoc heuristic models. Conservatively raising coverage may ensure the success of sequencing project, but often with unduly cost. In this study, we borrow the principles and approaches of optimum sampling methodology originated in applied entomology, achieved equal success in plant pathology and parasitology, and plays a critical role in the decision-making for global crop and forest protection against economic pests since 1970s when the pesticide crisis and food safety concerns forced the reduction of pesticide usages, which in turn requires reliable sampling techniques for monitoring pest populations. We realized that sequencing coverage is essentially an optimum sampling problem. Perhaps the only essential difference between sampling insects and sampling microbiome is the "instrument" used. In traditional entomology, it is usually humans that visually count the numbers of insects, occasionally aided by binocular microscope. In the metagenomics research, it is the DNA sequencers that count the number of DNA reads. Furthermore, a key theoretical foundation for sampling insect pest populations, i.e., Taylor's power law, which achieved rare status of ecological law and captures the population aggregation, has been recently extended to the community level for describing community heterogeneity and stability, namely, Taylor's power law extensions (TPLEs). This theoretical advance enabled us to develop a novel approach to assessing the quality and determining optimum reads (coverage) of amplicon sequencing operations. Specifically, two applications were developed: one is, in hindsight, to assess the quality of amplicon sequencing operation in terms of the precision and confidence levels. Another is, prior to sequencing operation, to determine the minimum sequencing efforts for a sequencing project to achieve preset precision and confidence levels.
Collapse
Affiliation(s)
- Zhanshan (Sam) Ma
- Computational Biology and Medical Ecology Lab, State Key Lab of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
32
|
Occurrence of Anisakis pegreffii (Nematoda: Anisakidae) Larvae in Imported John Dory (Zeus faber) from Senegalese Coast Sold in Turkish Supermarkets. Acta Parasitol 2019; 64:582-586. [PMID: 31172352 DOI: 10.2478/s11686-019-00078-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND West African goatfish Pseudupeneus prayensis, bluespotted seabream Pagrus caeruleostictus and John Dory Zeus faber are commercially marketed as fresh and frequently imported from Senegalese coast (FAO area 34.3.12) in Turkish supermarkets. PURPOSE The aim of the current study was to collect data of occurrence and molecular identification of Anisakis species in imported P. prayensis, P. caeruleostictus and Z. faber caught in the Senegalese coast and to support epidemiological report for a risk evaluation of Anisakis species in Turkish supermarkets. METHODS Forty imported fish from each species at a total of 120 samples were investigated for the presence of Anisakis larvae. Based on ITS region of RFLP analysis Anisakis larvae were identified and randomly selected five larvae were also sequenced for further confirmation for cox2 gene. RESULTS No Anisakis larvae were isolated from P. prayensis, P. caeruleostictus whereas Anisakis larvae were only found in Z. faber. A total of 156 Anisakis larvae were collected from Z. faber. All larvae were molecularly identified as Anisakis pegreffii. The prevalence (%), intensity and abundance of Anisakis infection in Z. faber were detected to be 82.5%, 8.3 and 6.8, respectively. CONCLUSION This is the first assessment of the occurrence of A. pegreffii in imported Z. faber from the Senegalese coast in Turkish supermarkets. Moreover, consuming imported P. prayensis and P. caeruleostictus present low to non-existent risk for anisakiasis in Turkish consumers. Furthermore, the presence of A. pegreffii larvae in imported Z. faber from the Senegal waters could have public health implications in Turkish consumers.
Collapse
|
33
|
Morawetz L, Köglberger H, Griesbacher A, Derakhshifar I, Crailsheim K, Brodschneider R, Moosbeckhofer R. Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PLoS One 2019; 14:e0219293. [PMID: 31287830 PMCID: PMC6615611 DOI: 10.1371/journal.pone.0219293] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Austrian beekeepers frequently suffered severe colony losses during the last decade similar to trends all over Europe. This first surveillance study aimed to describe the health status of Austrian bee colonies and to analyze the reasons for losses for both the summer and winter season in Austria. In this study 189 apiaries all over Austria were selected using a stratified random sampling approach and inspected three times between July 2015 and spring 2016 by trained bee inspectors. The inspectors made interviews with the beekeepers about their beekeeping practice and the history of the involved colonies. They inspected a total of 1596 colonies for symptoms of nine bee pests and diseases (four of them notifiable diseases) and took bee samples for varroa mite infestation analysis. The most frequently detected diseases were three brood diseases: Varroosis, Chalkbrood and Sacbrood. The notifiable bee pests Aethina tumida and Tropilaelaps spp. were not detected. During the study period 10.8% of the 1596 observed colonies died. Winter proved to be the most critical season, in which 75% of the reported colony losses happened. Risks for suffering summer losses increased significantly, when colonies were weak in July, had queen problems or a high varroa mite infestation level on bees in July. Risks for suffering winter losses increased significantly, when the colonies had a high varroa mite infestation level on bees in September, were weak in September, had a queen older than one year or the beekeeper had few years of beekeeping experience. However, the effect of a high varroa mite infestation level in September had by far the greatest potential to raise the winter losses compared to the other significant factors.
Collapse
Affiliation(s)
- Linde Morawetz
- Department for Apiculture and Bee Protection, Institute for Seed and Propagating Material, Phytosanitary Service and Apiculture, Division for Food Security, Austrian Agency for Health and Food Safety Ltd., Vienna, Vienna, Austria
- * E-mail:
| | - Hemma Köglberger
- Department for Apiculture and Bee Protection, Institute for Seed and Propagating Material, Phytosanitary Service and Apiculture, Division for Food Security, Austrian Agency for Health and Food Safety Ltd., Vienna, Vienna, Austria
| | - Antonia Griesbacher
- Department for Statistics and Analytical Epidemiology, Division for Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety Ltd., Graz, Styria, Austria
| | - Irmgard Derakhshifar
- Department for Apiculture and Bee Protection, Institute for Seed and Propagating Material, Phytosanitary Service and Apiculture, Division for Food Security, Austrian Agency for Health and Food Safety Ltd., Vienna, Vienna, Austria
| | - Karl Crailsheim
- Institute of Biology, University of Graz, Graz, Styria, Austria
| | | | - Rudolf Moosbeckhofer
- Department for Apiculture and Bee Protection, Institute for Seed and Propagating Material, Phytosanitary Service and Apiculture, Division for Food Security, Austrian Agency for Health and Food Safety Ltd., Vienna, Vienna, Austria
| |
Collapse
|
34
|
Boelke M, Bestehorn M, Marchwald B, Kubinski M, Liebig K, Glanz J, Schulz C, Dobler G, Monazahian M, Becker SC. First Isolation and Phylogenetic Analyses of Tick-Borne Encephalitis Virus in Lower Saxony, Germany. Viruses 2019; 11:E462. [PMID: 31117224 PMCID: PMC6563265 DOI: 10.3390/v11050462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) is the most important tick-borne arboviral disease in Europe. Presently, the main endemic regions in Germany are located in the southern half of the country. Although recently, sporadic human TBE cases were reported outside of these known endemic regions. The detection and characterization of invading TBE virus (TBEV) strains will considerably facilitate the surveillance and assessment of this important disease. In 2018, ticks were collected by flagging in several locations of the German federal state of Lower Saxony where TBEV-infections in humans (diagnosed clinical TBE disease or detection of TBEV antibodies) were reported previously. Ticks were pooled according to their developmental stage and tested for TBEV-RNA by RT-qPCR. Five of 730 (0.68%) pools from Ixodes spp. ticks collected in the areas of "Rauher Busch" and "Barsinghausen/Mooshuette" were found positive for TBEV-RNA. Phylogenetic analysis of the whole genomes and E gene sequences revealed a close relationship between the two TBEV isolates, which cluster with a TBEV strain from Poland isolated in 1971. This study provides first data on the phylogeny of TBEV in the German federal state of Lower Saxony, outside of the known TBE endemic areas of Germany. Our results support the hypothesis of an east-west invasion of TBEV strains in Western Europe.
Collapse
Affiliation(s)
- Mathias Boelke
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Malena Bestehorn
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, 70599 Stuttgart, Germany.
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937 Munich, Germany.
| | - Birgit Marchwald
- The Governmental Institute of Public Health of Lower Saxony (NLGA), Roesebeckstraße 4-6, 30449 Hannover, Germany.
| | - Mareike Kubinski
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Katrin Liebig
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Julien Glanz
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Claudia Schulz
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| | - Gerhard Dobler
- Parasitology Unit, University of Hohenheim, Emil-Wolff-Straße 34, 70599 Stuttgart, Germany.
- Institute of Microbiology of the Bundeswehr, Neuherbergstraße 11, 80937 Munich, Germany.
| | - Masyar Monazahian
- The Governmental Institute of Public Health of Lower Saxony (NLGA), Roesebeckstraße 4-6, 30449 Hannover, Germany.
| | - Stefanie C Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hanover, Germany.
| |
Collapse
|
35
|
Barrow LN, McNew SM, Mitchell N, Galen SC, Lutz HL, Skeen H, Valqui T, Weckstein JD, Witt CC. Deeply conserved susceptibility in a multi-host, multi-parasite system. Ecol Lett 2019; 22:987-998. [PMID: 30912262 DOI: 10.1111/ele.13263] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/24/2019] [Accepted: 02/20/2019] [Indexed: 01/06/2023]
Abstract
Variation in susceptibility is ubiquitous in multi-host, multi-parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti-parasite defence. This demonstrates the importance of deep phylogeny for understanding present-day ecological interactions.
Collapse
Affiliation(s)
- Lisa N Barrow
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sabrina M McNew
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - Nora Mitchell
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Spencer C Galen
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Sackler Institute for Comparative Genomics & Richard Gilder Graduate School, American Museum of Natural History, New York, NY, 10024, USA.,Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA.,Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, 19103, USA
| | - Holly L Lutz
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA.,Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA.,Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Heather Skeen
- Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA.,Committee on Evolutionary Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Thomas Valqui
- Centro de Ornitología y Biodiversidad (CORBIDI), Lima, Perú
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, 19103, USA.,Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, 19103, USA.,Integrative Research Center, The Field Museum, Chicago, IL, 60605, USA
| | - Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
36
|
Twohig KA, Pfeffer DA, Baird JK, Price RN, Zimmerman PA, Hay SI, Gething PW, Battle KE, Howes RE. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl Trop Dis 2019; 13:e0007140. [PMID: 30703083 PMCID: PMC6372205 DOI: 10.1371/journal.pntd.0007140] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 01/07/2019] [Indexed: 01/12/2023] Open
Abstract
Effective malaria control strategies require an accurate understanding of the epidemiology of locally transmitted Plasmodium species. Compared to Plasmodium falciparum infection, Plasmodium vivax has a lower asexual parasitaemia, forms dormant liver-stages (hypnozoites), and is more transmissible. Hence, treatment and diagnostic policies aimed exclusively at P. falciparum are far less efficient against endemic P. vivax. Within sub-Saharan Africa, malaria control programmes justly focus on reducing the morbidity and mortality associated with P. falciparum. However, the recent emphasis on malaria elimination and increased accessibility of more sensitive diagnostic tools have revealed greater intricacies in malaria epidemiology across the continent. Since 2010, the number of studies identifying P. vivax endemic to Africa has expanded considerably, with 88 new scientific reports published since a review of evidence in 2015, approximately doubling the available data. There is evidence of P. vivax in all regions of Africa, apparent from infected vectors, clinical cases, serological indicators, parasite prevalence, exported infections, and P. vivax-infected Duffy-negative individuals. Where the prevalence of microscopic parasitaemia is low, a greater proportion of P. vivax infections were observed relative to P. falciparum. This evidence highlights an underlying widespread presence of P. vivax across all malaria-endemic regions of Africa, further complicating the current practical understanding of malaria epidemiology in this region. Thus, ultimate elimination of malaria in Africa will require national malaria control programmes to adopt policy and practice aimed at all human species of malaria.
Collapse
Affiliation(s)
- Katherine A. Twohig
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom,* E-mail: (KAT); (REH)
| | - Daniel A. Pfeffer
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom,Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter A. Zimmerman
- The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Simon I. Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, United States of America
| | - Peter W. Gething
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine E. Battle
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rosalind E. Howes
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom,* E-mail: (KAT); (REH)
| |
Collapse
|
37
|
Queirós J, Acevedo P, Santos JPV, Barasona J, Beltran-Beck B, González-Barrio D, Armenteros JA, Diez-Delgado I, Boadella M, Fernandéz de Mera I, Ruiz-Fons JF, Vicente J, de la Fuente J, Gortázar C, Searle JB, Alves PC. Red deer in Iberia: Molecular ecological studies in a southern refugium and inferences on European postglacial colonization history. PLoS One 2019; 14:e0210282. [PMID: 30620758 PMCID: PMC6324796 DOI: 10.1371/journal.pone.0210282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/19/2018] [Indexed: 01/31/2023] Open
Abstract
The red deer (Cervus elaphus) is a widespread wild ungulate in Europe that has suffered strong anthropogenic impacts over their distribution during the last centuries, but also at the present time, due its economic importance as a game species. Here we focus on the evolutionary history of the red deer in Iberia, one of the three main southern refugial areas for temperate species in Europe, and addressed the hypothesis of a cryptic refugia at higher latitudes during the Last Glacial Maximum (LGM). A total of 911 individuals were sampled, genotyped for 34 microsatellites specifically developed for red deer and sequenced for a fragment of 670 bp of the mitochondrial (mtDNA) D-loop. The results were combined with published mtDNA sequences, and integrated with species distribution models and historical European paleo-distribution data, in order to further examine the alternative glacial refugial models and the influence of cryptic refugia on European postglacial colonization history. Clear genetic differentiation between Iberian and European contemporary populations was observed at nuclear and mtDNA levels, despite the mtDNA haplotypes central to the phylogenetic network are present across western Europe (including Iberia) suggesting a panmictic population in the past. Species distribution models, fossil records and genetic data support a timing of divergence between Iberian and European populations that overlap with the LGM. A notable population structure was also found within the Iberian Peninsula, although several populations displayed high levels of admixture as a consequence of recent red deer translocations. Five D-loop sub-lineages were found in Iberia that belong to the Western European mtDNA lineage, while there were four main clusters based on analysis of nuclear markers. Regarding glacial refugial models, our findings provide detailed support for the hypothesis that red deer may have persisted in cryptic northern refugia in western Europe during the LGM, most likely in southern France, southern Ireland, or in a region between them (continental shelf), and these regions were the source of individuals during the European re-colonization. This evidence heightens the importance of conserving the high mitochondrial and nuclear diversity currently observed in Iberian populations.
Collapse
Affiliation(s)
- João Queirós
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, R. Monte-Crasto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
- * E-mail:
| | - Pelayo Acevedo
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, R. Monte-Crasto, Vairão, Portugal
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - João P. V. Santos
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Jose Barasona
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Beatriz Beltran-Beck
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - David González-Barrio
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Jose A. Armenteros
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Iratxe Diez-Delgado
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Mariana Boadella
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
- SABIOtec. Ed. Polivalente UCLM, Ciudad Real, Spain
| | - Isabel Fernandéz de Mera
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Jose F. Ruiz-Fons
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Joaquin Vicente
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Jose de la Fuente
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States of America
| | - Christian Gortázar
- SaBio Research Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain
| | - Jeremy B. Searle
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, R. Monte-Crasto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States of America
| | - Paulo C. Alves
- Centro de Investigacão em Biodiversidade e Recursos Genéticos (CIBIO)/InBio Laboratório Associado, Universidade do Porto, R. Monte-Crasto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), Porto, Portugal
- Wildlife Biology Program, University of Montana, Missoula, MT, United States of America
| |
Collapse
|
38
|
Doña J, Proctor H, Serrano D, Johnson KP, Oploo AO, Huguet‐Tapia JC, Ascunce MS, Jovani R. Feather mites play a role in cleaning host feathers: New insights from DNA metabarcoding and microscopy. Mol Ecol 2019; 28:203-218. [PMID: 29726053 PMCID: PMC6905397 DOI: 10.1111/mec.14581] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/15/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022]
Abstract
Parasites and other symbionts are crucial components of ecosystems, regulating host populations and supporting food webs. However, most symbiont systems, especially those involving commensals and mutualists, are relatively poorly understood. In this study, we have investigated the nature of the symbiotic relationship between birds and their most abundant and diverse ectosymbionts: the vane-dwelling feather mites. For this purpose, we studied the diet of feather mites using two complementary methods. First, we used light microscopy to examine the gut contents of 1,300 individual feather mites representing 100 mite genera (18 families) from 190 bird species belonging to 72 families and 19 orders. Second, we used high-throughput sequencing (HTS) and DNA metabarcoding to determine gut contents from 1,833 individual mites of 18 species inhabiting 18 bird species. Results showed fungi and potentially bacteria as the main food resources for feather mites (apart from potential bird uropygial gland oil). Diatoms and plant matter appeared as rare food resources for feather mites. Importantly, we did not find any evidence of feather mites feeding upon bird resources (e.g., blood, skin) other than potentially uropygial gland oil. In addition, we found a high prevalence of both keratinophilic and pathogenic fungal taxa in the feather mite species examined. Altogether, our results shed light on the long-standing question of the nature of the relationship between birds and their vane-dwelling feather mites, supporting previous evidence for a commensalistic-mutualistic role of feather mites, which are revealed as likely fungivore-microbivore-detritivore symbionts of bird feathers.
Collapse
Affiliation(s)
- Jorge Doña
- Department of Evolutionary EcologyEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| | - Heather Proctor
- Department of Biological SciencesUniversity of AlbertaEdmontonABCanada
| | - David Serrano
- Department of Conservation BiologyEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| | - Kevin P. Johnson
- Illinois Natural History SurveyPrairie Research InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinois
| | | | | | - Marina S. Ascunce
- Department of Plant PathologyUniversity of FloridaGainesvilleFlorida
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFlorida
| | - Roger Jovani
- Department of Evolutionary EcologyEstación Biológica de Doñana (EBD‐CSIC)SevillaSpain
| |
Collapse
|
39
|
Repeated reduction in parasite diversity in invasive populations of Xenopus laevis: a global experiment in enemy release. Biol Invasions 2019. [DOI: 10.1007/s10530-018-1902-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Antonini Y, Lobato DNC, Norte AC, Ramos JA, Moreira PDA, Braga EM. Patterns of avian malaria in tropical and temperate environments: testing the "The enemy release hypothesis". BIOTA NEOTROPICA 2019. [DOI: 10.1590/1676-0611-bn-2018-0716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: According to the enemy release hypothesis (ERH) the spread of invasive species will be facilitated by release from their enemies as they occupy new areas. However, the ERH has rarely been tested by comparing populations of native (non-invasive, long established) species with expanding or shifting ranges, to the same species as invasive in another area. We tested the ERH with respect to blood parasite levels (prevalence and intensity of Plasmodium spp. and Haemoproteus spp.) of (a) two closely related, widely distributed species of thrush (Turdus leucomelas and T. merula), and (b) an invasive sparrow (Passer domesticus) whose range has expanded from the Old World to the New World since the 18th century. A total of 158 birds were sampled in Portugal and 99 in Brazil. All bird species were parasitized, and 55% of the individuals collected were parasitized, and the mean intensity of infection was of 28 parasites per 10,000 erythrocytes. We assessed whether differences in levels of infection (prevalence and intensity) were due to site (tropical/New World and temperate/Old World) or host species. The ERH was supported: Passer domesticus and Turdus merula had higher levels of parasitism in the Old World than in the New World. Thus, P. domesticus seems to be benefitting from its "recent" range expansion, compared to T. leucomelas, through ecological release from its native parasites and because the parasites of the recently invaded area seem to be infesting native species instead.
Collapse
Affiliation(s)
| | | | | | - Jaime A. Ramos
- Universidade de Coimbra, Portugal; Universidade de Coimbra, Portugal
| | | | | |
Collapse
|
41
|
Tolsá MJ, García-Peña GE, Rico-Chávez O, Roche B, Suzán G. Macroecology of birds potentially susceptible to West Nile virus. Proc Biol Sci 2018; 285:20182178. [PMID: 30963915 PMCID: PMC6304048 DOI: 10.1098/rspb.2018.2178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Zoonotic diseases transmitted by wildlife affect biological conservation, public and animal health, and the economy. Current research efforts are aimed at finding wildlife pathogens at a given location. However, a meta-analytical approach may reveal emerging macroecological patterns in the host-pathogen relationship at different temporal and spatial scales. West Nile virus (WNV) is a pathogen with worldwide detrimental impacts on bird populations. To understand macroecological patterns driving WNV infection, we aimed to recognize unknown competent reservoirs using three disease metrics-serological prevalence (SP), molecular prevalence (MP) and mortality (M)-and test if these metrics are correlated with the evolutionary history, geographical origin of bird species, viral strain, time-space and methodology. We performed a quantitative review of field studies on birds sampled for WNV. We obtained 4945 observations of 949 species from 39 countries. Our analysis supported the idea that MP and M are good predictors of reservoir competence, and allowed us to identify potential competent reservoirs. Furthermore, results indicated that the variability of these metrics was attributable to phylogeny, time-space and sample size. A macroecological approach is needed to recognize susceptible species and competent reservoirs, and to identify other factors driving zoonotic diseases originating from wildlife.
Collapse
Affiliation(s)
- María J. Tolsá
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
| | - Gabriel E. García-Peña
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
| | - Oscar Rico-Chávez
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
| | - Benjamin Roche
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
- UMMISCO, IRD/Sorbonne Université, Bondy, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Gerardo Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México; Av. Ciudad Universitaria 3000, CP 04510 Coyoacán, Distrito Federal, México
| |
Collapse
|
42
|
Rivero de Aguilar J, Castillo F, Moreno A, Peñafiel N, Browne L, Walter ST, Karubian J, Bonaccorso E. Patterns of avian haemosporidian infections vary with time, but not habitat, in a fragmented Neotropical landscape. PLoS One 2018; 13:e0206493. [PMID: 30379912 PMCID: PMC6209335 DOI: 10.1371/journal.pone.0206493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Habitat loss has the potential to alter vertebrate host populations and their interactions with parasites. Theory predicts a decrease in parasite diversity due to the loss of hosts in such contexts. However, habitat loss could also increase parasite infections as a result of the arrival of new parasites or by decreasing host immune defenses. We investigated the effect of habitat loss and other habitat characteristics on avian haemosporidian infections in a community of birds within a fragmented landscape in northwest Ecuador. We estimated Plasmodium and Haemoproteus parasite infections in 504 individual birds belonging to 8 families and 18 species. We found differences in infection status among bird species, but no relationship between forest fragment characteristics and infection status was observed. We also found a temporal effect, with birds at the end of the five-month study (which ran from the end of the rainy season thru the dry season), being less infected by Plasmodium parasites than individuals sampled at the beginning. Moreover, we found a positive relationship between forest area and Culicoides abundance. Taken as a whole, these findings indicate little effect of fragment characteristics per se on infection, although additional sampling or higher infection rates would have offered more power to detect potential relationships.
Collapse
Affiliation(s)
- Juan Rivero de Aguilar
- Centro de Investigación en Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Pichincha, Ecuador
- * E-mail:
| | - Fernando Castillo
- Fundación para la Conservación de los Andes Tropicales, Quito, Pichincha, Ecuador
| | - Andrea Moreno
- Fundación para la Conservación de los Andes Tropicales, Quito, Pichincha, Ecuador
| | - Nicolás Peñafiel
- Centro de Investigación en Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Pichincha, Ecuador
| | - Luke Browne
- Fundación para la Conservación de los Andes Tropicales, Quito, Pichincha, Ecuador
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Scott T. Walter
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Jordan Karubian
- Fundación para la Conservación de los Andes Tropicales, Quito, Pichincha, Ecuador
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Elisa Bonaccorso
- Centro de Investigación en Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Pichincha, Ecuador
- Instituto BIOSFERA y Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| |
Collapse
|
43
|
A comprehensive evaluation and first molecular report of Theileria ovis infection in small ruminants in Saudi Arabia. Trop Anim Health Prod 2018; 51:89-98. [DOI: 10.1007/s11250-018-1663-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
|
44
|
Miller IF, Schneider‐Crease I, Nunn CL, Muehlenbein MP. Estimating infection prevalence: Best practices and their theoretical underpinnings. Ecol Evol 2018; 8:6738-6747. [PMID: 30038770 PMCID: PMC6053589 DOI: 10.1002/ece3.4179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/03/2018] [Accepted: 04/22/2018] [Indexed: 11/08/2022] Open
Abstract
Accurately estimating infection prevalence is fundamental to the study of population health, disease dynamics, and infection risk factors. Prevalence is estimated as the proportion of infected individuals ("individual-based estimation"), but is also estimated as the proportion of samples in which evidence of infection is detected ("anonymous estimation"). The latter method is often used when researchers lack information on individual host identity, which can occur during noninvasive sampling of wild populations or when the individual that produced a fecal sample is unknown. The goal of this study was to investigate biases in individual-based versus anonymous prevalence estimation theoretically and to test whether mathematically derived predictions are evident in a comparative dataset of gastrointestinal helminth infections in nonhuman primates. Using a mathematical model, we predict that anonymous estimates of prevalence will be lower than individual-based estimates when (a) samples from infected individuals do not always contain evidence of infection and/or (b) when false negatives occur. The mathematical model further predicts that no difference in bias should exist between anonymous estimation and individual-based estimation when one sample is collected from each individual. Using data on helminth parasites of primates, we find that anonymous estimates of prevalence are significantly and substantially (12.17%) lower than individual-based estimates of prevalence. We also observed that individual-based estimates of prevalence from studies employing single sampling are on average 6.4% higher than anonymous estimates, suggesting a bias toward sampling infected individuals. We recommend that researchers use individual-based study designs with repeated sampling of individuals to obtain the most accurate estimate of infection prevalence. Moreover, to ensure accurate interpretation of their results and to allow for prevalence estimates to be compared among studies, it is essential that authors explicitly describe their sampling designs and prevalence calculations in publications.
Collapse
Affiliation(s)
- Ian F. Miller
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew Jersey
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth Carolina
| | - India Schneider‐Crease
- Department of AnthropologyStony Brook UniversityStony BrookNew York
- Department of PsychologyUniversity of WashingtonSeattleWashington
| | - Charles L. Nunn
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth Carolina
- Duke Global Health InstituteDuke UniversityDurhamNorth Carolina
| | | |
Collapse
|
45
|
Brym MZ, Henry C, Kendall RJ. Elevated parasite burdens as a potential mechanism affecting northern bobwhite (Colinus virginianus) population dynamics in the Rolling Plains of West Texas. Parasitol Res 2018; 117:1683-1688. [DOI: 10.1007/s00436-018-5836-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
46
|
Camacho M, Araújo A, Morrow J, Buikstra J, Reinhard K. Recovering parasites from mummies and coprolites: an epidemiological approach. Parasit Vectors 2018; 11:248. [PMID: 29661215 PMCID: PMC5902992 DOI: 10.1186/s13071-018-2729-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 11/10/2022] Open
Abstract
In the field of archaeological parasitology, researchers have long documented the distribution of parasites in archaeological time and space through the analysis of coprolites and human remains. This area of research defined the origin and migration of parasites through presence/absence studies. By the end of the 20th century, the field of pathoecology had emerged as researchers developed an interest in the ancient ecology of parasite transmission. Supporting studies were conducted to establish the relationships between parasites and humans, including cultural, subsistence, and ecological reconstructions. Parasite prevalence data were collected to infer the impact of parasitism on human health. In the last few decades, a paleoepidemiological approach has emerged with a focus on applying statistical techniques for quantification. The application of egg per gram (EPG) quantification methods provide data about parasites' prevalence in ancient populations and also identify the pathological potential that parasitism presented in different time periods and geographic places. Herein, we compare the methods used in several laboratories for reporting parasite prevalence and EPG quantification. We present newer quantification methods to explore patterns of parasite overdispersion among ancient people. These new methods will be able to produce more realistic measures of parasite infections among people of the past. These measures allow researchers to compare epidemiological patterns in both ancient and modern populations.
Collapse
Affiliation(s)
- Morgana Camacho
- Escola Nacional de Saúde Pública Sergio Arouca/Fundação Oswaldo Cruz (ENSP/FIOCRUZ), Rua Leopoldo Bulhões, 1480, Manguinhos, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Adauto Araújo
- Escola Nacional de Saúde Pública Sergio Arouca/Fundação Oswaldo Cruz (ENSP/FIOCRUZ), Rua Leopoldo Bulhões, 1480, Manguinhos, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Johnica Morrow
- Department of Physical & Life Sciences, Chadron State College, 1000 Main Street, Chadron, NE, 69337, USA
| | - Jane Buikstra
- School of Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Karl Reinhard
- Pathoecology Laboratory, School of Natural Resources, University of Nebraska - Lincoln, Lincoln, NE, 68583-0987, USA.
| |
Collapse
|
47
|
Swana EK, Yav TI, Ngwej LM, Mupemba BN, Suprianto, Mukeng CK, Hattingh I, Luboya ON, Kakoma JBS, Bangs MJ. School-based malaria prevalence: informative systematic surveillance measure to assess epidemiological impact of malaria control interventions in the Democratic Republic of the Congo. Malar J 2018; 17:141. [PMID: 29615041 PMCID: PMC5883584 DOI: 10.1186/s12936-018-2297-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/24/2018] [Indexed: 11/28/2022] Open
Abstract
Background In southern Democratic Republic of the Congo, malaria transmission is stable with seasonal fluctuations. Different measurements can be used to monitor disease burden and estimate the performance of control programmes. Repeated school-based malaria prevalence surveys (SMPS) were conducted from 2007 to 2014 to generate up-to-date surveillance data and evaluate the impact of an integrated vector control programme. Methods Biannual SMPS used a stratified, randomized and proportional sampling method. Schools were randomly selected from the entire pool of facilities within each Health Area (HA). Subsequently, school-children from 6 to 12 years of age were randomly selected in a proportional manner. Initial point-of-care malaria diagnosis was made using a rapid detection test. A matching stained blood film was later examined by expert microscopy and used in the final analysis. Data was stratified and analysed based on age, survey time and location. Results The baseline SMPS (pre-control in 2007) prevalence was approximately 77%. From 2009 to 2014, 11,628 school-children were randomly screened. The mean age was 8.7 years with a near equal sex ratio. After exclusion, analysis of 10,493 students showed an overall malaria prevalence ratio of 1.92 in rural compared to urbanized areas. The distribution of Plasmodium falciparum malaria was significantly different between rural and urban HAs and between end of wet season and end of dry season surveys. The combined prevalence of single P. falciparum, Plasmodium malariae and Plasmodium ovale infections were 29.9, 1.8 and 0.3% of those examined, respectively. Only 1.8% were mixed Plasmodium species infections. From all microscopically detected infections (3545 of 10,493 samples examined), P. falciparum represented 88.5%, followed by P. malariae (5.4%) and P. ovale (0.8%). Cases with multiple species represented 5.3% of patent infections. Malaria prevalence was independent of age and gender. Control programme performance contributed to a significant decrease in mean P. falciparum infection density in urban compared to rural locations. Some rural areas remained highly refractory to control measures (insecticide-treated bed nets, periodic indoor residual spraying). Conclusion The SMPS is a useful longitudinal measurement for estimating population malaria prevalence and demonstrating disease burden and impact of control interventions. SMPS can identify refractory areas of transmission and thus prioritize control strategies accordingly.
Collapse
Affiliation(s)
- Edouard K Swana
- China Molybdenum Company International, Ltd/International SOS, Public Health Programme, Tenke Fungurume Mining Project, Lualaba, Democratic Republic of the Congo. .,Faculty of Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo. .,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Thierry I Yav
- China Molybdenum Company International, Ltd/International SOS, Public Health Programme, Tenke Fungurume Mining Project, Lualaba, Democratic Republic of the Congo.,Faculty of Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Leonard M Ngwej
- China Molybdenum Company International, Ltd/International SOS, Public Health Programme, Tenke Fungurume Mining Project, Lualaba, Democratic Republic of the Congo.,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Betty N Mupemba
- Public Health Referral Laboratory, Lubumbashi, Haut Katanga Province, Democratic Republic of the Congo
| | - Suprianto
- Public Health & Malaria Control, International SOS, P.T. Freeport Indonesia, Kuala Kencana, Papua, 99920, Indonesia
| | - Clarence K Mukeng
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Izak Hattingh
- China Molybdenum Company International, Ltd/International SOS, Public Health Programme, Tenke Fungurume Mining Project, Lualaba, Democratic Republic of the Congo
| | - Oscar N Luboya
- Faculty of Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Jean-Baptiste S Kakoma
- Faculty of Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Michael J Bangs
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.,Public Health & Malaria Control, International SOS, P.T. Freeport Indonesia, Kuala Kencana, Papua, 99920, Indonesia
| |
Collapse
|
48
|
de Souza MV, da Silva LGR, Silva-Pinto V, Mendez-Quiros P, de Miranda Chaves SA, Iñiguez AM. New paleoparasitological investigations from the pre-inca to hispanic contact period in northern Chile. Acta Trop 2018; 178:290-296. [PMID: 29191518 DOI: 10.1016/j.actatropica.2017.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/15/2017] [Accepted: 11/26/2017] [Indexed: 11/19/2022]
Abstract
Paleoparasitological studies have demonstrated that changes in environment or culture are reflected in the patterns of parasitic infection diseases in populations worldwide. The advent of agriculture and animal domestication, with its accompanying reduction in human mobility and expanding population involves changes in or emergence of, parasites, the so-called first epidemiological transition. Cultural processes related to territory occupation contribute to both loss and acquisition of parasites. The archaeological site Lluta 57 in the Lluta Valley, Chile, provides a chronology of the transition from the pre-Inca or Late Intermediate Period (LIP), through the Late or Inca Period (LP), to the Hispanic Contact Period (HCP), providing the possibility of evaluating this epidemiological transition. The aim of this study was to conduct a paleoparasitological investigation of to gain insight into the dynamics of parasitism in Lluta people throughout the Inca expansion. Fourteen human coprolites from the three periods were rehydrated, submitted to spontaneous sedimentation, and examined by light microscopy for the presence of intestinal parasite eggs, pollen grains, and micro-remains. Eggs of four parasites: Enterobius vermicularis, Trichostrongylus sp., Trichuris sp., and Eimeria macusaniensis were recovered. Frequency, diversity, and number of parasite eggs per sample increased over the studied time period. Trichostrongylus sp. and E. macusaniensis were recorded in the region for the first time. Enterobius vermicularis eggs, absent in the LIP, were present as a hyper-infection in LP. The presence of E. macusaniensis is likely related to exploitation of llamas, which were used for food and transport and as sacrificial offerings. The paleobotanical analysis revealed ten families of pollen grains, as well as phytoliths and floral remains. In contrast to parasitological results, a diachronic pattern was not detected. Evolution of the settlements, with the advent of larger, more densely populated, villages, could have influenced the emergence and intensification of transmission of parasites in the region. The study showed that the Inca expansion influenced host-parasite-environment relationships in the Lluta Valley.
Collapse
Affiliation(s)
- Mônica Vieira de Souza
- Laboratório de Paleoparasitologia, Escola Nacional de Saúde Pública Sergio Arouca/Fundação Oswaldo Cruz (DENSP/ENSP/FIOCRUZ), Rua Leopoldo Bulhões, 1480, Manguinhos, Rio de Janeiro, RJ, 21041-210, Brazil; LABTRIP, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Av. Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Lucélia Guedes Ribeiro da Silva
- LABTRIP, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Av. Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Verónica Silva-Pinto
- Área de Antropología, Museo Nacional de Historia Natural, Casilla 787 Santiago de Chile, Chile; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany.
| | - Pablo Mendez-Quiros
- Universidad Autónoma de Barcelona, Departamento de Prehistoria, Programa de Doctorado en Arqueología Prehistórica, Spain.
| | - Sergio Augusto de Miranda Chaves
- Laboratório de Ecologia da Escola Nacional de Saúde Pública da FIOCRUZ, Rua Leopoldo Bulhões 1480, térreo-Manguinhos, 21041-210 Rio de Janeiro, RJ, Brazil.
| | - Alena Mayo Iñiguez
- LABTRIP, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Av. Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil.
| |
Collapse
|
49
|
Shvydka S, Sarabeev V, Estruch VD, Cadarso-Suárez C. Optimum Sample Size to Estimate Mean Parasite Abundance in Fish Parasite Surveys. Helminthologia 2018; 55:52-59. [PMID: 31662627 PMCID: PMC6799529 DOI: 10.1515/helm-2017-0054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/26/2017] [Indexed: 11/15/2022] Open
Abstract
To reach ethically and scientifically valid mean abundance values in parasitological and epidemiological studies this paper considers analytic and simulation approaches for sample size determination. The sample size estimation was carried out by applying mathematical formula with predetermined precision level and parameter of the negative binomial distribution estimated from the empirical data. A simulation approach to optimum sample size determination aimed at the estimation of true value of the mean abundance and its confidence interval (CI) was based on the Bag of Little Bootstraps (BLB). The abundance of two species of monogenean parasites Ligophorus cephali and L. mediterraneus from Mugil cephalus across the Azov-Black Seas localities were subjected to the analysis. The dispersion pattern of both helminth species could be characterized as a highly aggregated distribution with the variance being substantially larger than the mean abundance. The holistic approach applied here offers a wide range of appropriate methods in searching for the optimum sample size and the understanding about the expected precision level of the mean. Given the superior performance of the BLB relative to formulae with its few assumptions, the bootstrap procedure is the preferred method. Two important assessments were performed in the present study: i) based on CIs width a reasonable precision level for the mean abundance in parasitological surveys of Ligophorus spp. could be chosen between 0.8 and 0.5 with 1.6 and 1x mean of the CIs width, and ii) the sample size equal 80 or more host individuals allows accurate and precise estimation of mean abundance. Meanwhile for the host sample size in range between 25 and 40 individuals, the median estimates showed minimal bias but the sampling distribution skewed to the low values; a sample size of 10 host individuals yielded to unreliable estimates.
Collapse
Affiliation(s)
- S Shvydka
- Department of Mathematics, Zaporizhzhia National University, Zhukovskogo 66, 69063 Zaporizhzhia, Ukraine
| | - V Sarabeev
- Department of Biology, Zaporizhzhia National University, Zhukovskogo 66, 69063 Zaporizhzhia, Ukraine
| | - V D Estruch
- Research Institute for Integrated Management of Coastal Zones, Department of Applied Mathematics, Polytechnic University of Valencia, Paranimf, 1, 46730 Grau de Gandia, Valencia, Spain
| | - C Cadarso-Suárez
- Unit of Biostatistics, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782 Santiago de Compostela, Compostela, Spain
| |
Collapse
|
50
|
Smith JD, Gill SA, Baker KM, Vonhof MJ. Prevalence and diversity of avian Haemosporida infecting songbirds in southwest Michigan. Parasitol Res 2017; 117:471-489. [PMID: 29282527 DOI: 10.1007/s00436-017-5724-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Avian blood parasites from the genera Plasmodium, Haemoproteus, and Leucocytozoon (Haemosporida) affect hosts in numerous ways. They influence species interactions, host behavior, reproductive success, and cause pathology and mortality in birds. The Great Lakes region of North America has extensive aquatic and wetland habitat and supports a diverse vector community. Here we describe the community of bird-infecting Haemosporida in southwest Michigan and their host associations by measuring parasite prevalence, diversity, and host breadth across a diverse community of avian hosts. Over 700 songbirds of 55 species were screened for Haemosporida infection across southwest Michigan, including 11 species that were targeted for larger sample sizes. In total, 71 parasite lineages infected over 40% of birds. Of these, 42 were novel, yet richness estimates suggest that approximately half of the actual parasite diversity in the host community was observed despite intensive sampling of multiple host species. Parasite prevalence varied among parasite genera (7-24%) and target host species (0-85%), and parasite diversity was consistently high across most target species. Host breadth varied widely across the most prevalent parasite lineages, and we detected around 60% of host species richness for these parasite lineages. We report many new lineages and novel host-parasite associations, but substantial parasite diversity remains undiscovered in the Midwest.
Collapse
Affiliation(s)
- Jamie D Smith
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA
| | - Sharon A Gill
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA
| | - Kathleen M Baker
- Department of Geography, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA.,W.E. Upjohn Center for the Study of Geographical Change, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA
| | - Maarten J Vonhof
- Department of Biological Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA. .,Institute of the Environment and Sustainability, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA.
| |
Collapse
|