1
|
Sun Z, Chen L, Lai M, Zhang X, Li J, Li Z, Yang D, Zhao M, Wang D, Wen P, Gou F, Dai Y, Ji Y, Li W, Zhao D, Liu X, Yang L. Histopathologic observations in a coccidiosis model of Eimeria tenella. Animal Model Exp Med 2024; 7:893-903. [PMID: 39439067 DOI: 10.1002/ame2.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Species of the genus Eimeria cause coccidiosis in chickens, resulting in a huge burden to the poultry industry worldwide. Eimeria tenella is one of the most prevalent chicken coccidia in China, and E. tenella infection causes hemorrhagic cecitis. METHODS Using an established model of coccidiosis in chickens combined with necropsy, imaging of pathological tissue sections, and other techniques, we evaluated the gross and microscopic lesions of cecal tissue within 15 days after inoculation with sporulated oocysts and described the endogenetic developmental process and relationship between E. tenella infection and enteritis development in chickens. RESULTS We observed three generations of merogony and gamogony in E. tenella. We observed gross lesions in the cecum from 84 hpi (hours post inoculation) and microscopic lesions from 60 hpi. The lesions in the cecum mainly exhibited hemorrhagic enteritis. Their severity increased with the onset of the second generation of merogony. The lesions began to alleviate by the end of the endogenous stages of E. tenella. CONCLUSION We show, for the first time, the complete observation of a series of changes in enteritis caused by 5 × 103 E. tenella oocysts. This study provides reference materials for E. tenella research and pathological diagnosis.
Collapse
Affiliation(s)
- Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linlin Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengyu Lai
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xixi Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Mega J, Moreira R, Moreira G, Silva-Loureiro A, Gomes da Silva P, Istrate C, Santos-Silva S, Rivero-Juarez A, Carmena D, Mesquita JR. Multicentric Study on Enteric Protists Occurrence in Zoological Parks in Portugal. Pathogens 2024; 13:874. [PMID: 39452745 PMCID: PMC11509964 DOI: 10.3390/pathogens13100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Parasitic infections of the gastrointestinal tract of domestic animals play a major role in the transmission of disease, which in turn may result in financial and productive losses. Notwithstanding, studies on the burden and distribution of diarrheagenic protists in zoological gardens are still insufficient. Given the close animal-animal and animal-human interaction in these settings, Public Health concerns under the One Health context are raised. Using molecular detection tools and phylogenetic analysis, the goal of this study was to assess the occurrence of four potentially zoonotic protists-Balantioides coli, Blastocystis sp., Cryptosporidium spp. and Giardia spp.-in animals residing in zoological parks in Portugal. Occurrence of Eimeria spp. was also assessed because of its veterinary relevance. Although Blastocystis sp. represents most of the positive samples obtained (11.6%; 95% CI: 0.08-0.17), all parasites were detected (B. coli (2.9%; 95% CI: 0.01-0.06), and Cryptosporidium spp., Eimeria spp. and Giardia spp. presented the same prevalence (0.5%; 95% CI: 0.00-0.03)). We also describe the first molecular detection of B. coli in a collared peccary (Tayassu tajacu), of Blastocystis sp. in three different python species, and G. muris in a central bearded dragon (Pogona vitticeps), suggesting the broadening of the host range for these parasites.
Collapse
Affiliation(s)
- João Mega
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.); (R.M.); (G.M.); (A.S.-L.); (P.G.d.S.); (S.S.-S.)
| | - Rafaela Moreira
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.); (R.M.); (G.M.); (A.S.-L.); (P.G.d.S.); (S.S.-S.)
| | - Guilherme Moreira
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.); (R.M.); (G.M.); (A.S.-L.); (P.G.d.S.); (S.S.-S.)
| | - Ana Silva-Loureiro
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.); (R.M.); (G.M.); (A.S.-L.); (P.G.d.S.); (S.S.-S.)
| | - Priscilla Gomes da Silva
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.); (R.M.); (G.M.); (A.S.-L.); (P.G.d.S.); (S.S.-S.)
- Epidemiology Research Unit (EPIUnit), Public Health Institute, Porto University, 4050-600 Porto, Portugal
- Associate Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-313 Porto, Portugal
| | - Claudia Istrate
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Sérgio Santos-Silva
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.); (R.M.); (G.M.); (A.S.-L.); (P.G.d.S.); (S.S.-S.)
| | - Antonio Rivero-Juarez
- Clinical Virology and Zoonosis, Infections Diseases Unit, Maimonides Biomedical Research Institute of Cordoba, Reina Sofía Hospital, Córdoba University, 14004 Córdoba, Spain;
- Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain;
| | - David Carmena
- Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029 Madrid, Spain;
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, 28220 Majadahonda, Spain
| | - João R. Mesquita
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal; (J.M.); (R.M.); (G.M.); (A.S.-L.); (P.G.d.S.); (S.S.-S.)
- Epidemiology Research Unit (EPIUnit), Public Health Institute, Porto University, 4050-600 Porto, Portugal
- Associate Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
3
|
Han L, Han X, Meng J, Yang J, Kang S, Lv X, Cui X, Li J, Liu W, Bai R. Silymarin effectively prevents and treats Eimeria tenella infection in chicks. Poult Sci 2024; 103:103909. [PMID: 38908118 PMCID: PMC11253652 DOI: 10.1016/j.psj.2024.103909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/24/2024] Open
Abstract
Silymarin, a botanical medicine derived from milk thistle seeds and is known to improve chicken growth and gut health when added to the feed. However, its role in the prevention and treatment of chicken coccidiosis remains unclear. This study investigated the efficacy of various doses of silymarin in preventing and treating Eimeria tenella infection in chicks. A total of 180 one-day-old specific pathogen-free chicks were randomized into six groups of 30 chicks each, no treatment (NC group); E. tenella infection (CC group); diclazuril medication during d 14 to 21 and E. tenella infection (DC group); and three groups infected with E. tenella and administered low, medium, or high doses of silymarin during d 12 to 21. All groups except NC were infected with E. tenella on d 14, with indicators observed on d 21. The growth performance was higher in the silymarin treated groups than that in the CC group, and the oocyst count per gram of manure, blood stool, and cecal lesion scores decreased. The medium-dose silymarin group exhibited the best treatment effect. Additionally, the silymarin groups displayed improved histological, morphology, and intestinal barrier integrity. The amounts of proinflammatory factors and harmful bacteria in the cecum were also reduced. Additionally, the activity of serum and cecal antioxidant enzymes, as well as the abundance of beneficial gut microbiota, increased in the cecum. In conclusion, this study demonstrated that silymarin can prevent and treat E. tenella infections. These data provide a scientific and conceptual basis for the development of a botanical dietary supplement from silymarin for the treatment and control of coccidiosis in chicks.
Collapse
Affiliation(s)
- Lixue Han
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Xiaoyi Han
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Jia Meng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Jin Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Shuning Kang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Xiaoling Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Xiaozhen Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Wenjun Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Rui Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| |
Collapse
|
4
|
Liao S, Lin X, Zhou Q, Wang Z, Yan Z, Wang D, Su G, Li J, Lv M, Hu J, Cai H, Song Y, Chen X, Zhu Y, Yin L, Zhang J, Qi N, Sun M. Epidemiological investigation of coccidiosis and associated risk factors in broiler chickens immunized with live anticoccidial vaccines in China. Front Vet Sci 2024; 11:1375026. [PMID: 38566750 PMCID: PMC10986636 DOI: 10.3389/fvets.2024.1375026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Coccidiosis is a costly intestinal disease of chickens caused by Eimeria species. This infection is associated with high mortality, reduced feed efficiency, and slowed body weight gain. The diagnosis and control of coccidiosis becomes challenging due to the fact that chickens can be infected by seven different Eimeria species and often occur mixed-species co-infections. Grasping the epidemiology of Eimeria species is crucial to estimate the efficiency of poultry management. This study aimed to explore the distribution of Eimeria species in broiler chickens in China after administering live anticoccidial vaccines. A total of 634 samples were obtained, and the survey results showed that the prevalence of Eimeria was 86.12% (546/634), and the most common species were E. acervulina (65.62%), E. necatrix (50.95%), E. mitis (50.79%), E. tenella (48.42%), and E. praecox (41.80%). Most samples indicated mixed-species infections (an average of 3.29 species per positive sample). Notably, 63.98% of samples contain 3 to 5 Eimeria species within a single fecal sample. The most prevalent combinations were E. acervulina-E. tenella (38.96%) and E. acervulina-E. necatrix (37.22%). Statistical analysis showed that flocks vaccinated with trivalent vaccines were significantly positive for E. necatrix in grower chickens (OR = 3.30, p < 0.05) compared with starter chickens, and tetravalent vaccinated flocks showed that starter chickens demonstrated a higher susceptibility to E. tenella-E. brunetti (OR = 2.03, p < 0.05) and E. acervulina-E. maxima (OR = 2.05, p < 0.05) compared with adult chickens. Geographically, in the case of tetravalent vaccine-immunized flocks, a substantial positive association was observed between E. necatrix infection rates and flocks from eastern (OR = 3.88, p < 0.001), central (OR = 2.65, p = 0.001), and southern China (OR = 3.17, p < 0.001) compared with southwestern China. This study also found a positive association between E. necatrix (OR = 1.64, p < 0.05), E. acervulina (OR = 1.59, p < 0.05), and E. praecox (OR = 1.81, p < 0.05) infection and coccidiosis occurrence compared with non-infected flocks in tetravalent vaccinated flocks. This molecular epidemiological investigation showed a high prevalence of Eimeria species in the field. The emergent species, E. brunetti and E. praecox, might be incorporated into the widely-used live vaccines in the future. These insights could be useful in refining coccidiosis control strategies in the poultry industry.
Collapse
Affiliation(s)
- Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qingfeng Zhou
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Zhanxin Wang
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Zhuanqiang Yan
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Dingai Wang
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Guanzhi Su
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing, Guangdong, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
5
|
Sun L, Li C, Zhao N, Wang B, Li H, Wang H, Zhang X, Zhao X. Host protein EPCAM interacting with EtMIC8-EGF is essential for attachment and invasion of Eimeria tenella in chickens. Microb Pathog 2024; 188:106549. [PMID: 38281605 DOI: 10.1016/j.micpath.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
The five epidermal growth factor-like domains (EGF) of Eimeria tenella microneme protein 8 (EtMIC8) (EtMIC8-EGF) plays a vital role in host cell attachment and invasion. These processes require interactions between parasite proteins and receptors on the surface of host cells. In this study, five chicken membrane proteins potentially interacting with EtMIC8-EGF were identified using the GST pull-down assay and mass spectrometry analysis, and only chicken (Gallus gallus) epithelial cell adhesion molecule (EPCAM) could bind to EtMIC8-EGF. EPCAM-specific antibody and recombinant EPCAM protein (rEPCAM) inhibited the EtMIC8-EGF binding to host cells in a concentration-dependent manner. Furthermore, the rEPCAM protein showed a binding activity to sporozoites in vitro, and a significant reduction of E. tenella invasion in DF-1 cells was further observed after pre-incubation of sporozoites with rEPCAM. The specific anti-EPCAM antibody further significantly decreased weight loss, lesion score and oocyst output during E. tenella infection, displaying partial inhibition of E. tenella infection. These results indicate that chicken EPCAM is an important EtMIC8-interacting host protein involved in E. tenella-host cell adhesion and invasion. The findings will contribute to a better understanding of the role of adhesion-associated microneme proteins in E. tenella.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Chao Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding City, 071000, Hebei Province, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Bingxiang Wang
- Shandong Vocational Animal Science and Veterinary College, Weifang City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Hairong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|
6
|
Das M, Masharing N, Makri MM. Phylogenetic analysis of Eimeria tenella isolates from chicken of sub-tropical mountains of Meghalaya, India. Mol Biol Rep 2024; 51:110. [PMID: 38227220 DOI: 10.1007/s11033-023-09181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Coccidiosis is the most common and pathogenic intestinal disease caused by different species of Eimeria is chicken. In this study, we describe the prevalence, molecular diagnosis and evolutionary insight of Eimeria tenella in chicken of Meghalaya's sub-tropical mountainous area. METHODS AND RESULTS Faecal samples (337 no.) and dead chicks (298 no.) were collected every month from January to July' 2023 from poultry farms (4nos.) in and around Umiam, Ri-Bhoi, Meghalaya. The chicks were categorized into different age groups viz. < 3, 3-6 and > 6 weeks. Samples were examined by flotation techniques and post-mortem. The oocysts were sporulated in 2.5% potassium dichromate solution. Eimeria tenella's 18 S rRNA gene genomic DNA was extracted, amplified, and sequenced. Fecal sample and postmortem examinations revealed 24.04% and 33.22% infections of Eimeria sp., respectively. Oocyst per gram (OPG) was recorded highest and lowest in July (26,500) and February (9800), respectively. Amplification of the 18 S rRNA small subunit gene (SSU) by Polymerase Chain Reaction (PCR) revealed a 1790 bp band size. The amplicon was sequenced and deposited in the NCBI database. BLAST analyses of the SSU rRNA gene of E. tenella, Umiam, Meghalaya isolate (OR458392.1) revealed sequence similarities of more than 99% with SSU rRNA gene sequences available in the NCBI database. Pair wise alignment exhibited nucleotide homology ranging from 71.59 to 100.0% with the maximum sequence homology (100.0%) shared with the E. tenella isolate from Turkey (HQ680474.1) and the lowest homology of 95.6% with UK (HG994972.1). Umiam isolate were found to have 97.08% and 100.0% nucleotide similarities with E. tenella from both the UK (AF026388.1) and the USA (U40264.1), respectively. However, nucleotide similarities of 98.24%, 85.33%, 84.75% and 81.35% were observed with E. tenella strain Bangalore (JX312808.1), E. tenella isolate Kerala-1 (JX093898.1), E. tenella isolate Kerala-3 (JX093900.1) and E. tenella isolate Kerala-2 (JX093899.1), respectively. Phylogenetic analysis of SSU rRNA sequences of E. tenella Umiam, Meghalaya isolate with cognate sequences throughout the world revealed these sequences are distinct but at the same time share a close phylogenetic relationship with Indian isolates from Bangalore and Andhra Pradesh. In addition, the distant phylogenetic relationship was observed with cognate gene sequences of United States of America, Canada, China. CONCLUSION Phylogenetic analysis of SSU rRNA sequences of E. tenella Umiam, Meghalaya isolate with cognate sequences throughout the world revealed these sequences are distinct but at the same time share a close phylogenetic relationship with Indian isolates from Bangalore and Andhra Pradesh. Distant phylogenetic relationship was observed with cognate gene sequences of United States of America, Canada, China.
Collapse
Affiliation(s)
- Meena Das
- Division of Animal and Fishery Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | - Nampher Masharing
- Division of Animal and Fishery Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Mun Mun Makri
- Division of Animal and Fishery Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| |
Collapse
|
7
|
Liu Q, Liu X, Zhao X, Zhu XQ, Suo X. Live attenuated anticoccidial vaccines for chickens. Trends Parasitol 2023; 39:1087-1099. [PMID: 37770352 DOI: 10.1016/j.pt.2023.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/30/2023]
Abstract
Chicken coccidiosis, caused by infection with single or multiple Eimeria species, results in significant economic losses to the global poultry industry. Over the past decades, considerable efforts have been made to generate attenuated Eimeria strains, and the use of live attenuated anticoccidial vaccines for disease prevention has achieved tremendous success. In this review, we evaluate the advantages and limitations of the methods of attenuation as well as attenuated Eimeria strains in a historical perspective. Also, we summarize the recent exciting research advances in transient/stable transfection systems and clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing developed for Eimeria parasites, and discuss trends and challenges of developing live attenuated anticoccidial vaccines based on transgenesis and genome editing.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, PR China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China.
| |
Collapse
|
8
|
Adeyemi O, Quill A, Morikone M, Evans L, Formoy C, Idowu ET, Akinsanya B, Jatau ID, Blake DP. Exploring the genetic diversity of Eimeria acervulina: A polymerase chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) approach. Vet Parasitol 2023; 322:110010. [PMID: 37634263 DOI: 10.1016/j.vetpar.2023.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Eimeria, protozoan parasites that can cause the disease coccidiosis, pose a persistent challenge to poultry production and welfare. Control is commonly achieved using good husbandry supplemented with routine chemoprophylaxis and/or live parasite vaccination, although widespread drug resistance and challenges to vaccine supply or cost can prove limiting. Extensive effort has been applied to develop subunit anticoccidial vaccines as scalable, cost-effective alternatives, but translation to the field will require a robust understanding of parasite diversity. Using a new Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) panel we begin to describe the genetic diversity of Eimeria acervulina populations in Africa and Europe. PCR-RFLP genotyping E. acervulina populations sampled from commercial broiler and layer chickens reared in Nigeria or the United Kingdom (UK) and Republic of Ireland (RoI) revealed comparable levels of haplotype diversity, in direct contrast to previous descriptions from the close relative E. tenella. Here, 25 distinct PCR-RFLP haplotypes were detected from a panel of 42 E. acervulina samples, including 0.7 and 0.5 haplotypes per sample in Nigeria (n = 20) and the UK/RoI (n = 14), respectively. All but six haplotypes were found to be country-specific. The PCR-RFLP markers immune mapped protein 1 (IMP1) and heat shock protein 90 (HSP90) were most informative for Nigerian E. acervulina, while microneme protein 3 (MIC3) and HSP90 were most informative in UK/RoI populations. High haplotype diversity within E. acervulina populations may indicate frequent genetic exchange and potential for rapid dissemination of genetic material associated with escape from selective barriers such as anticoccidial drugs and future subunit vaccines.
Collapse
Affiliation(s)
- Oluwayomi Adeyemi
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Alexandra Quill
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Margeen Morikone
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Laura Evans
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Claire Formoy
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Emmanuel T Idowu
- Department of Zoology, University of Lagos, Akoka, Yaba, Lagos, Nigeria
| | | | - Isa D Jatau
- Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria
| | - Damer P Blake
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK.
| |
Collapse
|
9
|
Zhou X, Wang Z, Zhu P, Gu X, He R, Xu J, Jing B, Wang L, Chen S, Xie Y. Eimeria zuernii (Eimeriidae: Coccidia): mitochondrial genome and genetic diversity in the Chinese yak. Parasit Vectors 2023; 16:312. [PMID: 37661262 PMCID: PMC10475197 DOI: 10.1186/s13071-023-05925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Coccidiosis caused by Eimeria zuernii (Eimeriidae: Coccidia) represents a significant economic threat to the bovine industry. Understanding the evolutionary and genetic biology of E. zuernii can assist in new interaction developments for the prevention and control of this protozoosis. METHODS We defined the evolutionary and genetic characteristics of E. zuernii by sequencing the complete mitogenome and analyzing the genetic diversity and population structure of 51 isolates collected from eight yak breeding parks in China. RESULTS The 6176-bp mitogenome of E. zuernii was linear and encoded typical mitochondrial contents of apicomplexan parasites, including three protein-coding genes [PCGs; cytochrome c oxidase subunits I and III (cox1 and cox3), and cytochrome b (cytb)], seven fragmented small subunit (SSU) and 12 fragmented large subunit (LSU) rRNAs. Genome-wide comparative and evolutionary analyses showed cytb and cox3 to be the most and least conserved Eimeria PCGs, respectively, and placed E. zuernii more closely related to Eimeria mephitidis than other Eimeria species. Furthermore, cox1-based genetic structure defined 24 haplotypes of E. zuernii with high haplotype diversities and low nucleotide diversities across eight geographic populations, supporting a low genetic structure and rapid evolutionary rate as well as a previous expansion event among E. zuernii populations. CONCLUSIONS To our knowledge, this is the first study presenting the phylogeny, genetic diversity, and population structure of the yak E. zuernii, and such information, together with its mitogenomic data, should contribute to a better understanding of the genetic and evolutionary biological studies of apicomplexan parasites in bovines.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Zhao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Pengchen Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Lidan Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130 China
| |
Collapse
|
10
|
Chen L, Tang X, Sun P, Hu D, Zhang Y, Wang C, Chen J, Liu J, Gao Y, Hao Z, Zhang N, Chen W, Xie F, Suo X, Liu X. Comparative transcriptome profiling of Eimeria tenella in various developmental stages and functional analysis of an ApiAP2 transcription factor exclusively expressed during sporogony. Parasit Vectors 2023; 16:241. [PMID: 37468981 PMCID: PMC10354945 DOI: 10.1186/s13071-023-05828-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The apicomplexan parasites Eimeria spp. are the causative agents of coccidiosis, a disease with a significant global impact on the poultry industry. The complex life cycle of Eimeria spp. involves exogenous (sporogony) and endogenous (schizogony and gametogony) stages. Unfortunately, the genetic regulation of these highly dynamic processes, particularly for genes involved in specific developmental phases, is not well understood. METHODS In this study, we used RNA sequencing (RNA-Seq) analysis to identify expressed genes and differentially expressed genes (DEGs) at seven time points representing different developmental stages of Eimeria tenella. We then performed K-means clustering along with co-expression analysis to identify functionally enriched gene clusters. Additionally, we predicted apicomplexan AP2 transcription factors in E. tenella using bioinformatics methods. Finally, we generated overexpression and knockout strains of ETH2_0411800 to observe its impact on E. tenella development. RESULTS In total, we identified 7329 genes that are expressed during various developmental stages, with 3342 genes exhibiting differential expression during development. Using K-means clustering along with co-expression analysis, we identified clusters functionally enriched for oocyte meiosis, cell cycle, and signaling pathway. Among the 53 predicted ApiAP2 transcription factors, ETH2_0411800 was found to be exclusively expressed during sporogony. The ETH2_0411800 overexpression and knockout strains did not exhibit significant differences in oocyst size or output compared to the parental strain, while the resulting ETH2_0411800 knockout parasite showed a relatively small oocyst output. CONCLUSIONS The findings of our research suggest that ETH2_0411800 is not essential for the growth and development of E. tenella. Our study provides insights into the gene expression dynamics and is a valuable resource for exploring the roles of transcription factor genes in regulating the development of Eimeria parasites.
Collapse
Affiliation(s)
- Linlin Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Sun
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Dandan Hu
- School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaoyue Wang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junmin Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Yang Gao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zhenkai Hao
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Ning Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Wenxuan Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Fujie Xie
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
11
|
Deciphering Diets and Lifestyles of Prehistoric Humans through Paleoparasitology: A Review. Genes (Basel) 2023; 14:genes14020303. [PMID: 36833230 PMCID: PMC9957072 DOI: 10.3390/genes14020303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Parasites have affected and coevolved with humans and animals throughout history. Evidence of ancient parasitic infections, particularly, reside in archeological remains originating from different sources dating to various periods of times. The study of ancient parasites preserved in archaeological remains is known as paleoparasitology, and it initially intended to interpret migration, evolution, and dispersion patterns of ancient parasites, along with their hosts. Recently, paleoparasitology has been used to better understand dietary habits and lifestyles of ancient human societies. Paleoparasitology is increasingly being recognized as an interdisciplinary field within paleopathology that integrates areas such as palynology, archaeobotany, and zooarchaeology. Paleoparasitology also incorporates techniques such as microscopy, immunoassays, PCR, targeted sequencing, and more recently, high-throughput sequencing or shotgun metagenomics to understand ancient parasitic infections and thus interpret migration and evolution patterns, as well as dietary habits and lifestyles. The present review covers the original theories developed in the field of paleoparasitology, as well as the biology of some parasites identified in pre-Columbian cultures. Conclusions, as well as assumptions made during the discovery of the parasites in ancient samples, and how their identification may aid in better understanding part of human history, ancient diet, and lifestyles are discussed.
Collapse
|
12
|
Carrisosa M, Terra-Long MT, Cline J, Macklin KS, Dormitorio T, Wang C, Hauck R. Multilocus Sequence Typing of Eimeria maxima in Commercial Broiler Flocks. Avian Dis 2022; 66:389-395. [PMID: 36715469 DOI: 10.1637/aviandiseases-d-22-00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
About 35% of all broiler flocks in the United States receive an anticoccidial vaccine, but it is not possible to easily differentiate Eimeria vaccine strains from Eimeria field isolates. Being able to do that would allow using vaccines in a more targeted way. The objective of this study was to collect Eimeria maxima isolates from broiler flocks that received anticoccidial feed additives and flocks that had been vaccinated against coccidia and then test them with a multilocus sequencing typing (MLST) scheme developed for this study. Fecal samples were obtained from commercial broiler flocks in Alabama and Tennessee. Oocyst counts in samples tended to be lower in flocks receiving anticoccidial feed additives and higher in vaccinated flocks. Selected samples were screened for presence of E. maxima by quantitative PCR, and Eimeria spp. composition was investigated by next-generation amplicon sequencing (NGAS) in 37 E. maxima positive samples. Other detected Eimeria spp. besides E. maxima were Eimeria acervulina in 35 samples, Eimeria praecox in 23 samples, Eimeria mitis or Eimeria mivati in 17 samples, and Eimeria necatrix or Eimeria tenella in 10 samples. Six partial E. maxima genes (dnaJ domain containing protein, 70-kDa heat shock protein, prolyl endopeptidase, regulator of chromosome condensation domain containing protein, serine carboxypeptidase, and vacuolar proton-translocating ATPase subunit) of 46 samples were sequenced. The MLST scheme was able to differentiate two vaccines from each other. Three of 17 samples from vaccinated flocks differed from the vaccine used in the flock, while 16 of 29 samples from unvaccinated flocks differed from the vaccine. However, there was also a large number of low-quality, ambiguous chromatograms and negative PCRs for the selected genes. If and when more advanced, possibly next-generation sequencing-based methods will be developed, the genes should be considered as targets.
Collapse
Affiliation(s)
- M Carrisosa
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - M T Terra-Long
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - J Cline
- Wayne Farms, Oakwood, GA 30566
| | - K S Macklin
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - T Dormitorio
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - C Wang
- Department of Pathobiology, Auburn University, Auburn, AL 36849
| | - R Hauck
- Department of Poultry Science, Auburn University, Auburn, AL 36849, .,Department of Pathobiology, Auburn University, Auburn, AL 36849
| |
Collapse
|
13
|
Han M, Hu W, Chen T, Guo H, Zhu J, Chen F. Anticoccidial activity of natural plants extracts mixture against Eimeria tenella: An in vitro and in vivo study. Front Vet Sci 2022; 9:1066543. [PMID: 36504841 PMCID: PMC9727100 DOI: 10.3389/fvets.2022.1066543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Coccidiosis, an acute epidemic intestinal disease of poultry, is caused by the parasitic protozoan genus Eimeria, with Eimeria tenella being the most pathogenic spp. Novel approaches are required to address the limitations of current treatments for this disease. We investigated the effects of eight plant extracts and essential oils and their mixture on Eimeria tenella as potential treatments for coccidial infection. The anticoccidial effects of non-toxic concentrations of Punica granatum L. (0.005 mg/mL), Plantago asiatica L. (0.780 mg/mL), Bidens pilosa L. (0.390 mg/mL), Acalypha australis L. (0.390 mg/mL), Pteris multifida Poir (0.050 mg/mL), and Portulaca oleracea L. sp. Pl. (0.050 mg/mL) extracts; Artemisia argyi Levl. et Vant. (0.010 μL/mL) and Camellia sinensis (L.) O. Ktze (0.050 μL/mL) essential oils; and their mixture (0.500 mL/mL) on Eimeria tenella were determined using cell viability assays, flow cytometry, and in vivo studies. The eight plant extracts and essential oils and their mixture inhibited Eimeria tenella sporozoites from invading chicken embryo fibroblast cells in vitro. The extract and essential oil mixture improved the feed conversion ratio and body weight gain, reduced fecal oocyst excretion, substantially reduced the mortality of Eimeria tenella-infected chickens, and reduced Eimeria tenella-induced cecal damage in vivo. The results suggest that the extract and essential oil mixtures inhibit Eimeria tenella invasion both in vitro and in vivo, demonstrating their potential as anticoccidial agents.
Collapse
Affiliation(s)
- Mingzheng Han
- College of Animal Science, South China Agricultural University, Guangzhou, China,Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Wenfeng Hu
- College of Animal Science, South China Agricultural University, Guangzhou, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China,College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tong Chen
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Hanxing Guo
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China,College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianfeng Zhu
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China,Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China,*Correspondence: Feng Chen
| |
Collapse
|
14
|
Zaheer T, Abbas RZ, Imran M, Abbas A, Butt A, Aslam S, Ahmad J. Vaccines against chicken coccidiosis with particular reference to previous decade: progress, challenges, and opportunities. Parasitol Res 2022; 121:2749-2763. [PMID: 35925452 PMCID: PMC9362588 DOI: 10.1007/s00436-022-07612-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Chicken coccidiosis is an economically significant disease of commercial chicken industry accounting for losses of more than £10.4 billion (according to 2016 prices). Additionally, the costs incurred in prophylaxis and therapeutics against chicken coccidiosis in developing countries (for instance Pakistan according to 2018 prices) reached US $45,000.00 while production losses for various categories of chicken ranges 104.74 to US $2,750,779.00. The infection has been reported from all types of commercial chickens (broiler, layer, breeder) having a range of reported prevalence of 7-90%. The concern of resistance towards major anticoccidials has provided a way forward to vaccine research and development. For prophylaxis of chicken coccidiosis, live virulent, attenuated, ionophore tolerant strains and recombinant vaccines have been extensively trialed and commercialized. Eimeria antigens and novel vaccine adjuvants have elicited the protective efficacy against coccidial challenge. The cost of production and achieving robust immune responses in birds are major challenges for commercial vaccine production. In the future, research should be focused on the development of multivalent anticoccidial vaccines for commercial poultry. Efforts should also be made on the discovery of novel antigens for incorporation into vaccine designs which might be more effective against multiple Eimeria species. This review presents a recap to the overall progress against chicken Eimeria with particular reference to previous decade. The article presents critical analysis of potential areas for future research in chicken Eimeria vaccine development.
Collapse
Affiliation(s)
- Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Asghar Abbas
- Faculty of Veterinary Science, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ali Butt
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sarfraz Aslam
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| | - Jameel Ahmad
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
15
|
Xu L, Yu Z, He K, Wen Z, Aleem MT, Yan R, Song X, Lu M, Li X. PLGA Nanospheres as Delivery Platforms for Eimeria mitis 1a Protein: A Novel Strategy to Improve Specific Immunity. Front Immunol 2022; 13:901758. [PMID: 35693811 PMCID: PMC9178187 DOI: 10.3389/fimmu.2022.901758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The infections of chicken coccidiosis impact the welfare of chickens and the economical production of poultry. Eimeria mitis is ubiquitous in chicken coccidiosis, and E. mitis infection can significantly affect the productivity of birds. Up to now, few efficient vaccines against E. mitis have been reported, whereas the recombinant subunit vaccines delivered by nanomaterials may elicit an encouraging outcome. Thus, in this study, we chose E. mitis 1a (Em1a) protein as the candidate antigen to generate Em1a preparations. The recombinant Em1a (rEm1a) protein was encapsulated with poly lactic-co-glycolic acid (PLGA) and chitosan (CS) nanospheres. The physical characterization of the rEm1a-PLGA and rEm1a-CS nanospheres was investigated, and the resulting nanospheres were proven to be nontoxic. The protective efficacy of rEm1a-PLGA and rEm1a-CS preparations was evaluated in E. mitis-challenged birds in comparison with two preparations containing rEm1a antigen emulsified in commercially available adjuvants. ELISA assay, flow cytometry analysis, and quantitative real-time PCR (qPCR) analysis indicated that vaccination with rEm1a-loaded nanospheres significantly upregulated the secretions of antibodies and cytokines and proportions of CD4+ and CD8+ T lymphocytes. Compared with the other three preparations, rEm1a-PLGA nanosphere was more effective in improving growth performance and inhibiting oocyst output in feces, indicating that the PLGA nanosphere was associated with optimal protection against E. mitis. Collectively, our results highlighted the advantages of nanovaccine in eliciting protective immunity and may provide a new perspective for developing effective vaccines against chicken coccidiosis.
Collapse
|
16
|
Alam MZ, Dey AR, Rony SA, Parvin S, Akter S. Phylogenetic analysis of Eimeria tenella isolated from the litter of different chicken farms in Mymensingh, Bangladesh. Vet Med Sci 2022; 8:1563-1569. [PMID: 35384356 PMCID: PMC9297755 DOI: 10.1002/vms3.799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Eimeria tenella is the most pathogenic intracellular protozoan parasite of seven Eimeria species causing chicken coccidiosis around the world. This species is particularly responsible for caecal coccidiosis leading to serious morbidity–mortality and financial loss in poultry production. Methods The present study explored the genetic diversity of E. tenella. Litter slurry was collected from 18 broiler farms located in Mymensingh district, Bangladesh. Litter samples were processed for oocyst isolation–identification using parasitological techniques followed by genomic DNA extraction from sporulated oocysts. For molecular analysis, the internaltranscribedspacer1 gene of E. tenella was amplified using species‐specific primers and sequenced. After editing and alignment, 263 bp sequences were used for analysis. Results Genetic analysis showed seven distinct genotypes and detected six single nucleotide polymorphisms among the 18 E. tenella isolates. The nucleotide and genotype diversity were 0.00507 and 0.8235, respectively. A phylogenetic tree was constructed with 66 sequences (seven studied genotypes and 59 reference sequences from GenBank database). The neighbour‐joining tree represented that the studied E. tenella isolates were grouped with reference E. tenella isolates with strong nodal support (100%) and the nucleotide sequences of E. tenella, E. necatrix, E. acervulina, E. brunetti, E. maxima, E. mitis and E. praecox formed separate clusters without any geographical boundaries. Conclusions This is the first study on the genetic analysis of E. tenella from Mymensingh district, Bangladesh. These findings will provide baseline data on the species conformation and genetic variations of E. tenella. Further extensive investigation will be needed to reveal the population genetic structure of this parasite and thus will facilitate the planning of effective control strategies.
Collapse
Affiliation(s)
- Mohammad Zahangir Alam
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Anita Rani Dey
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sharmin Aqter Rony
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shahnaz Parvin
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shirin Akter
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
17
|
Abstract
Apicomplexans are important pathogens that cause severe infections in humans and animals. The biology and pathogeneses of these parasites have shown that proteins are intrinsically modulated during developmental transitions, physiological processes and disease progression. Also, proteins are integral components of parasite structural elements and organelles. Among apicomplexan parasites, Eimeria species are an important disease aetiology for economically important animals wherein identification and characterisation of proteins have been long-winded. Nonetheless, this review seeks to give a comprehensive overview of constitutively expressed Eimeria proteins. These molecules are discussed across developmental stages, organelles and sub-cellular components vis-à-vis their biological functions. In addition, hindsight and suggestions are offered with intention to summarise the existing trend of eimerian protein characterisation and to provide a baseline for future studies.
Collapse
|
18
|
do Carmo Neto JR, Guerra RO, Machado JR, Silva ACA, da Silva MV. Antiprotozoal and anthelmintic activity of zinc oxide nanoparticles. Curr Med Chem 2021; 29:2127-2141. [PMID: 34254904 DOI: 10.2174/0929867328666210709105850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Nanomaterials represent a wide alternative for the treatment of several diseases that affect both human and animal health. The use of these materials mainly involves trying to solve the problem of resistance that pathogenic organisms acquire to conventional drugs. A well-studied example that represents a potential component for biomedical applications is the use of zinc oxide (ZnO) nanoparticles (NPs). Its antimicrobial function is related, especially the ability to generate/induce ROS that affects the homeostasis of the pathogen in question. Protozoa and helminths that harm human health and the economic performance of animals have already been exposed to this type of nanoparticle. Thus, through this review, our goal is to discuss the state-of-the-art effect of ZnO NPs on these parasites.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450 Goiania, GO, Brazil
| | - Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
19
|
Qi N, Liao S, Li J, Wu C, Lv M, Liu Y, Mohiuddin M, Lin X, Hu J, Cai H, Yu L, Xiao W, Sun M, Li G. Identification and Characterization of the ATG8, a Marker of Eimeria tenella Autophagy. ACTA ACUST UNITED AC 2021; 30:e017020. [PMID: 33729312 DOI: 10.1590/s1984-29612021002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022]
Abstract
Autophagy plays an important role in maintaining cell homeostasis through degradation of denatured proteins and other biological macromolecules. In recent years, many researchers focus on mechanism of autophagy in apicomplexan parasites, but little was known about this process in avian coccidia. In our present study. The cloning, sequencing and characterization of autophagy-related gene (Etatg8) were investigated by quantitative real-time PCR (RT-qPCR), western blotting (WB), indirect immunofluorescence assays (IFAs) and transmission electron microscopy (TEM), respectively. The results have shown 375-bp ORF of Etatg8, encoding a protein of 124 amino acids in E. tenella, the protein structure and properties are similar to other apicomplexan parasites. RT-qPCR revealed Etatg8 gene expression during four developmental stages in E. tenella, but their transcriptional levels were significantly higher at the unsporulated oocysts stage. WB and IFA showed that EtATG8 was lipidated to bind the autophagosome membrane under starvation or rapamycin conditions, and aggregated in the cytoplasm of sporozoites and merozoites, however, the process of autophagosome membrane production can be inhibited by 3-methyladenine. In conclusion, we found that E. tenella has a conserved autophagy mechanism like other apicomplexan parasites, and EtATG8 can be used as a marker for future research on autophagy targeting avian coccidia.
Collapse
Affiliation(s)
- Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Caiyan Wu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Yunqiu Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P R China
| | - Mudassar Mohiuddin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Linzeng Yu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Wenwan Xiao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| | - Guoqing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P R China
| |
Collapse
|
20
|
Analysis of Genetic Diversity in Indian Isolates of Rhipicephalus microplus Based on Bm86 Gene Sequence. Vaccines (Basel) 2021; 9:vaccines9030194. [PMID: 33652549 PMCID: PMC7996562 DOI: 10.3390/vaccines9030194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The control of cattle tick, Rhipicephalus microplus, is focused on repeated use of acaricides. However, due to growing acaricide resistance and residues problem, immunization of animals along with limited use of effective acaricides is considered a suitable option for the control of tick infestations. To date, more than fifty vaccine candidates have been identified and tested worldwide, but two vaccines were developed using the extensively studied candidate, Bm86. The main reason for limited vaccine commercialization in other countries is genetic diversity in the Bm86 gene leading to considerable variation in vaccine efficacy. India, with 193.46 million cattle population distributed in 28 states and 9 union territories, is suffering from multiple tick infestation dominated by R. microplus. As R. microplus has developed multi-acaricide resistance, an efficacious vaccine may provide a sustainable intervention for tick control. Preliminary experiments revealed that the presently available commercial vaccine based on the BM86 gene is not efficacious against Indian strain. In concert with the principle of reverse vaccinology, genetic polymorphism of the Bm86 gene within Indian isolates of R. microplus was studied. A 578 bp conserved nucleotide sequences of Bm86 from 65 R. microplus isolates collected from 9 Indian states was sequenced and revealed 95.6-99.8% and 93.2-99.5% identity in nucleotides and amino acids sequences, respectively. The identities of nucleotides and deduced amino acids were 94.7-99.8% and 91.8-99.5%, respectively, between full-length sequence (orf) of the Bm86 gene of IVRI-I strain and published sequences of vaccine strains. Six nucleotides deletion were observed in Indian Bm86 sequences. Four B-cell epitopes (D519-K554, H563-Q587, C598-T606, T609-K623), which are present in the conserved region of the IVRI-I Bm86 sequence, were selected. The results confirm that the use of available commercial Bm86 vaccines is not a suitable option against Indian isolates of R. microplus. A country-specific multi-epitope Bm86 vaccine consisting of four specific B-cell epitopes along with candidate molecules, subolesin and tropomyosin in chimeric/co-immunization format may provide a sustainable option for implementation in an integrated tick management system.
Collapse
|
21
|
Yan X, Han W, Liu X, Suo X. Exogenous nitric oxide stimulates early egress of Eimeria tenella sporozoites from primary chicken kidney cells in vitro. Parasite 2021; 28:11. [PMID: 33576739 PMCID: PMC7880050 DOI: 10.1051/parasite/2021007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/24/2021] [Indexed: 11/21/2022] Open
Abstract
Egress plays a vital role in the life cycle of apicomplexan parasites including Eimeria tenella, which has been attracting attention from various research groups. Many recent studies have focused on early egress induced by immune molecules to develop a new method of apicomplexan parasite elimination. In this study, we investigated whether nitric oxide (NO), an immune molecule produced by different types of cells in response to cytokine stimulation, could induce early egress of eimerian sporozoites in vitro. Eimeria tenella sporozoites were extracted and cultured in primary chicken kidney cells. The number of sporozoites egressed from infected cells was analyzed by flow cytometry after treatment with NO released by sodium nitroferricyanide (II) dihydrate. The results showed that exogenous NO stimulated the rapid egress of E. tenella sporozoites from primary chicken kidney cells before replication of the parasite. We also found that egress was dependent on intra-parasitic calcium ion (Ca2+) levels and no damage occurred to host cells after egress. The virulence of egressed sporozoites was significantly lower than that of fresh sporozoites. The results of this study contribute to a novel field examining the interactions between apicomplexan parasites and their host cells, as well as that of the clearance of intracellular pathogens by the host immune system.
Collapse
Affiliation(s)
- Xinlei Yan
-
Food Science and Engineering College of Inner Mongolia Agricultural University Hohhot 010018 China
| | - Wenying Han
-
Food Science and Engineering College of Inner Mongolia Agricultural University Hohhot 010018 China
| | - Xianyong Liu
-
State Key Laboratory of Agrobiotechnology, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing 100193 China
| | - Xun Suo
-
State Key Laboratory of Agrobiotechnology, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing 100193 China
| |
Collapse
|
22
|
Prevalence of Eimeria parasites in the Hubei and Henan provinces of China. Parasitol Res 2021; 120:655-663. [PMID: 33409626 DOI: 10.1007/s00436-020-07010-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Coccidiosis is an intestinal parasitic disease that causes huge economic losses in the poultry industry globally. Henan and Hubei, as important poultry production provinces in China, have great pressure for the prevention and control of chicken coccidiosis. In order to obtain information on the local prevalence of Eimeria species, we used an internal transcribed spacer 1 (ITS1) sequence of ribosomal DNA to identify the species from 318 fresh fecal samples. The fecal samples and the data relating to farm information were collected from 137 farms in Hubei and Henan provinces. As shown by genus-specific PCR results, the positivity rate of Eimeria was 97.17% (309/318), and the most common species were Eimeria mitis (66.67%), E. tenella (46.86%), and E. necatrix (41.51%). Then, we analyzed the correlation between the background information of each sample and the PCR identification results, which showed that indigenous farms in Henan province were at the greatest risk of harboring highly pathogenic Eimeria species and a larger proportion of such farms were positive for E. necatrix, the most pathogenic species. The results of this study showed that chicken coccidia was widespread, which provides important insights into the control of chicken coccidiosis in this region.
Collapse
|
23
|
Martorelli Di Genova B, Knoll LJ. Comparisons of the Sexual Cycles for the Coccidian Parasites Eimeria and Toxoplasma. Front Cell Infect Microbiol 2020; 10:604897. [PMID: 33381466 PMCID: PMC7768002 DOI: 10.3389/fcimb.2020.604897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii and Eimeria spp. are widely prevalent Coccidian parasites that undergo sexual reproduction during their life cycle. T. gondii can infect any warm-blooded animal in its asexual cycle; however, its sexual cycle is restricted to felines. Eimeria spp. are usually restricted to one host species, and their whole life cycle is completed within this same host. The literature reviewed in this article comprises the recent findings regarding the unique biology of the sexual development of T. gondii and Eimeria spp. The molecular basis of sex in these pathogens has been significantly unraveled by new findings in parasite differentiation along with transcriptional analysis of T. gondii and Eimeria spp. pre-sexual and sexual stages. Focusing on the metabolic networks, analysis of these transcriptome datasets shows enrichment for several different metabolic pathways. Transcripts for glycolysis enzymes are consistently more abundant in T. gondii cat infection stages than the asexual tachyzoite stage and Eimeria spp. merozoite and gamete stages compared to sporozoites. Recent breakthroughs in host-pathogen interaction and host restriction have significantly expanded the understating of the unique biology of these pathogens. This review aims to critically explore advances in the sexual cycle of Coccidia parasites with the ultimate goal of comparing and analyzing the sexual cycle of Eimeria spp. and T. gondii.
Collapse
Affiliation(s)
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Song X, Yang X, Zhang T, Liu J, Liu Q. Evaluation of 4 merozoite antigens as candidate vaccines against Eimeria tenella infection. Poult Sci 2020; 100:100888. [PMID: 33516468 PMCID: PMC7936139 DOI: 10.1016/j.psj.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 01/24/2023] Open
Abstract
Coccidiosis, caused by parasites of the genus Eimeria, is one of the most widespread and economically detrimental diseases in the global poultry industry. Because the merozoite stage of Eimeria tenella is immunologically vulnerable, motile, and functionally important for the parasites, the proteins expressed in these stages are considered to be potentially immunoprotective antigens, especially the secreted antigens and surface antigens. Here, we detected a previously unidentified MIC2-associated protein (Et-M2AP) from E. tenella and determined its localization. An immunofluorescence assay revealed that Et-M2AP was distributed in the apical part of second generation merozoites and sporozoites. In addition, an expression profile analysis revealed that the transcriptional level of Et-M2AP is significantly higher in the merozoite stage. To assess the potential of Et-M2AP protein as a coccidiosis vaccine, we expressed recombinant Et-M2AP (rEt-M2AP) and compared the immune protective efficacy of rEt-M2AP with 3 surface antigens that are highly expressed by merozoites (rEt-SAG23, rEt-SAG16, and rEt-SAG2 proteins). The immune protective efficacy of these vaccine candidates was assessed based on survival rate, lesion score, BW gain, relative BW gain, and oocyst output. The results show that the survival rate was 90%, which are significantly higher than those in the challenge control group. The BW gain rate was 42% (P < 0.001) in rEt-M2AP-immunized chickens, which are significantly higher than those in the challenge control group and rEt-SAG23, rEt-SAG16, and rEt-SAG2 proteins-immunized chickens. In addition, chickens immunized with rEt-M2AP (88% oocyst output decrease rate, P < 0.001) had the least oocyst output, compared with those immunized with rEt-SAG16 (59.2% oocyst output decrease rate, P < 0.001), rEt-SAG23 (22% oocyst output decrease rate), and rEt-SAG2 (1.36% oocyst output decrease rate). These results demonstrate that rEt-M2AP provided effective protection against challenge with E. tenella, suggesting that rEt-M2AP is a promising candidate antigen gene for development as a coccidiosis vaccine.
Collapse
Affiliation(s)
- Xingju Song
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xu Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Taotao Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
25
|
Lakho SA, Haseeb M, Huang J, Yang Z, Hasan MW, Aleem MT, Naqvi MAUH, Memon MA, Song X, Yan R, Xu L, Li X. Glyceraldehyde-3-phosphate dehydrogenase from Eimeria acervulina modulates the functions of chicken dendritic cells to boost Th1 type immune response and stimulates autologous CD4 + T cells differentiation in-vitro. Vet Res 2020; 51:138. [PMID: 33203464 PMCID: PMC7672913 DOI: 10.1186/s13567-020-00864-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/26/2020] [Indexed: 12/02/2022] Open
Abstract
Dendritic cells (DCs) play a pivotal role to amplify antigen-specific immune responses. Antigens that sensitize T cells via antigen-presentation by DCs could enhance the capacity of host immunity to fight infections. In this study, we tested the immunogenic profiles of chicken DCs towards Glyceraldehyde-3-phosphate dehydrogenase from Eimeria acervulina (EaGAPDH). Immunoblot analysis showed that recombinant EaGAPDH (rEaGAPDH) protein was successfully recognized by rat sera generated against rEaGAPDH. Interaction and internalisation of rEaGAPDH by chicken splenic-derived DCs (chSPDCs) was confirmed by immunofluorescence analysis. Flow cytometry revealed that chSPDCs upregulated MHCII, CD1.1, CD11c, CD80, and CD86 cell-surface markers. Moreover, mRNA expressions of DC maturation biomarkers (CCL5, CCR7, and CD83) and TLR signalling genes (TLR15 and MyD88) were also upregulated whereas those of Wnt signalling were non-significant compared to negative controls. rEaGAPDH treatment induced IL-12 and IFN-γ secretion in chSPDCs but had no effect on IL-10 and TGF-β. Likewise, DC-T cell co-culture promoted IFN-γ secretion and the level of IL-4 was unaffected. Proliferation of T cells and their differentiation into CD3+/CD4+ T cells were triggered in chSPDCs-T cells co-culture system. Taken together, rEaGAPDH could promote Th1 polarization by activating both host DCs and T cells and sheds new light on the role of this important molecule which might contribute to the development of new DCs-based immunotherapeutic strategies against coccidiosis.
Collapse
Affiliation(s)
- Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Zhang Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Mtshali SA, Adeleke MA. A review of adaptive immune responses to Eimeria tenella and Eimeria maxima challenge in chickens. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1833693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. A. Mtshali
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - M. A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| |
Collapse
|
27
|
Qi N, Liao S, Mohiuddin M, Abuzeid AMI, Li J, Wu C, Lv M, Lin X, Hu J, Cai H, Yu L, Xiao W, Sun M, Li G. Autophagy induced by monensin serves as a mechanism for programmed death in Eimeria tenella. Vet Parasitol 2020; 287:109181. [PMID: 33161364 DOI: 10.1016/j.vetpar.2020.109181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/28/2022]
Abstract
Monensin (Mon), the first ionophoric antibiotic has widely been used for the treatment and prevention of coccidiosis in poultry until recently, however, at present; its efficacy has been compromised with the emergence of many Mon-resistant strains. Knowledge of the mode of the action of anti-parasitic agents is as important as for other antimicrobials, especially for discovery and long term use of the existing drugs. However, little is known about anti-parasitic drug: monensin's, mechanism of action and physiological alteration in Eimeria tenella. In this study, we explored Mon effects on the viability of Mon-Sensitive GZ (MonS-GZ) and Mon-Resistant GZ (MonR-GZ) Eimeria tenella strains using trypan blue staining and investigated Mon-induced autophagy using Western blotting, indirect immunofluorescence assay, and transmission electron microscopy. The results showed that monensin leads to programmed death of E. tenella parasites by inducing autophagy as a mechanism of anticoccidial action. Mon-induced autophagy was indicated by the decreased sporozoites survival rate, ATG8 over expression and localization, and intracellular vacuolar structures and autophagosomes formation in MonS-GZ strain while in MonR-GZ strains autophagy pathway was not triggered. The autophagy inhibitor 3-methyladenine (3-MA) effectively blocked programmed cell death and saved the MonS-GZ sporozoites. These findings indicated that autophagy serves as a potentially important mechanism of E. tenella cell death in response to Mon and disruption of the autophagy pathway may lead to emergence of drug resistance against this anti-parasitic drug.
Collapse
Affiliation(s)
- Nanshan Qi
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Shenquan Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Mudassar Mohiuddin
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Asmaa M I Abuzeid
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Juan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Caiyan Wu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Minna Lv
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Xuhui Lin
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Junjing Hu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Haiming Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Linzeng Yu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Wenwan Xiao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China
| | - Mingfei Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China. Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture, PR China.
| | - Guoqing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
28
|
Yang Y, Yu SM, Chen K, Hide G, Lun ZR, Lai DH. Temperature is a key factor influencing the invasion and proliferation of Toxoplasma gondii in fish cells. Exp Parasitol 2020; 217:107966. [PMID: 32781094 DOI: 10.1016/j.exppara.2020.107966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Toxoplasma gondii has long been considered a ubiquitous parasite possessing the capacity of infecting virtually all warm-blooded animals globally. Occasionally, this parasite can also infect cold-blooded animals such as fish if their body temperature reaches 37 °C. However, we are currently lacking an understanding of key details such as the minimum temperature required for T. gondii invasion and proliferation in these cold-blooded animals and their cells. Here, we performed in vitro T. gondii infection experiments with rat embryo fibroblasts (REF cells), grouper (Epinephelus coioides) splenocytes (GS cells) and zebra fish (Danio rerio) hepatocytes (ZFL cells), at 27 °C, 30 °C, 32 °C, 35 °C and 37 °C, respectively. We found that T. gondii tachyzoites could penetrate REF, GS nd ZFL cells at 27 °C but clear inhibition of multiplication was observed. Intriguingly, the intracellular tachyzoites retained the ability to infect mice after 12 days of incubation in GS cells cultured at 27 °C as demonstrated by bioassay. At 30 °C, 32 °C and 35 °C, we observed that the mammalian cells (REF cells) and fish cells (GS and ZFL cells) could support T. gondii invasion and replication, which showed a temperature-dependent relationship in infection and proliferation rates. Our data demonstrated that the minimum temperature for T. gondii invasion and replication was 27 °C and 30 °C respectively, which indicated that temperature should be a key factor for T. gondii invasion and proliferation in host cells. This suggests that temperature-dependent infection determines the differences in the capability of T. gondii to infect cold- and warm-blooded vertebrates.
Collapse
Affiliation(s)
- Yun Yang
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shao-Meng Yu
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ke Chen
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Geoff Hide
- Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Zhao-Rong Lun
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK.
| | - De-Hua Lai
- Center for Parasitic Organisms and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
29
|
Li W, Wang M, Chen Y, Chen C, Liu X, Sun X, Jing C, Xu L, Yan R, Li X, Song X. EtMIC3 and its receptors BAG1 and ENDOUL are essential for site-specific invasion of Eimeria tenella in chickens. Vet Res 2020; 51:90. [PMID: 32678057 PMCID: PMC7367391 DOI: 10.1186/s13567-020-00809-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Avian coccidian parasites exhibit a high degree of site specificity in different Eimeria species. Although the underlying mechanism is unclear, an increasing body of evidence suggests that site specificity is due to the interaction between microneme proteins (MICs) and their receptors on the surface of target host cells. In this study, the binding ability of E. tenella MICs (EtMICs) to different intestinal tissue was observed by immunofluorescence to identify the key surface molecule on the parasite responsible for the site specificity. Subsequently, we identified the corresponding host-cell receptors by yeast two-hybrid screening and glutathione-S-transferase pull-down experiments and the distribution of these receptors was observed by immunofluorescence in chicken intestinal tissues. Finally, we evaluated the efficacy of receptor antiserum against the infection of E. tenella in chickens. The results showed that EtMIC3 could only bind to the caecum while EtMIC1, EtMIC2, and EtAMA1 did not bind to any other intestinal tissues. Anti-serum to EtMIC3 was able to block the invasion of sporozoites with a blocking rate of 66.3%. The receptors for EtMIC3 were BCL2-associated athanogene 1 (BAG1) and Endonuclease polyU-specific-like (ENDOUL), which were mainly distributed in the caecum. BAG1 and ENDOUL receptor antiserum reduced weight loss and oocyst output following E. tenella infection, showing partial inhibition of E. tenella infection. These data elucidate the mechanism of site specificity for Eimeria infection and reveal a potential therapeutic avenue.
Collapse
Affiliation(s)
- Wenyu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yufeng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chen Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaoqian Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaoting Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chuanxu Jing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
30
|
Diagnosis of sub-clinical coccidiosis in fast growing broiler chickens by MicroRNA profiling. Genomics 2020; 112:3218-3225. [PMID: 32198064 DOI: 10.1016/j.ygeno.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022]
Abstract
Coccidiosis in broiler chickens, caused by infection with Eimeria spp. remains one of the most economically important production diseases. Development of a genetic biomarker panel of sub-clinical infection would be an important biological tool for the management of broiler flocks. We analysed expression of MicroRNAs (miRNAs) to determine the potential for these in diagnosing coccidiosis in broiler flocks. miRNA expression, in the ilea of Ross 308 broilers, was compared between chickens naturally clinically or sub-clinically infected with Eimeria maxima and Eimeria acervulina using NextSeq 500 sequencing. 50 miRNAs with greatest coefficient of variance were determined and principal component analysis showed that these miRNAs clustered within the clinical and sub-clinical groups much more closely than uninfected controls. Following false detection rate analysis and quantitative PCR we validated 3 miRNAs; Gallus gallus (gga)-miR-122-5p, gga-miR-205b and gga-miR-144-3p, which may be used to diagnose sub-clinical coccidiosis.
Collapse
|
31
|
Lakho SA, Haseeb M, Huang J, Hasan MW, Naqvi MAUH, Zhou Z, Song X, Yan R, Xu L, Li X. Recombinant ubiquitin-conjugating enzyme of Eimeria maxima induces immunogenic maturation in chicken splenic-derived dendritic cells and drives Th1 polarization in-vitro. Microb Pathog 2020; 143:104162. [PMID: 32194180 DOI: 10.1016/j.micpath.2020.104162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
Dendritic cells (DCs) are key linkages between innate immunity and acquired immunity. The antigens that promote the functions of DCs might be the effective candidates of novel vaccine. In this research, the ability of ubiquitin-conjugating enzyme (UCE), a recognized common antigens among chicken Eimeria species, to stimulate DCs of chickens were evaluated. We cloned UCE gene from Eimeria maxima (EmUCE), and its protein expression was confirmed by SDS-PAGE and western-blot. Immunofluorescence assay confirmed the binding of rEmUCE on the surface of chicken splenic-derived DCs (ChSP-DCs). Flow cytometric analysis showed that rEmUCE-treated ChSP-DCs increased MHCII, CD1.1, CD11c, CD80, and CD86 phenotypes. qRT-PCR indicated that transcript levels of maturation markers CCL5, CCR7, and CD83 in ChSP-DCs were upregulated in response to rEmUCE. Following rEmUCE treatment, chSP-DCs activated TLR signaling and inhibited Wnt signaling. Moreover, rEmUCE promoted DC-mediated T-cell proliferation in DC/T-cell co-incubation. Interestingly, CD3+/CD4+ T-cells were significantly enhanced when rEmUCE-treated chSP-DCs were co-incubated with T-cells. Cytokine secretion pattern of rEmUCE-stimulated ChSP-DCs revealed that the production of IL-12 and IFN-γ was increased whereas IL-10 and TGF-β were unchanged. Likewise, the co-incubation of ChSP-DCs with T-cells indicated increased production of IFN-γ but not IL-4. Collectively, rEmUCE could polarize DCs to immunogenic phenotype and shift the immune cells towards Th1 response. Our observations provide valuable insight for future research aimed at vaccine development against avian coccidiosis.
Collapse
Affiliation(s)
- Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Zhouyang Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
32
|
Abstract
Coccidiosis is an antagonistic poultry disease which negatively impacts animal welfare and productivity. The disease is caused by an obligate, intracellular protozoon known as Eimeria. Several Eimeria species known to infect chickens have been well documented. However, recent studies have elucidated the emergence of three novel genetic variants or operational taxonomic units (OTUs). The discovery of OTUx, OTUy and OTUz complicates the identification and diagnosis of coccidiosis. OTUs are clusters of unknown or uncultivated organisms that are grouped according to a similarity in DNA sequence to a set of specific gene markers. OTUs have been reported in the Earth's Southern Hemisphere, including Australia, Venezuela, India, Zambia, Uganda, Tanzania, China and Ghana. Elucidating their impact on the poultry industry is fundamental in preventing anticoccidial resistance and to access the potential of OTUs as vaccine candidates to provide cross-protection against similar Eimeria species. The identification of OTUs further decreases the risk of false negative coccidial diagnosis. Therefore, this article reviews the importance and risk imposed by OTUs, coupled with their prevalence and geographical distribution in chickens globally.
Collapse
|
33
|
Venkatas J, Adeleke MA. A review of Eimeria antigen identification for the development of novel anticoccidial vaccines. Parasitol Res 2019; 118:1701-1710. [PMID: 31065831 DOI: 10.1007/s00436-019-06338-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
Coccidiosis is a major poultry disease which compromises animal welfare and costs the global chicken industry a huge economic loss. As a result, research entailing coccidial control measures is crucial. Coccidiosis is caused by Eimeria parasites that are highly immunogenic. Consequently, a low dosage of the Eimeria parasite supplied by a vaccine will enable the host organism to develop an innate immune response towards the pathogen. The production of traditional live anticoccidial vaccines is limited by their low reproductive index and high production costs, among other factors. Recombinant vaccines overcome these limitations by eliciting undesired contaminants and prevent the reversal of toxoids back to their original toxigenic form. Recombinant vaccines are produced using defined Eimeria antigens and harmless adjuvants. Thus, studies regarding the identification of potent novel Eimeria antigens which stimulate both cell-mediated and humoral immune responses in chickens are essential. Although the prevalence and risk posed by Eimeria have been well established, there is a dearth of information on genetic and antigenic diversity within the field. Therefore, this paper discusses the potential and efficiency of recombinant vaccines as an anticoccidial control measure. Novel protective Eimeria antigens and their antigenic diversity for the production of cheap, easily accessible recombinant vaccines are also reviewed.
Collapse
Affiliation(s)
- J Venkatas
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - M A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.
| |
Collapse
|
34
|
Joachim A, Ruttkowski B, Palmieri N. Microsatellite Analysis of Geographically Close Isolates of Cystoisospora suis. Front Vet Sci 2019; 6:96. [PMID: 31001546 PMCID: PMC6454066 DOI: 10.3389/fvets.2019.00096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are short repetitive DNA sequences of 2–6 repeats interspersed in the genome that display a rapid mutation rate and consequently show high variation between individuals or populations. They have been used to characterize population diversity and structure and the level of variation between different isolates of a number of different organisms, including apicomplexan protozoa. Currently nothing is known about the genetic variability and population structure of Cystoisospora suis (Apicomplexa: Coccidia), the causative agent of piglet coccidiosis, and we made use of the recently available genome of C. suis (strain Wien-I) to amplify microsatellite regions (ca. 300–550 bp) and evaluate the applicability of fluorescence-labeled primers to investigate amplicon length variation at high resolution using capillary electrophoresis (CE). Two phenotypically characterized isolates (Wien-I, toltrazuril susceptible; Holl 1 toltrazuril resistant) and six field isolates from Europe were compared by conventional PCR followed by agar-gel electrophoresis, Sanger sequencing, and CE (fluorescence labeling and fragment length analysis) to evaluate the applicability of the method. Four primer pairs could be identified that amplified bands of the expected size and were labeled for CE analysis. High resolution CE for size determination of PCR amplicons proved to be a reliable and simple method. It revealed high diversity of the analyzed strains, with marked differences even between two strains from neighboring swine farms. In follow-up studies, adaptation of the PCR assay to multiplexing and amplification of small DNA quantities will provide a cost-effective tool to analyse field strains to reveal geographic diversity that could be mapped to phenotypic traits.
Collapse
Affiliation(s)
- Anja Joachim
- Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nicola Palmieri
- Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
35
|
Impact of Eimeria tenella Coinfection on Campylobacter jejuni Colonization of the Chicken. Infect Immun 2019; 87:IAI.00772-18. [PMID: 30510107 DOI: 10.1128/iai.00772-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Eimeria tenella can cause the disease coccidiosis in chickens. The direct and often detrimental impact of this parasite on chicken health, welfare, and productivity is well recognized; however, less is known about the secondary effects that infection may have on other gut pathogens. Campylobacter jejuni is the leading cause of human bacterial foodborne disease in many countries and has been demonstrated to exert negative effects on poultry welfare and production in some broiler lines. Previous studies have shown that concurrent Eimeria infection can influence the colonization and replication of bacteria, such as Clostridium perfringens and Salmonella enterica serovar Typhimurium. Through a series of in vivo coinfection experiments, this study evaluated the impact that E. tenella infection had on C. jejuni colonization of chickens, including the influence of variations in parasite dose and sampling time after bacterial challenge. Coinfection with E. tenella resulted in a significant increase in C. jejuni colonization in the cecum in a parasite dose-dependent manner but a significant decrease in C. jejuni colonization in the spleen and liver of chickens. The results were reproducible at 3 and 10 days after bacterial infection. This work highlights that E. tenella not only has a direct impact on the health and well-being of chickens but can have secondary effects on important zoonotic pathogens.
Collapse
|
36
|
Differential gene response to coccidiosis in modern fast growing and slow growing broiler genotypes. Vet Parasitol 2018; 268:1-8. [PMID: 30981300 DOI: 10.1016/j.vetpar.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 01/04/2023]
Abstract
We analysed intestinal tissues from groups of fast growing (Ross 308) broilers with natural or experimental coccidiosis, by genomic microarray. We identified genes that were differentially expressed (DE) in all groups and analysed expression of a panel of these, by qPCR, in Ross 308 and slow growing (Ranger classic) broilers, infected with 2500 or 7000 oocysts of Eimeria maxima for 6 or 13 days post-infection (dpi). Four genes (ADD3, MLLT10, NAV2 and PLXNA2) were upregulated (P <0.05) in Ross 308 but were not DE in Ranger Classic at 6 dpi with 2500 oocysts. Six genes (PTPRF, NCOR1, CSF3, SGK1, CROR and CD1B) were upregulated (P <0.05) in both Ross 308 and Ranger Classic infected with 2500 oocysts at 6 dpi but were not DE at 6 dpi with 7000 oocysts. At 13 dpi with 7000 oocysts, NAV2 and NCOR1 were upregulated in Ross 308 (P <0.05) and PTPRF was upregulated in both genotypes (P <0.05). DE of immune genes within the biomarker panel also occurred, with CSF3 upregulated in both genotypes infected with 2500 oocysts at 6 dpi and in Ranger Classic infected with 7000 oocysts, at 6 and 13 dpi (P <0.05). IL-22 was down-regulated in Ranger Classic infected with 2500 or 7000 oocysts at 6 dpi (P <0.05) but upregulated in both genotypes at 13 dpi (P <0.05). CD72 was down-regulated in Ranger Classic infected with 2500 oocysts at 6 dpi and with 7000 oocysts at 6 and 13 dpi (P <0.05). CD72 was upregulated in Ross 308 infected with 2500 oocysts at 6 dpi but was down-regulated following infection with 7000 oocysts at 13 dpi (P <0.05). In conclusion, differential gene expression occurs in fast and slow growing broiler genotypes with coccidiosis. In addition, we highlight a potential genetic biomarker panel for early diagnosis of coccidiosis.
Collapse
|
37
|
Molecular analysis of cox-1 and 18S rRNA gene fragments of Eimeria species isolated from endangered grouse: capercaillie (Tetrao urogallus) and black grouse (Tetrao tetrix). Parasitol Res 2018; 118:461-468. [PMID: 30565196 PMCID: PMC6349799 DOI: 10.1007/s00436-018-6171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/03/2018] [Indexed: 11/02/2022]
Abstract
This paper is the first record describing the molecular analysis of Eimeria species occurring in capercaillie (Tetrao urogallus) and black grouse (Tetrao tetrix) which inhabit northern Eurasia and are species critically endangered of extinction. Actions undertaken to protect endangered species, such as breeding individuals in closed aviaries, could allow saving those birds, but they also pose risk of accidental healing of invasive diseases, like coccidiosis. Therefore, an investigation was conducted on fecal samples collected from the capercaillies and black grouse originating from the Kirov region (Russia) and breeding centers located in Poland. Results indicate that the average prevalence of Eimeria revealed 72% (average OPG = 3548) and 80% (average OPG = 5220) in capercaillies and black grouse respectively. Most of the Eimeria spp. oocysts were non-sporulated; however, two different morphological types were observed. The phylogenetic analysis of cox-1 and 18S rRNA genes revealed the analyzed Eimeria sequences to belong to two species. In addition, it showed some similarities between both analyzed genes. Most of the sequences obtained from both grouse species coccidia belonged to one species partially homologous to the Eimeria spp. isolated from ring-necked pheasant (approx. 94 and 96% for cox-1 and 18S rRNA genes, respectively). Two strains isolated from capercaillies imported from Russia were related to turkey coccidia: E. innocua and E. dispersa (97-99% homology) in the cox-1 gene analysis and only one of them was related to those Eimeria species in the 18S rRNA gene analysis (98-99% homology).
Collapse
|
38
|
Comparative transcriptome analysis of Eimeria maxima (Apicomplexa: Eimeriidae) suggests DNA replication activities correlating with its fecundity. BMC Genomics 2018; 19:699. [PMID: 30249186 PMCID: PMC6154952 DOI: 10.1186/s12864-018-5090-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Chicken coccidiosis, caused by the infection of Eimeria species, leads to important economic losses to the poultry industry. Vaccination with attenuated live parasites seems to be the best way to control this disease. Attenuated eimerian parasites with shortened prepatent times show great changes in intracellular development compared to their parent strains but the mechanisms involved in these biological differences are still unclear. Results In this study, we obtained a precocious line of E. maxima by sequential selection of 22 generations of early shed oocysts in chickens and performed a comparative transcriptome analysis of three different developmental stages of the precocious line and its parent strain using Illumina high-throughput sequencing. Our E. maxima precocious line showed decreased pathogenicity, reduced fecundity and a greatly shorted prepatent time of only 98 h. We found that typical gene changes in the stage development from unsporulated to sporulated oocyst and from sporulated oocyst to merozoite were marked by upregulated organelle genes and protein translation related genes, respectively. Additionally, major differences between the precocious line and its parent strain were detected in the merozoite stage, characterized by downregulated genes involved in protein cleavage and DNA replication activities. Conclusions Our study generated and characterized an E. maxima precocious line, illustrating gene expression landscapes during parasite development by transcriptome analysis. We also show that the suppressed DNA replication progress in the merozoite stage in the precocious line may result in its reduced fecundity. These results provide the basis for a better understanding of the mechanism of precocity in Eimeria species, which can be useful in studies in early gametocytogenesis in apicomplexan parasites. Electronic supplementary material The online version of this article (10.1186/s12864-018-5090-2) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Huang X, Liu J, Tian D, Li W, Zhou Z, Huang J, Song X, Xu L, Yan R, Li X. The molecular characterization and protective efficacy of microneme 3 of Eimeria mitis in chickens. Vet Parasitol 2018; 258:114-123. [PMID: 30105971 DOI: 10.1016/j.vetpar.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/21/2018] [Accepted: 06/24/2018] [Indexed: 02/01/2023]
Abstract
E. mitis is ubiquitous in clinical coccidiosis caused by mixed infection of Eimeria species and the infection by E. mitis usually significantly impairs productivity of the infected chickens. To date, however, few protective antigens from E. mitis have been reported. In this study, the molecular characterization and protective efficacy of microneme 3 of Eimeria mitis (EmiMIC3) were analyzed. EmiMIC3 gene was cloned from sporozoites of E. mitis and its MARs (microneme adhesive repeats domain) were predicted. Recombinant EmiMIC3 (rEmiMIC3) was expressed in E. coli and purified and then was analyzed by western blot with anti-E. mitis chicken serum. Meanwhile, native EmiMIC3 from sporozoites was analyzed by anti-rEmiMIC3 rat serum. The expressions of EmiMIC3 in E. mitis sporozoites and merozoites were analyzed by immunofluorescence assay. The rEmiMIC3-induced changes of T lymphocytes subpopulation, serum cytokines and IgY levels and the protective efficacy of rEmiMIC3 were determined in animal experiments. The results showed that the deduced open reading frame (ORF) of EmiMIC3 was composed of 1145 amino acids, possessing 9 MARs. EmiMIC3 gene was submitted to GenBank (accession number: MG888670). EmiMIC3 could express in sporozoites and merozoites respectively and located at the apex of E. mitis sporozoite. Western blot assay revealed that the rEmiMIC3 could be recognized by serum of chicken infected by E. mitis and the native EmiMIC3 from sporozoites could also be recognized by rat serum against rEmiMIC3. Following vaccination with rEmiMIC3, higher levels of IL-10, IFN-γ, TGF-βand IL-17, higher proportions of CD4+/CD3+ and CD8+/CD3 + T lymphocytes and higher level of IgY antibody were induced compared to the controls. Vaccination with rEmiMIC3 prominently increased the weight gains and decreased oocyst output of the vaccinated chickens after challenge infection. Our result not only enriches protective candidate antigen of E. mitis, but also provides available protective antigen of E. mitis for the development of multivalent vaccines against infection caused by mixture of Eimeria species in clinical coccidiosis.
Collapse
Affiliation(s)
- Xinmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing 210014, PR China
| | - Jianhua Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenyu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhouyang Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
40
|
Sharma D, Singh NK, Singh H, Joachim A, Rath SS, Blake DP. Discrimination, molecular characterisation and phylogenetic comparison of porcine Eimeria spp. in India. Vet Parasitol 2018; 255:43-48. [DOI: 10.1016/j.vetpar.2018.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/26/2022]
|
41
|
Liu L, Huang X, Liu J, Li W, Ji Y, Tian D, Tian L, Yang X, Xu L, Yan R, Li X, Song X. Identification of common immunodominant antigens of Eimeria tenella, Eimeria acervulina and Eimeria maxima by immunoproteomic analysis. Oncotarget 2018; 8:34935-34945. [PMID: 28432276 PMCID: PMC5471023 DOI: 10.18632/oncotarget.16824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
Clinical chicken coccidiosis is mostly caused by simultaneous infection of several Eimeria species, and host immunity against Eimeria is species-specific. It is urgent to identify common immunodominant antigen of Eimeria for developing multivalent anticoccidial vaccines. In this study, sporozoite proteins of Eimeria tenella, Eimeria acervulina and Eimeria maxima were analyzed by two-dimensional electrophoresis (2DE). Western bot analysis was performed on the yielded 2DE gel using antisera of E. tenella E. acervulina and E. maxima respectively. Next, the detected immunodominant spots were identified by comparing the data from MALDI-TOF-MS/MS with available databases. Finally, Eimeria common antigens were identified by comparing amino acid sequence between the three Eimeria species. The results showed that analysis by 2DE of sporozoite proteins detected 629, 626 and 632 protein spots from E. tenella, E. acervulina and E. maxima respectively. Western bot analysis revealed 50 (E. tenella), 64 (E. acervulina) and 57 (E. maxima) immunodominant spots from the sporozoite 2DE gels of the three Eimeria species. The immunodominant spots were identified as 33, 27 and 25 immunodominant antigens of E. tenella, E. acervulina and E. maxima respectively. Fifty-four immunodominant proteins were identified as 18 ortholog proteins among the three Eimeria species. Finally, 5 of the 18 ortholog proteins were identified as common immunodominant antigens including elongation factor 2 (EF-2), 14-3-3 protein, ubiquitin-conjugating enzyme domain-containing protein (UCE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In conclusion, our results not only provide Eimeria sporozoite immunodominant antigen map and additional immunodominant antigens, but also common immunodominant antigens for developing multivalent anticoccidial vaccines.
Collapse
Affiliation(s)
- Lianrui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinmei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, China
| | - Jianhua Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihong Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinchao Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Liu T, Huang J, Ehsan M, Wang S, Fei H, Zhou Z, Song X, Yan R, Xu L, Li X. Protective immunity against Eimeria maxima induced by vaccines of Em14-3-3 antigen. Vet Parasitol 2018; 253:79-86. [PMID: 29605008 DOI: 10.1016/j.vetpar.2018.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
Abstract
Eimeria maxima 14-3-3 (Em14-3-3) open reading frame (ORF) which consisted of 861 bp encoding a protein of 286 amino acids was successfully amplified and sequenced. Subsequently, the Em14-3-3 ORF was subcloned into pET-32a (+) and pVAX1, respectively. RT-PCR and immunoblot analyses confirmed that the target gene was successfully transcribed and expressed in vivo. Immunofluorescence analysis showed that Em14-3-3 was expressed in both the sporozoites and merozoites. The animal experiments demonstrated that both rEm14-3-3 and pVAX1-14-3-3 could clearly alleviate jejunum lesions and body weight loss. The Em14-3-3 vaccines could increase oocyst decrease ratio, as well as produce an anticoccidial index of more than 165. The percentages of CD4+ in both the Em14-3-3 immunized groups were much higher, when compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). Similarly, the anti-Em14-3-3 antibody titers of both rEm14-3-3 and pVAX1-14-3-3 immunized groups showed higher levels compared with those of PBS, pET32a (+), and pVAX1 controls (P < 0.05). The IFN-γ and tumor growth factor-β (TGF-β) levels showed significant increments in the rEm14-3-3 and pVAX1-14-3-3 immunized groups, when compared with those in the negative controls (P < 0.05). These results demonstrated that Em14-3-3 could be used as a promising antigen candidate for developing vaccines against E. maxima.
Collapse
Affiliation(s)
- Tingqi Liu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Jingwei Huang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Hong Fei
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Zhouyang Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agriculture University, 1 Weigang, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
43
|
Pereira LM, de Luca G, Abichabki NDLM, Bronzon da Costa CM, Yatsuda AP. Synergic in vitro combinations of artemisinin, pyrimethamine and methylene blue against Neospora caninum. Vet Parasitol 2017; 249:92-97. [PMID: 29279093 DOI: 10.1016/j.vetpar.2017.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Neospora caninum is a member of Apicomplexa phylum, the causative agent of neosporosis. The neosporosis combat is not well established and several strategies related to vaccine, chemotherapy and immune modulation are under development. In this work, we evaluated the effects of artemisinin (Art), methylene blue (MB) and pyrimethamine (Pyr) alone or associated, on N. caninum proliferation and elimination using LacZ tagged tachyzoites. The reactive oxygen species (ROS) production after incubation with Art were also performed. Our results indicate that combinations of classical antimalarial drugs improve the parasite control, allowing the use of three drugs in a single dose. Additionally, artemisinin demonstrated distinct ROS production patterns in intra and extracellular N. caninum forms. The drug repurposing appears as a suitable approach, allowing a fast and safe method to evaluate old drugs but novel candidates against neosporosis.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriela de Luca
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Nathália de Lima Martins Abichabki
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Cássia Mariana Bronzon da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
44
|
Abbas A, Iqbal Z, Abbas RZ, Khan MK, Khan JA, Sindhu ZUD, Mahmood MS, Saleemi MK. In vivo anticoccidial effects of Beta vulgaris (sugar beet) in broiler chickens. Microb Pathog 2017; 111:139-144. [DOI: 10.1016/j.micpath.2017.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
45
|
Macdonald SE, Nolan MJ, Harman K, Boulton K, Hume DA, Tomley FM, Stabler RA, Blake DP. Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS One 2017; 12:e0184890. [PMID: 28934262 PMCID: PMC5608234 DOI: 10.1371/journal.pone.0184890] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
Eimeria species cause the intestinal disease coccidiosis, most notably in poultry. While the direct impact of coccidiosis on animal health and welfare is clear, its influence on the enteric microbiota and by-stander effects on chicken health and production remains largely unknown, with the possible exception of Clostridium perfringens (necrotic enteritis). This study evaluated the composition and structure of the caecal microbiome in the presence or absence of a defined Eimeria tenella challenge infection in Cobb500 broiler chickens using 16S rRNA amplicon sequencing. The severity of clinical coccidiosis in individual chickens was quantified by caecal lesion scoring and microbial changes associated with different lesion scores identified. Following E. tenella infection the diversity of taxa within the caecal microbiome remained largely stable. However, infection induced significant changes in the abundance of some microbial taxa. The greatest changes were detected in birds displaying severe caecal pathology; taxa belonging to the order Enterobacteriaceae were increased, while taxa from Bacillales and Lactobacillales were decreased with the changes correlated with lesion severity. Significantly different profiles were also detected in infected birds which remained asymptomatic (lesion score 0), with taxa belonging to the genera Bacteroides decreased and Lactobacillus increased. Many differential taxa from the order Clostridiales were identified, with some increasing and others decreasing in abundance in Eimeria-infected animals. The results support the view that caecal microbiome dysbiosis associated with Eimeria infection contributes to disease pathology, and could be a target for intervention to mitigate the impact of coccidiosis on poultry productivity and welfare. This work highlights that E. tenella infection has a significant impact on the abundance of some caecal bacteria with notable differences detected between lesion score categories emphasising the importance of accounting for differences in caecal lesions when investigating the relationship between E. tenella and the poultry intestinal microbiome.
Collapse
Affiliation(s)
- Sarah E. Macdonald
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
- * E-mail: (SEM); (DPB)
| | - Matthew J. Nolan
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Kimberley Harman
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Kay Boulton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Fiona M. Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
| | - Richard A. Stabler
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Damer P. Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, United Kingdom
- * E-mail: (SEM); (DPB)
| |
Collapse
|
46
|
Tan L, Li Y, Yang X, Ke Q, Lei W, Mughal MN, Fang R, Zhou Y, Shen B, Zhao J. Genetic diversity and drug sensitivity studies on Eimeria tenella field isolates from Hubei Province of China. Parasit Vectors 2017; 10:137. [PMID: 28274278 PMCID: PMC5343410 DOI: 10.1186/s13071-017-2067-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/27/2017] [Indexed: 11/28/2022] Open
Abstract
Background Avian coccidiosis is an intracellular intestinal parasitic disease, caused by intracellular intestinal parasites from the genus Eimeria, among which Eimeria tenella is one of the most pathogenic species and causes great economic losses. Frequent applications of anticoccidial drugs have resulted in the development of drug-resistance in E. tenella. In the present study, we sought to determine the genetic diversity of E. tenella isolates prevalent in chicken farms in Hubei Province of China and examine their sensitivity to three anticoccidial drugs. The results provide useful information for the prevention and control of coccidiosis in this region. Methods Eimeria tenella oocysts were isolated from faecal samples collected from different commercial broiler production farms in Hubei Province, China. After oocyst sporulation and animal inoculation for expansion of the field isolates, DNA and RNA were extracted from excysted sporozoites for molecular characterization. Species identification of field isolates were performed by polymerase chain reaction (PCR) amplification of the internal transcribed spacer 1 (ITS1) region of ribosomal DNA. Random amplified polymorphic DNA (RAPD) was used for population genetic analysis. Subsequently, sequences of the major sporozoite surface antigen (SAG), micronemal protein 2 (MIC-2) and cytochrome b (cytb) genes from genomic DNA, and the Eimeria tenella cation-transport ATPase (EtCat ATPase) gene from cDNA were obtained for genotyping using multi-sequence alignments. Finally, sensitivity of the field isolates to three commonly used anticoccidial drugs (diclazuril, decoquinate and maduramycin) were tested to assess the prevalence of drug resistance in E. tenella in Hubei Province of China. Results Analysis of the ITS1 sequences indicated that all the isolates were E. tenella. RAPD analysis and multi-sequence alignments of the SAG, MIC-2, EtCat ATPase and cytb showed genetic diversity among these isolates. Finally, drug sensitivity tests demonstrated that all field isolates were sensitive to diclazuril but resistant to decoquinate (except for the isolates from eastern Hubei) and maduramicin. Conclusions Population genetic analysis indicated that genetic polymorphisms among field isolates were closely related with their regional distributions. Drug sensitivity testing demonstrated that E. tenella isolates in Hubei Province were sensitive to diclazuril, but resistant to maduramycin and decoquinate. The results presented here provide important information for the control and preventions of coccidiosis in the Hubei Province of China. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2067-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yalin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Qiyun Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Mudassar Niaz Mughal
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|