1
|
Schnoz A, Beuret C, Concu M, Hosch S, Rutaihwa LK, Golumbeanu M, Nsanzabana C. Genotyping methods to distinguish Plasmodium falciparum recrudescence from new infection for the assessment of antimalarial drug efficacy: an observational, single-centre, comparison study. THE LANCET. MICROBE 2024:100914. [PMID: 39426395 DOI: 10.1016/s2666-5247(24)00153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 03/24/2024] [Accepted: 06/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Distinguishing Plasmodium falciparum recrudescence from new infections is crucial for the assessment of antimalarial drug efficacy against P falciparum. We aimed to compare the efficacy of different genotyping methods to assess their effect on drug efficacy estimates, particularly in patients from high-transmission settings with polyclonal infections. METHODS In this head-to-head comparison study, we compared five different genotyping methods currently used: fast capillary electrophoresis (F-CE) using msp1, msp2, and glurp; high-resolution capillary electrophoresis (H-CE) using msp1, msp2, and glurp; H-CE using microsatellites; targeted amplicon deep sequencing (TADS) using single nucleotide polymorphism (SNP)-rich markers; and high-resolution melting (HRM) analysis using msp1 and msp2. We assessed their sensitivity in detecting minority clones in polyclonal infections, their reproducibility, and the genetic diversity of the markers used. Our study used four well characterised P falciparum laboratory strains mixed in varying ratios, and 20 paired samples collected from an in-vivo clinical trial. The experiments were performed at the Swiss Tropical and Public Health Institute in Basel, Switzerland between May 5, 2020, and Aug 23, 2021. FINDINGS H-CE using msp1 and msp2 and TADS revealed the highest sensitivity in detecting minority clones (up to ratios of 1:100 for H-CE and 50:1:1:1 for TADS in the FCB1:HB3 and 3D7:K1:HB3:FCB1 laboratory strain mixtures, respectively), highest reproducibility (intra-assay: 99% and 91% for H-CE and TADS, respectively; inter-assay: 98% and 92% for H-CE and TADS, respectively), and highest genetic diversity in the used markers (up to 36 and 32 unique genotypes in 20 paired samples for H-CE using msp2 and TADS using cpmp, respectively). Microsatellites assessed by H-CE had a lower genetic diversity compared with msp1, msp2, and glurp assessed by H-CE and the SNP-rich markers assessed by TADS, with a maximum of 13 unique genotypes, and some genotypes having allelic frequencies larger than 30%. Markers used by TADS gave the most consistent results in distinguishing recrudescence from new infection across all methods (in 18 of 20 pairs of samples vs 15 of 20 pairs for H-CE). INTERPRETATION WHO currently recommends replacing glurp with microsatellites. However, in this study, the replacement of glurp with microsatellites did not change the genotyping outcome, probably due to the lower genetic diversity of microsatellites. More studies with large sample sizes are required to identify the most suitable microsatellites that could replace glurp. Our study indicates that TADS should be considered the gold standard for genotyping to distinguish recrudescence from new infection, and that it should be used to validate other methods. FUNDING Swiss Tropical and Public Health Institute.
Collapse
Affiliation(s)
- Annina Schnoz
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Carla Beuret
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Maura Concu
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Salome Hosch
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Liliana K Rutaihwa
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Monica Golumbeanu
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Christian Nsanzabana
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Goodwin J, Kajubi R, Wang K, Li F, Wade M, Orukan F, Huang L, Whalen M, Aweeka FT, Mwebaza N, Parikh S. Persistent and multiclonal malaria parasite dynamics despite extended artemether-lumefantrine treatment in children. Nat Commun 2024; 15:3817. [PMID: 38714692 PMCID: PMC11076639 DOI: 10.1038/s41467-024-48210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, San Francisco, CA, USA
| | - Meghan Whalen
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Gunasekera KT, Premaratne RG, Handunnetti SM, Weerasena J, Premawansa S, Fernando DS. msp1, msp2, and glurp genotyping to differentiate Plasmodium falciparum recrudescence from reinfections during prevention of reestablishment phase, Sri Lanka, 2014-2019. Malar J 2024; 23:35. [PMID: 38281044 PMCID: PMC10821543 DOI: 10.1186/s12936-024-04858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Sri Lanka after eliminating malaria in 2012, is in the prevention of re-establishment (POR) phase. Being a tropical country with high malariogenic potential, maintaining vigilance is important. All malaria cases are investigated epidemiologically and followed up by integrated drug efficacy surveillance (iDES). Occasionally, that alone is not adequate to differentiate Plasmodium falciparum reinfections from recrudescences. This study evaluated the World Health Organization and Medicines for Malaria Venture (MMV) recommended genotyping protocol for the merozoite surface proteins (msp1, msp2) and the glutamate-rich protein (glurp) to discriminate P. falciparum recrudescence from reinfection in POR phase. METHODS All P. falciparum patients detected from April 2014 to December 2019 were included in this study. Patients were treated and followed up by iDES up to 28 days and were advised to get tested if they develop fever at any time over the following year. Basic socio-demographic information including history of travel was obtained. Details of the malariogenic potential and reactive entomological and parasitological surveillance carried out by the Anti Malaria Campaign to exclude the possibility of local transmission were also collected. The msp1, msp2, and glurp genotyping was performed for initial and any recurrent infections. Classification of recurrent infections as recrudescence or reinfection was done based on epidemiological findings and was compared with the genotyping outcome. RESULTS Among 106 P. falciparum patients, six had recurrent infections. All the initial infections were imported, with a history of travel to malaria endemic countries. In all instances, the reactive entomological and parasitological surveillance had no evidence for local transmission. Five recurrences occurred within 28 days of follow-up and were classified as recrudescence. They have not travelled to malaria endemic countries between the initial and recurrent infections. The other had a recurrent infection after 105 days. It was assumed a reinfection, as he had travelled to the same malaria endemic country in between the two malaria attacks. Genotyping confirmed the recrudescence and the reinfection. CONCLUSIONS The msp1, msp2 and glurp genotyping method accurately differentiated reinfections from recrudescence. Since reinfection without a history of travel to a malaria endemic country would mean local transmission, combining genotyping outcome with epidemiological findings will assist classifying malaria cases without any ambiguity.
Collapse
Affiliation(s)
- Kumudunayana T Gunasekera
- Anti Malaria Campaign, Ministry of Health, 555/5 Public Health Complex, Elvitigala Mawatha, Colombo 5, Sri Lanka.
| | | | - Shiroma M Handunnetti
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Jagathpriya Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Sunil Premawansa
- Department of Zoology and Environmental Science, University of Colombo, Colombo, Sri Lanka
| | - Deepika S Fernando
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
4
|
Ansah F, Nyame K, Laryea R, Owusu R, Amon D, Boyetey MJB, Ayeke D, Razak N, Kornu VE, Ashitei S, Owusu-Appiah C, Chirawurah JD, Abugri J, Aniweh Y, Opoku N, Sutherland CJ, Binka FN, Kweku M, Awandare GA, Dinko B. The temporal dynamics of Plasmodium species infection after artemisinin-based combination therapy (ACT) among asymptomatic children in the Hohoe municipality, Ghana. Malar J 2023; 22:271. [PMID: 37710288 PMCID: PMC10500816 DOI: 10.1186/s12936-023-04712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The routine surveillance of asymptomatic malaria using nucleic acid-based amplification tests is essential in obtaining reliable data that would inform malaria policy formulation and the implementation of appropriate control measures. METHODS In this study, the prevalence rate and the dynamics of Plasmodium species among asymptomatic children (n = 1697) under 5 years from 30 communities within the Hohoe municipality in Ghana were determined. RESULTS AND DISCUSSION The observed prevalence of Plasmodium parasite infection by polymerase chain reaction (PCR) was 33.6% (571/1697), which was significantly higher compared to that obtained by microscopy [26.6% (451/1697)] (P < 0.0001). Based on species-specific analysis by nested PCR, Plasmodium falciparum infection [33.6% (570/1697)] was dominant, with Plasmodium malariae, Plasmodium ovale and Plasmodium vivax infections accounting for 0.1% (1/1697), 0.0% (0/1697), and 0.0% (0/1697), respectively. The prevalence of P. falciparum infection among the 30 communities ranged from 0.0 to 82.5%. Following artesunate-amodiaquine (AS + AQ, 25 mg/kg) treatment of a sub-population of the participants (n = 184), there was a substantial reduction in Plasmodium parasite prevalence by 100% and 79.2% on day 7 based on microscopy and nested PCR analysis, respectively. However, there was an increase in parasite prevalence from day 14 to day 42, with a subsequent decline on day 70 by both microscopy and nested PCR. For parasite clearance rate analysis, we found a significant proportion of the participants harbouring residual Plasmodium parasites or parasite genomic DNA on day 1 [65.0% (13/20)], day 2 [65.0% (13/20)] and day 3 [60.0% (12/20)] after initiating treatment. Of note, gametocyte carriage among participants was low before and after treatment. CONCLUSION Taken together, the results indicate that a significant number of individuals could harbour residual Plasmodium parasites or parasite genomic DNA after treatment. The study demonstrates the importance of routine surveillance of asymptomatic malaria using sensitive nucleic acid-based amplification techniques.
Collapse
Affiliation(s)
- Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kwamina Nyame
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Rukaya Laryea
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Richard Owusu
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Denick Amon
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Mark-Jefferson Buer Boyetey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Dzidzor Ayeke
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Nasibatu Razak
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Victor E Kornu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Sarah Ashitei
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Caleb Owusu-Appiah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Jersley D Chirawurah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - James Abugri
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Nicholas Opoku
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fred N Binka
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Margaret Kweku
- Department of Epidemiology and Biostatistics, Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Hohoe, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Bismarck Dinko
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana.
- Department of Clinical Microbiology, School of Medicine and Dentistry College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, Ghana.
| |
Collapse
|
5
|
Hastings IM, Felger I. WHO antimalarial trial guidelines: good science, bad news? Trends Parasitol 2022; 38:933-941. [PMID: 36068129 DOI: 10.1016/j.pt.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 01/13/2023]
Abstract
Estimating antimalarial drug efficacy requires differentiating treatment failures from new infections arising during the several-week follow-up period in drug trials. Genetic profiling of malaria infections can guide this decision but is notoriously difficult in practice. Previous World Health Organisation (WHO) guidelines were based on assumptions with an inherently high risk of underestimating failure rates. A recent update to WHO guidelines recognises a wider range of analyses to overcome these limitations. We discuss these new analyses and their underlying logic. Drug failure rate estimates in moderate to high transmissions areas will become more accurate but will likely rise twofold due to better detection of treatment failures, and the malaria community needs to anticipate and prepare for potentially large increases in estimated failure rates.
Collapse
Affiliation(s)
- Ian M Hastings
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| |
Collapse
|
6
|
Persistent Submicroscopic Plasmodium falciparum Parasitemia 72 Hours after Treatment with Artemether-Lumefantrine Predicts 42-Day Treatment Failure in Mali and Burkina Faso. Antimicrob Agents Chemother 2021; 65:e0087321. [PMID: 34060901 PMCID: PMC8284475 DOI: 10.1128/aac.00873-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recent randomized controlled trial, the WANECAM (West African Network for Clinical Trials of Antimalarial Drugs) trial, conducted at seven centers in West Africa, found that artemether-lumefantrine, artesunate-amodiaquine, pyronaridine-artesunate, and dihydroartemisinin-piperaquine all displayed good efficacy. However, artemether-lumefantrine was associated with a shorter interval between clinical episodes than the other regimens. In a further comparison of these therapies, we identified cases of persisting submicroscopic parasitemia by quantitative PCR (qPCR) at 72 h posttreatment among WANECAM participants from 5 sites in Mali and Burkina Faso, and we compared treatment outcomes for this group to those with complete parasite clearance by 72 h. Among 552 evaluable patients, 17.7% had qPCR-detectable parasitemia at 72 h during their first treatment episode. This proportion varied among sites, reflecting differences in malaria transmission intensity, but did not differ among pooled drug treatment groups. However, patients who received artemether-lumefantrine and were qPCR positive at 72 h were significantly more likely to have microscopically detectable recurrent Plasmodium falciparum parasitemia by day 42 than those receiving other regimens and experienced, on average, a shorter interval before the next clinical episode. Haplotypes of pfcrt and pfmdr1 were also evaluated in persisting parasites. These data identify a possible threat to the parasitological efficacy of artemether-lumefantrine in West Africa, over a decade since it was first introduced on a large scale.
Collapse
|
7
|
Msellem M, Morris U, Soe A, Abbas FB, Ali AW, Barnes R, Frumento P, Ali AS, Mårtensson A, Björkman A. Increased Sensitivity of Plasmodium falciparum to Artesunate/Amodiaquine Despite 14 Years as First-Line Malaria Treatment, Zanzibar. Emerg Infect Dis 2021; 26:1767-1777. [PMID: 32687050 PMCID: PMC7392451 DOI: 10.3201/eid2608.191547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Artemisinin-based combination therapies (ACTs) are first-line treatments for uncomplicated Plasmodium falciparum malaria. ACT resistance is spreading in Asia but not yet in Africa. Reduced effects of ACT partner drugs have been reported but with little information regarding widely used artesunate/amodiaquine (ASAQ). We studied its efficacy in Zanzibar after 14 years as first-line treatment directly by an in vivo, single-armed trial and indirectly by prevalences of different genotypes in the P. falciparum chloroquine-resistance transporter, multidrug-resistance 1, and Kelch 13 propeller domain genes. In vivo efficacy was higher during 2017 (100%; 95% CI 97.4%-100%) than during 2002-2005 (94.7%; 95% CI 91.9%-96.7%) (p = 0.003). Molecular findings showed no artemisinin resistance-associated genotypes and major increases in genotypes associated with high sensitivity/efficacy for amodiaquine than before ASAQ was introduced. Thus, the efficacy of ASAQ is maintained and appears to be increased after long-term use in contrast to what is observed for other ACTs used in Africa.
Collapse
|
8
|
Plucinski MM, Hastings IM, Moriarty LF, Venkatesan M, Felger I, Halsey ES. Variation in Calculating and Reporting Antimalarial Efficacy against Plasmodium falciparum in Sub-Saharan Africa: A Systematic Review of Published Reports. Am J Trop Med Hyg 2021; 104:1820-1829. [PMID: 33724925 PMCID: PMC8103451 DOI: 10.4269/ajtmh.20-1481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/16/2021] [Indexed: 12/11/2022] Open
Abstract
Antimalarials, in particular artemisinin-based combination therapies (ACTs), are critical tools in reducing the global burden of malaria, which is concentrated in sub-Saharan Africa. Performing and reporting antimalarial efficacy studies in a transparent and standardized fashion permit comparison of efficacy outcomes across countries and time periods. This systematic review summarizes study compliance with WHO laboratory and reporting guidance pertaining to antimalarial therapeutic efficacy studies and evaluates how well studies from sub-Saharan Africa adhered to these guidelines. We included all published studies (January 2020 or before) performed in sub-Saharan Africa where ACT efficacy for treatment of uncomplicated Plasmodium falciparum infection was reported. The primary outcome was a composite indicator for study methodology consistent with WHO guidelines for statistical analysis of corrected efficacy, defined as an article presenting a Kaplan-Meier survival analysis of corrected efficacy or reporting a per-protocol analysis where new infections were excluded from the numerator and denominator. Of 581 articles screened, we identified 279 for the review. Molecular correction was used in 83% (232/279) to distinguish new infections from recrudescences in subjects experiencing recurrent parasitemia. Only 45% (99/221) of articles with therapeutic efficacy as a primary outcome and performing molecular correction reported corrected efficacy outcomes calculated in a way consistent with WHO recommendations. These results indicate a widespread lack of compliance with WHO-recommended methods of analysis, which may result in biases in how antimalarial effectiveness is being measured and reported from sub-Saharan Africa.
Collapse
Affiliation(s)
- Mateusz M. Plucinski
- Malaria Branch and U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ian M. Hastings
- Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Leah F. Moriarty
- Malaria Branch and U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Meera Venkatesan
- U.S. President’s Malaria Initiative, United States Agency for International Development, Washington, District of Columbia
| | - Ingrid Felger
- University of Basel, Basel, Switzerland;,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Eric S. Halsey
- Malaria Branch and U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia;,Address correspondence to Eric S. Halsey, Malaria Branch and U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, 1600 Clifton Rd., Malaria Branch, Atlanta, GA 30333. E-mail:
| |
Collapse
|
9
|
Plucinski MM, Barratt JLN. Nonparametric Binary Classification to Distinguish Closely Related versus Unrelated Plasmodium falciparum Parasites. Am J Trop Med Hyg 2021; 104:1830-1835. [PMID: 33819175 PMCID: PMC8103434 DOI: 10.4269/ajtmh.21-0117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Assessing genetic relatedness of Plasmodium falciparum genotypes is a key component of antimalarial efficacy trials. Previous methods have focused on determining a priori definitions of the level of genetic similarity sufficient to classify two infections as sharing the same strain. However, factors such as mixed-strain infections, allelic suppression, imprecise typing methods, and heterozygosity complicate comparisons of apicomplexan genotypes. Here, we introduce a novel method for nonparametric statistical testing of relatedness for P. falciparum parasites. First, the background distribution of genetic distance between unrelated strains is computed. Second, a threshold genetic distance is computed from this empiric distribution of distances to demarcate genetic distances that are unlikely to have arisen by chance. Third, the genetic distance between paired samples is computed, and paired samples with genetic distances below the threshold are classified as related. The method is designed to work with any arbitrary genetic distance definition. We validated this procedure using two independent approaches to calculating genetic distance. We assessed the concordance of the novel nonparametric classification with a gold-standard Bayesian approach for 175 pairs of recurrent P. falciparum episodes from previously published malaria efficacy trials with microsatellite data from five studies in Guinea and Angola. The novel nonparametric approach was 98% sensitive and 84-89% specific in correctly identifying related genotypes compared with a gold-standard Bayesian algorithm. The approach provides a unified and systematic method to statistically assess relatedness of P. falciparum parasites using arbitrary genetic distance methodologies.
Collapse
Affiliation(s)
- Mateusz M. Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia;,U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia;,Address correspondence to Mateusz M. Plucinski, Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30329-4018. E-mail:
| | - Joel L. N. Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
10
|
Finn TP, Porter TR, Moonga H, Silumbe K, Daniels RF, Volkman SK, Yukich JO, Keating J, Bennett A, Steketee RW, Miller JM, Eisele TP. Adherence to Mass Drug Administration with Dihydroartemisinin-Piperaquine and Plasmodium falciparum Clearance in Southern Province, Zambia. Am J Trop Med Hyg 2020; 103:37-45. [PMID: 32618267 PMCID: PMC7416972 DOI: 10.4269/ajtmh.19-0667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mass drug administration (MDA) with artemisinin combination therapy is a potentially useful tool for malaria elimination programs, but its success depends partly on drug effectiveness and treatment coverage in the targeted population. As part of a cluster-randomized controlled trial in Southern Province, Zambia evaluating the impact of MDA and household focal MDA (fMDA) with dihydroartemisinin-piperaquine (DHAp), sub-studies were conducted investigating population drug adherence rates and effectiveness of DHAp as administered in clearing Plasmodium falciparum infections following household mass administration. Adherence information was reported for 181,534 of 336,821 DHAp (53.9%) treatments administered during four rounds of MDA/fMDA, of which 153,197 (84.4%) reported completing the full course of DHAp. The proportion of participants fully adhering to the treatment regimen differed by MDA modality (MDA versus fMDA), RDT status, and whether the first dose was observed by those administering treatments. Among a subset of participants receiving DHAp and selected for longitudinal follow-up, 58 were positive for asexual-stage P. falciparum infection by microscopy at baseline. None of the 45 participants followed up at days 3 and/or 7 were slide positive for asexual-stage parasitemia. For those with longer term follow-up, one participant was positive 47 days after treatment, and two additional participants were positive after 69 days, although these two were determined to be new infections by genotyping. High completion of a 3-day course of DHAp and parasite clearance in the context of household MDA are promising as Zambia's National Malaria Programme continues to weigh appropriate interventions for malaria elimination.
Collapse
Affiliation(s)
- Timothy P Finn
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Travis R Porter
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Hawela Moonga
- National Malaria Elimination Centre, Zambia Ministry of Health, Chainama Hospital Grounds, Lusaka, Zambia
| | - Kafula Silumbe
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Rachel F Daniels
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Sarah K Volkman
- Simmons University, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Joshua O Yukich
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Joseph Keating
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California
| | | | - John M Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Thomas P Eisele
- Department of Tropical Medicine, Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| |
Collapse
|
11
|
A Computer Modelling Approach To Evaluate the Accuracy of Microsatellite Markers for Classification of Recurrent Infections during Routine Monitoring of Antimalarial Drug Efficacy. Antimicrob Agents Chemother 2020; 64:AAC.01517-19. [PMID: 31932376 DOI: 10.1128/aac.01517-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Antimalarial drugs have long half-lives, so clinical trials to monitor their efficacy require long periods of follow-up to capture drug failure that may become patent only weeks after treatment. Reinfections often occur during follow-up, so robust methods of distinguishing drug failures (recrudescence) from emerging new infections are needed to produce accurate failure rate estimates. Molecular correction aims to achieve this by comparing the genotype of a patient's pretreatment (initial) blood sample with that of any infection that occurs during follow-up, with matching genotypes indicating drug failure. We use an in silico approach to show that the widely used match-counting method of molecular correction with microsatellite markers is likely to be highly unreliable and may lead to gross under- or overestimates of the true failure rates, depending on the choice of matching criterion. A Bayesian algorithm for molecular correction was previously developed and utilized for analysis of in vivo efficacy trials. We validated this algorithm using in silico data and showed it had high specificity and generated accurate failure rate estimates. This conclusion was robust for multiple drugs, different levels of drug failure rates, different levels of transmission intensity in the study sites, and microsatellite genetic diversity. The Bayesian algorithm was inherently unable to accurately identify low-density recrudescence that occurred in a small number of patients, but this did not appear to compromise its utility as a highly effective molecular correction method for analyzing microsatellite genotypes. Strong consideration should be given to using Bayesian methodology to obtain accurate failure rate estimates during routine monitoring trials of antimalarial efficacy that use microsatellite markers.
Collapse
|
12
|
PCR correction strategies for malaria drug trials: updates and clarifications. THE LANCET. INFECTIOUS DISEASES 2020; 20:e20-e25. [PMID: 31540841 DOI: 10.1016/s1473-3099(19)30426-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 07/03/2019] [Accepted: 07/19/2019] [Indexed: 11/24/2022]
Abstract
Malaria drug trials conducted in endemic areas face a major challenge in their analysis because it is difficult to establish whether parasitaemia in blood samples collected after treatment indicate drug failure or a new infection acquired after treatment. It is therefore vital to reliably distinguish drug failures from new infections in order to obtain accurate estimates of drug failure rates. This distinction can be achieved for Plasmodium falciparum by comparing parasite genotypes obtained at the time of treatment (the baseline) and on the day of recurring parasitaemia. Such PCR correction is required to obtain accurate failure rates, even for new effective drugs. Despite the routine use of PCR correction in surveillance of drug resistance and in clinical drug trials, limitations inherent to the molecular genotyping methods have led some researchers to question the validity of current PCR correction strategies. Here we describe and discuss recent developments in these genotyping approaches, with a particular focus on method validation and limitations of the genotyping strategies. Our aim is to update scientists from public and private bodies who are working on the development, deployment, and surveillance of new malaria drugs. We aim to promote discussion around these issues and argue for the adoption of improved standardised PCR correction methodologies.
Collapse
|
13
|
Gruenberg M, Lerch A, Beck HP, Felger I. Amplicon deep sequencing improves Plasmodium falciparum genotyping in clinical trials of antimalarial drugs. Sci Rep 2019; 9:17790. [PMID: 31780741 PMCID: PMC6883076 DOI: 10.1038/s41598-019-54203-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022] Open
Abstract
Clinical trials monitoring malaria drug resistance require genotyping of recurrent Plasmodium falciparum parasites to distinguish between treatment failure and new infection occurring during the trial follow up period. Because trial participants usually harbour multi-clonal P. falciparum infections, deep amplicon sequencing (AmpSeq) was employed to improve sensitivity and reliability of minority clone detection. Paired samples from 32 drug trial participants were Illumina deep-sequenced for five molecular markers. Reads were analysed by custom-made software HaplotypR and trial outcomes compared to results from the previous standard genotyping method based on length-polymorphic markers. Diversity of AmpSeq markers in pre-treatment samples was comparable or higher than length-polymorphic markers. AmpSeq was highly reproducible with consistent quantification of co-infecting parasite clones within a host. Outcomes of the three best-performing markers, cpmp, cpp and ama1-D3, agreed in 26/32 (81%) of patients. Discordance between the three markers performed per sample was much lower by AmpSeq (six patients) compared to length-polymorphic markers (eleven patients). Using AmpSeq for discrimination of recrudescence and new infection in antimalarial drug trials provides highly reproducible and robust characterization of clone dynamics during trial follow-up. AmpSeq overcomes limitations inherent to length-polymorphic markers. Regulatory clinical trials of antimalarial drugs will greatly benefit from this unbiased typing method.
Collapse
Affiliation(s)
- Maria Gruenberg
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Anita Lerch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Dahal P, Stepniewska K, Guerin PJ, D’Alessandro U, Price RN, Simpson JA. Dealing with indeterminate outcomes in antimalarial drug efficacy trials: a comparison between complete case analysis, multiple imputation and inverse probability weighting. BMC Med Res Methodol 2019; 19:215. [PMID: 31775647 PMCID: PMC6882216 DOI: 10.1186/s12874-019-0856-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Antimalarial clinical efficacy studies for uncomplicated Plasmodium falciparum malaria frequently encounter situations in which molecular genotyping is unable to discriminate between parasitic recurrence, either new infection or recrudescence. The current WHO guideline recommends excluding these individuals with indeterminate outcomes in a complete case (CC) analysis. Data from the four artemisinin-based combination (4ABC) trial was used to compare the performance of multiple imputation (MI) and inverse probability weighting (IPW) against the standard CC analysis for dealing with indeterminate recurrences. METHODS 3369 study participants from the multicentre study (4ABC trial) with molecularly defined parasitic recurrence treated with three artemisinin-based combination therapies were used to represent a complete dataset. A set proportion of recurrent infections (10, 30 and 45%) were reclassified as missing using two mechanisms: a completely random selection (mechanism 1); missingness weakly dependent (mechanism 2a) and strongly dependent (mechanism 2b) on treatment and transmission intensity. The performance of MI, IPW and CC approaches in estimating the Kaplan-Meier (K-M) probability of parasitic recrudescence at day 28 was then compared. In addition, the maximum likelihood estimate of the cured proportion was presented for further comparison (analytical solution). Performance measures (bias, relative bias, standard error and coverage) were reported as an average from 1000 simulation runs. RESULTS The CC analyses resulted in absolute underestimation of K-M probability of day 28 recrudescence by up to 1.7% and were associated with reduced precision and poor coverage across all the scenarios studied. Both MI and IPW method performed better (greater consistency and greater efficiency) compared to CC analysis. In the absence of censoring, the analytical solution provided the most consistent and accurate estimate of cured proportion compared to the CC analyses. CONCLUSIONS The widely used CC approach underestimates antimalarial failure; IPW and MI procedures provided efficient and consistent estimates and should be considered when reporting the results of antimalarial clinical trials, especially in areas of high transmission, where the proportion of indeterminate outcomes could be large. The analytical solution estimating the cured proportion could provide an alternative approach, in scenarios with minimal censoring due to loss to follow-up or new infections.
Collapse
Affiliation(s)
- Prabin Dahal
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kasia Stepniewska
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Philippe J. Guerin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Umberto D’Alessandro
- Medical Research Council Unit, Fajara, The Gambia
- Unit of Malariology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ric N. Price
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Improving Methods for Analyzing Antimalarial Drug Efficacy Trials: Molecular Correction Based on Length-Polymorphic Markers msp-1, msp-2, and glurp. Antimicrob Agents Chemother 2019; 63:AAC.00590-19. [PMID: 31307982 PMCID: PMC6709465 DOI: 10.1128/aac.00590-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/02/2019] [Indexed: 01/14/2023] Open
Abstract
Drug efficacy trials monitor the continued efficacy of front-line drugs against falciparum malaria. Overestimating efficacy results in a country retaining a failing drug as first-line treatment with associated increases in morbidity and mortality, while underestimating drug effectiveness leads to removal of an effective treatment with substantial practical and economic implications. Drug efficacy trials monitor the continued efficacy of front-line drugs against falciparum malaria. Overestimating efficacy results in a country retaining a failing drug as first-line treatment with associated increases in morbidity and mortality, while underestimating drug effectiveness leads to removal of an effective treatment with substantial practical and economic implications. Trials are challenging: they require long durations of follow-up to detect drug failures, and patients are frequently reinfected during that period. Molecular correction based on parasite genotypes distinguishes reinfections from drug failures to ensure the accuracy of failure rate estimates. Several molecular correction “algorithms” have been proposed, but which is most accurate and/or robust remains unknown. We used pharmacological modeling to simulate parasite dynamics and genetic signals that occur in patients enrolled in malaria drug clinical trials. We compared estimates of treatment failure obtained from a selection of proposed molecular correction algorithms against the known “true” failure rate in the model. Our findings are as follows. (i) Molecular correction is essential to avoid substantial overestimates of drug failure rates. (ii) The current WHO-recommended algorithm consistently underestimates the true failure rate. (iii) Newly proposed algorithms produce more accurate failure rate estimates; the most accurate algorithm depends on the choice of drug, trial follow-up length, and transmission intensity. (iv) Long durations of patient follow-up may be counterproductive; large numbers of new infections accumulate and may be misclassified, overestimating drug failure rate. (v) Our model was highly consistent with existing in vivo data. The current WHO-recommended method for molecular correction and analysis of clinical trials should be reevaluated and updated.
Collapse
|
16
|
Cornet-Vernet L, Munyangi J, Chen L, Towler M, Weathers P. WITHDRAWN: RESPONSE to Gillibert et al. 2019. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019:152980. [PMID: 31708323 DOI: 10.1016/j.phymed.2019.152980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Affiliation(s)
| | | | - Lu Chen
- Department of Mathematics, Worcester Polytechnic Institute, USA
| | - Melissa Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, USA
| | - Pamela Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, USA
| |
Collapse
|
17
|
Lerch A, Koepfli C, Hofmann NE, Kattenberg JH, Rosanas-Urgell A, Betuela I, Mueller I, Felger I. Longitudinal tracking and quantification of individual Plasmodium falciparum clones in complex infections. Sci Rep 2019; 9:3333. [PMID: 30833657 PMCID: PMC6399284 DOI: 10.1038/s41598-019-39656-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/24/2019] [Indexed: 01/04/2023] Open
Abstract
Longitudinal tracking of individual Plasmodium falciparum strains in multi-clonal infections is essential for investigating infection dynamics of malaria. The traditional genotyping techniques did not permit tracking changes in individual clone density during persistent natural infections. Amplicon deep sequencing (Amp-Seq) offers a tool to address this knowledge gap. The sensitivity of Amp-Seq for relative quantification of clones was investigated using three molecular markers, ama1-D2, ama1-D3, and cpmp. Amp-Seq and length-polymorphism based genotyping were compared for their performance in following minority clones in longitudinal samples from Papua New Guinea. Amp-Seq markers were superior to length-polymorphic marker msp2 in detecting minority clones (sensitivity Amp-Seq: 95%, msp2: 85%). Multiplicity of infection (MOI) by Amp-Seq was 2.32 versus 1.73 for msp2. The higher sensitivity had no effect on estimates of force of infection because missed minority clones were detected in preceding or succeeding bleeds. Individual clone densities were tracked longitudinally by Amp-Seq despite MOI > 1, thus providing an additional parameter for investigating malaria infection dynamics. Amp-Seq based genotyping of longitudinal samples improves detection of minority clones and estimates of MOI. Amp-Seq permits tracking of clone density over time to study clone competition or the dynamics of specific, i.e. resistance-associated genotypes.
Collapse
Affiliation(s)
- Anita Lerch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,University of Notre Dame, Notre Dame, IN, USA
| | - Cristian Koepfli
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia.,University of Notre Dame, Notre Dame, IN, USA
| | - Natalie E Hofmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Johanna H Kattenberg
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Institute of Tropical Medicine, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Institute of Tropical Medicine, Antwerp, Belgium
| | - Inoni Betuela
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia.,Institut Pasteur, Paris, France
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Aydemir O, Janko M, Hathaway NJ, Verity R, Mwandagalirwa MK, Tshefu AK, Tessema SK, Marsh PW, Tran A, Reimonn T, Ghani AC, Ghansah A, Juliano JJ, Greenhouse BR, Emch M, Meshnick SR, Bailey JA. Drug-Resistance and Population Structure of Plasmodium falciparum Across the Democratic Republic of Congo Using High-Throughput Molecular Inversion Probes. J Infect Dis 2018; 218:946-955. [PMID: 29718283 PMCID: PMC6093412 DOI: 10.1093/infdis/jiy223] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022] Open
Abstract
A better understanding of the drivers of the spread of malaria parasites and drug resistance across space and time is needed. These drivers can be elucidated using genetic tools. Here, a novel molecular inversion probe (MIP) panel targeting all major drug-resistance mutations and a set of microsatellites was used to genotype Plasmodium falciparum infections of 552 children from the 2013-2014 Demographic and Health Survey conducted in the Democratic Republic of the Congo (DRC). Microsatellite-based analysis of population structure suggests that parasites within the DRC form a homogeneous population. In contrast, sulfadoxine-resistance markers in dihydropteroate synthase show marked spatial structure with ongoing spread of double and triple mutants compared with 2007. These findings suggest that parasites in the DRC remain panmictic despite rapidly spreading antimalarial-resistance mutations. Moreover, highly multiplexed targeted sequencing using MIPs emerges as a cost-effective method for elucidating pathogen genetics in complex infections in large cohorts.
Collapse
Affiliation(s)
- Ozkan Aydemir
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester
| | - Mark Janko
- Department of Geography, University of North Carolina, Chapel Hill
| | - Nick J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester
| | - Robert Verity
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom
| | | | - Antoinette K Tshefu
- Community Health, Kinshasa School of Public Health, School of Medicine, University of Kinshasa, Democratic Republic of Congo
| | | | - Patrick W Marsh
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester
| | - Alice Tran
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester
| | - Thomas Reimonn
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester
| | - Azra C Ghani
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute of Medical Research, Ghana
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
- Division of Infectious Diseases, University of North Carolina, Chapel Hill
- Curriculum in Genetics and Microbiology, University of North Carolina, Chapel Hill
| | | | - Michael Emch
- Department of Geography, University of North Carolina, Chapel Hill
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| |
Collapse
|
19
|
Identifying Recrudescent Plasmodium falciparum in Treated Malaria Patients by Real-time PCR and High Resolution Melt Analysis of Genetic Diversity. Sci Rep 2018; 8:10097. [PMID: 29973679 PMCID: PMC6031682 DOI: 10.1038/s41598-018-28179-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 12/24/2022] Open
Abstract
Recurrent parasitaemia during follow up of clinical trials of antimalarial drug efficacy results from either recrudescence of parasites surviving treatment or from parasites newly emerging from the hepatic stage of infection. Nested PCR is used to distinguish these two possibilities and the technique is difficult to standardise. There is risk of both false positive and false negative results, leading to misclassification errors. The high-resolution melt (HRM) assay was developed with pairs of conserved primers targeting blocks of merozoite surface protein 1 and 2 (msp1 and msp2) genes, and polymorphisms were compared using sequence-confirmed Plasmodium falciparum DNA samples from laboratory isolates. In this study, the HRM dissociation profiles of msp1 and msp2 amplicons were determined and validated against parasite isolates from malaria patients. The msp1 and msp2 profiles of both laboratory and clinical isolates were reproducibly differentiated by HRM. These rapid assays are performed in a closed-tube system, and so avoid cross-contamination while increasing throughput, which are two major advantages. The HRM assays offer significant gains in simplicity, speed and interpretation of results, and reduced analysis cost, for studies that require discrimination of parasite clones. Assay performance in large-scale studies utilizing DNA samples derived from filter-paper bloodspots should now be evaluated.
Collapse
|
20
|
Fulakeza JRM, Banda RL, Lipenga TR, Terlouw DJ, Nkhoma SC, Hodel EM. Comparison of Two Genotyping Methods for Distinguishing Recrudescence from Reinfection in Antimalarial Drug Efficacy/Effectiveness Trials. Am J Trop Med Hyg 2018; 99:84-86. [PMID: 29785925 PMCID: PMC6085787 DOI: 10.4269/ajtmh.18-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genotyping of allelic variants of Plasmodium falciparum merozoite surface proteins 1 and 2 (msp-1 and msp-2), and the glutamate-rich protein is the gold standard for distinguishing reinfections from recrudescences in antimalarial drug trials. We compared performance of the recently developed 24-single-nucleotide polymorphism (SNP) Barcoding Assay against msp-1 and msp-2 genotyping in a cluster-randomized effectiveness trial of artemether-lumefantrine and dihydroartemisinin-piperaquine in Malawi. Rates of recrudescence and reinfection estimated by the two methods did not differ significantly (Fisher's exact test; P = 0.887 and P = 0.768, respectively). There was a strong agreement between the two methods in predicting treatment outcomes and resolving the genetic complexity of malaria infections in this setting. These results support the use of this SNP assay as an alternative method for correcting antimalarial efficacy/effectiveness data.
Collapse
Affiliation(s)
| | - Rachel L Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Trancizeo R Lipenga
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Dianne J Terlouw
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eva Maria Hodel
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| |
Collapse
|
21
|
Huijben S, Paaijmans KP. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl 2018; 11:415-430. [PMID: 29636796 PMCID: PMC5891050 DOI: 10.1111/eva.12530] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Since 2000, the world has made significant progress in reducing malaria morbidity and mortality, and several countries in Africa, South America and South-East Asia are working hard to eliminate the disease. These elimination efforts continue to rely heavily on antimalarial drugs and insecticide-based interventions, which remain the cornerstones of malaria treatment and prevention. However, resistance has emerged against nearly every antimalarial drug and insecticide that is available. In this review we discuss the evolutionary consequences of the way we currently implement antimalarial interventions, which is leading to resistance and may ultimately lead to control failure, but also how evolutionary principles can be applied to extend the lifespan of current and novel interventions. A greater understanding of the general evolutionary principles that are at the core of emerging resistance is urgently needed if we are to develop improved resistance management strategies with the ultimate goal to achieve a malaria-free world.
Collapse
Affiliation(s)
- Silvie Huijben
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
| | - Krijn P. Paaijmans
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
- Centro de Investigação em Saúde de ManhiçaMaputoMozambique
| |
Collapse
|
22
|
Lalremruata A, Jeyaraj S, Engleitner T, Joanny F, Lang A, Bélard S, Mombo-Ngoma G, Ramharter M, Kremsner PG, Mordmüller B, Held J. Species and genotype diversity of Plasmodium in malaria patients from Gabon analysed by next generation sequencing. Malar J 2017; 16:398. [PMID: 28974215 PMCID: PMC5627438 DOI: 10.1186/s12936-017-2044-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022] Open
Abstract
Background Six Plasmodium species are known to naturally infect humans. Mixed species infections occur regularly but morphological discrimination by microscopy is difficult and multiplicity of infection (MOI) can only be evaluated by molecular methods. This study investigated the complexity of Plasmodium infections in patients treated for microscopically detected non-falciparum or mixed species malaria in Gabon. Methods Ultra-deep sequencing of nucleus (18S rRNA), mitochondrion, and apicoplast encoded genes was used to evaluate Plasmodium species diversity and MOI in 46 symptomatic Gabonese patients with microscopically diagnosed non-falciparum or mixed species malaria. Results Deep sequencing revealed a large complexity of confections in patients with uncomplicated malaria, both on species and genotype levels. Mixed infections involved up to four parasite species (Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale curtisi, and P. ovale wallikeri). Multiple genotypes from each species were determined from the asexual 18S rRNA gene. 17 of 46 samples (37%) harboured multiple genotypes of at least one Plasmodium species. The number of genotypes per sample (MOI) was highest in P. malariae (n = 4), followed by P. ovale curtisi (n = 3), P. ovale wallikeri (n = 3), and P. falciparum (n = 2). The highest combined genotype complexity in samples that contained mixed-species infections was seven. Conclusions Ultra-deep sequencing showed an unexpected breadth of Plasmodium species and within species diversity in clinical samples. MOI of P. ovale curtisi, P. ovale wallikeri and P. malariae infections were higher than anticipated and contribute significantly to the burden of malaria in Gabon. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2044-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert Lalremruata
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Sankarganesh Jeyaraj
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,PSG Institute of Advanced Studies, Coimbatore, 641 004, India
| | - Thomas Engleitner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Fanny Joanny
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Annika Lang
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany
| | - Sabine Bélard
- Department of Pediatric Pneumology and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | | | - Michael Ramharter
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter G Kremsner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany. .,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.
| | - Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,German Centre for Infection Research, partner site Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| |
Collapse
|
23
|
Sutherland CJ. Rescuing artemisinin combination therapy in Africa. LANCET GLOBAL HEALTH 2016; 5:e8-e9. [PMID: 27840068 DOI: 10.1016/s2214-109x(16)30291-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Colin J Sutherland
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London, WC1E 7HT, UK.
| |
Collapse
|
24
|
Reply to "no robust evidence of lumefantrine resistance". Antimicrob Agents Chemother 2016; 59:5867-8. [PMID: 26276896 DOI: 10.1128/aac.01355-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
25
|
Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, Jelip J, Rundi C, Imwong M, Mudin RN, Abdullah NR. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia. PLoS One 2016; 11:e0152415. [PMID: 27023787 PMCID: PMC4811561 DOI: 10.1371/journal.pone.0152415] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
Collapse
Affiliation(s)
| | - Umi Rubiah Sastu
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Abass Abdul-Karim
- Zonal Public Health Laboratory, Tamale Teaching Hospital, Tamale, Northern Region, Ghana, West Africa
| | - Amirrudin Muhammad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Prem Kumar Muniandy
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Jenarun Jelip
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Christina Rundi
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Disease Control Division, Ministry of Health, Federal Government Administrative Centre, Putrajaya, Malaysia
| | - Noor Rain Abdullah
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview. Int J Parasitol 2016; 46:465-71. [PMID: 27021167 DOI: 10.1016/j.ijpara.2016.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 11/21/2022]
Abstract
Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper.
Collapse
|
27
|
Robust Algorithm for Systematic Classification of Malaria Late Treatment Failures as Recrudescence or Reinfection Using Microsatellite Genotyping. Antimicrob Agents Chemother 2015. [PMID: 26195521 DOI: 10.1128/aac.00072-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Routine therapeutic efficacy monitoring to measure the response to antimalarial treatment is a cornerstone of malaria control. To correctly measure drug efficacy, therapeutic efficacy studies require genotyping parasites from late treatment failures to differentiate between recrudescent infections and reinfections. However, there is a lack of statistical methods to systematically classify late treatment failures from genotyping data. A Bayesian algorithm was developed to estimate the posterior probability of late treatment failure being the result of a recrudescent infection from microsatellite genotyping data. The algorithm was implemented using a Monte Carlo Markov chain approach and was used to classify late treatment failures using published microsatellite data from therapeutic efficacy studies in Ethiopia and Angola. The algorithm classified 85% of the Ethiopian and 95% of the Angolan late treatment failures as either likely reinfection or likely recrudescence, defined as a posterior probability of recrudescence of <0.1 or >0.9, respectively. The adjusted efficacies calculated using the new algorithm differed from efficacies estimated using commonly used methods for differentiating recrudescence from reinfection. In a high-transmission setting such as Angola, as few as 15 samples needed to be genotyped in order to have enough power to correctly classify treatment failures. Analysis of microsatellite genotyping data for differentiating between recrudescence and reinfection benefits from an approach that both systematically classifies late treatment failures and estimates the uncertainty of these classifications. Researchers analyzing genotyping data from antimalarial therapeutic efficacy monitoring are urged to publish their raw genetic data and to estimate the uncertainty around their classification.
Collapse
|
28
|
Koepfli C, Rodrigues PT, Antao T, Orjuela-Sánchez P, Van den Eede P, Gamboa D, van Hong N, Bendezu J, Erhart A, Barnadas C, Ratsimbasoa A, Menard D, Severini C, Menegon M, Nour BYM, Karunaweera N, Mueller I, Ferreira MU, Felger I. Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Negl Trop Dis 2015; 9:e0003872. [PMID: 26125189 PMCID: PMC4488360 DOI: 10.1371/journal.pntd.0003872] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/02/2015] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. Plasmodium vivax is the predominant malaria parasite in Latin America, Asia and the South Pacific. Different factors are expected to shape diversity and population structure across continents, e.g. transmission intensity which is much lower in South America as compared to Southeast-Asia and the South Pacific, or geographical isolation of P. vivax populations in the South Pacific. We have compiled data from 841 isolates from South and Central America, Africa, Central Asia, Southeast-Asia and the South Pacific typed with a panel of 11 microsatellite markers. Diversity was highest in Southeast-Asia, where transmission is intermediate-high and migration of infected hosts is high, and lowest in South America and Central Asia where malaria transmission is low and focal. Reducing the panel of microsatellites showed that 2–6 markers are sufficient for genotyping for most drug trials and epidemiological studies, as these markers can identify >90% of all haplotypes. Parasites clustered according to continental origin, with high population differentiation between South American and Central Asian populations and the other populations, and lowest differences between Southeast-Asia and the South Pacific. Current attempts to reduce malaria transmission might change this pattern, but only after transmission is reduced for an extended period of time.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago Antao
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nguyen van Hong
- National Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Jorge Bendezu
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Céline Barnadas
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Arsène Ratsimbasoa
- Immunology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Didier Menard
- Institut Pasteur de Cambodge, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Bakri Y. M. Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Nadira Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Huijben S, Chan BHK, Read AF. Relevance of undetectably rare resistant malaria parasites in treatment failure: experimental evidence from Plasmodium chabaudi. Am J Trop Med Hyg 2015; 92:1214-21. [PMID: 25940195 DOI: 10.4269/ajtmh.15-0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/25/2015] [Indexed: 01/24/2023] Open
Abstract
Resistant malaria parasites are frequently found in mixed infections with drug-sensitive parasites. Particularly early in the evolutionary process, the frequency of these resistant mutants can be extremely low and below the level of molecular detection. We tested whether the rarity of resistance in infections impacted the health outcomes of treatment failure and the potential for onward transmission of resistance. Mixed infections of different ratios of resistant and susceptible Plasmodium chabaudi parasites were inoculated in laboratory mice and dynamics tracked during the course of infection using highly sensitive genotype-specific quantitative polymerase chain reaction (qPCR). Frequencies of resistant parasites ranged from 10% to 0.003% at the onset of treatment. We found that the rarer the resistant parasites were, the lower the likelihood of their onward transmission, but the worse the treatment failure was in terms of parasite numbers and disease severity. Strikingly, drug resistant parasites had the biggest impact on health outcomes when they were too rare to be detected by any molecular methods currently available for field samples. Indeed, in the field, these treatment failures would not even have been attributed to resistance.
Collapse
Affiliation(s)
- Silvie Huijben
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania; ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic Universitat de Barcelona, Barcelona, Spain; Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Brian H K Chan
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania; ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic Universitat de Barcelona, Barcelona, Spain; Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania; ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic Universitat de Barcelona, Barcelona, Spain; Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Detection of persistent Plasmodium spp. infections in Ugandan children after artemether-lumefantrine treatment. Parasitology 2014; 141:1880-90. [PMID: 24837880 PMCID: PMC4255323 DOI: 10.1017/s003118201400033x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During a longitudinal study investigating the dynamics of malaria in Ugandan lakeshore communities, a consistently high malaria prevalence was observed in young children despite regular treatment. To explore the short-term performance of artemether-lumefantrine (AL), a pilot investigation into parasite carriage after treatment(s) was conducted in Bukoba village. A total of 163 children (aged 2–7 years) with a positive blood film and rapid antigen test were treated with AL; only 8·7% of these had elevated axillary temperatures. On day 7 and then on day 17, 40 children (26·3%) and 33 (22·3%) were positive by microscopy, respectively. Real-time PCR analysis demonstrated that multi-species Plasmodium infections were common at baseline, with 41·1% of children positive for Plasmodium falciparum/Plasmodium malariae, 9·2% for P. falciparum/ Plasmodium ovale spp. and 8·0% for all three species. Moreover, on day 17, 39·9% of children infected with falciparum malaria at baseline were again positive for the same species, and 9·2% of those infected with P. malariae at baseline were positive for P. malariae. Here, chronic multi-species malaria infections persisted in children after AL treatment(s). Better point-of-care diagnostics for non-falciparum infections are needed, as well as further investigation of AL performance in asymptomatic individuals.
Collapse
|
31
|
Beshir KB, Sutherland CJ, Sawa P, Drakeley CJ, Okell L, Mweresa CK, Omar SA, Shekalaghe SA, Kaur H, Ndaro A, Chilongola J, Schallig HDFH, Sauerwein RW, Hallett RL, Bousema T. Residual Plasmodium falciparum parasitemia in Kenyan children after artemisinin-combination therapy is associated with increased transmission to mosquitoes and parasite recurrence. J Infect Dis 2013; 208:2017-24. [PMID: 23945376 PMCID: PMC3836468 DOI: 10.1093/infdis/jit431] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/07/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Parasite clearance time after artemisinin-based combination therapy (ACT) may be increasing in Asian and African settings. The association between parasite clearance following ACT and transmissibility is currently unknown. METHODS We determined parasite clearance dynamics by duplex quantitative polymerase chain reaction (qPCR) in samples collected in the first 3 days after treatment of uncomplicated malaria with ACT. Gametocyte carriage was determined by Pfs25 quantitative nucleic acid sequence-based amplification assays; infectiousness to mosquitoes by membrane-feeding assays on day 7 after treatment. RESULTS Residual parasitemia was detected by qPCR in 31.8% (95% confidence interval [CI], 24.6-39.8) of the children on day 3 after initiation of treatment. Residual parasitemia was associated with a 2-fold longer duration of gametocyte carriage (P = .0007), a higher likelihood of infecting mosquitoes (relative risk, 1.95; 95% CI, 1.17-3.24; P = .015), and a higher parasite burden in mosquitoes (incidence rate ratio, 2.92; 95% CI, 1.61-5.31; P < .001). Children with residual parasitemia were also significantly more likely to experience microscopically detectable parasitemia during follow-up (relative risk, 11.25; 95% CI, 4.08-31.01; P < .001). CONCLUSIONS Residual submicroscopic parasitemia is common after ACT and is associated with a higher transmission potential. Residual parasitemia may also have consequences for individual patients because of its higher risk of recurrent parasitemia.
Collapse
Affiliation(s)
| | | | - Patrick Sawa
- Human Health Division, International Centre of Insect Physiology and Ecology, Mbita Point
| | | | - Lucy Okell
- Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College London, United Kingdom
| | - Collins K. Mweresa
- Human Health Division, International Centre of Insect Physiology and Ecology, Mbita Point
| | | | - Seif A. Shekalaghe
- Kilimanjaro Clinical Medical Research Institute, Kilimanjaro Christian Medical Centre, Moshi
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Harparkash Kaur
- Department of Clinical Research, London School of Hygiene and Tropical Medicine
| | - Arnold Ndaro
- Kilimanjaro Clinical Medical Research Institute, Kilimanjaro Christian Medical Centre, Moshi
| | - Jaffu Chilongola
- Kilimanjaro Clinical Medical Research Institute, Kilimanjaro Christian Medical Centre, Moshi
| | | | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | - Teun Bousema
- Department of Immunology and Infection
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
32
|
van Schalkwyk DA, Burrow R, Henriques G, Gadalla NB, Beshir KB, Hasford C, Wright SG, Ding XC, Chiodini PL, Sutherland CJ. Culture-adapted Plasmodium falciparum isolates from UK travellers: in vitro drug sensitivity, clonality and drug resistance markers. Malar J 2013; 12:320. [PMID: 24028570 PMCID: PMC3847303 DOI: 10.1186/1475-2875-12-320] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/10/2013] [Indexed: 01/20/2023] Open
Abstract
Background The screening of lead compounds against in vitro parasite cultures is an essential step in the development of novel anti-malarial drugs, but currently relies on laboratory parasite lines established in vitro during the last century. This study sought to establish in continuous culture a series of recent Plasmodium falciparum isolates to represent the current parasite populations in Africa, all of which are now exposed to artemisinin combination therapy. Methods Pre-treatment P. falciparum isolates were obtained in EDTA, and placed into continuous culture after sampling of DNA. One post-treatment blood sample was also collected for each donor to monitor parasite clonality during clearance in vivo. IC50 estimates were obtained for 11 anti-malarial compounds for each established parasite line, clonal multiplicity measured in vivo and in vitro, and polymorphic sites implicated in parasite sensitivity to drugs were investigated at the pfmdr1, pfcrt, pfdhfr, pfdhps and pfap2mu loci before and after treatment, and in the cultured lines. Results Plasmodium falciparum isolates from seven malaria patients with recent travel to three West African and two East African countries were successfully established in long-term culture. One of these, HL1211, was from a patient with recrudescent parasitaemia 14 days after a full course of artemether-lumefantrine. All established culture lines were shown to be polyclonal, reflecting the in vivo isolates from which they were derived, and at least two lines reliably produce gametocytes in vitro. Two lines displayed high chloroquine IC50 estimates, and carried the CVIET haplotype at codons 72–76, whereas the remaining five lines carried the CVMNK haplotype and were sensitive in vitro. All were sensitive to the endoperoxides dihydroartemisinin and OZ277, but IC50 estimates for lumefantrine varied, with the least sensitive parasites carrying pfmdr1 alleles encoding Asn at codon 86. Conclusions This study describes the establishment in continuous culture, in vitro drug sensitivity testing and molecular characterization of a series of multiclonal P. falciparum isolates taken directly from UK malaria patients following recent travel to various malaria-endemic countries in Africa. These “HL” isolates are available as an open resource for studies of drug response, antigenic diversity and other aspects of parasite biology.
Collapse
Affiliation(s)
- Donelly A van Schalkwyk
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wigger L, Vogt JE, Roth V. Malaria haplotype frequency estimation. Stat Med 2013; 32:3737-51. [PMID: 23609602 DOI: 10.1002/sim.5792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/12/2012] [Accepted: 02/25/2013] [Indexed: 11/07/2022]
Abstract
We present a Bayesian approach for estimating the relative frequencies of multi-single nucleotide polymorphism (SNP) haplotypes in populations of the malaria parasite Plasmodium falciparum by using microarray SNP data from human blood samples. Each sample comes from a malaria patient and contains one or several parasite clones that may genetically differ. Samples containing multiple parasite clones with different genetic markers pose a special challenge. The situation is comparable with a polyploid organism. The data from each blood sample indicates whether the parasites in the blood carry a mutant or a wildtype allele at various selected genomic positions. If both mutant and wildtype alleles are detected at a given position in a multiply infected sample, the data indicates the presence of both alleles, but the ratio is unknown. Thus, the data only partially reveals which specific combinations of genetic markers (i.e. haplotypes across the examined SNPs) occur in distinct parasite clones. In addition, SNP data may contain errors at non-negligible rates. We use a multinomial mixture model with partially missing observations to represent this data and a Markov chain Monte Carlo method to estimate the haplotype frequencies in a population. Our approach addresses both challenges, multiple infections and data errors.
Collapse
Affiliation(s)
- Leonore Wigger
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland.
| | | | | |
Collapse
|
34
|
Owusu-Ofori AK, Betson M, Parry CM, Stothard JR, Bates I. Transfusion-transmitted malaria in Ghana. Clin Infect Dis 2013; 56:1735-41. [PMID: 23463635 DOI: 10.1093/cid/cit130] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In sub-Saharan Africa, the prevalence of malaria parasitemia in blood donors varies from 0.6% to 50%. Although the burden of TTM in malaria-endemic countries is unknown, it is recommended that all donated blood is screened for malaria parasites. This study aimed to establish the incidence of TTM and identify a suitable screening test. METHODS Pregnant women, children, and immunocompromised malaria-negative transfusion recipients in a teaching hospital in Ghana were recruited over the course of 1 year. Parasites detected in recipients within 14 days of the transfusion were genotyped and compared to parasites in the transfused blood. The presence of genotypically identical parasites in the recipient and the transfused blood confirmed transfusion-transmitted malaria. Four malaria screening tests were compared to assess their usefulness in the context of African blood banks. RESULTS Of the 50 patients who received transfusions that were positive for Plasmodium falciparum by polymerase chain reaction (PCR), 7 recipients developed PCR-detectable parasitemia. In only 1 of the 50 recipients (2%) was the parasite identical to that in the transfused blood. The prevalence of P. falciparum malaria in transfused blood was 4.7% (21/445) by microscopy, 13.7% (60/440) by rapid diagnostic test, 18% (78/436) by PCR, and 22.2% (98/442) by enzyme immunoassay. CONCLUSIONS Although malaria parasites are commonly detected in blood donors in malaria-endemic areas, transfusion-transmitted malaria occurs infrequently. Policies recommend screening blood donors for malaria, but none of the commonly used methods is sufficiently sensitive to be used by blood banks in malaria-endemic countries.
Collapse
Affiliation(s)
- Alex K Owusu-Ofori
- Department of Clinical Microbiology, Komfo Anokye Teaching Hospital, Kumasi, Ghana.
| | | | | | | | | |
Collapse
|
35
|
Echeverry DF, Nair S, Osorio L, Menon S, Murillo C, Anderson TJC. Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region. BMC Genet 2013; 14:2. [PMID: 23294725 PMCID: PMC3563461 DOI: 10.1186/1471-2156-14-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/21/2012] [Indexed: 11/22/2022] Open
Abstract
Background Resistance to chloroquine and antifolate drugs has evolved independently in South America, suggesting that genotype - phenotype studies aimed at understanding the genetic basis of resistance to these and other drugs should be conducted in this continent. This research was conducted to better understand the population structure of Colombian Plasmodium falciparum in preparation for such studies. Results A set of 384 SNPs were genotyped in blood spot DNA samples from 447 P. falciparum infected subjects collected over a ten year period from four provinces of the Colombian Pacific coast to evaluate clonality, population structure and linkage disequilibrium (LD). Most infections (81%) contained a single predominant clone. These clustered into 136 multilocus genotypes (MLGs), with 32% of MLGs recovered from multiple (2 – 28) independent subjects. We observed extremely low genotypic richness (R = 0.42) and long persistence of MLGs through time (median = 537 days, range = 1 – 2,997 days). There was a high probability (>5%) of sampling parasites from the same MLG in different subjects within 28 days, suggesting caution is needed when using genotyping methods to assess treatment success in clinical drug trials. Panmixia was rejected as four well differentiated subpopulations (FST = 0.084 - 0.279) were identified. These occurred sympatrically but varied in frequency within the four provinces. Linkage disequilibrium (LD) decayed more rapidly (r2 = 0.17 for markers <10 kb apart) than observed previously in South American samples. Conclusions We conclude that Colombian populations have several advantages for association studies, because multiple clone infections are uncommon and LD decays over the scale of one or a few genes. However, the extensive population structure and low genotype richness will need to be accounted for when designing and analyzing association studies.
Collapse
Affiliation(s)
- Diego F Echeverry
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Orjuela-Sánchez P, Brandi MC, Ferreira MU. Microsatellite analysis of malaria parasites. Methods Mol Biol 2013; 1006:247-58. [PMID: 23546796 DOI: 10.1007/978-1-62703-389-3_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microsatellites have been increasingly used to investigate the population structure of malaria parasites, to map genetic loci contributing to phenotypes such as drug resistance and virulence in laboratory crosses and genome-wide association studies and to distinguish between treatment failures and new infections in clinical trials. Here, we provide optimized protocols for genotyping highly polymorphic microsatellites sampled from across the genomes of the human malaria parasites Plasmodium falciparum and P. vivax that have been extensively used in research laboratories worldwide.
Collapse
Affiliation(s)
- Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
37
|
Ross A, Koepfli C, Li X, Schoepflin S, Siba P, Mueller I, Felger I, Smith T. Estimating the numbers of malaria infections in blood samples using high-resolution genotyping data. PLoS One 2012; 7:e42496. [PMID: 22952595 PMCID: PMC3430681 DOI: 10.1371/journal.pone.0042496] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/06/2012] [Indexed: 12/15/2022] Open
Abstract
People living in endemic areas often habour several malaria infections at once. High-resolution genotyping can distinguish between infections by detecting the presence of different alleles at a polymorphic locus. However the number of infections may not be accurately counted since parasites from multiple infections may carry the same allele. We use simulation to determine the circumstances under which the number of observed genotypes are likely to be substantially less than the number of infections present and investigate the performance of two methods for estimating the numbers of infections from high-resolution genotyping data. The simulations suggest that the problem is not substantial in most datasets: the disparity between the mean numbers of infections and of observed genotypes was small when there was 20 or more alleles, 20 or more blood samples, a mean number of infections of 6 or less and where the frequency of the most common allele was no greater than 20%. The issue of multiple infections carrying the same allele is unlikely to be a major component of the errors in PCR-based genotyping. Simulations also showed that, with heterogeneity in allele frequencies, the observed frequencies are not a good approximation of the true allele frequencies. The first method that we proposed to estimate the numbers of infections assumes that they are a good approximation and hence did poorly in the presence of heterogeneity. In contrast, the second method by Li et al estimates both the numbers of infections and the true allele frequencies simultaneously and produced accurate estimates of the mean number of infections.
Collapse
Affiliation(s)
- Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Carlsson AM, Ngasala BE, Dahlström S, Membi C, Veiga IM, Rombo L, Abdulla S, Premji Z, Gil JP, Björkman A, Mårtensson A. Plasmodium falciparum population dynamics during the early phase of anti-malarial drug treatment in Tanzanian children with acute uncomplicated malaria. Malar J 2011; 10:380. [PMID: 22185672 PMCID: PMC3280947 DOI: 10.1186/1475-2875-10-380] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 08/04/2011] [Accepted: 12/20/2011] [Indexed: 11/23/2022] Open
Abstract
Background This study aimed to explore Plasmodium falciparum population dynamics during the early phase of anti-malarial drug treatment with artemisinin-based combination therapy in children with clinical malaria in a high transmission area in Africa. Methods A total of 50 children aged 1-10 years with acute uncomplicated P. falciparum malaria in Bagamoyo District, Tanzania, were enrolled. Participants were hospitalized and received supervised standard treatment with artemether-lumefantrine according to body weight in six doses over 3 days. Blood samples were collected 11 times, i.e. at time of diagnosis (-2 h) and 0, 2, 4, 8, 16, 24, 36, 48, 60 and 72 h after initiation of treatment. Parasite population dynamics were assessed using nested polymerase chain reaction (PCR)-genotyping of merozoite surface protein (msp) 1 and 2. Results PCR-analyses from nine sequential blood samples collected after initiation of treatment identified 20 and 21 additional genotypes in 15/50 (30%) and 14/50 (28%) children with msp1 and msp2, respectively, non-detectable in the pre-treatment samples (-2 and 0 h combined). Some 15/20 (75%) and 14/21 (67%) of these genotypes were identified within 24 h, whereas 17/20 (85%) and 19/21 (90%) within 48 h for msp1 and msp2, respectively. The genotype profile was diverse, and varied considerably over time both within and between patients, molecular markers and their respective families. Conclusion PCR analyses from multiple blood samples collected during the early treatment phase revealed a complex picture of parasite sub-populations. This underlines the importance of interpreting PCR-outcomes with caution and suggests that the present use of PCR-adjustment from paired blood samples in anti-malarial drug trials may overestimate assessment of drug efficacy in high transmission areas in Africa. The study is registered at http://www.clinicaltrials.gov with identifier NCT00336375.
Collapse
Affiliation(s)
- Anja M Carlsson
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Retzius väg 10, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Borrmann S, Sasi P, Mwai L, Bashraheil M, Abdallah A, Muriithi S, Frühauf H, Schaub B, Pfeil J, Peshu J, Hanpithakpong W, Rippert A, Juma E, Tsofa B, Mosobo M, Lowe B, Osier F, Fegan G, Lindegårdh N, Nzila A, Peshu N, Mackinnon M, Marsh K. Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast. PLoS One 2011; 6:e26005. [PMID: 22102856 PMCID: PMC3213089 DOI: 10.1371/journal.pone.0026005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/15/2011] [Indexed: 12/30/2022] Open
Abstract
Background The emergence of artemisinin-resistant P. falciparum malaria in South-East Asia highlights the need for continued global surveillance of the efficacy of artemisinin-based combination therapies. Methods On the Kenyan coast we studied the treatment responses in 474 children 6–59 months old with uncomplicated P. falciparum malaria in a randomized controlled trial of dihydroartemisinin-piperaquine vs. artemether-lumefantrine from 2005 to 2008. (ISRCTN88705995) Results The proportion of patients with residual parasitemia on day 1 rose from 55% in 2005–2006 to 87% in 2007–2008 (odds ratio, 5.4, 95%CI, 2.7–11.1; P<0.001) and from 81% to 95% (OR, 4.1, 95%CI, 1.7–9.9; P = 0.002) in the DHA-PPQ and AM-LM groups, respectively. In parallel, Kaplan-Meier estimated risks of apparent recrudescent infection by day 84 increased from 7% to 14% (P = 0.1) and from 6% to 15% (P = 0.05) with DHA-PPQ and AM-LM, respectively. Coinciding with decreasing transmission in the study area, clinical tolerance to parasitemia (defined as absence of fever) declined between 2005–2006 and 2007–2008 (OR body temperature >37.5°C, 2.8, 1.9–4.1; P<0.001). Neither in vitro sensitivity of parasites to DHA nor levels of antibodies against parasite extract accounted for parasite clearance rates or changes thereof. Conclusions The significant, albeit small, decline through time of parasitological response rates to treatment with ACTs may be due to the emergence of parasites with reduced drug sensitivity, to the coincident reduction in population-level clinical immunity, or both. Maintaining the efficacy of artemisinin-based therapy in Africa would benefit from a better understanding of the mechanisms underlying reduced parasite clearance rates. Trial Registration Controlled-Trials.com ISRCTN88705995
Collapse
Affiliation(s)
- Steffen Borrmann
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Kilifi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Valle D, Clark JS, Zhao K. Enhanced understanding of infectious diseases by fusing multiple datasets: a case study on malaria in the Western Brazilian Amazon region. PLoS One 2011; 6:e27462. [PMID: 22087321 PMCID: PMC3210805 DOI: 10.1371/journal.pone.0027462] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/17/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A common challenge to the study of several infectious diseases consists in combining limited cross-sectional survey data, collected with a more sensitive detection method, with a more extensive (but biased) syndromic sentinel surveillance data, collected with a less sensitive method. Our article describes a novel modeling framework that overcomes this challenge, resulting in enhanced understanding of malaria in the Western Brazilian Amazon. METHODOLOGY/PRINCIPAL FINDINGS A cohort of 486 individuals was monitored using four cross-sectional surveys, where all participants were sampled regardless of symptoms (aggressive-active case detection), resulting in 1,383 microscopy and 1,400 polymerase chain reaction tests. Data on the same individuals were also obtained from the local surveillance facility (i.e., passive and active case detection), totaling 1,694 microscopy tests. Our model accommodates these multiple pathogen and case detection methods. This model is shown to outperform logistic regression in terms of interpretability of its parameters, ability to recover the true parameter values, and predictive performance. We reveal that the main infection determinant was the extent of forest, particularly during the rainy season and in close proximity to water bodies, and participation on forest activities. We find that time residing in Acrelandia (as a proxy for past malaria exposure) decreases infection risk but surprisingly increases the likelihood of reporting symptoms once infected, possibly because non-naïve settlers are only susceptible to more virulent Plasmodium strains. We suggest that the search for asymptomatic carriers should focus on those at greater risk of being infected but lower risk of reporting symptoms once infected. CONCLUSIONS/SIGNIFICANCE The modeling framework presented here combines cross-sectional survey data and syndromic sentinel surveillance data to shed light on several aspects of malaria that are critical for public health policy. This framework can be adapted to enhance inference on infectious diseases whenever asymptomatic carriers are important and multiple datasets are available.
Collapse
Affiliation(s)
- Denis Valle
- University Program in Ecology, Duke University, Durham, North Carolina, United States of America.
| | | | | |
Collapse
|
41
|
Robinson T, Campino SG, Auburn S, Assefa SA, Polley SD, Manske M, MacInnis B, Rockett KA, Maslen GL, Sanders M, Quail MA, Chiodini PL, Kwiatkowski DP, Clark TG, Sutherland CJ. Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients. PLoS One 2011; 6:e23204. [PMID: 21853089 PMCID: PMC3154926 DOI: 10.1371/journal.pone.0023204] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022] Open
Abstract
Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity.
Collapse
Affiliation(s)
- Timothy Robinson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Sarah Auburn
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Spencer D. Polley
- Department of Clinical Parasitology, Hospital for Tropical Diseases, London, United Kingdom
| | - Magnus Manske
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Bronwyn MacInnis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Mandy Sanders
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Peter L. Chiodini
- Department of Clinical Parasitology, Hospital for Tropical Diseases, London, United Kingdom
- Faculties of Infectious and Tropical Diseases and Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Taane G. Clark
- Faculties of Infectious and Tropical Diseases and Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Colin J. Sutherland
- Department of Clinical Parasitology, Hospital for Tropical Diseases, London, United Kingdom
- Faculties of Infectious and Tropical Diseases and Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Koepfli C, Schoepflin S, Bretscher M, Lin E, Kiniboro B, Zimmerman PA, Siba P, Smith TA, Mueller I, Felger I. How much remains undetected? Probability of molecular detection of human Plasmodia in the field. PLoS One 2011; 6:e19010. [PMID: 21552561 PMCID: PMC3084249 DOI: 10.1371/journal.pone.0019010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/21/2011] [Indexed: 11/23/2022] Open
Abstract
Background In malaria endemic areas, most people are simultaneously infected with different parasite clones. Detection of individual clones is hampered when their densities fluctuate around the detection limit and, in case of P. falciparum, by sequestration during part of their life cycle. This has important implications for measures of levels of infection or for the outcome of clinical trials. This study aimed at measuring the detectability of individual P. falciparum and P. vivax parasite clones in consecutive samples of the same patient and at investigating the impact of sampling strategies on basic epidemiological measures such as multiplicity of infection (MOI). Methods Samples were obtained in a repeated cross-sectional field survey in 1 to 4.5 years old children from Papua New Guinea, who were followed up in 2-monthly intervals over 16 months. At each follow-up visit, two consecutive blood samples were collected from each child at intervals of 24 hours. Samples were genotyped for the polymorphic markers msp2 for P. falciparum and msp1F3 and MS16 for P. vivax. Observed prevalence and mean MOI estimated from single samples per host were compared to combined data from sampling twice within 24 h. Findings and Conclusion Estimated detectability was high in our data set (0.79 [95% CI 0.76–0.82] for P. falciparum and, depending on the marker, 0.61 [0.58–0.63] or 0.73 [0.71–0.75] for P. vivax). When genotyping data from sequential samples, collected 24 hours apart, were combined, the increase in measured prevalence was moderate, 6 to 9% of all infections were missed on a single day. The effect on observed MOI was more pronounced, 18 to 31% of all individual clones were not detected in a single bleed. Repeated sampling revealed little difference between detectability of P. falciparum and P. vivax.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonja Schoepflin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Michael Bretscher
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Enmoore Lin
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Benson Kiniboro
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Thomas A. Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ivo Mueller
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
43
|
Exposing malaria in-host diversity and estimating population diversity by capture-recapture using massively parallel pyrosequencing. Proc Natl Acad Sci U S A 2010; 107:20138-43. [PMID: 21041629 DOI: 10.1073/pnas.1007068107] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria infections commonly contain multiple genetically distinct variants. Mathematical and animal models suggest that interactions among these variants have a profound impact on the emergence of drug resistance. However, methods currently used for quantifying parasite diversity in individual infections are insensitive to low-abundance variants and are not quantitative for variant population sizes. To more completely describe the in-host complexity and ecology of malaria infections, we used massively parallel pyrosequencing to characterize malaria parasite diversity in the infections of a group of patients. By individually sequencing single strands of DNA in a complex mixture, this technique can quantify uncommon variants in mixed infections. The in-host diversity revealed by this method far exceeded that described by currently recommended genotyping methods, with as many as sixfold more variants per infection. In addition, in paired pre- and posttreatment samples, we show a complex milieu of parasites, including variants likely up-selected and down-selected by drug therapy. As with all surveys of diversity, sampling limitations prevent full discovery and differences in sampling effort can confound comparisons among samples, hosts, and populations. Here, we used ecological approaches of species accumulation curves and capture-recapture to estimate the number of variants we failed to detect in the population, and show that these methods enable comparisons of diversity before and after treatment, as well as between malaria populations. The combination of ecological statistics and massively parallel pyrosequencing provides a powerful tool for studying the evolution of drug resistance and the in-host ecology of malaria infections.
Collapse
|