1
|
Cerone M, Smith TK. Exploring the activity of the putative Δ6-desaturase and its role in bloodstream form life-cycle transitions in Trypanosoma brucei. PLoS Pathog 2025; 21:e1012691. [PMID: 39965027 DOI: 10.1371/journal.ppat.1012691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/27/2025] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
Trypanosomatids have been shown to possess an exclusive and finely regulated biosynthetic pathway for de novo synthesis of fatty acids (FAs) and particularly of polyunsaturated fatty acids (PUFAs). The key enzymes for the process of unsaturation are known as desaturases. In this work, we explored the biocatalytic activity of the putative Δ6-desaturase (Tb11.v5.0580) in the native organism T. brucei, whose expression level varies dramatically between life cycle stages. Utilising FA analysis via GC-MS, we were able to elucidate i) via genetic manipulation of the level of expression of Δ6-desaturases in both procyclic (PCF) and bloodstream (BSF) forms of T. brucei and ii) via supplementation of the media with various levels of FA sources, that docosahexaenoic acid (22:6) and/or docosapentaenoic acid (22:5) are the products, while arachidonic acid (20:4) and/or docosatetraenoic acid (22:4) are the substrates of this Δ6-desaturase. Surprisingly, we were able to observe, via lipidomic analysis with ESI-MS/MS, an increase in inositol-phosphoryl ceramide (IPC) in response to the overexpression of Δ6-desaturase in low-fat media in BSF. The formation of IPC is normally only observed in the stumpy and procyclic forms of T. brucei. Therefore, the expression levels of Δ6-desaturases, which increases between BSF, stumpy and PCF, might be involved in the cascade(s) of metabolic events that contributes to these remodelling of the lipid pools and ultimately morphological changes, which are key to the transition between these life-cycle stages. We were in fact able to show that the overexpression of Δ6-desaturase is indeed linked to the expression of protein associated with differentiation (PAD1) in stumpy, and of the upregulation of some proteins and metabolites which are normally upregulated in stumpy and PCF.
Collapse
Affiliation(s)
- Michela Cerone
- Schools of Chemistry and Biology, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, Scotland
| | - Terry K Smith
- Schools of Chemistry and Biology, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, Scotland
| |
Collapse
|
2
|
Pereira SH, Alves FP, Teixeira SMR. Animal Trypanosomiasis: Challenges and Prospects for New Vaccination Strategies. Microorganisms 2024; 12:2575. [PMID: 39770779 PMCID: PMC11678697 DOI: 10.3390/microorganisms12122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Animal trypanosomiasis, such as nagana, surra, and dourine, represent a significant challenge to animal health and economic development, especially in tropical and subtropical regions where livestock production is an essential component of a country's economy. Despite advances in the control of human trypanosomiasis, animal diseases caused by several species of trypanosomes remain neglected. The lack of funding for the development of new treatments and vaccines contributes to sustaining the severe economic impacts these diseases have on the farming industry, especially in low-income rural areas. Recent advances in the understanding of the immune processes involved during infection have been essential for the development of new approaches towards disease control including vaccines. These new approaches must be part of integrated control programs, which must also include vector management and the awareness of good veterinary practices. Addressing the challenges posed by the control of animal trypanosomiasis requires collaborative and continuous efforts shared among scientists, governments, and the farming industry, if significant progress is to be made to mitigate the impact of these diseases. In this literature review, we discuss the main challenges for the development of vaccines for animal trypanosomiasis and the research underway, including the prospects for employing new vaccine platforms, such as an mRNA vaccine, vector-based vaccine, and CRISPR-attenuated parasite vaccine.
Collapse
Affiliation(s)
- Samille Henriques Pereira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.H.P.); (F.P.A.)
| | - Felipe Paladino Alves
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.H.P.); (F.P.A.)
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.H.P.); (F.P.A.)
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, MG, Brazil
| |
Collapse
|
3
|
Somé GF, Séré M, Somda BM, Dayo GK, Ouédraogo GA, Boulangé A, Maarifi G, Chantal I, Berthier-Teyssedre D, Thévenon S. Immune Response in Cattle Trypanosomosis and Trypanotolerance: Main Findings and Gaps. Parasite Immunol 2024; 46:e13075. [PMID: 39508487 DOI: 10.1111/pim.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Trypanosome parasites of the genus Trypanosoma cause African animal trypanosomosis, a devastating livestock disease plaguing sub-Saharan Africa. Unlike many protozoan parasites, these extracellular blood-borne pathogens directly engage the host's immune system. While the mouse model has provided valuable insights, a comprehensive understanding of the bovine immune response to trypanosomes remains elusive. Addressing the immune response in cattle, the most relevant host species, and how it takes part in mitigating the negative impact of the disease could contribute to setting up sustainable control strategies. This review summarises the current knowledge of the immune response in cattle during trypanosomosis. Following a brief overview of infection processes and bovine trypanotolerance, we present advances in the regulation of host innate, inflammatory and adaptive responses and delve into the key immunological players involved in immunoactivities and immunosuppression. We discuss how these mechanisms contribute to tolerance or susceptibility to infection, highlighting critical gaps in knowledge that require further investigation.
Collapse
Affiliation(s)
- Gnohion Fabrice Somé
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Modou Séré
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Université Daniel-Ouezzin-COULIBALLY, Dédougou, Burkina Faso
| | - Bienvenu Martin Somda
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Guiguigbaza-Kossigan Dayo
- Centre International de Recherche-Développement Sur l'Elevage en Zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | | | - Alain Boulangé
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Ghizlane Maarifi
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Isabelle Chantal
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - David Berthier-Teyssedre
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| | - Sophie Thévenon
- Cirad, UMR INTERTRYP, Montpellier, France
- INTERTRYP, Université de Montpellier, Cirad, IRD, Montpellier, France
| |
Collapse
|
4
|
Xu N, Zhang X, Liu H, Xu Y, Lu H, Zhao L, He Y, Zhang M, Zhang J, Si G, Wang Z, Chen M, Cai Y, Zhang Y, Wang Q, Hao Y, Li Y, Zhou Z, Guo Y, Chang C, Liu M, Ma C, Wang Y, Fang L, Li S, Wang G, Liu Q, Liu W. Clinical and epidemiological investigation of human infection with zoonotic parasite Trypanosoma dionisii in China. J Infect 2024; 89:106290. [PMID: 39341404 DOI: 10.1016/j.jinf.2024.106290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Trypanosomiasis continues to pose a global threat to human health, with human infection mainly caused by Trypanosoma brucei and Trypanosoma cruzi. METHODS We present a 30-year-old pregnant woman with persistent high fever from Shandong Province, China. High-throughput sequencing revealed the presence of Trypanosoma dionisii in blood. We conducted an analysis of the patient's clinical, epidemiological, and virological data. RESULTS The patients exhibited fever, shortness of breath, chest tightness, accompanied by change in liver function and inflammatory response. She made a full recovery without any long-term effects. T. dionisii was detected in blood collected 23 days after onset of illness. The 18S rRNA gene sequence showed close similarity to T. dionisii found in bats from Japan, while the gGAPDH gene was closely related to T. dionisii from bats in Mengyin County, Shandong Province. Phylogenetic analysis demonstrated the current T. dionisii belongs to clade B within its species group. Positive anti-Trypanosoma IgG antibody was detected from the patient on Day 23, 66 and 122 after disease onset, as well as the cord blood and serum from the newborn. Retrospective screening of wild small mammals captured from Shandong Province revealed a prevalence rate of 0.54% (7/1304) for T. dionisii; specifically among 0.81% (5/620) of Apodemus agrarius, and 0.46% (2/438) of Mus musculus. CONCLUSIONS The confirmation of human infection with T. dionisii underscores its potential as a zoonotic pathogen, while the widespread presence of this parasite in rodent and bat species emphasizes the emerging threat it poses to human health.
Collapse
Affiliation(s)
- Nannan Xu
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Hui Liu
- Institute of Bacterial Disease, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yintao Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huixia Lu
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lianhui Zhao
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yishan He
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Meiqi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Jingtao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Guangqian Si
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Ziyi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Muxin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuchun Cai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yi Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Qiang Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuwan Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuanyuan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Zhengbin Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yunhai Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Caiyun Chang
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Ming Liu
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Chuanmin Ma
- Institute of Bacterial Disease, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yongbin Wang
- Shandong Institute of Parasitic Disease, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, Shandong 272033, China
| | - Liqun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China.
| | - Gang Wang
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Qin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China.
| |
Collapse
|
5
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
6
|
Mulat G, Maru M, Tarekegn ZS, Dejene H. A systematic review and meta-analysis on prevalence of bovine trypanosomosis in East Africa. Parasite Epidemiol Control 2024; 26:e00371. [PMID: 39184304 PMCID: PMC11341968 DOI: 10.1016/j.parepi.2024.e00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Bovine trypanosomosis is an incapacitating and lethal ailment brought about by protozoan parasites of the genus Trypanosoma. The disease leads to losses in livestock and agricultural productivity, resulting in significant socio-economic repercussions. In East Africa, trypanosomosis has been endemic for an extensive period due to ecological factors and vector biology that facilitate the persistent circulation of trypanosomes. This investigation outlines the occurrence of bovine trypanosomosis in East Africa through a meta-analysis. A thorough search was conducted on PubMed, Google Scholar, Scopus, Web of Science and AJOL. Suitable studies were chosen using inclusion and exclusion criteria. The prevalence was estimated through a random effect model. Publication bias and the variation in prevalence estimates due to heterogeneity were also evaluated. The analysis was performed on 115 studies that contained relevant prevalence data. The collective estimate of bovine trypanosomosis prevalence across the studies stood at 12% (95% CI: 11, 13), ranging from 1% (95% CI: 0, 2) to 51% (95% CI: 45, 58). The subgroup analysis by country revealed considerable disparities in prevalence. The highest estimated prevalence was 24% (95% CI: 18, 30) in Somalia, whereas the lowest prevalence was observed in Ethiopia at 10% (95% CI: 9, 11). A significant level of heterogeneity was noted in most pooled estimates, even after conducting subgroup analysis. The visual examination of the funnel plot and the Egger's regression asymmetry coefficient (b = -5.13, 95% CI: -7.49, -2.76, p = 0.00) and Begg's plot (p = 0.00) indicate the presence of publication bias. In conclusion, bovine trypanosomosis is a pervasive and noteworthy malady affecting livestock. The findings of this investigation imply a high prevalence of bovine trypanosomosis in the majority of the countries under scrutiny. Despite the well-known hindrance that livestock trypanosomosis poses to livestock production in Africa, little attention has been devoted to the trypanosomosis situation, particularly in East African nations.
Collapse
Affiliation(s)
- Getie Mulat
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Moges Maru
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Zewdu Seyoum Tarekegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Haileyesus Dejene
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| |
Collapse
|
7
|
Tsague KJA, Bakwo Fils EM, Atagana JP, Mbeng DW, Palm L, Tchuinkam T, Schaer J. Molecular detection of trypanosomes of the Trypanosoma livingstonei species group in diverse bat species in Central Cameroon. Parasitol Res 2024; 123:280. [PMID: 39037445 PMCID: PMC11263222 DOI: 10.1007/s00436-024-08303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Bats are hosts for diverse Trypanosoma species, including trypanosomes of the Trypanosoma cruzi clade. This clade is believed to have originated in Africa and diversified in many lineages worldwide. In several geographical areas, including Cameroon, no data about trypanosomes of bats has been collected yet. In this study, we investigated the diversity and phylogenetic relationships of trypanosomes of different bat species in the central region of Cameroon. Trypanosome infections were detected in six bat species of four bat families, namely Hipposideridae, Pteropodidae, Rhinolophidae, and Vespertilionidae, with an overall prevalence of 29% and the highest infection rate in hipposiderid bat species. All trypanosomes were identified as belonging to the Trypanosoma livingstonei species group with one clade that might represent an additional subspecies of T. livingstonei. Understanding the prevalence, distribution, and host range of parasites of this group contributes to our overall knowledge of the diversity and host specificity of trypanosome species that phylogenetically group at the base of the T. cruzi clade.
Collapse
Affiliation(s)
- K J A Tsague
- Laboratory of Biological Sciences, Faculty of Sciences of University of Maroua, Maroua, Cameroon
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), University of Dschang, Dschang, Cameroon
| | - E M Bakwo Fils
- Department of Environmental Sciences, Higher Institute of Agriculture, Forestry, Water and Environment (HIAFWE), University of Ebolowa, Ebolowa, Cameroon
| | - J P Atagana
- Department of Biological Science, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - D W Mbeng
- Laboratory of Biological Sciences, Faculty of Sciences of University of Maroua, Maroua, Cameroon
| | - L Palm
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - T Tchuinkam
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), University of Dschang, Dschang, Cameroon.
| | - J Schaer
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.
- Department of Biology, Muni University, Arua, Uganda.
- Museum Für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany.
- Department of Biological Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
8
|
Hartman CB, Dube PS, Legoabe LJ, Van Pelt N, Matheeussen A, Caljon G, Beteck RM. Novel quinoline derivatives with broad-spectrum antiprotozoal activities. Arch Pharm (Weinheim) 2024; 357:e2300319. [PMID: 38396284 DOI: 10.1002/ardp.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Several quinoline derivatives incorporating arylnitro and aminochalcone moieties were synthesized and evaluated in vitro against a broad panel of trypanosomatid protozoan parasites responsible for sleeping sickness (Trypanosoma brucei rhodesiense), nagana (Trypanosoma brucei brucei), Chagas disease (Trypanosoma cruzi), and leishmaniasis (Leishmania infantum). Several of the compounds demonstrated significant antiprotozoal activity. Specifically, compounds 2c, 2d, and 4i displayed submicromolar activity against T. b. rhodesiense with half-maximal effective concentration (EC50) values of 0.68, 0.8, and 0.19 µM, respectively, and with a high selectivity relative to human lung fibroblasts and mouse primary macrophages (∼100-fold). Compounds 2d and 4i also showed considerable activity against T. b. brucei with EC50 values of 1.4 and 0.4 µM, respectively.
Collapse
Affiliation(s)
- Carla B Hartman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Phelelisiwe S Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Seetsi A, N'Da DD, Nyembe N, Suganuma K, Ramatla T, Thekisoe O. In vitro antitrypanosomal activity of synthesized nitrofurantoin-triazole hybrids against Trypanosoma species causing animal African trypanosomosis. Exp Parasitol 2024; 259:108711. [PMID: 38355002 DOI: 10.1016/j.exppara.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/05/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Animal African trypanosomosis (AAT) is a disease caused by Trypanosoma brucei brucei, T. vivax, T. evansi and T. congolense which are mainly transmitted by tsetse flies (maybe the family/genus scientific name for the tsetse flies here?). Synthetic trypanocidal drugs are used to control AAT but have reduced efficacy due to emergence of drug resistant trypanosomes. Therefore, there is a need for the continued development of new safe and effective drugs. The aim of this study was to evaluate the in vitro anti-trypanosomal activity of novel nitrofurantoin compounds against trypanosomes (Trypanosoma brucei brucei, T. evansi and T. congolense) causing AAT. This study assessed previously synthesized nineteen nitrofurantoin-triazole (NFT-TZ) hybrids against animal trypanosomes and evaluated their cytotoxicity using Madin-Darby bovine kidney cells. The n-alkyl sub-series hybrids, 8 (IC50 0.09 ± 0.02 μM; SI 686.45) and 9 (IC50 0.07 ± 0.04 μM; SI 849.31) had the highest anti-trypanosomal activity against T. b. brucei. On the contrary, the nonyl 6 (IC50 0.12 ± 0.06 μM; SI 504.57) and nitrobenzyl 18 (IC50 0.11 ± 0.03 μM; SI 211.07) displayed the highest trypanocidal activity against T. evansi. The nonyl hybrid 6 (IC50 0.02 ± 0.01 μM; SI 6328.76) was also detected alongside the undecyl 8 (IC50 0.02 ± 0.01 μM; SI 3454.36) and 3-bromobenzyl 19 (IC50 0.02 ± 0.01 μM; SI 2360.41) as the most potent hybrids against T. congolense. These hybrids had weak toxicity effects on the mammalian cells and highly selective submicromolar antiparasitic action efficacy directed towards the trypanosomes, hence they can be regarded as potential trypanocidal leads for further in vivo investigation.
Collapse
Affiliation(s)
- Anna Seetsi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences (PHARMACEN), North-West University, Potchefstroom, 2521, South Africa
| | - Nthatisi Nyembe
- Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, 9880, South Africa
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa; Gastrointestinal Research Unit, Department of Surgery, School of Clinical Medicine, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| |
Collapse
|
10
|
Peacock L, Kay C, Bailey M, Gibson W. Experimental genetic crosses in tsetse flies of the livestock pathogen Trypanosoma congolense savannah. Parasit Vectors 2024; 17:4. [PMID: 38178172 PMCID: PMC10765672 DOI: 10.1186/s13071-023-06105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND In tropical Africa animal trypanosomiasis is a disease that has severe impacts on the health and productivity of livestock in tsetse fly-infested regions. Trypanosoma congolense savannah (TCS) is one of the main causative agents and is widely distributed across the sub-Saharan tsetse belt. Population genetics analysis has shown that TCS is genetically heterogeneous and there is evidence for genetic exchange, but to date Trypanosoma brucei is the only tsetse-transmitted trypanosome with experimentally proven capability to undergo sexual reproduction, with meiosis and production of haploid gametes. In T. brucei sex occurs in the fly salivary glands, so by analogy, sex in TCS should occur in the proboscis, where the corresponding portion of the developmental cycle takes place. Here we test this prediction using genetically modified red and green fluorescent clones of TCS. METHODS Three fly-transmissible strains of TCS were transfected with genes for red or green fluorescent protein, linked to a gene for resistance to the antibiotic hygromycin, and experimental crosses were set up by co-transmitting red and green fluorescent lines in different combinations via tsetse flies, Glossina pallidipes. To test whether sex occurred in vitro, co-cultures of attached epimastigotes of one red and one green fluorescent TCS strain were set up and sampled at intervals for 28 days. RESULTS All interclonal crosses of genetically modified trypanosomes produced hybrids containing both red and green fluorescent proteins, but yellow fluorescent hybrids were only present among trypanosomes from the fly proboscis, not from the midgut or proventriculus. It was not possible to identify the precise life cycle stage that undergoes mating, but it is probably attached epimastigotes in the food canal of the proboscis. Yellow hybrids were seen as early as 14 days post-infection. One intraclonal cross in tsetse and in vitro co-cultures of epimastigotes also produced yellow hybrids in small numbers. The hybrid nature of the yellow fluorescent trypanosomes observed was not confirmed by genetic analysis. CONCLUSIONS Despite absence of genetic characterisation of hybrid trypanosomes, the fact that these were produced only in the proboscis and in several independent crosses suggests that they are products of mating rather than cell fusion. The three-way strain compatibility observed is similar to that demonstrated previously for T. brucei, indicating that a simple two mating type system does not apply for either trypanosome species.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Chris Kay
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 7DU, UK
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
11
|
Janse van Rensburg HD, N'Da DD, Suganuma K. In vitro trypanocidal potency and in vivo treatment efficacy of oligomeric ethylene glycol-tethered nitrofurantoin derivatives. Eur J Pharm Sci 2024; 192:106668. [PMID: 38065268 DOI: 10.1016/j.ejps.2023.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
African trypanosomiasis is a significant vector-borne disease of humans and animals in the tsetse fly belt of Africa, particularly affecting production animals such as cattle, and thus, hindering food security. Trypanosoma congolense (T. congolense), the causative agent of nagana, is livestock's most virulent trypanosome species. There is currently no vaccine against trypanosomiasis; its treatment relies solely on chemotherapy. However, pathogenic resistance has been established against trypanocidal agents in clinical use. This underscores the need to develop new therapeutics to curb trypanosomiasis. Many nitroheterocyclic drugs or compounds, including nitrofurantoin, possess antiparasitic activities in addition to their clinical use as antibiotics. The current study evaluated the in vitro trypanocidal potency and in vivo treatment efficacy of previously synthesized antileishmanial active oligomeric ethylene glycol derivatives of nitrofurantoin. The trypanocidal potency of analogues 2a-o varied among the trypanosome species; however, T. congolense strain IL3000 was more susceptible to these drug candidates than the other human and animal trypanosomes. The arylated analogues 2k (IC50 0.04 µM; SI >6365) and 2l (IC50 0.06 µM; SI 4133) featuring 4-chlorophenoxy and 4-nitrophenoxy moieties, respectively, were revealed as the most promising antitrypanosomal agents of all analogues against T. congolense strain IL3000 trypomastigotes with nanomolar activities. In a preliminary in vivo study involving T. congolense strain IL3000 infected BALB/c mice, the oral administration of 100 mg/kg/day of 2k caused prolonged survival up to 18 days post-infection relative to the infected but untreated control mice which survived 9 days post-infection. However, no cure was achieved due to its poor solubility in the in vivo testing medium, assumably leading to low oral bioavailability. These results confirm the importance of the physicochemical properties lipophilicity and water solubility in attaining not only in vitro trypanocidal potency but also in vivo treatment efficacy. Future work will focus on the chemical optimization of 2k through the investigation of analogues containing solubilizing groups at certain positions on the core structure to improve solubility in the in vivo testing medium which, in the current investigation, is the biggest stumbling block in successfully treating either animal or human Trypanosoma infections.
Collapse
Affiliation(s)
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
12
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Thiombiano NG, Boungou M, Chabi BAM, Oueda A, Werb O, Schaer J. First investigation of blood parasites of bats in Burkina Faso detects Hepatocystis parasites and infections with diverse Trypanosoma spp. Parasitol Res 2023; 122:3121-3129. [PMID: 37847392 PMCID: PMC10667148 DOI: 10.1007/s00436-023-08002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Bats are hosts to a large diversity of eukaryotic protozoan blood parasites that comprise species of Trypanosoma and different haemosporidian parasite taxa and bats have played an important role in the evolutionary history of both parasite groups. However, bats in several geographical areas have not been investigated, including in Burkina Faso, where no information about malaria parasites and trypanosomes of bats exists to date.In this study, we collected data on the prevalence and the phylogenetic relationships of protozoan blood parasites in nine different bat species in Burkina Faso. Hepatocystis parasites were detected in two species of epauletted fruit bats, and a relatively high diversity of trypanosome parasites was identified in five bat species. The phylogenetic analyses recovered the trypanosome parasites of the bat species Rhinolophus alcyone and Nycteris hispida as close relatives of T. livingstonei, the trypanosome infections in Scotophilus leucogaster as closely related to the species T. vespertilionis and the trypanosomes from Pipistrellus nanulus and Epomophorus gambianus might present the species T. dionisii. These findings of the first investigation in Burkina Faso present a first snapshot of the diversity of protozoan blood parasites in bats in this country.
Collapse
Affiliation(s)
- Noel Gabiliga Thiombiano
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Magloire Boungou
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Bertrand Adéchègoun Mèschac Chabi
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Adama Oueda
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Universite de Ouahigouya, Ouahigouya, Burkina Faso
| | - Oskar Werb
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Juliane Schaer
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.
| |
Collapse
|
14
|
Melachio Tanekou TT, Bouaka Tsakeng CU, Tirados I, Acho A, Bigoga J, Wondji CS, Njiokou F. Impact of a small-scale tsetse fly control operation with deltamethrin impregnated "Tiny Targets" on tsetse density and trypanosomes' circulation in the Campo sleeping sickness focus of South Cameroon. PLoS Negl Trop Dis 2023; 17:e0011802. [PMID: 38011275 PMCID: PMC10732512 DOI: 10.1371/journal.pntd.0011802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/07/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Significant progress has been made towards African sleeping sickness elimination in the last decade. Indeed, the World Health Organization (WHO) global goal of eliminating the chronic form of the disease as a public health problem was achieved in 2020 (i.e., < 2,000 new cases per year). Vector control has played an important role in achieving this goal. In this study, we evaluated the impact of the insecticide impregnated Tiny Targets on tsetse fly densities and their infection rates with Trypanosoma spp in the Campo sleeping sickness focus of South Cameroon. METHODS The study site was divided into two areas: (i) the south-west experimental area, which included vector control, and (ii) the eastern part as the non-intervention area. After compiling the baseline entomological data (tsetse densities and trypanosome infection rates), around 2000 Tiny Targets were deployed in the South-West area and replaced every six months for two years. Post-intervention surveys were conducted every six months to determine tsetse densities and levels of trypanosome infections with PCR-based methods. RESULTS Following the intervention, tsetse mean catches decreased by 61% after six months, and up to 73% after twelve months (pre-intervention: 2.48 flies/trap/day, 95%CI [1.92-3.14]; 12-months post-intervention: 0.66 tsetse/trap/day, 95%CI [0.42-0.94]). This decrease was not sustained after 18 months, and the mean catch doubled compared to that after 12 months. After 24 months, the mean catches still increased by 17% (18 months: 1.45 tsetse/trap/day, 95%CI [1.07-1.90] and 24 months: 1.71 tsetse/trap/day, 95%CI [1.27-2.24]). In the non-intervention area, a variation in tsetse catches was observed during the two years, with a general increase from 2.43 [0.73-5.77] to 3.64 [1.47-7.70] tsetse/trap/day. In addition, trypanosome infection rates dropped by 75% in both areas (P-value < 0.001) from 21.20% to 5.06% and from 13.14% to 3.45% in intervention and control areas respectively. CONCLUSION Tiny targets have proven useful in reducing tsetse population densities and trypanosome infection rates, providing evidence for the integration of this tool in current strategies towards trypanosomiasis elimination in Campo. The non-sustained decrease of tsetse densities after one year may indicate reinvasions from neighbouring breeding sites or that the intervention area was not large enough. Our results show the need to scale up by accessing difficult breeding sites and extend the tiny targets to the whole transborder focus.
Collapse
Affiliation(s)
- Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Bamenda, Bamenda, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Inaki Tirados
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Alphonse Acho
- Programme National de Lutte contre la Trypanosomose Humaine Africaine (PNLTHA), Ministère de la Santé Publique, Cameroon
| | - Jude Bigoga
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- Laboratory for Vector Biology and Control, National Reference Unit for Vector Control, The Biotechnology Centre, Nkolbisson, Yaoundé, Cameroon
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
15
|
Minet C, Chantal I, Berthier D. Recent advances in genome editing of bloodstream forms of Trypanosoma congolense using CRISPR-Cas9 ribonucleoproteins: Proof of concept. Exp Parasitol 2023; 252:108589. [PMID: 37516291 DOI: 10.1016/j.exppara.2023.108589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
African Animal Trypanosomosis (AAT or Nagana) is a vector-borne disease caused by Trypanosomatidae, genus Trypanosoma. The disease is transmitted by the bite of infected hematophagous insects, mainly tsetse flies but also other blood-sucking insects including stomoxes and tabanids. Although many trypanosome species infect animals, the main agents responsible for this disease with a strong socio-economic and veterinary health impact are Trypanosoma congolense (T. congolense or Tc), Trypanosoma vivax (T.vivax), and to a lesser extent, Trypanosoma brucei brucei (T.brucei brucei or Tbb). These parasites mainly infect livestock, including cattle, in sub-Saharan Africa, with major repercussions in terms of animal productivity and poverty for populations which are often already very poor. As there is currently no vaccine, the fight against the disease is primarily based on diagnosis, treatment and vector control. To develop new tools (particularly therapeutic tools) to fight against the disease, we need to know both the biology and the genes involved in the pathogenicity and virulence of the parasites. To date, unlike for Trypanosoma brucei (T.brucei) or Trypanosoma cruzi (T.cruzi), genome editing tools has been relatively little used to study T. congolense. We present an efficient, reproducible and stable CRISPR-Cas9 genome editing system for use in Tc bloodstream forms (Tc-BSF). This plasmid-free system is based on transient expression of Cas9 protein and the use of a ribonucleoprotein formed by the Cas9 and sgRNA complex. This is the first proof of concept of genome editing using CRISPR-Cas9 ribonucleoproteins on Tc-BSF. This adapted protocol enriches the "toolbox" for the functional study of genes of interest in blood forms of the Trypanosoma congolense. This proof of concept is an important step for the scientific community working on the study of trypanosomes and opens up new perspectives for the control of and fight against animal trypanosomosis.
Collapse
Affiliation(s)
- Cécile Minet
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - Isabelle Chantal
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - David Berthier
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| |
Collapse
|
16
|
Moloney NM, Barylyuk K, Tromer E, Crook OM, Breckels LM, Lilley KS, Waller RF, MacGregor P. Mapping diversity in African trypanosomes using high resolution spatial proteomics. Nat Commun 2023; 14:4401. [PMID: 37479728 PMCID: PMC10361982 DOI: 10.1038/s41467-023-40125-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
African trypanosomes are dixenous eukaryotic parasites that impose a significant human and veterinary disease burden on sub-Saharan Africa. Diversity between species and life-cycle stages is concomitant with distinct host and tissue tropisms within this group. Here, the spatial proteomes of two African trypanosome species, Trypanosoma brucei and Trypanosoma congolense, are mapped across two life-stages. The four resulting datasets provide evidence of expression of approximately 5500 proteins per cell-type. Over 2500 proteins per cell-type are classified to specific subcellular compartments, providing four comprehensive spatial proteomes. Comparative analysis reveals key routes of parasitic adaptation to different biological niches and provides insight into the molecular basis for diversity within and between these pathogen species.
Collapse
Affiliation(s)
- Nicola M Moloney
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | | | - Eelco Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, Netherlands
| | - Oliver M Crook
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Paula MacGregor
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
17
|
Ungogo MA, Aldfer MM, Natto MJ, Zhuang H, Chisholm R, Walsh K, McGee M, Ilbeigi K, Asseri JI, Burchmore RJS, Caljon G, Van Calenbergh S, De Koning HP. Cloning and Characterization of Trypanosoma congolense and T. vivax Nucleoside Transporters Reveal the Potential of P1-Type Carriers for the Discovery of Broad-Spectrum Nucleoside-Based Therapeutics against Animal African Trypanosomiasis. Int J Mol Sci 2023; 24:ijms24043144. [PMID: 36834557 PMCID: PMC9960827 DOI: 10.3390/ijms24043144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites but viable chemotherapy must be active against all three species. Divergence in sensitivity to nucleoside antimetabolites could be caused by differences in nucleoside transporters. Having previously characterized the T. brucei nucleoside carriers, we here report the functional expression and characterization of the main adenosine transporters of T. vivax (TvxNT3) and T. congolense (TcoAT1/NT10), in a Leishmania mexicana cell line ('SUPKO') lacking adenosine uptake. Both carriers were similar to the T. brucei P1-type transporters and bind adenosine mostly through interactions with N3, N7 and 3'-OH. Expression of TvxNT3 and TcoAT1 sensitized SUPKO cells to various 7-substituted tubercidins and other nucleoside analogs although tubercidin itself is a poor substrate for P1-type transporters. Individual nucleoside EC50s were similar for T. b. brucei, T. congolense, T. evansi and T. equiperdum but correlated less well with T. vivax. However, multiple nucleosides including 7-halogentubercidines displayed pEC50>7 for all species and, based on transporter and anti-parasite SAR analyses, we conclude that nucleoside chemotherapy for AAT is viable.
Collapse
Affiliation(s)
- Marzuq A. Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Manal J. Natto
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hainan Zhuang
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Robyn Chisholm
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Katy Walsh
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - MarieClaire McGee
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Jamal Ibrahim Asseri
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard J. S. Burchmore
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Correspondence:
| |
Collapse
|
18
|
Obeta SS, Ubah SA, Ejiofor CE, Agbonu OA, Columbus PK, Abah KO, Ikpe AB, Bankole AS, Ezinwo PA, Itodo JI, Akefe IO, Uba CA, Mailafia S. The clinical effect of experimental infection with Trypanosoma congolense on Dutch belted rabbits. Parasitol Res 2023; 122:113-116. [PMID: 36282320 DOI: 10.1007/s00436-022-07702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 01/10/2023]
Abstract
The clinical effect of Trypanosoma congolense infection on Dutch belted (does) rabbits was investigated. Sixteen Dutch belted rabbits weighing between 1.6 and 1.8 kg were grouped into two groups of eight each. Animals were accessed for packed cell volume (PCV), total leucocyte count (TLC), rectal temperature (RT), heart rate (HR), and body weight (BW) before infection as well as 18, 25, and 58 days post inoculation (PI). The level of parasitaemia was estimated on a weekly basis and was graded by number of parasites/field. There was a significant difference (P < 0.05) in the mean PCV between treatment and control groups of the rabbits on all days PI. The other parameters were not significantly different between uninfected controls and treatment group although the rectal temperature fluctuated. The mean PCV of infected rabbits was 36.0 ± 0.53%, 35.3 ± 0.19%, and 28.0 ± 0.89% at days 18, 25, and 58 PI, while for uninfected, the mean PCV was 40.8 ± 0.11%, 41.8 ± 0.19%, and 41.3 ± 0.08% across the same time periods. Parasitaemia was detected at 6th day PI and remained high to the end of the study. The study suggests that the use of haematinics and anti-pyrexia treatments as part of disease management for rabbits would be useful.
Collapse
Affiliation(s)
- Sylvester Sunday Obeta
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria.
| | - Simon Azubuike Ubah
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Charles Ejike Ejiofor
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Oluwa Adikpe Agbonu
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | | | - Kenneth Owoicho Abah
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Alapa Baba Ikpe
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Abayomi Samuel Bankole
- Department of Animal Science and Fisheries, Faculty of Agricultural Science, National Open University of Nigeria Abuja, Abuja, Nigeria
| | - Prisca Adaoma Ezinwo
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Joy Iyojo Itodo
- Department of Wildlife and Forestry, Faculty of Agriculture, Federal University of Lafia, Lafia, Nigeria
| | - Issac Oluwatobi Akefe
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| | - Charles Amaechi Uba
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Samuel Mailafia
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| |
Collapse
|
19
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
20
|
In Vitro Mechanism of Action of Acanthospermum hispidum in Trypanosoma brucei. Adv Pharmacol Pharm Sci 2022; 2022:1645653. [PMID: 36304140 PMCID: PMC9596247 DOI: 10.1155/2022/1645653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/23/2022] Open
Abstract
African trypanosomiasis is a major neglected tropical disease with significant health and economic concerns in sub-Saharan Africa. In the absence of vaccines for African trypanosomiasis, there is a consideration for alternative sources of chemotherapy. Acanthospermum hispidum DC (A. hispidum) is a herbal species of the Asteraceae family that is endowed with rich phytochemicals with unknown mechanisms of antitrypanosomal effects. This study aimed to investigate the cellular mechanisms of antitrypanosomal and antioxidant activities of A. hispidum against Trypanosoma brucei (T. brucei), a causative protozoan species of African trypanosomiasis. Fractions were prepared from the whole plant of A. hispidum through solvent partitioning by employing solvents of varying polarities (hexane, HEX; dichloromethane, DCM; ethyl acetate, EA; aqueous, AQ). The in vitro efficacies and mechanisms of antitrypanosomal activities of A. hispidum were investigated using a panel of cell biological approaches. GC-MS analysis was used to identify the major compounds with a possible contribution to the trypanocidal effects of A. hispidum. A. hispidum fractions displayed significant antitrypanosomal activities in terms of half-maximal effective concentrations (EC50) and selectivity indices (SI) (AH-HEX, EC50 = 2.4 μg/mL, SI = 35.1; AH-DCM, EC50 = 2.2 μg/mL, SI = 38.3; AH-EA, EC50 = 1.0 μg/mL, SI = 92.8; AH-AQ, EC50 = 2.0 μg/mL, SI = 43.8). Fluorescence microscopic analysis showed that at their EC50 values, the fractions of A. hispidum altered the cell morphology as well as the organization of the mitochondria, nucleus, and kinetoplast in T. brucei. At their maximum tested concentrations, the prepared fractions exhibited antioxidant absorbance intensities comparable to the reference antioxidant, Trolox, in contrast to the oxidant intensity of an animal antitrypanosomal drug, diminazene (Trolox, 0.11 A; diminazene, 0.65 A; AH-HEX, 0.20 A, AH-DCM, 0.20 A, AH-EA, 0.13 A, AH-AQ, 0.22 A). GC-MS analysis of the various fractions identified major compounds assignable to the group of alkaloids and esters or amides of aliphatic acids. The results provide useful pharmacological insights into the chemotherapeutic potential of A. hispidum toward drug discovery for African trypanosomiasis.
Collapse
|
21
|
Jamabo M, Bentley SJ, Macucule-Tinga P, Tembo P, Edkins AL, Boshoff A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front Mol Biosci 2022; 9:947078. [PMID: 36213128 PMCID: PMC9538636 DOI: 10.3389/fmolb.2022.947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level. Inhibition of its interactions with chaperones and co-chaperones is being explored as a potential therapeutic target for numerous diseases. This study provides an in silico overview of HSP90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other trypanosomal species, including non-parasitic Bodo saltans and the insect infecting Crithidia fasciculata. A structural analysis of T. brucei HSP90 revealed differences in the orientation of the linker and C-terminal domain in comparison to human HSP90. Phylogenetic analysis displayed the T. brucei HSP90 proteins clustering into three distinct groups based on subcellular localizations, namely, cytosol, mitochondria, and endoplasmic reticulum. Syntenic analysis of cytosolic HSP90 genes revealed that T. b. brucei encoded for 10 tandem copies, while T. b. gambiense encoded for three tandem copies; Leishmania major (L. major) had the highest gene copy number with 17 tandem copies. The updated information on HSP90 from recently published proteomics on T. brucei was examined for different life cycle stages and subcellular localizations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding a total of twelve putative HSP90 genes, while T. b. gambiense encodes five HSP90 genes. Eighteen putative co-chaperones were identified with one notable absence being cell division cycle 37 (Cdc37). These results provide an updated framework on approaching HSP90 and its interactions as drug targets in the African trypanosome.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | | | | | - Praise Tembo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- *Correspondence: Aileen Boshoff,
| |
Collapse
|
22
|
Romero-Ramirez A, Casas-Sánchez A, Autheman D, Duffy CW, Brandt C, Clare S, Harcourt K, André MR, de Almeida Castilho Neto KJG, Teixeira MMG, Machado RZ, Coombes J, Flynn RJ, Wright GJ, Jackson AP. Vivaxin genes encode highly immunogenic, non-variant antigens on the Trypanosoma vivax cell-surface. PLoS Negl Trop Dis 2022; 16:e0010791. [PMID: 36129968 PMCID: PMC9529106 DOI: 10.1371/journal.pntd.0010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/03/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma vivax is a unicellular hemoparasite, and a principal cause of animal African trypanosomiasis (AAT), a vector-borne and potentially fatal livestock disease across sub-Saharan Africa. Previously, we identified diverse T. vivax-specific genes that were predicted to encode cell surface proteins. Here, we examine the immune responses of naturally and experimentally infected hosts to these unique parasite antigens, to identify immunogens that could become vaccine candidates. Immunoprofiling of host serum shows that one particular family (Fam34) elicits a consistent IgG antibody response. This gene family, which we now call Vivaxin, encodes at least 124 transmembrane glycoproteins that display quite distinct expression profiles and patterns of genetic variation. We focused on one gene (viv-β8) that encodes one particularly immunogenic vivaxin protein and which is highly expressed during infections but displays minimal polymorphism across the parasite population. Vaccination of mice with VIVβ8 adjuvanted with Quil-A elicits a strong, balanced immune response and delays parasite proliferation in some animals but, ultimately, it does not prevent disease. Although VIVβ8 is localized across the cell body and flagellar membrane, live immunostaining indicates that VIVβ8 is largely inaccessible to antibody in vivo. However, our phylogenetic analysis shows that vivaxin includes other antigens shown recently to induce immunity against T. vivax. Thus, the introduction of vivaxin represents an important advance in our understanding of the T. vivax cell surface. Besides being a source of proven and promising vaccine antigens, the gene family is clearly an important component of the parasite glycocalyx, with potential to influence host-parasite interactions. Animal African trypanosomiasis (AAT) is an important livestock disease throughout sub-Saharan Africa and beyond. AAT is caused by Trypanosoma vivax, among other species, a unicellular parasite that is spread by biting tsetse flies and multiplies in the bloodstream and other tissues, leading to often fatal neurological conditions if untreated. Although concerted drug treatment and vector eradication programmes have succeeded in controlling Human African trypanosomiasis, AAT continues to adversely affect animal health and impede efficient food production and economic development in many less-developed countries. In this study, we attempted to identify parasite surface proteins that stimulated the strongest immune responses in naturally infected animals, as the basis for a vaccine. We describe the discovery of a new, species-specific protein family in T. vivax, which we call vivaxin. We show that one vivaxin protein (VIVβ8) is surface expressed and retards parasite proliferation when used to immunize mice, but does not prevent infection. Nevertheless, we also reveal that vivaxin includes another protein previously shown to induce protective immunity (IFX/VIVβ1). Besides its great potential for novel approaches to AAT control, the vivaxin family is revealed as a significant component of the T. vivax cell surface and may have important, species-specific roles in host interactions.
Collapse
Affiliation(s)
- Alessandra Romero-Ramirez
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Aitor Casas-Sánchez
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Delphine Autheman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Craig W. Duffy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cordelia Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Katherine Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Marcos Rogério André
- Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Kayo José Garcia de Almeida Castilho Neto
- Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rosangela Zacharias Machado
- Department of Pathology, Reproduction and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Sao Paulo, Brazil
| | - Janine Coombes
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, United Kingdom
| | - Robin J. Flynn
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Waterford Institute of Technology, Waterford, Ireland
| | - Gavin J. Wright
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew P. Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Investigation on Prevalence of Canine Trypanosomiasis in the Conservation Areas of Bwindi-Mgahinga and Queen Elizabeth in Western Uganda. J Parasitol Res 2022; 2022:2606871. [PMID: 36124129 PMCID: PMC9482531 DOI: 10.1155/2022/2606871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Nowadays, despite the instauration of several control strategies, animal trypanosomiasis continues to be reported all over Uganda. Few canine African trypanosomiasis (CAT) studies have been carried out, yet dogs are known Trypanosoma reservoirs that share identical home ranges with livestock and serve as parasite link between livestock and humans. This study evaluates the prevalence of CAT in dogs in the Bwindi-Mgahinga and Queen Elizabeth conservation areas. This information will be useful to evaluate the possible role of dogs in the transmission cycle of Trypanosoma species in livestock and wild animals. Trypanosome tests using microhematocrit centrifugation/dark ground microscopy technique (MHCT) followed by conventional polymerase chain reaction (cPCR) were performed in blood samples collected from identified indigenous dogs (
). Four (3.23%) out of 124 dogs were positive for CAT. One dog was positive with Trypanosoma congolense and three with T. vivax. There was no significant statistical difference in CAT prevalence rate in relation to dog’s age, sex, and site (
). This study reports what we believe is the first time detection of T. congolense and T. vivax in the indigenous dogs found in the Bwindi-Mgahinga and Queen Elizabeth conservation areas in western Uganda. The noticed T. congolense and T. vivax could be responsible for both canine and animal trypanosomiasis and represent a serious threat to the livestock industry. Therefore, there is a need for continuous trypanosomiasis surveillance and integrated management in contiguity to wildlife reserves.
Collapse
|
24
|
Melachio Tanekou TT, Bouaka Tsakeng CU, Tirados I, Torr SJ, Njiokou F, Acho A, Wondji CS. Environmental mutations in the Campo focus challenge elimination of sleeping sickness transmission in Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:260-268. [PMID: 35593526 PMCID: PMC10138755 DOI: 10.1111/mve.12579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/03/2022] [Indexed: 05/13/2023]
Abstract
Sleeping sickness is still prevalent in Campo, southern Cameroon, despite the efforts of World Health Organization and the National Control Programme in screening and treating cases. Reducing disease incidence still further may need the control of tsetse vectors. We update entomological and parasitological parameters necessary to guide tsetse control in Campo. Tsetse flies were trapped, their apparent densities were evaluated as the number of flies captured per trap per day and mapped using GIS tools. Polymerase chain reaction based methods were used to identify their trypanosome infection rates. Glossina palpalis palpalis was the dominant vector species representing 93.42% and 92.85% of flies captured respectively during the heavy and light dry seasons. This species presented high densities, that is, 3.87, 95% CI [3.84-3.91], and 2.51, 95% CI [2.49-2.53] flies/trap/day in the two seasons. Moreover, 16.79% (of 1054) and 20.23% (of 1132 flies) were found infected with at least 1 trypanosome species for the 2 seasons respectively, Trypanosoma congolense being the most prevalent species, and Trypanosoma. brucei gambiense identified in 4 samples. Tsetse flies are abundant in Campo and present high trypanosome infection rates. The detection of tsetse infected with human trypanosomes near the newly created palm grove show workers' exposition. Tsetse densities maps built will guide vector control with 'Tiny Targets'.
Collapse
Affiliation(s)
- Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Biological Sciences, Faculty of ScienceUniversity of BamendaBamendaCameroon
| | - Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Biochemistry, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Inaki Tirados
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Steve J. Torr
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Alphonse Acho
- Programme National de Lutte contre la Trypanosomose Humaine Africaine (PNLTHA)Ministry of Public HealthYaoundéCameroon
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
25
|
Boundenga L, Mombo IM, Augustin MO, Barthélémy N, Nzassi PM, Moukodoum ND, Rougeron V, Prugnolle F. Molecular Identification of Trypanosome Diversity in Domestic Animals Reveals the Presence of Trypanosoma brucei gambiense in Historical Foci of Human African Trypanosomiasis in Gabon. Pathogens 2022; 11:pathogens11090992. [PMID: 36145424 PMCID: PMC9502807 DOI: 10.3390/pathogens11090992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is an infectious disease caused by protozoan parasites belonging to the Trypanosoma genus. In sub-Saharan Africa, there is a significant threat as many people are at risk of infection. Despite this, HAT is classified as a neglected tropical disease. Over the last few years, several studies have reported the existence of a wide diversity of trypanosome species circulating in African animals. Thus, domestic and wild animals could be reservoirs of potentially dangerous trypanosomes for human populations. However, very little is known about the role of domestic animals in maintaining the transmission cycle of human trypanosomes in central Africa, especially in Gabon, where serious cases of infection are recorded each year, sometimes leading to hospitalization or death of patients. Komo-Mondah, located within Estuaries (Gabonese province), stays the most active HAT disease focus in Gabon, with a mean of 20 cases per year. In this study, we evaluated the diversity and prevalence of trypanosomes circulating in domestic animals using the Polymerase Chain Reaction (PCR) technique. We found that 19.34% (53/274) of the domestic animals we studied were infected with trypanosomes. The infection rates varied among taxa, with 23.21% (13/56) of dogs, 16.10% (19/118) of goats, and 21.00% (21/100) of sheep infected. In addition, we have observed a global mixed rate of infections of 20.75% (11/53) among infected individuals. Molecular analyses revealed that at least six Trypanosome species circulate in domestic animals in Gabon (T. congolense, T. simiae, T. simiae Tsavo, T. theileri, T. vivax, T. brucei (including T. brucei brucei, and T. brucei gambiense)). In conclusion, our study showed that domestic animals constitute important potential reservoirs for trypanosome parasites, including T. brucei gambiense, which is responsible for HAT.
Collapse
Affiliation(s)
- Larson Boundenga
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
- Department of Anthropology, Durham University, South Road, Durham DH1 3LE, UK
- Correspondence: ; Tel.: +241-62521281
| | - Illich Manfred Mombo
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
| | | | - Ngoubangoye Barthélémy
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
- Department of Anthropology, Durham University, South Road, Durham DH1 3LE, UK
| | - Patrice Makouloutou Nzassi
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
- Department of Animal Biology and Ecology, Tropical Ecology Research Institute (IRET-CENAREST), Libreville BP 13354, Gabon
| | - Nancy D. Moukodoum
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
| | - Virginie Rougeron
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George 6529, South Africa
| | - Franck Prugnolle
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George 6529, South Africa
| |
Collapse
|
26
|
Antiplasmodial, Antitrypanosomal, and Cytotoxic Effects of Anthonotha macrophylla, Annickia polycarpa, Tieghemella heckelii, and Antrocaryon micraster Extracts. Adv Pharmacol Pharm Sci 2022; 2022:9195753. [PMID: 35915745 PMCID: PMC9338877 DOI: 10.1155/2022/9195753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Malaria and trypanosomiasis are protozoan diseases which pose a devastating challenge to human health and productivity especially, in Africa where their respective vectors (female Anopheles mosquito and tsetse fly) abound. Various medicinal plants are used to treat these parasitic diseases. However, the scientific basis of their use and toxicological profiles have not been assessed. We have, therefore, evaluated the antiplasmodial, antitrypanosomal, and cytotoxic activities of four African medicinal plant extracts namely, Anthonotha macrophylla leaf (AML), Annickia polycarpa leaf (APLE), Tieghemella heckelii stem bark (THBE), and Antrocaryon micraster stem bark (AMSBE) extracts in vitro against P. falciparum (W2mef laboratory strain), T. brucei (GUTat 3.1 strain), and mammalian RAW 264.7 macrophage cell line, respectively. The most active antiplasmodial extract was AML (IC50 = 5.0 ± 0.08 μg/mL with SI of 21.9). THBE also, produced the most effective antitrypanosomal activity (IC50 = 11.0 ± 0.09 μg/mL and SI of 10.2) among the extracts. In addition, none of the extracts produced toxic effect in the RAW 264.7 macrophage cell line except APLE which was moderately cytotoxic and also produced the least SI in both antitrypanosomal and antiplasmodial assays. These results suggest that AML and THBE could offer safe and alternative therapy for malaria and trypanosomiasis. This is the first study to report the antitrypanosomal and in vitro antiplasmodial activities of these four plants/plant parts. The cytotoxicity of the plant parts used is also being reported for the first time except for the T. heckelii stem bark.
Collapse
|
27
|
Getahun MN, Ngiela J, Makwatta JO, Ahuya P, Simon TK, Kamau SK, Torto B, Masiga D. Metabolites From Trypanosome-Infected Cattle as Sensitive Biomarkers for Animal Trypanosomosis. Front Microbiol 2022; 13:922760. [PMID: 35910617 PMCID: PMC9329068 DOI: 10.3389/fmicb.2022.922760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosomes are important global livestock and human pathogens of public health importance. Elucidating the chemical mechanisms of trypanosome-relevant host interactions can enhance the design and development of a novel, next-generation trypanosomosis diagnostics. However, it is unknown how trypanosome infection affects livestock volatile odors. Here, we show that Trypanosoma congolense and Trypanosoma vivax infections induced dihydro-β- ionone and junenol, while abundance of dihydro-α-ionone, phenolics, p-cresol, and 3-propylphenol significantly elevated in cow urine. These biomarkers of trypanosome infection are conserved in cow breath and the urine metabolites of naturally infected cows, regardless of population, diet, or environment differences. Furthermore, treating trypanosome-infected cows reduced the levels of these indicators back to the pre-infection levels. Finally, we demonstrated that the potential of some specific biomarkers of phenolic origin may be used to detect active trypanosome infections, including low-level infections that are not detectable by microscopy. The sensitivity and specificity of biomarkers detection are suited for rapid, robust, and non-invasive trypanosomosis diagnosis under field conditions.
Collapse
Affiliation(s)
- Merid N. Getahun
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- *Correspondence: Merid N. Getahun,
| | - John Ngiela
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Peter Ahuya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Tawich K. Simon
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
28
|
Molecular detection of Trypanosoma spp. and Hepatocystis parasite infections of bats in Northern Nigeria. Parasitology 2022; 149:1460-1467. [PMID: 35822266 PMCID: PMC10090768 DOI: 10.1017/s0031182022000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bats are mammalian hosts to a large diversity of eukaryotic protozoan blood parasites, including different genera of haemosporidians and diverse species of trypanosomes. Phylogenetic studies suggest that bats, particularly in Africa, have played an important role in the evolutionary histories of these parasite groups. However, our understanding of the diversity and distribution of chiropteran haemosporidians and trypanosomes in Africa remains tenuous. We investigated the prevalence and phylogenetic relationships of the blood parasites in different bat species in Northern Nigeria using molecular methods. A low prevalence of Hepatocystis parasites was detected in a potentially rare host species, the African straw-coloured fruit bat (Eidolon helvum) confirming yet another fruit bat species in the diverse range of African bat hosts. Trypanosome infections were identified in 3 different bat species. The trypanosomes of Mops cf. pumilus were recovered as a distinct lineage that is related to Trypanosoma erneyi, a species which is closely related to Trypanosoma dionisii and Trypanosoma cruzi. Nycteris cf. macrotis bats were infected with trypanosomes that are related to the distinct lineage of Trypanosoma cf. livingstonei parasites. Further, 2 different lineages of trypanosomes in E. helvum bats share highest nucleotide identities with Trypanosoma livingstonei and a group of Trypanosoma sp. parasites that are closely related to T. cf. livingstonei and T. livingstonei, respectively. The findings of this study confirm the notion that trypanosomes of African bats are phylogenetically diverse and that African bats might harbour a variety of yet undescribed trypanosome species.
Collapse
|
29
|
Molecular Analysis of Trypanosome Infections in Algerian Camels. Acta Parasitol 2022; 67:1246-1253. [PMID: 35657485 PMCID: PMC9399045 DOI: 10.1007/s11686-022-00577-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE Surra is an economically important livestock disease in many low- and middle-income countries, including those of Northern Africa. The disease is caused by the biting fly-transmitted subspecies Trypanosoma brucei evansi, which is very closely related to the tsetse-transmitted subspecies T. b. brucei and the sexually transmitted subspecies T. b. equiperdum. At least two phylogenetically distinct groups of T. b. evansi can be distinguished, called type A and type B. These evolved from T. b. brucei independently. The close relationships between the T. brucei subspecies and the multiple evolutionary origins of T. b. evansi pose diagnostic challenges. METHODS Here we use previously established and newly developed PCR assays based on nuclear and mitochondrial genetic markers to type the causative agent of recent trypanosome infections of camels in Southern Algeria. RESULTS/CONCLUSION We confirm that these infections have been caused by T. b. evansi type A. We also report a newly designed PCR assay specific for T. b. evansi type A that we expect will be of diagnostic use for the community.
Collapse
|
30
|
Tsakeng CUB, Tanekou TTM, Soffack SF, Tirados I, Noutchih C, Njiokou F, Bigoga JD, Wondji CS. Assessing the Tsetse Fly Microbiome Composition and the Potential Association of Some Bacteria Taxa with Trypanosome Establishment. Microorganisms 2022; 10:1141. [PMID: 35744659 PMCID: PMC9229743 DOI: 10.3390/microorganisms10061141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
The tsetse flies, biological vectors of African trypanosomes, harbour a variety of bacteria involved in their vector competence that may help in developing novel vector control tools. This study provides an inventory of tsetse bacterial communities in Cameroon and explores their possible associations with trypanosome establishment in Glossina palpalis palpalis. High throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, with subsequent metagenomic, multivariate, and association analyses, were used to investigate the levels and patterns of microbial diversity in four tsetse species. Overall, 31 bacterial genera and four phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples, with an overall relative abundance of 47.29%, and seemed to be replaced by Serratia or Burkholderia in some G. tachinoides flies. Globally, significant differences were observed in the microbiome diversity and composition among tsetse species and between teneral and non-teneral flies, or between flies displaying or not displaying mature trypanosome infections. In addition, differential abundance testing showed some OTUs, or some bacteria taxa, associated with trypanosome maturation in tsetse flies. These bacteria could be further investigated for an understanding of their mechanism of action and alternatively, transformed and used to block trypanosome development in tsetse flies.
Collapse
Affiliation(s)
- Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda P.O. Box 39, Cameroon
| | - Steve Feudjio Soffack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Inaki Tirados
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| | - Cedrique Noutchih
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Jude Daiga Bigoga
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
31
|
Kangethe RT, Winger EM, Settypalli TBK, Datta S, Wijewardana V, Lamien CE, Unger H, Coetzer TH, Cattoli G, Diallo A. Low Dose Gamma Irradiation of Trypanosoma evansi Parasites Identifies Molecular Changes That Occur to Repair Radiation Damage and Gene Transcripts That May Be Involved in Establishing Disease in Mice Post-Irradiation. Front Immunol 2022; 13:852091. [PMID: 35634275 PMCID: PMC9136415 DOI: 10.3389/fimmu.2022.852091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
The protozoan parasite Trypanosoma evansi is responsible for causing surra in a variety of mammalian hosts and is spread by many vectors over a wide geographical area making it an ideal target for irradiation as a tool to study the initial events that occur during infection. Parasites irradiated at the representative doses 100Gy, 140Gy, and 200Gy were used to inoculate BALB/c mice revealing that parasites irradiated at 200Gy were unable to establish disease in all mice. Cytokine analysis of mice inoculated with 200Gy of irradiated parasites showed significantly lower levels of interleukins when compared to mice inoculated with non-irradiated and 100Gy irradiated parasites. Irradiation also differentially affected the abundance of gene transcripts in a dose-dependent trend measured at 6- and 20-hours post-irradiation with 234, 325, and 484 gene transcripts affected 6 hours post-irradiation for 100Gy-, 140Gy- and 200Gy-irradiated parasites, respectively. At 20 hours post-irradiation, 422, 381, and 457 gene transcripts were affected by irradiation at 100Gy, 140Gy, and 200Gy, respectively. A gene ontology (GO) term analysis was carried out for the three representative doses at 6 hours and 20 hours post-irradiation revealing different processes occurring at 20 hours when compared to 6 hours for 100Gy irradiation. The top ten most significant processes had a negative Z score. These processes fall in significance at 140Gy and even further at 200Gy, revealing that they were least likely to occur at 200Gy, and thus may have been responsible for infection in mice by 100Gy and 140Gy irradiated parasites. When looking at 100Gy irradiated parasites 20 hours post-irradiation processes with a positive Z score, we identified genes that were involved in multiple processes and compared their fold change values at 6 hours and 20 hours. We present these genes as possibly necessary for repair from irradiation damage at 6 hours and suggestive of being involved in the establishment of disease in mice at 20 hours post-irradiation. A potential strategy using this information to develop a whole parasite vaccine is also postulated.
Collapse
Affiliation(s)
- Richard T. Kangethe
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
- *Correspondence: Richard T. Kangethe,
| | - Eva M. Winger
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Tirumala Bharani K. Settypalli
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Sneha Datta
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Charles E. Lamien
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Hermann Unger
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Theresa H.T. Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Adama Diallo
- Animal Production and Health Laboratory, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories Seibersdorf, International Atomic Energy Agency (IAEA), Vienna, Austria
- UMR CIRAD INRA, Animal, Santé, Territoires, Risques et Ecosystèmes (ASTRE), Montpellier, France
| |
Collapse
|
32
|
Dofuor AK, Djameh GI, Amoa-Bosompem M, Kwain S, Osei E, Tetevi GM, Ayertey F, Bolah P, Okine LK, Kyeremeh K, Gwira TM, Ohashi M. In vitro effects and mechanisms of action of Bidens pilosa in Trypanosoma brucei. J Tradit Complement Med 2022; 12:260-268. [PMID: 35493314 PMCID: PMC9039108 DOI: 10.1016/j.jtcme.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 10/25/2022] Open
Abstract
Background and aim African trypanosomiasis poses serious health and economic concerns to humans and livestock in several sub-Saharan African countries. The aim of the present study was to identify the antitrypanosomal compounds from B. pilosa (whole plant) through a bioactivity-guided isolation and investigate the in vitro effects and mechanisms of action against Trypanosoma brucei (T. brucei). Experimental procedure Crude extracts and fractions were prepared from air-dried pulverized plant material of B. pilosa using the modified Kupchan method of solvent partitioning. The antitrypanosomal activities of the fractions were determined through cell viability analysis. Effects of fractions on cell death and cell cycle of T. brucei were determined using flow cytometry, while fluorescence microscopy was used to investigate alterations in cell morphology and distribution. Results and conclusion The solvent partitioning dichloromethane (BPFD) and methanol (BPFM) fractions of B. pilosa exhibited significant activities against T. brucei with respective half-maximal inhibitory concentrations (IC50s) of 3.29 μg/ml and 5.86 μg/ml and resulted in the formation of clumpy subpopulation of T. brucei cells. Butyl (compound 1) and propyl (compound 2) esters of tryptophan were identified as the major antitrypanosomal compounds of B. pilosa. Compounds 1 and 2 exhibited significant antitrypanosomal effects with respective IC50 values of 0.66 and 1.46 μg/ml. At the IC50 values, both compounds significantly inhibited the cell cycle of T. brucei at the G0-G1 phase while causing an increase in G2-M phase. The results suggest that tryptophan esters may possess useful chemotherapeutic properties for the control of African trypanosomiasis.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Georgina Isabella Djameh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Michael Amoa-Bosompem
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samuel Kwain
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana, Legon, Ghana
| | - Enoch Osei
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana, Legon, Ghana
| | - Gilbert Mawuli Tetevi
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana, Legon, Ghana
| | | | - Peter Bolah
- Center for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Laud Kenneth Okine
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Kwaku Kyeremeh
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana, Legon, Ghana
| | - Theresa Manful Gwira
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Mitsuko Ohashi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
33
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
34
|
Ofori JA, Bakari SM, Bah S, Kolugu MK, Aning GK, Awandare GA, Carrington M, Gwira TM. A longitudinal two-year survey of the prevalence of trypanosomes in domestic cattle in Ghana by massively parallel sequencing of barcoded amplicons. PLoS Negl Trop Dis 2022; 16:e0010300. [PMID: 35442960 PMCID: PMC9060370 DOI: 10.1371/journal.pntd.0010300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 05/02/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
Background Animal African Trypanosomiasis (AAT) is one of the most economically important diseases affecting livestock productivity in sub-Saharan Africa. The disease is caused by a broad range of Trypanosoma spp., infecting both wild and domesticated animals through cyclical and mechanical transmission. This study aimed to characterize trypanosomes present in cattle at regular intervals over two years in an AAT endemic and a non-endemic region of Ghana. Methodology/Principal findings Groups of cattle at Accra and Adidome were selected based on their geographical location, tsetse fly density, prevalence of trypanosomiasis and the breed of cattle available. Blood for DNA extraction was collected at approximately four to five-week intervals over a two-year period. Trypanosome DNA were detected by a sensitive nested PCR targeting the tubulin gene array and massively parallel sequencing of barcoded amplicons. Analysis of the data was a semi-quantitative estimation of infection levels using read counts obtained from the sequencing as a proxy for infection levels. Majority of the cattle were infected with multiple species most of the time [190/259 (73%) at Adidome and 191/324 (59%) at Accra], with T. vivax being the most abundant. The level of infection and in particular T. vivax, was higher in Adidome, the location with a high density of tsetse flies. The infection level varied over the time course, the timings of this variation were not consistent and in Adidome it appeared to be independent of prophylactic treatment for trypanosome infection. Effect of gender or breed on infection levels was insignificant. Conclusions/Significance Most cattle were infected with low levels of several trypanosome species at both study sites, with T. vivax being the most abundant. The measurements of infection over time provided insight to the importance of the approach in identifying cattle that could suppress trypanosome infection over an extended time and may serve as reservoir. Cattle are of economic importance in sub-Saharan Africa as they fulfil multiple roles, ranging from draught power, to providing manure, milk, and meat. However, Animal African Trypanosomiasis (AAT) diseases in cattle affect productivity and food security in most African countries. In Ghana, bovine trypanosomiasis has been detected in few cross-sectional studies by molecular methods. To get a better understanding of the disease, a longitudinal study showing natural trypanosome infection over the life of cattle will be applicable. To explore this issue, the study determined the nature of trypanosome infection in cattle in farm settings in Ghana over two years, a period similar to that used in beef production, by massively parallel amplicon sequencing. The study provided a description of the prevalence over two years and showed that the cattle were infected with multiply species most of the time and the level of infection varied but was low most of the time. The longitudinal study allowed the identification of one individual able to supress infection far more effectively than other members of the herd and this is crucial in implementing control measures in the infected area.
Collapse
Affiliation(s)
- Jennifer Afua Ofori
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Soale Majeed Bakari
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Saikou Bah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael Kojo Kolugu
- Department of Computer Science, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - George Kwame Aning
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon Akanzuwine Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Theresa Manful Gwira
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- * E-mail:
| |
Collapse
|
35
|
Therapeutic Efficacy of Orally Administered Nitrofurantoin against Animal African Trypanosomosis Caused by Trypanosoma congolense Infection. Pathogens 2022; 11:pathogens11030331. [PMID: 35335655 PMCID: PMC8956101 DOI: 10.3390/pathogens11030331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Animal African trypanosomosis (AAT) leads to emaciation and low productivity in infected animals. Only six drugs are commercially available against AAT; they have severe side effects and face parasite resistance. Thus, the development of novel trypanocidal drugs is urgently needed. Nitrofurantoin, an antimicrobial, is used for treating bacterial urinary tract infections. Recently, we reported the trypanocidal effects of nitrofurantoin and its analogs in vitro. Furthermore, a nitrofurantoin analog, nifurtimox, is currently used to treat Chagas disease and chronic human African trypanosomiasis. Thus, this study was aimed at evaluating the in vivo efficacy of nitrofurantoin in treating AAT caused by Trypanosoma congolense. Nitrofurantoin was orally administered for 7 consecutive days from 4 days post-infection in T. congolense-infected mice, and the animals were observed for 28 days. Compared to the control group, the treatment group showed significantly suppressed parasitemia at 6 days post-infection. Furthermore, survival was significantly prolonged in the group treated with at least 10 mg/kg nitrofurantoin. Moreover, 100% survival and cure was achieved with a dose of nitrofurantoin higher than 30 mg/kg. Thus, oral nitrofurantoin administration has potential trypanocidal efficacy against T. congolense-induced AAT. This preliminary data will serve as a benchmark when comparing future nitrofurantoin-related compounds, which can overcome the significant shortcomings of nitrofurantoin that preclude its viable use in livestock.
Collapse
|
36
|
Trypanosoma vivax infection in dairy cattle: Parasitological and serological diagnosis and its relationship with the percentage of red blood cells. Microb Pathog 2022; 166:105495. [DOI: 10.1016/j.micpath.2022.105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/15/2022]
|
37
|
Abstract
Proteasomes are compartmentalized, ATP-dependent, N-terminal nucleophile hydrolases that play essentials roles in intracellular protein turnover. They are present in all 3 kingdoms. Pharmacological inhibition of proteasomes is detrimental to cell viability. Proteasome inhibitor rugs revolutionize the treatment of multiple myeloma. Proteasomes in pathogenic microbes such as Mycobacterium tuberculosis (Mtb), Plasmodium falciparum (Pf), and other parasites and worms have been validated as therapeutic targets. Starting with Mtb proteasome, efforts in developing inhibitors selective for microbial proteasomes have made great progress lately. In this review, we describe the strategies and pharmacophores that have been used in developing proteasome inhibitors with potency and selectivity that spare human proteasomes and highlight the development of clinical proteasome inhibitor candidates for treatment of leishmaniasis and Chagas disease. Finally, we discuss the future challenges and therapeutical potentials of the microbial proteasome inhibitors.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, United States of America
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
A novel high-content phenotypic screen to identify inhibitors of mitochondrial DNA maintenance in trypanosomes. Antimicrob Agents Chemother 2021; 66:e0198021. [PMID: 34871097 PMCID: PMC8846439 DOI: 10.1128/aac.01980-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Kinetoplastid parasites cause diverse neglected diseases in humans and livestock, with an urgent need for new treatments. The survival of kinetoplastids depends on their uniquely structured mitochondrial genome (kDNA), the eponymous kinetoplast. Here, we report the development of a high-content screen for pharmacologically induced kDNA loss, based on specific staining of parasites and automated image analysis. As proof of concept, we screened a diverse set of ∼14,000 small molecules and exemplify a validated hit as a novel kDNA-targeting compound.
Collapse
|
39
|
A Preliminary Study on the Relationship between Parasitaemia and Cytokine Expression of Peripheral Blood Cells in Trypanosoma vivax-Experimentally Infected Cattle. Animals (Basel) 2021; 11:ani11113191. [PMID: 34827923 PMCID: PMC8614243 DOI: 10.3390/ani11113191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Infections by Trypanosoma vivax in livestock have been reported with increasing frequency worldwide. Nevertheless, information regarding the immune response during the infection is scarce. Regarding that, cytokines play an important role as inflammation modulators, influencing the outcome of trypanosomosis. This study aimed to evaluate host cytokine production during T. vivax infection, in order to assess the increase or decrease of selected cytokines with the cattle’s ability to control the infection. While animals that showed an increase in IL-6 and IFNγ managed T. vivax parasitaemia satisfactorily, cattle that showed reduction of IL-1β, IL-2 and TNFα did not control the parasite multiplication. The presented results are preliminary and shed some light on the role of cytokines during T. vivax-infection. Abstract Trypanosoma vivax outbreaks have been reported with increasing frequency worldwide, causing significant economic losses in livestock. Though several studies have suggested that cytokine responses may influence infection caused by Trypanosoma sp., their exact role remains unclear and may vary according to the animal species and parasite strain. The present study aimed to evaluate cytokine expression of peripheral blood cells from three Girolando dairy cows experimentally infected with T. vivax. For this purpose, blood samples were collected prior to the inoculation on the day of inoculation (D0), the day after inoculation (D1), and then every seven days up to 119 days after infection (DAI). Each animal presented a unique pattern of cytokine expression. While a tendency of a Th1 cytokine response was observed during the patent phase (presence of circulating parasites), an increase of Th2 cytokine expression was found at the beginning of the sub-patent phase (low parasitaemia or aparasitaemic periods). In animals that presented a better control of parasitaemia, IL-6 and IFNγ increased during most of the trial period. On the other hand, the cow that presented reduction of IL-1β, IL-2, and TNFα during the entire period did not control parasitaemia properly. A balance between the Th1 and Th2 profile is beneficial for parasite control and animal health. The results found in the present study are a first step towards elucidating the dynamics of cattle’s inflammatory response against T. vivax, requiring future studies focusing on the role of key cytokines on the controlling of parasitaemia in different stages of bovine trypanosomosis.
Collapse
|
40
|
Steketee PC, Giordani F, Vincent IM, Crouch K, Achcar F, Dickens NJ, Morrison LJ, MacLeod A, Barrett MP. Transcriptional differentiation of Trypanosoma brucei during in vitro acquisition of resistance to acoziborole. PLoS Negl Trop Dis 2021; 15:e0009939. [PMID: 34752454 PMCID: PMC8648117 DOI: 10.1371/journal.pntd.0009939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/06/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Subspecies of the protozoan parasite Trypanosoma brucei are the causative agents of Human African Trypanosomiasis (HAT), a debilitating neglected tropical disease prevalent across sub-Saharan Africa. HAT case numbers have steadily decreased since the start of the century, and sustainable elimination of one form of the disease is in sight. However, key to this is the development of novel drugs to combat the disease. Acoziborole is a recently developed benzoxaborole, currently in advanced clinical trials, for treatment of stage 1 and stage 2 HAT. Importantly, acoziborole is orally bioavailable, and curative with one dose. Recent studies have made significant progress in determining the molecular mode of action of acoziborole. However, less is known about the potential mechanisms leading to acoziborole resistance in trypanosomes. In this study, an in vitro-derived acoziborole-resistant cell line was generated and characterised. The AcoR line exhibited significant cross-resistance with the methyltransferase inhibitor sinefungin as well as hypersensitisation to known trypanocides. Interestingly, transcriptomics analysis of AcoR cells indicated the parasites had obtained a procyclic- or stumpy-like transcriptome profile, with upregulation of procyclin surface proteins as well as differential regulation of key metabolic genes known to be expressed in a life cycle-specific manner, even in the absence of major morphological changes. However, no changes were observed in transcripts encoding CPSF3, the recently identified protein target of acoziborole. The results suggest that generation of resistance to this novel compound in vitro can be accompanied by transcriptomic switches resembling a procyclic- or stumpy-type phenotype.
Collapse
Affiliation(s)
- Pieter C. Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Federica Giordani
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kathryn Crouch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Nicholas J. Dickens
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Liam J. Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Glasgow Polyomics, University of Glasgow, United Kingdom
| |
Collapse
|
41
|
Chantal I, Minet C, Berthier D. In vitro cultivation of Trypanosoma congolense bloodstream forms: State of the art and advances. Vet Parasitol 2021; 299:109567. [PMID: 34534912 DOI: 10.1016/j.vetpar.2021.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022]
Abstract
Animal African Trypanosomosis (AAT or Nagana) is a severe vector-borne disease caused by protozoan parasites belonging to the Trypanosomatidae family and is usually cyclically transmitted by blood-sucking tsetse flies. AAT remains a major problem in sub-Saharan Africa. Among the main AAT causative agents, Trypanosoma congolense (T. congolense or Tc) is one of the most important trypanosome species, in terms of economic and animal health impacts, infecting cattle and a wide range of animal hosts as well. To advance in AAT prevention and control, it is essential to better understand trypanosome biology and pathogenesis using bloodstream form (BSF) in vitro culture. The in vitro cultivation of T. congolense IL3000 BSF strain is already well established and widely used in research studies and drug activity assays. However, it may probably no longer truly reflect the reality of field trypanosome strains, due to decades of use and subsequent modifications. Here, we propose a novel culture protocol that supports the long-term in vitro growth of the animal-infective BSFs of three Savannah and Forest types of T. congolense strains, including T. congolense clone IL1180, which is not only a field strain but also a commonly-used reference strain in experimental animal assays. We established a homemade culture medium which made it possible to sustain T. congolense IL1180 growth from infected mouse blood for 18 days in axenic conditions. Moreover, we developed an efficient freezing/thawing system that allowed, for the first time, T. congolense IL1180 BSF growth within 30 days after thawing. Our results on T. congolense adaptation to in vitro culture are encouraging for future gene studies using new molecular tools or for new therapeutic drug assays.
Collapse
Affiliation(s)
- I Chantal
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France.
| | - C Minet
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - D Berthier
- CIRAD, UMR INTERTRYP, F-34398, Montpellier, France; INTERTRYP, Univ Montpellier, CIRAD, IRD, Montpellier, France
| |
Collapse
|
42
|
Abstract
African trypanosomes are responsible for important diseases of humans and animals in sub-Saharan Africa. The best-studied species is Trypanosoma brucei, which is characterized by development in the mammalian host between morphologically slender and stumpy forms. The latter are adapted for transmission by the parasite's vector, the tsetse fly. The development of stumpy forms is driven by density-dependent quorum-sensing (QS), the molecular basis for which is now coming to light. In this review, I discuss the historical context and biological features of trypanosome QS and how it contributes to the parasite's infection dynamics within its mammalian host. Also, I discuss how QS can be lost in different trypanosome species, such as T. brucei evansi and T. brucei equiperdum, or modulated when parasites find themselves competing with others of different genotypes or of different trypanosome species in the same host. Finally, I consider the potential to exploit trypanosome QS therapeutically. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
43
|
Steketee PC, Dickie EA, Iremonger J, Crouch K, Paxton E, Jayaraman S, Alfituri OA, Awuah-Mensah G, Ritchie R, Schnaufer A, Rowan T, de Koning HP, Gadelha C, Wickstead B, Barrett MP, Morrison LJ. Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition. PLoS Pathog 2021; 17:e1009734. [PMID: 34310651 PMCID: PMC8384185 DOI: 10.1371/journal.ppat.1009734] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/24/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.
Collapse
Affiliation(s)
- Pieter C Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily A Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Iremonger
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn Crouch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Omar A Alfituri
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Rowan
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Dofuor AK, Ademolue TS, Amisigo CM, Kyeremeh K, Gwira TM. Chemical Derivatization and Characterization of Novel Antitrypanosomals for African Trypanosomiasis. Molecules 2021; 26:molecules26154488. [PMID: 34361641 PMCID: PMC8347361 DOI: 10.3390/molecules26154488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The search for novel antitrypanosomals and the investigation into their mode of action remain crucial due to the toxicity and resistance of commercially available antitrypanosomal drugs. In this study, two novel antitrypanosomals, tortodofuordioxamide (compound 2) and tortodofuorpyramide (compound 3), were chemically derived from the natural N-alkylamide tortozanthoxylamide (compound 1) through structural modification. The chemical structures of these compounds were confirmed through spectrometric and spectroscopic analysis, and their in vitro efficacy and possible mechanisms of action were, subsequently, investigated in Trypanosoma brucei (T. brucei), one of the causative species of African trypanosomiasis (AT). The novel compounds 2 and 3 displayed significant antitrypanosomal potencies in terms of half-maximal effective concentrations (EC50) and selectivity indices (SI) (compound 1, EC50 = 7.3 μM, SI = 29.5; compound 2, EC50 = 3.2 μM, SI = 91.3; compound 3, EC50 = 4.5 μM, SI = 69.9). Microscopic analysis indicated that at the EC50 values, the compounds resulted in the coiling and clumping of parasite subpopulations without significantly affecting the normal ratio of nuclei to kinetoplasts. In contrast to the animal antitrypanosomal drug diminazene, compounds 1, 2 and 3 exhibited antioxidant absorbance properties comparable to the standard antioxidant Trolox (Trolox, 0.11 A; diminazene, 0.50 A; compound 1, 0.10 A; compound 2, 0.09 A; compound 3, 0.11 A). The analysis of growth kinetics suggested that the compounds exhibited a relatively gradual but consistent growth inhibition of T. brucei at different concentrations. The results suggest that further pharmacological optimization of compounds 2 and 3 may facilitate their development into novel AT chemotherapy.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (A.K.D.); (T.S.A.); (C.M.A.)
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Temitayo Samson Ademolue
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (A.K.D.); (T.S.A.); (C.M.A.)
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Cynthia Mmalebna Amisigo
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (A.K.D.); (T.S.A.); (C.M.A.)
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana;
| | - Theresa Manful Gwira
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; (A.K.D.); (T.S.A.); (C.M.A.)
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- Correspondence:
| |
Collapse
|
45
|
Autheman D, Crosnier C, Clare S, Goulding DA, Brandt C, Harcourt K, Tolley C, Galaway F, Khushu M, Ong H, Romero-Ramirez A, Duffy CW, Jackson AP, Wright GJ. An invariant Trypanosoma vivax vaccine antigen induces protective immunity. Nature 2021; 595:96-100. [PMID: 34040257 DOI: 10.1038/s41586-021-03597-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Trypanosomes are protozoan parasites that cause infectious diseases, including African trypanosomiasis (sleeping sickness) in humans and nagana in economically important livestock1,2. An effective vaccine against trypanosomes would be an important control tool, but the parasite has evolved sophisticated immunoprotective mechanisms-including antigenic variation3-that present an apparently insurmountable barrier to vaccination. Here we show, using a systematic genome-led vaccinology approach and a mouse model of Trypanosoma vivax infection4, that protective invariant subunit vaccine antigens can be identified. Vaccination with a single recombinant protein comprising the extracellular region of a conserved cell-surface protein that is localized to the flagellum membrane (which we term 'invariant flagellum antigen from T. vivax') induced long-lasting protection. Immunity was passively transferred with immune serum, and recombinant monoclonal antibodies to this protein could induce sterile protection and revealed several mechanisms of antibody-mediated immunity, including a major role for complement. Our discovery identifies a vaccine candidate for an important parasitic disease that has constrained socioeconomic development in countries in sub-Saharan Africa5, and provides evidence that highly protective vaccines against trypanosome infections can be achieved.
Collapse
Affiliation(s)
- Delphine Autheman
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Cécile Crosnier
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Simon Clare
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, UK
| | - David A Goulding
- Electron and Advanced Light Microscopy, Wellcome Sanger Institute, Hinxton, UK
| | - Cordelia Brandt
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Malhar Khushu
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Han Ong
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | | | - Craig W Duffy
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Andrew P Jackson
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK.
- Department of Biology, University of York, York, UK.
- Hull York Medical School, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
46
|
Munsimbwe L, Seetsi A, Namangala B, N’Da DD, Inoue N, Suganuma K. In Vitro and In Vivo Trypanocidal Efficacy of Synthesized Nitrofurantoin Analogs. Molecules 2021; 26:molecules26113372. [PMID: 34199682 PMCID: PMC8199755 DOI: 10.3390/molecules26113372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
African trypanosomes cause diseases in humans and livestock. Human African trypanosomiasis is caused by Trypanosoma brucei rhodesiense and T. b. gambiense. Animal trypanosomoses have major effects on livestock production and the economy in developing countries, with disease management depending mainly on chemotherapy. Moreover, only few drugs are available and these have adverse effects on patients, are costly, show poor accessibility, and parasites develop drug resistance to them. Therefore, novel trypanocidal drugs are urgently needed. Here, the effects of synthesized nitrofurantoin analogs were evaluated against six species/strains of animal and human trypanosomes, and the treatment efficacy of the selected compounds was assessed in vivo. Analogs 11 and 12, containing 11- and 12-carbon aliphatic chains, respectively, showed the highest trypanocidal activity (IC50 < 0.34 µM) and the lowest cytotoxicity (IC50 > 246.02 µM) in vitro. Structure-activity relationship analysis suggested that the trypanocidal activity and cytotoxicity were related to the number of carbons in the aliphatic chain and electronegativity. In vivo experiments, involving oral treatment with nitrofurantoin, showed partial efficacy, whereas the selected analogs showed no treatment efficacy. These results indicate that nitrofurantoin analogs with high hydrophilicity are required for in vivo assessment to determine if they are promising leads for developing trypanocidal drugs.
Collapse
Affiliation(s)
- Linous Munsimbwe
- Ministry of Fisheries and Livestock, Department of Veterinary Services, Mulungushi House, P.O. Box 50600, Ridgeway, Lusaka 15100, Zambia;
| | - Anna Seetsi
- Unit for Environmental Science and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa;
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
| | - David D. N’Da
- Centre of Excellence for Pharmaceutical Sciences (PHARMACEN), North-West University, Potchefstroom 2520, South Africa;
| | - Noboru Inoue
- OIE Reference Laboratory for Surra, National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan;
| | - Keisuke Suganuma
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
- Correspondence: ; Tel.: +81-155-49-5697
| |
Collapse
|
47
|
Wahab Obeng A, Boakye YD, Agana TA, Djameh GI, Boamah D, Adu F. Anti-trypanosomal and anthelminthic properties of ethanol and aqueous extracts of Tetrapleura tetraptera Taub. Vet Parasitol 2021; 294:109449. [PMID: 33991727 DOI: 10.1016/j.vetpar.2021.109449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022]
Abstract
Trypanosomosis and helminthosis, considered as part of neglected tropical diseases, are parasitic infections of public health importance, especially in Africa. Medicinal plants have been used in most parts of Africa, to treat these parasitic infections. The study aims to determine the anti-trypanosomal and anthelminthic properties of Tetrapleura tetraptera (fruit and stembark). The aqueous extracts of T. tetraptera fruit (TTFaq) and stembark (TTSaq), as well as ethanol extracts of T. tetraptera fruit (TTFe) and stembark (TTSe), were screened for their in vitro anti-trypanosomal and anthelminthic activities against T. b. brucei and Pheretima posthuma worms, respectively. Preliminary phytochemical screening of all extracts and gas chromatography-mass spectrometry (GC-MS) analysis of most active extracts were conducted. TTFaq exhibited anti-trypanosomal activity with IC50 of 18.18 μg/mL. TTSe and TTFe had moderate anti-trypanosomal activity with IC50 of 34.76 and 34.84 μg/mL, respectively. TTSaq had relatively low activity against the parasite with IC50 of 55.03 μg/mL. The SI of T. tetraptera extracts was between the range of 0.14-2.09. TTFaq showed dose-dependent activity causing paralysis and death of the adult worms at all concentrations. At the least concentration of 0.625 mg/mL, TTFaq induced paralysis and death after 101.88 ± 0.8 and 242.64 ± 0.38 min of exposure, respectively compared with the negative control (p < 0.0001). TTFe, TTSe and TTSaq caused paralysis of worms after 318.32 ± 0.74, 422.5 ± 0.72, 422.20 ± 0.55 min of exposure at minimum concentrations of 2.5, 10 and 5 mg/mL, respectively (p < 0.0001). However, no death was observed in worms treated with TTFe, TTSe and TTSaq at all test concentrations. In the presence of sub-minimal inhibitory concentration of the extracts, TTFaq potentiated the anthelminthic activity of albendazole whiles TTFe, TTSaq and TTSe inhibited the activity of albendazole. Phytochemical screening revealed the presence of saponins, triterpenoids, reducing sugars, flavonoids (absent in TTFe), steroids (absent in TTFaq) and tannins (absent in TTSe and TTFe) in the extracts. GC-MS revealed the presence of 9-octadecenamide and betulic acid in TTFaq. Hence, there was evidence provided here that Tetrapleura tetraptera may be effective. This gives credence to their folkloric use. However, further study might be necessary to ascertain safety use in both humans and animals.
Collapse
Affiliation(s)
- Ahmed Wahab Obeng
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Duah Boakye
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Theresa Appiah Agana
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Georgina Isabella Djameh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Daniel Boamah
- Department of Microbiology, Mampong Centre for Plant Medicine Research, Akuapem Mampong, Ghana
| | - Francis Adu
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
48
|
Black JA, Crouch K, Lemgruber L, Lapsley C, Dickens N, Tosi LRO, Mottram JC, McCulloch R. Trypanosoma brucei ATR Links DNA Damage Signaling during Antigenic Variation with Regulation of RNA Polymerase I-Transcribed Surface Antigens. Cell Rep 2021; 30:836-851.e5. [PMID: 31968257 PMCID: PMC6988115 DOI: 10.1016/j.celrep.2019.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma brucei evades mammalian immunity by using recombination to switch its surface-expressed variant surface glycoprotein (VSG), while ensuring that only one of many subtelomeric multigene VSG expression sites are transcribed at a time. DNA repair activities have been implicated in the catalysis of VSG switching by recombination, not transcriptional control. How VSG switching is signaled to guide the appropriate reaction or to integrate switching into parasite growth is unknown. Here, we show that the loss of ATR, a DNA damage-signaling protein kinase, is lethal, causing nuclear genome instability and increased VSG switching through VSG-localized damage. Furthermore, ATR loss leads to the increased transcription of silent VSG expression sites and expression of mixed VSGs on the cell surface, effects that are associated with the altered localization of RNA polymerase I and VEX1. This work shows that ATR acts in antigenic variation both through DNA damage signaling and surface antigen expression control. Loss of the repair protein kinase ATR in Trypanosoma brucei is lethal Loss of T. brucei ATR alters VSG coat expression needed for immune evasion Monoallelic RNA polymerase I VSG expression is undermined by ATR loss ATR loss leads to expression of subtelomeric VSGs, indicative of recombination
Collapse
Affiliation(s)
- Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Nicholas Dickens
- Marine Science Lab, FAU Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946, USA
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Jeremy C Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
49
|
Rajavel A, Schmitt AO, Gültas M. Computational Identification of Master Regulators Influencing Trypanotolerance in Cattle. Int J Mol Sci 2021; 22:ijms22020562. [PMID: 33429951 PMCID: PMC7827104 DOI: 10.3390/ijms22020562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
African Animal Trypanosomiasis (AAT) is transmitted by the tsetse fly which carries pathogenic trypanosomes in its saliva, thus causing debilitating infection to livestock health. As the disease advances, a multistage progression process is observed based on the progressive clinical signs displayed in the host’s body. Investigation of genes expressed with regular monotonic patterns (known as Monotonically Expressed Genes (MEGs)) and of their master regulators can provide important clue for the understanding of the molecular mechanisms underlying the AAT disease. For this purpose, we analysed MEGs for three tissues (liver, spleen and lymph node) of two cattle breeds, namely trypanosusceptible Boran and trypanotolerant N’Dama. Our analysis revealed cattle breed-specific master regulators which are highly related to distinguish the genetic programs in both cattle breeds. Especially the master regulators MYC and DBP found in this study, seem to influence the immune responses strongly, thereby susceptibility and trypanotolerance of Boran and N’Dama respectively. Furthermore, our pathway analysis also bolsters the crucial roles of these master regulators. Taken together, our findings provide novel insights into breed-specific master regulators which orchestrate the regulatory cascades influencing the level of trypanotolerance in cattle breeds and thus could be promising drug targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Abirami Rajavel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (A.O.S.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075 Göttingen, Germany
- Correspondence:
| |
Collapse
|
50
|
Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides. Biomolecules 2020; 10:biom10121670. [PMID: 33322191 PMCID: PMC7763825 DOI: 10.3390/biom10121670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
In the absence of vaccines, there is a need for alternative sources of effective chemotherapy for African trypanosomiasis (AT). The increasing rate of resistance and toxicity of commercially available antitrypanosomal drugs also necessitates an investigation into the mode of action of new antitrypanosomals for AT. In this study, furoquinoline 4, 7, 8-trimethoxyfuro (2, 3-b) quinoline (compound 1) and oxylipin 9-oxo-10, 12-octadecadienoic acid (compound 2) were isolated from the plant species Zanthoxylum zanthoxyloides (Lam) Zepern and Timler (root), and their in vitro efficacy and mechanisms of action investigated in Trypanosoma brucei (T. brucei), the species responsible for AT. Both compounds resulted in a selectively significant growth inhibition of T. brucei (compound 1, half-maximal effective concentration EC50 = 1.7 μM, selectivity indices SI = 74.9; compound 2, EC50 = 1.2 μM, SI = 107.3). With regards to effect on the cell cycle phases of T. brucei, only compound 1 significantly arrested the second growth-mitotic (G2-M) phase progression even though G2-M and DNA replication (S) phase arrest resulted in the overall reduction of T. brucei cells in G0-G1 for both compounds. Moreover, both compounds resulted in the aggregation and distortion of the elongated slender morphology of T. brucei. Analysis of antioxidant potential revealed that at their minimum and maximum concentrations, the compounds exhibited significant oxidative activities in T. brucei (compound 1, 22.7 μM Trolox equivalent (TE), 221.2 μM TE; compound 2, 15.0 μM TE, 297.7 μM TE). Analysis of growth kinetics also showed that compound 1 exhibited a relatively consistent growth inhibition of T. brucei at different concentrations as compared to compound 2. The results suggest that compounds 1 and 2 are promising antitrypanosomals with the potential for further development into novel AT chemotherapy.
Collapse
|