1
|
Wu Z, Yuan J, Li K, Wang X, Zhang Z, Hong M. The Induction of Drug Uptake Transporter Organic Anion Transporting Polypeptide 1A2 by Radiation Is Mediated by the Nonreceptor Tyrosine Kinase v-YES-1 Yamaguchi Sarcoma Viral Oncogene Homolog 1. Drug Metab Dispos 2024; 52:1244-1252. [PMID: 39214663 DOI: 10.1124/dmd.124.001755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Organic anion transporting polypeptides (OATP, gene symbol SLCO) are well-recognized key determinants for the absorption, distribution, and excretion of a wide spectrum of endogenous and exogenous compounds including many antineoplastic agents. It was therefore proposed as a potential drug target for cancer therapy. In our previous study, it was found that low-dose X-ray and carbon ion irradiation both upregulated the expression of OATP family member OATP1A2 and in turn, led to a more dramatic killing effect when cancer cells were cotreated with antitumor drugs such as methotrexate. In the present study, the underlying mechanism of the phenomenon was explored in breast cancer cell line MCF-7. It was found that the nonreceptor tyrosine kinase v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) was temporally coordinated with the change of OATP1A2 after irradiation. The overexpression of YES-1 significantly increased OATP1A2 both at the mRNA and protein level. The signal transducer and activator of transcription 3 (STAT3) pathway is likely the downstream target of YES-1 because phosphorylation and nuclear accumulation of STAT3 were both enhanced after overexpressing YES-1 in MCF-7 cells. Further investigation revealed that there are two possible binding sites of STAT3 localized at the upstream sequence of SLCO1A2, the encoding gene of OATP1A2. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis suggested that these two sites bound to STAT3 specifically and the overexpression of YES-1 significantly increased the association of the transcription factor with the putative binding sites. Finally, inhibition or knockdown of YES-1 attenuated the induction effect of radiation on the expression of OATP1A2. SIGNIFICANCE STATEMENT: The present study found that the effect of X-rays on v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1 (YES-1) and organic anion transporting polypeptides (OATP)1A2 was temporally coordinated. YES-1 phosphorylates and increases the nuclear accumulation of signal transducer and activator of transcription 3, which in turn binds to the upstream regulatory sequences of SLCO1A2, the coding gene for OATP1A2. Hence, inhibitors of YES-1 may suppress the radiation induction effect on OATP1A2.
Collapse
Affiliation(s)
- Zicong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Jiajian Yuan
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Kui Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Ziqi Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China (Z.W., J.Y., K.L., X.W., Z.Z., M.H.); and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China(M.H.)
| |
Collapse
|
2
|
Abdel-Rafei MK, Thabet NM, Rashed LA, Moustafa EM. Canagliflozin, a SGLT-2 inhibitor, relieves ER stress, modulates autophagy and induces apoptosis in irradiated HepG2 cells: Signal transduction between PI3K/AKT/GSK-3β/mTOR and Wnt/β-catenin pathways; in vitro. J Cancer Res Ther 2021; 17:1404-1418. [PMID: 34916371 DOI: 10.4103/jcrt.jcrt_963_19] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background and Objectives Metabolic shifting from mitochondrial respiration to glycolysis characterizes malignant cells from its normal counterparts and is attributed to overactivation of oncogenic signaling pathways. Hence, this study intended to investigate the influence of canagliflozin (CAN) and/or γ-irradiation (γ-IR) on HepG2 cell proliferation, crosstalk between phosphatidylinositol 3-kinases (PI3K)/AKT/glycogen synthase kinase-3-β (GSK3-β)/mTOR and Wnt/β-catenin signaling pathways, and their regulation of diverse processes, such as endoplasmic reticulum (ER) stress, autophagy, and apoptosis. Materials and Methods HepG2 cells were treated with different doses of CAN and then exposed to different doses of γ-IR to achieve optimization that was based on cytotoxicity and clonogenic assays, respectively. The effects of CAN and/or γ-IR on glycolytic metabolism, cellular bioenergetics, oxidative stress, ER stress and autophagy biomarkers, expression of PI3K/AKT/GSK3-β/mTOR and Wnt/β-Catenin signaling pathways, and apoptotic markers were monitored. Results CAN enhanced the antitumor potential of γ-IR as displayed by a significant inhibition of clonogenic survival in HepG2 cells via inhibition of glucose uptake, lactate release, and modulation of ER stress-mediated autophagy; switched it to apoptosis; as well as disabled signaling pathways which contribute to metabolic reprogramming and tumor progression induced by γ-IR that confer radioresistance and treatment failure. Conclusion Our study sheds light on the effective combination of CAN and γ-IR in hepatocellular carcinoma treatment and necessitates CAN treatment prior to γ-IR to overcome metabolic reprogramming-associated radioresistance and improve curative outcomes.
Collapse
Affiliation(s)
- Mohamed Khairy Abdel-Rafei
- Department of Radiation Biology, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Noura Magdy Thabet
- Department of Radiation Biology, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Enas Mahmoud Moustafa
- Department of Radiation Biology, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
3
|
Logie E, Novo CP, Driesen A, Van Vlierberghe P, Vanden Berghe W. Phosphocatalytic Kinome Activity Profiling of Apoptotic and Ferroptotic Agents in Multiple Myeloma Cells. Int J Mol Sci 2021; 22:ijms222312731. [PMID: 34884535 PMCID: PMC8657914 DOI: 10.3390/ijms222312731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 01/13/2023] Open
Abstract
Through phosphorylation of their substrate proteins, protein kinases are crucial for transducing cellular signals and orchestrating biological processes, including cell death and survival. Recent studies have revealed that kinases are involved in ferroptosis, an iron-dependent mode of cell death associated with toxic lipid peroxidation. Given that ferroptosis is being explored as an alternative strategy to eliminate apoptosis-resistant tumor cells, further characterization of ferroptosis-dependent kinase changes might aid in identifying novel druggable targets for protein kinase inhibitors in the context of cancer treatment. To this end, we performed a phosphopeptidome based kinase activity profiling of glucocorticoid-resistant multiple myeloma cells treated with either the apoptosis inducer staurosporine (STS) or ferroptosis inducer RSL3 and compared their kinome activity signatures. Our data demonstrate that both cell death mechanisms inhibit the activity of kinases classified into the CMGC and AGC families, with STS showing a broader spectrum of serine/threonine kinase inhibition. In contrast, RSL3 targets a significant number of tyrosine kinases, including key players of the B-cell receptor signaling pathway. Remarkably, additional kinase profiling of the anti-cancer agent withaferin A revealed considerable overlap with ferroptosis and apoptosis kinome activity, explaining why withaferin A can induce mixed ferroptotic and apoptotic cell death features. Altogether, we show that apoptotic and ferroptotic cell death induce different kinase signaling changes and that kinome profiling might become a valid approach to identify cell death chemosensitization modalities of novel anti-cancer agents.
Collapse
Affiliation(s)
- Emilie Logie
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Claudina Perez Novo
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | - Amber Driesen
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
| | | | - Wim Vanden Berghe
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES) and Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (E.L.); (C.P.N.); (A.D.)
- Correspondence: ; Tel.: +32-32-65-26-57
| |
Collapse
|
4
|
Burgy M, Jehl A, Conrad O, Foppolo S, Bruban V, Etienne-Selloum N, Jung AC, Masson M, Macabre C, Ledrappier S, Burckel H, Mura C, Noël G, Borel C, Fasquelle F, Onea MA, Chenard MP, Thiéry A, Dontenwill M, Martin S. Cav1/EREG/YAP Axis in the Treatment Resistance of Cav1-Expressing Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13123038. [PMID: 34207120 PMCID: PMC8235528 DOI: 10.3390/cancers13123038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The EGFR-targeting antibody cetuximab (CTX) combined with radiotherapy has been proven effective for the treatment of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). Due to resistance to CTX, some patients do not benefit from the treatment and recurrence is observed. As caveolin-1 (Cav1) has been reported to affect the EGFR pathway, we aimed to elucidate how it might affect the response to CTX-radiotherapy. We showed that Cav1 expression conferred surviving, growing and motile capacities that protect cells against the combination of CTX-radiotherapy. The protecting effects of Cav1 are mediated by the Cav1/EREG/YAP axis. We also showed in a retrospective study that a high expression of Cav1 was predictive of locoregional relapse of LA-HNSCC. Cav1 should be taken into consideration in the future as a prognosis marker to identify the subgroup of advanced HNSCC at higher risk of recurrence, but also to help clinicians to choose the more appropriate therapeutic strategies. Abstract The EGFR-targeting antibody cetuximab (CTX) combined with radiotherapy is the only targeted therapy that has been proven effective for the treatment of locally advanced head and neck squamous cell carcinoma (LA-HNSCC). Recurrence arises in 50% of patients with HNSCC in the years following treatment. In clinicopathological practice, it is difficult to assign patients to classes of risk because no reliable biomarkers are available to predict the outcome of HPV-unrelated HNSCC. In the present study, we investigated the role of Caveolin-1 (Cav1) in the sensitivity of HNSCC cell lines to CTX-radiotherapy that might predict HNSCC relapse. Ctrl- and Cav-1-overexpressing HNSCC cell lines were exposed to solvent, CTX, or irradiation, or exposed to CTX before irradiation. Growth, clonogenicity, cell cycle progression, apoptosis, metabolism and signaling pathways were analyzed. Cav1 expression was analyzed in 173 tumor samples and correlated to locoregional recurrence and overall survival. We showed that Cav1-overexpressing cells demonstrate better survival capacities and remain proliferative and motile when exposed to CTX-radiotherapy. Resistance is mediated by the Cav1/EREG/YAP axis. Patients whose tumors overexpressed Cav1 experienced regional recurrence a few years after adjuvant radiotherapy ± chemotherapy. Together, our observations suggest that a high expression of Cav1 might be predictive of locoregional relapse of LA-HNSCC.
Collapse
Affiliation(s)
- Mickaël Burgy
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France; (M.B.); (A.J.); (O.C.); (S.F.); (V.B.); (N.E.-S.); (M.D.)
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France;
| | - Aude Jehl
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France; (M.B.); (A.J.); (O.C.); (S.F.); (V.B.); (N.E.-S.); (M.D.)
| | - Ombline Conrad
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France; (M.B.); (A.J.); (O.C.); (S.F.); (V.B.); (N.E.-S.); (M.D.)
| | - Sophie Foppolo
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France; (M.B.); (A.J.); (O.C.); (S.F.); (V.B.); (N.E.-S.); (M.D.)
| | - Véronique Bruban
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France; (M.B.); (A.J.); (O.C.); (S.F.); (V.B.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France; (M.B.); (A.J.); (O.C.); (S.F.); (V.B.); (N.E.-S.); (M.D.)
- Department of Pharmacy, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Alain C. Jung
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France; (A.C.J.); (C.M.); (S.L.)
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Murielle Masson
- UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, 67412 Illkirch, France;
| | - Christine Macabre
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France; (A.C.J.); (C.M.); (S.L.)
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Sonia Ledrappier
- Laboratory STREINTH (Stress Response and Innovative Therapies), Inserm IRFAC U1113, Université de Strasbourg, 67200 Strasbourg, France; (A.C.J.); (C.M.); (S.L.)
- Laboratory of Tumor Biology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Hélène Burckel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (C.M.); (G.N.)
| | - Carole Mura
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (C.M.); (G.N.)
| | - Georges Noël
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (C.M.); (G.N.)
- Paul Strauss Comprehensive Cancer Center, Institut de Cancérologie Strasbourg Europe (ICANS), Department of Radiation Oncology, Unicancer, 67200 Strasbourg, France
| | - Christian Borel
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France;
| | - François Fasquelle
- Institut Pathology, University Hospital of Lausanne, 1011 Lausanne, Switzerland;
| | - Mihaela-Alina Onea
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France; (M.-A.O.); (M.-P.C.)
| | - Marie-Pierre Chenard
- Department of Pathology, Strasbourg University Hospital, 67200 Strasbourg, France; (M.-A.O.); (M.-P.C.)
| | - Alicia Thiéry
- Department of Public Health, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France;
| | - Monique Dontenwill
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France; (M.B.); (A.J.); (O.C.); (S.F.); (V.B.); (N.E.-S.); (M.D.)
| | - Sophie Martin
- Laboratory of Bioimaging and Pathology, University of Strasbourg, UMR7021 CNRS, 67401 Illkirch, France; (M.B.); (A.J.); (O.C.); (S.F.); (V.B.); (N.E.-S.); (M.D.)
- Correspondence: ; Tel.: +3-336-885-4197; Fax: +3-336-885-4313
| |
Collapse
|
5
|
Codenotti S, Marampon F, Triggiani L, Bonù ML, Magrini SM, Ceccaroli P, Guescini M, Gastaldello S, Tombolini V, Poliani PL, Asperti M, Poli M, Monti E, Fanzani A. Caveolin-1 promotes radioresistance in rhabdomyosarcoma through increased oxidative stress protection and DNA repair. Cancer Lett 2021; 505:1-12. [PMID: 33610729 DOI: 10.1016/j.canlet.2021.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The aim of this work was to investigate whether Caveolin-1 (Cav-1), a membrane scaffolding protein widely implicated in cancer, may play a role in radiation response in rhabdomyosarcoma (RMS), a pediatric soft tissue tumor. For this purpose, we employed human RD cells in which Cav-1 expression was stably increased via gene transfection. After radiation treatment, we observed that Cav-1 limited cell cycle arrest in the G2/M phase and enhanced resistance to cell senescence and apoptosis via reduction of p21Cip1/Waf1, p16INK4a and Caspase-3 cleavage. After radiotherapy, Cav-1-mediated cell radioresistance was characterized by low accumulation of H2AX foci, as confirmed by Comet assay, marked neutralization of reactive oxygen species (ROS) and enhanced DNA repair via activation of ATM, Ku70/80 complex and DNA-PK. We found that Cav-1-overexpressing RD cells, already under basal conditions, had higher glutathione (GSH) content and greater catalase expression, which conferred protection against acute treatment with hydrogen peroxide. Furthermore, pre-treatment of Cav-1-overexpressing cells with PP2 or LY294002 compounds restored the sensitivity to radiation treatment, indicating a role for Src-kinases and Akt pathways in Cav-1-mediated radioresistance. These findings were confirmed using radioresistant RD and RH30 lines generated by hypofractionated radiotherapy protocol, which showed marked increase of Cav-1, catalase and Akt, and sensitivity to PP2 and LY294002 treatment. In conclusion, these data suggest that concerted activity of Cav-1 and catalase, in cooperation with activation of Src-kinase and Akt pathways, may represent a network of vital mechanisms that allow irradiated RMS cells to evade cell death induced by oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Marampon
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Marco Lorenzo Bonù
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Stefano Maria Magrini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Paola Ceccaroli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai, Shandong Province, 264003 China
| | - Vincenzo Tombolini
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
6
|
Palme D, Misovic M, Ganser K, Klumpp L, Salih HR, Zips D, Huber SM. hERG K + Channels Promote Survival of Irradiated Leukemia Cells. Front Pharmacol 2020; 11:489. [PMID: 32390841 PMCID: PMC7194033 DOI: 10.3389/fphar.2020.00489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Many tumor cells express highly elevated activities of voltage-gated K+ channels in the plasma membrane which are indispensable for tumor growth. To test for K+ channel function during DNA damage response, we subjected human chronic myeloid leukemia (CML) cells to sub-lethal doses of ionizing radiation (0-8 Gy, 6 MV photons) and determined K+ channel activity, K+ channel-dependent Ca2+ signaling, cell cycle progression, DNA repair, and clonogenic survival by whole-cell patch clamp recording, fura-2 Ca2+ imaging, Western blotting, flow cytometry, immunofluorescence microscopy, and pre-plating colony formation assay, respectively. As a result, the human erythroid CML cell line K562 and primary human CML cells functionally expressed hERG1. Irradiation stimulated in both cell types an increase in the activity of hERG1 K+ channels which became apparent 1-2 h post-irradiation. This increase in K+ channel activity was paralleled by an accumulation in S phase of cell cycle followed by a G2/M cell cycle arrest as analyzed between 8 and 72 h post-irradiation. Attenuating the K+ channel function by applying the hERG1 channel inhibitor E4031 modulated Ca2+ signaling, impaired inhibition of the mitosis promoting subunit cdc2, overrode cell cycle arrest, and decreased clonogenic survival of the irradiated cells but did not affect repair of DNA double strand breaks suggesting a critical role of the hERG1 K+ channels for the Ca2+ signaling and the cell cycle control during DNA damage response.
Collapse
Affiliation(s)
- Daniela Palme
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Milan Misovic
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Maezawa H, Indo HP, Usami N, Majima HJ, Ito H, Ohnishi K, Kobayashi K. Enhancement of membrane lipid peroxidation in lung cancer cells irradiated with monoenergetic X-rays at the K-shell resonance absorption peak of phosphorus. JOURNAL OF RADIATION RESEARCH 2020; 61:237-242. [PMID: 31904079 PMCID: PMC7246071 DOI: 10.1093/jrr/rrz098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine whether membrane lipid peroxidation in mammalian cells is enhanced by X-ray irradiation at the K-shell resonance absorption peak of phosphorus. A549 and wild-type p53-transfected H1299 (H1299/wtp53) cell lines derived from human lung carcinoma were irradiated with monoenergetic X-rays at 2.153 keV, the phosphorus K-shell resonance absorption peak, or those at 2.147 or 2.160 keV, which are off peaks. Immunofluorescence staining for 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product, was used as marker for protein modification. In both cell lines, the HNE production was significantly enhanced after irradiation at 2.153 keV compared to sham-irradiation. The enhancement (E) was calculated as the ratio of the fluorescence intensity of irradiated cells to that of sham-irradiated cells. In both the cell lines, E2.153 was significantly larger than E2.147 and no significant difference between E2.147 and E2.160 was observed. The extra enhancement at 2.153 keV was possibly caused by energy transition within the phosphorus K-shell resonance absorption. Our results indicate that membrane lipid peroxidation in cells is enhanced by the Auger effect after irradiation at the K-shell resonance absorption peak of phosphorus rather than by the photoelectric effect of the constituent atoms in the membrane lipid at 2.147 keV.
Collapse
Affiliation(s)
- Hiroshi Maezawa
- Photon Factory, Institute of Material Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Noriko Usami
- Photon Factory, Institute of Material Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hiromu Ito
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ken Ohnishi
- Center for Humanities and Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Oaza-ami, Ami, Inashiki, Ibaraki 300-0394, Japan
| | - Katsumi Kobayashi
- Photon Factory, Institute of Material Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
8
|
|
9
|
Qi Y, Lang J, Zhu X, Huang J, Li L, Yi G. Retracted Article: Down-regulation of the radiation-induced pEGFR Thr654 mediated activation of DNA-PK by Cetuximab in cervical cancer cells. RSC Adv 2020; 10:1132-1141. [PMID: 35494466 PMCID: PMC9047960 DOI: 10.1039/c9ra04962b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
The phosphorylation of EGFRThr654 is required for nuclear EGFR importing, and our previous study has shown that pEGFRThr654 is an independent prognostic factor for the low survival rate of patients with cervical squamous carcinoma. Now, we aim to examine the role of pEGFRThr654 in the activation of DNA-PK and radio resistance. Either CaSki or HeLa cells were exposed to a dose of 4 Gy with a 6 MV X-ray in the presence or absence of Cetuximab or Gefitinib, then EGFR, pEGFRThr654, DNA-PKcs and pDNA-PKThr2609 levels were determined using a western blot. DNA damage was quantified with γH2AX foci analysis and the response of CaSki and HeLa cells to irradiation was determined using a colony formation assay. In CaSki and HeLa cells, irradiation induced nuclear EGFR accumulation, and pEGFRThr654 and pDNA-PKThr2609 levels were both significantly increased. Cetuximab pre-treatment significantly reduced the expression of pEGFRThr654 and pDNA-PKThr2609 and enhanced the γH2AX foci per cell and sensitivity enhancement ratio in CaSki cells. Gefitinib pre-treatment had a similar but weaker effect. In HeLa cells, similar effects of Cetuximab and Gefitinib on pEGFRThr654 and pDNA-PKThr2609 were observed, and no significant difference was found. We found that Cetuximab had a better effect than Gefitinib on attenuating the radio resistance in cervical squamous carcinoma cells via inhibiting pEGFRThr654-mediated nuclear EGFR transport and related DNA-PKT2609-mediated DNA repair. However, in adenocarcinoma cells, both EGFR-targeted drugs had no remarkable effects on the radio sensitivity. Taken together, radiotherapy combined with Cetuximab may be a promising strategy to improve the therapeutic gain for cervical squamous carcinoma patients. The phosphorylation of EGFRThr654 is required for nuclear EGFR importing, and our previous study has shown that pEGFRThr654 is an independent prognostic factor for the low survival rate of patients with cervical squamous carcinoma.![]()
Collapse
Affiliation(s)
- Yunxiang Qi
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Jinyi Lang
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Xiaodong Zhu
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Jianming Huang
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Lu Li
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| | - Guangming Yi
- Sichuan Cancer Hospital & Institute
- Sichuan Cancer Center
- School of Medicine
- University of Electronic Science and Technology of China
- Chengdu 610041
| |
Collapse
|
10
|
Chen MK, Du Y, Sun L, Hsu JL, Wang YH, Gao Y, Huang J, Hung MC. H 2O 2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism. J Biol Chem 2019; 294:8516-8528. [PMID: 30962283 DOI: 10.1074/jbc.ra118.005953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/27/2019] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are cellular by-products produced from metabolism and also anticancer agents, such as ionizing irradiation and chemotherapy drugs. The ROS H2O2 has high rates of production in cancer cells because of their rapid proliferation. ROS oxidize DNA, protein, and lipids, causing oxidative stress in cancer cells and making them vulnerable to other stresses. Therefore, cancer cell survival relies on maintaining ROS-induced stress at tolerable levels. Hepatocyte growth factor receptor (c-MET) is a receptor tyrosine kinase overexpressed in malignant cancer types, including breast cancer. Full-length c-MET triggers a signal transduction cascade from the plasma membrane that, through downstream signaling proteins, up-regulates cell proliferation and migration. Recently, c-MET was shown to interact and phosphorylate poly(ADP-ribose) polymerase 1 in the nucleus and to induce poly(ADP-ribose) polymerase inhibitor resistance. However, it remains unclear how c-MET moves from the cell membrane to the nucleus. Here, we demonstrate that H2O2 induces retrograde transport of membrane-associated full-length c-MET into the nucleus of human MCF10A and MCF12A or primary breast cancer cells. We further show that knocking down either coatomer protein complex subunit γ1 (COPG1) or Sec61 translocon β subunit (SEC61β) attenuates the accumulation of full-length nuclear c-MET. However, a c-MET kinase inhibitor did not block nuclear c-MET transport. Moreover, nuclear c-MET interacted with KU proteins in breast cancer cells, suggesting a role of full-length nuclear c-MET in ROS-induced DNA damage repair. We conclude that a membrane-bound retrograde vesicle transport mechanism facilitates membrane-to-nucleus transport of c-MET in breast cancer cells.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Linlin Sun
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yu-Han Wang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan
| | - Yuan Gao
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mien-Chie Hung
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan; Center of Molecular Medicine, China Medical University, Taichung 402, Taiwan.
| |
Collapse
|
11
|
Klumpp L, Sezgin EC, Skardelly M, Eckert F, Huber SM. KCa3.1 Channels and Glioblastoma: In Vitro Studies. Curr Neuropharmacol 2018; 16:627-635. [PMID: 28786347 PMCID: PMC5997865 DOI: 10.2174/1570159x15666170808115821] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several tumor entities including brain tumors aberrantly overexpress intermediate conductance Ca2+ activated KCa3.1 K+ channels. These channels contribute significantly to the transformed phenotype of the tumor cells. METHOD PubMed was searched in order to summarize our current knowledge on the molecular signaling upstream and downstream and the effector functions of KCa3.1 channel activity in tumor cells in general and in glioblastoma cells in particular. In addition, KCa3.1 expression and function for repair of DNA double strand breaks was determined experimentally in primary glioblastoma cultures in dependence on the abundance of proneural and mesenchymal stem cell markers. RESULTS By modulating membrane potential, cell volume, Ca2+ signals and the respiratory chain, KCa3.1 channels in both, plasma and inner mitochondrial membrane, have been demonstrated to regulate many cellular processes such as migration and tissue invasion, metastasis, cell cycle progression, oxygen consumption and metabolism, DNA damage response and cell death of cancer cells. Moreover, KCa3.1 channels have been shown to crucially contribute to resistance against radiotherapy. Futhermore, the original in vitro data on KCa3.1 channel expression in subtypes of glioblastoma stem(-like) cells propose KCa3.1 as marker for the mesenchymal subgroup of cancer stem cells and suggest that KCa3.1 contributes to the therapy resistance of mesenchymal glioblastoma stem cells. CONCLUSION The data suggest KCa3.1 channel targeting in combination with radiotherapy as promising new tool to eradicate therapy-resistant mesenchymal glioblastoma stem cells.
Collapse
Affiliation(s)
| | | | | | | | - Stephan M. Huber
- Address correspondence to this author at the Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; Tel: +49-(0)7071-29-82183; E-mail:
| |
Collapse
|
12
|
Blázquez-Castro A. Direct 1O 2 optical excitation: A tool for redox biology. Redox Biol 2017; 13:39-59. [PMID: 28570948 PMCID: PMC5451181 DOI: 10.1016/j.redox.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/30/2017] [Accepted: 05/20/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen (1O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also 1O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of 1O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce 1O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Physics of Materials, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain; Formerly at Aarhus Institute of Advanced Studies (AIAS)/Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Lin LF, Wu MH, Pidugu VK, Ho IC, Su TL, Lee TC. P-glycoprotein attenuates DNA repair activity in multidrug-resistant cells by acting through the Cbp-Csk-Src cascade. Oncotarget 2017; 8:45072-45087. [PMID: 28178691 PMCID: PMC5542168 DOI: 10.18632/oncotarget.15065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Recent studies have demonstrated that P-glycoprotein (P-gp) expression impairs DNA interstrand cross-linking agent-induced DNA repair efficiency in multidrug-resistant (MDR) cells. To date, the detailed molecular mechanisms underlying how P-gp interferes with Src activation and subsequent DNA repair activity remain unclear. In this study, we determined that the C-terminal Src kinase-binding protein (Cbp) signaling pathway involved in the negative control of Src activation is enhanced in MDR cells. We also demonstrated that cells that ectopically express P-gp exhibit reduced activation of DNA damage response regulators, such as ATM, Chk2, Braca1 and Nbs1 and hence attenuated DNA double-strand break repair capacity and become more susceptible than vector control cells to DNA interstrand cross-linking (ICL) agents. Moreover, we demonstrated that P-gp can not only interact with Cbp and Src but also enhance the formation of inhibitory C-terminal Src kinase (Csk)-Cbp complexes that reduce phosphorylation of the Src activation residue Y416 and increase phosphorylation of the Src negative regulatory residue Y527. Notably, suppression of Cbp expression in MDR cells restores cisplatin-induced Src activation, improves DNA repair capacity, and increases resistance to ICL agents. Ectopic expression of Cbp attenuates cisplatin-induced Src activation and increases the susceptibility of cells to ICL agents. Together, the current results indicate that P-gp inhibits DNA repair activity by modulating Src activation via Cbp-Csk-Src cascade. These results suggest that DNA ICL agents are likely to have therapeutic potential against MDR cells with P-gp-overexpression.
Collapse
Affiliation(s)
- Li-Fang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsi Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Vijaya Kumar Pidugu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei 11529, Taiwan
| | - I-Ching Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tsann-Long Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei 11529, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
14
|
Cheng Y, Qu J, Che X, Xu L, Song N, Ma Y, Gong J, Qu X, Liu Y. CXCL12/SDF-1α induces migration via SRC-mediated CXCR4-EGFR cross-talk in gastric cancer cells. Oncol Lett 2017; 14:2103-2110. [PMID: 28781651 PMCID: PMC5530148 DOI: 10.3892/ol.2017.6389] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/21/2017] [Indexed: 02/06/2023] Open
Abstract
Metastasis is the primary cause of mortality in patients with advanced gastric carcinoma, and multiple signaling pathways promote the development of this condition. Stromal cell-derived factor-1 (SDF-1α/CXCL12), the main ligand for CXC chemokine receptor-4 (CXCR4), serves an important role in gastric cancer cell migration. Previous studies have demonstrated that CXCL12 could also stimulate the secretion of epidermal growth factor receptor (EGFR) ligands, including amphiregulin and heparin-binding epidermal growth factor-like growth factor, from gastric cancer cells, resulting in an increase in the ability of migration. However, it remains to be elucidated whether CXCL12 activates EGFR intracellular signaling and therefore stimulates migration in gastric cancer. The present study demonstrated that three gastric cancer cell lines, SGC-7901, MGC-803 and BGC-823, all expressed CXCR4. The increased chemotactic migratory ability stimulated by CXCL12 was effectively abrogated by the CXCR4 antagonist, AMD3100. Furthermore, a rapid phosphorylation of Akt/extracellular signal-regulated kinase (ERK)/EGFR was demonstrated to be involved in CXCL12/CXCR4-induced gastric cancer cell migration. Knockdown of EGFR gene or the use of a monoclonal antibody against EGFR (C225) blocked the activation of ERK/Akt and partially prevented the ability of migration induced by CXCL12, which indicated that EGFR signaling is located downstream of CXCL12. In addition, it was also revealed that the activation of non-receptor tyrosine kinase c-steroid receptor co-activator (SRC) and the formation of the SRC/EGFR heterodimer are promoted by CXCL12, whereas the SRC inhibitor, PP2, blocks the SRC/EGFR heterodimer and the activation of EGFR, as well as CXCR4-meditated migration induced by CXCL12. The present results indicated that SRC mediates a potential CXCR4-EGFR cross-talk, and thereby utilizes the EGFR-Akt/ERK axis to promote cellular migration. The present study provided a novel insight into the underlying regulatory mechanisms of the CXCL12/CXCR4 pathway in gastric cancer cell migration.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jinglei Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Na Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanju Ma
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jing Gong
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
15
|
Espada J, Martín-Pérez J. An Update on Src Family of Nonreceptor Tyrosine Kinases Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:83-122. [DOI: 10.1016/bs.ircmb.2016.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Strup-Perrot C, Vozenin MC, Monceau V, Pouzoulet F, Petit B, Holler V, Perrot S, Desquibert L, Fouquet S, Souquere S, Pierron G, Rousset M, Thenet S, Cardot P, Benderitter M, Deutsch E, Aigueperse J. PrP(c) deficiency and dasatinib protect mouse intestines against radiation injury by inhibiting of c-Src. Radiother Oncol 2016; 120:175-83. [PMID: 27406443 DOI: 10.1016/j.radonc.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 04/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND & AIM Despite extensive study of the contribution of cell death and apoptosis to radiation-induced acute intestinal injury, our knowledge of the signaling mechanisms involved in epithelial barrier dysfunction remains inadequate. Because PrP(c) plays a key role in intestinal homeostasis by renewing epithelia, we sought to study its role in epithelial barrier function after irradiation. DESIGN Histology, morphometry and plasma FD-4 levels were used to examine ileal architecture, wound healing, and intestinal leakage in PrP(c)-deficient (KO) and wild-type (WT) mice after total-body irradiation. Impairment of the PrP(c) Src pathway after irradiation was explored by immunofluorescence and confocal microscopy, with Caco-2/Tc7 cells. Lastly, dasatinib treatment was used to switch off the Src pathway in vitro and in vivo. RESULTS The decrease in radiation-induced lethality, improved intestinal wound healing, and reduced intestinal leakage promoted by PrP(c) deficiency demonstrate its involvement in acute intestinal damage. Irradiation of Cacao2/Tc7 cells induced PrP(c) to target the nuclei associated with Src activation. Finally, the protective effect triggered by dasatinib confirmed Src involvement in radiation-induced acute intestinal toxicity. CONCLUSION Our data are the first to show a role for the PrP(c)-Src pathway in acute intestinal response to radiation injury and offer a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Carine Strup-Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France
| | - Marie-Catherine Vozenin
- Inserm U1030, Radiotherapie experimentale, Institut Gustave Roussy, Villejuif, France; Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Virginie Monceau
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France; Inserm U1030, Radiotherapie experimentale, Institut Gustave Roussy, Villejuif, France
| | - Frederic Pouzoulet
- Institut Curie, Translational Research Department, Hopital St Louis, Paris, France
| | - Benoit Petit
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Service Commun d'Expérimentation Animale, Institut Gustave Roussy, Villejuif, France
| | - Valérie Holler
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France
| | - Sébastien Perrot
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Institut de Recherche Clinique Animale, Maisons-Alfort Cedex, France
| | - Loïc Desquibert
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Institut de Recherche Clinique Animale, Maisons-Alfort Cedex, France
| | - Stéphane Fouquet
- Stéphane FOUQUET, Centre de Recherche Institut de la Vision, UMR_S968 Inserm/UPMC/CHNO des Quinze-Vingts, Paris, France
| | | | - Gérard Pierron
- CNRS, UMR-8122, Institut Gustave Roussy, Villejuif, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, France; INSERM, U 872, Paris, France; Université Paris Descartes-Paris 5, UMR S 872, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, France; INSERM, U 872, Paris, France; Université Paris Descartes-Paris 5, UMR S 872, France; Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France
| | - Philippe Cardot
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, France; INSERM, U 872, Paris, France; Université Paris Descartes-Paris 5, UMR S 872, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, SRBE, Laboratoire de Recherche sur la Régénération des tissus sains Irradiés, Fontenay-aux-Roses, France
| | - Eric Deutsch
- Inserm U1030, Radiotherapie experimentale, Institut Gustave Roussy, Villejuif, France
| | - Jocelyne Aigueperse
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM, Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Stegen B, Klumpp L, Misovic M, Edalat L, Eckert M, Klumpp D, Ruth P, Huber SM. K + channel signaling in irradiated tumor cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:585-598. [PMID: 27165704 DOI: 10.1007/s00249-016-1136-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/24/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
K+ channels crosstalk with biochemical signaling cascades and regulate virtually all cellular processes by adjusting the intracellular K+ concentration, generating the membrane potential, mediating cell volume changes, contributing to Ca2+ signaling, and directly interacting within molecular complexes with membrane receptors and downstream effectors. Tumor cells exhibit aberrant expression and activity patterns of K+ channels. The upregulation of highly "oncogenic" K+ channels such as the Ca2+-activated IK channel may drive the neoplastic transformation, malignant progression, metastasis, or therapy resistance of tumor cells. In particular, ionizing radiation in doses used for fractionated radiotherapy in the clinic has been shown to activate K+ channels. Radiogenic K+ channel activity, in turn, contributes to the DNA damage response and promotes survival of the irradiated tumor cells. Tumor-specific overexpression of certain K+ channel types together with the fact that pharmacological K+ channel modulators are already in clinical use or well tolerated in clinical trials suggests that K+ channel targeting alone or in combination with radiotherapy might become a promising new strategy of anti-cancer therapy. The present article aims to review our current knowledge on K+ channel signaling in irradiated tumor cells. Moreover, it provides new data on molecular mechanisms of radiogenic K+ channel activation and downstream signaling events.
Collapse
Affiliation(s)
- Benjamin Stegen
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Milan Misovic
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Lena Edalat
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Marita Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Dominik Klumpp
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
18
|
Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation. Biochem Biophys Res Commun 2016; 470:466-472. [DOI: 10.1016/j.bbrc.2015.12.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 11/22/2022]
|
19
|
Huang S, Peter Rodemann H, Harari PM. Molecular Targeting of Growth Factor Receptor Signaling in Radiation Oncology. Recent Results Cancer Res 2016; 198:45-87. [PMID: 27318681 DOI: 10.1007/978-3-662-49651-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ionizing radiation has been shown to activate and interact with multiple growth factor receptor pathways that can influence tumor response to therapy. Among these receptor interactions, the epidermal growth factor receptor (EGFR) has been the most extensively studied with mature clinical applications during the last decade. The combination of radiation and EGFR-targeting agents using either monoclonal antibody (mAb) or small-molecule tyrosine kinase inhibitor (TKI) offers a promising approach to improve tumor control compared to radiation alone. Several underlying mechanisms have been identified that contribute to improved anti-tumor capacity after combined treatment. These include effects on cell cycle distribution, apoptosis, tumor cell repopulation, DNA damage/repair, and impact on tumor vasculature. However, as with virtually all cancer drugs, patients who initially respond to EGFR-targeted agents may eventually develop resistance and manifest cancer progression. Several potential mechanisms of resistance have been identified including mutations in EGFR and downstream signaling molecules, and activation of alternative member-bound tyrosine kinase receptors that bypass the inhibition of EGFR signaling. Several strategies to overcome the resistance are currently being explored in preclinical and clinical models, including agents that target the EGFR T790 M resistance mutation or target multiple EGFR family members, as well as agents that target other receptor tyrosine kinase and downstream signaling sites. In this chapter, we focus primarily on the interaction of radiation with anti-EGFR therapies to summarize this promising approach and highlight newly developing opportunities.
Collapse
Affiliation(s)
- Shyhmin Huang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue K4/336 CSC, Madison, WI, 53792, USA
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, WIMR 3136, 1111 Highland Ave Madison, Madison, WI, 53705, USA
| | - H Peter Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Röntgenweg, 72076, Tübingen, Germany
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue K4/336 CSC, Madison, WI, 53792, USA.
| |
Collapse
|
20
|
Zhang H, Forman HJ. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B. Free Radic Biol Med 2015; 89:701-7. [PMID: 26453921 PMCID: PMC4684732 DOI: 10.1016/j.freeradbiomed.2015.08.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/20/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022]
Abstract
Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern, California
| | - Henry Jay Forman
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern, California.
| |
Collapse
|
21
|
Dittmann KH, Rothmund MC, Paasch A, Mayer C, Fehrenbacher B, Schaller M, Frauenstein K, Fritsche E, Haarmann-Stemmann T, Braeuning A, Rodemann HP. The nuclear aryl hydocarbon receptor is involved in regulation of DNA repair and cell survival following treatment with ionizing radiation. Toxicol Lett 2015; 240:122-9. [PMID: 26520184 DOI: 10.1016/j.toxlet.2015.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 01/15/2023]
Abstract
In the present study, we explored the role of the aryl hydrocarbon receptor (AhR) for γ-H2AX associated DNA repair in response to treatment with ionizing radiation. Ionizing radiation was able to stabilize AhR protein and to induce a nuclear translocation in a similar way as described for exposure to aromatic hydrocarbons. A comparable AhR protein stabilization was obtained by treatment with hydroxyl-nonenal-generated by radiation-induced lipid peroxidation. AhR knockdown resulted in significant radio-sensitization of both A549- and HaCaT cells. Under these conditions an increased amount of residual γ-H2AX foci and a delayed decline of γ-H2AX foci was observed. Knockdown of the co-activator ARNT, which is essential for transcriptional activation of AhR target genes, reduced AhR-dependent CYP1A expression in response to irradiation, but was without effect on the amount of residual γ-H2AX foci. Nuclear AhR was found in complex with γ-H2AX, DNA-PK, ATM and Lamin A. AhR and γ-H2AX form together nuclear foci, which disappear during DNA repair. Presence of nuclear AhR protein is associated with ATM activation and chromatin relaxation indicated by acetylation of histone H3. Taken together, we could show, that beyond the function as a transcription factor the nuclear AhR is involved in the regulation of DNA repair. Reduction of nuclear AhR inhibits DNA-double stand repair and radiosensitizes cells. First hints for its molecular mechanism suggest a role during ATM activation and chromatin relaxation, both essential for DNA repair.
Collapse
Affiliation(s)
- K H Dittmann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany.
| | - M C Rothmund
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - A Paasch
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - C Mayer
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| | - B Fehrenbacher
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - M Schaller
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - K Frauenstein
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - E Fritsche
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - T Haarmann-Stemmann
- AG Molekulare Toxikologie, Institut für umweltmedizinische Forschung an der Heinrich-Heine-Universität Düsseldorf, Germany
| | - A Braeuning
- Federal Institute for Risk Assessment, Deptartment of Food Safety, Berlin, Germany
| | - H P Rodemann
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Germany
| |
Collapse
|
22
|
Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J 2015; 282:3693-721. [PMID: 26096795 DOI: 10.1111/febs.13342] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Geiger-Maor A, Guedj A, Even-Ram S, Smith Y, Galun E, Rachmilewitz J. Macrophages Regulate the Systemic Response to DNA Damage by a Cell Nonautonomous Mechanism. Cancer Res 2015; 75:2663-73. [DOI: 10.1158/0008-5472.can-14-3635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/29/2015] [Indexed: 11/16/2022]
|
24
|
ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model. Int J Radiat Oncol Biol Phys 2015; 92:399-406. [PMID: 25823448 DOI: 10.1016/j.ijrobp.2015.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 01/17/2023]
Abstract
PURPOSE ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. METHODS AND MATERIALS The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. RESULTS Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. CONCLUSIONS Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.
Collapse
|
25
|
Baro M, de Llobet LI, Figueras A, Skvortsova I, Mesia R, Balart J. Dasatinib worsens the effect of cetuximab in combination with fractionated radiotherapy in FaDu- and A431-derived xenografted tumours. Br J Cancer 2014; 111:1310-8. [PMID: 25077442 PMCID: PMC4183853 DOI: 10.1038/bjc.2014.432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/02/2014] [Accepted: 07/09/2014] [Indexed: 12/24/2022] Open
Abstract
Background: Cetuximab is often combined with radiotherapy in advanced SCCHN. Alternative routes bypassing inhibition of EGFR with cetuximab may overshadow the efficacy of this combination. We undertook this study to investigate a possible role of dasatinib in this scenario. Methods: The SCC5, SCC25, SCC29, FaDu and A431 cell lines were assessed in vitro for cell proliferation under cetuximab and dasatinib treatments. In FaDu and A431 cells, dasatinib plus cetuximab resulted in higher proliferation than cetuximab alone. Then, FaDu and A431 cells were implanted into subcutaneous tissue of athymic mice that were irradiated with 30 Gy in 10 fractions over 2 weeks, and treated with cetuximab and dasatinib. Tumour growth, DNA synthesis and angiogenesis were determined. The EGFR, RAS-GTP activity, phosphorylated AKT, ERK1/2, SRC protein levels and VEGF secretion were determined in vitro. Results: The addition of dasatinib to cetuximab and radiotherapy increased tumour growth, DNA synthesis and angiogenesis that were associated with RAS, AKT and ERK1/2 activation, and SRC inhibition in FaDu and A431 cells. Conclusions: In xenografts derived from these two cell lines, dasatinib did not improve the efficacy of cetuximab combined with radiotherapy. On the contrary, it worsened tumour control achieved by the combination of these two treatments.
Collapse
Affiliation(s)
- M Baro
- Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - L I de Llobet
- Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - A Figueras
- Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - I Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | - R Mesia
- Department of Medical Oncology, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain
| | - J Balart
- 1] Laboratory of Translational Research, Catalan Institute of Oncology, Avda. Gran de L'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Spain [2] Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| |
Collapse
|
26
|
Xu L, Qu X, Li H, Li C, Liu J, Zheng H, Liu Y. Src/caveolin-1-regulated EGFR activation antagonizes TRAIL-induced apoptosis in gastric cancer cells. Oncol Rep 2014; 32:318-24. [PMID: 24840271 DOI: 10.3892/or.2014.3183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer cells are insensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and we recently showed that lipid raft-regulated epidermal growth factor receptor (EGFR) activation antagonized TRAIL-induced apoptosis. However, it is not clear whether caveolin-1, an essential structural constituent of lipid rafts, regulates lipid raft-mediated EGFR activation. We report here that TRAIL induced the translocation of EGFR into lipid rafts and its activation in gastric cancer SGC-7901 and MGC-803 cells. Simultaneously, caveolin-1 was also activated. Knockdown of caveolin-1 partially prevented EGFR activation and increased TRAIL sensitivity. Moreover, TRAIL promoted the translocation of Src into lipid rafts and its activation, as well as the interaction of Src with both EGFR and caveolin-1. A Src inhibitor prevented these interactions and the activation of caveolin-1 and EGFR, and thus enhanced TRAIL-induced apoptosis. These data suggest that Src activates EGFR through the interaction of both Src-EGFR and Src-caveolin-1, and then antagonizes TRAIL-induced apoptosis in gastric cancer cells.
Collapse
Affiliation(s)
- Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang 110001, P.R. China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang 110001, P.R. China
| | - Heming Li
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang 110001, P.R. China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang 110001, P.R. China
| | - Jing Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang 110001, P.R. China
| | - Huachuan Zheng
- Cancer Research Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang 110001, P.R. China
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE Here, we review recent advances with regard to the role of Src kinase in the regulation of cytoskeleton organization, cell adhesion, and motility, focusing on redox circuitries engaging this kinase for anchorage and motility, control of cell survival to anoikis, as well as metabolic deregulation, all features belonging to the new hallmarks of cancer. RECENT ADVANCES Several recent insights have reported that, alongside the well-known phosphorylation/dephosphorylation control, cysteine oxidation is a further mechanism of enzyme activation for both c-Src kinase and its oncogenic counterparts. Indeed, mounting evidence portrays redox regulation of Src kinase as a compulsory outcome in growth factors/cytokines signaling, integrin engagement, motility and invasiveness of tissues, receptor cross-talking at plasmamembrane, as well as during carcinogenesis and progression toward tumor malignancy or fibrotic disease. In addition, the kinase is an upstream regulator of NADPH oxidase-driven oxidants, a critical step for invadopodia formation and metastatic spread. CRITICAL ISSUES Not satisfactorily unraveled yet, the exact role of Src kinase in redox cancer biology needs to be implemented with studies that are aimed at clarifying (i) the exact hierarchy between oxidants sources, Src redox-dependent activation and the regulation of cell motility, and (ii) the actual susceptibility of invading cells to redox-based treatments, owing to the well-recognized ability of cancer cells to find new strategies to adapt to new environments. FUTURE DIRECTIONS Once these critical issues are addressed, redox circuitries involving Src kinase should potentially be used as both biomarkers and targets for personalized therapies in the fight against cancer or fibrotic diseases.
Collapse
Affiliation(s)
- Elisa Giannoni
- 1 Department of Experimental and Clinical Biomedical Sciences, University of Florence , Florence, Italy
| | | |
Collapse
|
28
|
Huber SM, Butz L, Stegen B, Klumpp D, Braun N, Ruth P, Eckert F. Ionizing radiation, ion transports, and radioresistance of cancer cells. Front Physiol 2013; 4:212. [PMID: 23966948 PMCID: PMC3743404 DOI: 10.3389/fphys.2013.00212] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/24/2013] [Indexed: 12/22/2022] Open
Abstract
The standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane. In particular, ionizing radiation-induced modifications of ion channels and transporters have been reported. Importantly, these altered transports seem to contribute to the survival of the irradiated tumor cells. The present review article summarizes our current knowledge on the underlying mechanisms and introduces strategies to radiosensitize tumor cells by targeting plasma membrane ion transports.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Radiation Oncology, University of Tübingen Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells. Pflugers Arch 2013; 465:1209-21. [PMID: 23443853 DOI: 10.1007/s00424-013-1249-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/29/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
Aberrant ion channel expression in the plasma membrane is characteristic for many tumor entities and has been attributed to neoplastic transformation, tumor progression, metastasis, and therapy resistance. The present study aimed to define the function of these "oncogenic" channels for radioresistance of leukemia cells. Chronic myeloid leukemia cells were irradiated (0-6 Gy X ray), ion channel expression and activity, Ca(2+)- and protein signaling, cell cycle progression, and cell survival were assessed by quantitative reverse transcriptase-polymerase chain reaction, patch-clamp recording, fura-2 Ca(2+)-imaging, immunoblotting, flow cytometry, and clonogenic survival assays, respectively. Ionizing radiation-induced G2/M arrest was preceded by activation of Kv3.4-like voltage-gated potassium channels. Channel activation in turn resulted in enhanced Ca(2+) entry and subsequent activation of Ca(2+)/calmodulin-dependent kinase-II, and inactivation of the phosphatase cdc25B and the cyclin-dependent kinase cdc2. Accordingly, channel inhibition by tetraethylammonium and blood-depressing substance-1 and substance-2 or downregulation by RNA interference led to release from radiation-induced G2/M arrest, increased apoptosis, and decreased clonogenic survival. Together, these findings indicate the functional significance of voltage-gated K(+) channels for the radioresistance of myeloid leukemia cells.
Collapse
|
31
|
Zhang Y, Yu S, Zhuang L, Zheng Z, Chao T, Fu Q. Caveolin-1 is involved in radiation-induced ERBB2 nuclear transport in breast cancer cells. ACTA ACUST UNITED AC 2012; 32:888-892. [PMID: 23271292 DOI: 10.1007/s11596-012-1053-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Indexed: 02/03/2023]
Abstract
This study examined the radiation-induced ERBB2 nuclear transport in the BT474 breast cancer cell line and the relationship between caveolin-1 and radiation-induced ERBB2 nuclear transport. The BT474 cells were treated with herceptin (200 nmol/L), PP2 (a caveolin-1 inhibitor, 100 nmol/L) and irradiation combined or alone. Confocal microscopy was used to observe the nuclear import of ERBB2 and caveolin-1 after irradiation. Western blotting was employed to detect the expression of ERBB2, caveolin-1 and DNA-PKcs after irradiation, and immunoprecipitation to identify the ERBB2 and caveolin-1 complex before perinuclear ERBB2 localization. Confocal microscopy showed the transport of ERBB2 and caveolin-1 from the cell membrane to the nucleus 15 min after irradiation and the proteins accumulated at the perinuclear region within 45 min. Western blotting revealed that the expression levels of ERBB2, caveolin-1 and DNA-PKcs were increased after irradiation and reached a peak 45 min later. Both herceptin and PP2 treatments were found to decrease ERBB2 expression. An immune complex composed of ERBB2 and caveolin-1 was found in the herceptin group after irradiation. It was concluded that after irradiation, ERBB2 may be transported from the cell membrane to the nucleus and activate DNA-PKcs to trigger DNA double-strand break (DSB) repair; caveolin-1 may participate in this process. Treatments involving the downregulation of caveolin-1 may increase the radiosensitization of breast cancer cells.
Collapse
Affiliation(s)
- Yu Zhang
- Cancer Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiying Yu
- Cancer Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Liang Zhuang
- Cancer Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zu'an Zheng
- Cancer Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tengfei Chao
- Cancer Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiang Fu
- Cancer Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
32
|
Cis-9,trans-11-conjugated linoleic acid affects lipid raft composition and sensitizes human colorectal adenocarcinoma HT-29 cells to X-radiation. Biochim Biophys Acta Gen Subj 2012; 1830:2233-42. [PMID: 23116821 DOI: 10.1016/j.bbagen.2012.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/29/2012] [Accepted: 10/18/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Investigations concerned the mechanism of HT-29 cells radiosensitization by cis-9,trans-11-conjugated linoleic acid (c9,t11-CLA), a natural component of human diet with proven antitumor activity. METHODS The cells were incubated for 24h with 70μM c9,t11-CLA and then X-irradiated. The following methods were used: gas chromatography (incorporation of the CLA isomer), flow cytometry (cell cycle), cloning (survival), Western blotting (protein distribution in membrane fractions), and pulse-field gel electrophoresis (rejoining of DNA double-strand breaks). In parallel, DNA-PK activity, γ-H2AX foci numbers and chromatid fragmentation were estimated. Gene expression was analysed by RT-PCR and chromosomal aberrations by the mFISH method. Nuclear accumulation of the EGF receptor (EGFR) was monitored by ELISA. RESULTS AND CONCLUSIONS C9,t11-CLA sensitized HT-29 cells to X-radiation. This effect was not due to changes in cell cycle progression or DNA-repair-related gene expression. Post-irradiation DSB rejoining was delayed, corresponding with the insufficient DNA-PK activation, although chromosomal aberration frequencies did not increase. Distributions of cholesterol and caveolin-1 in cellular membrane fractions changed. The nuclear EGFR translocation, necessary to increase the DNA-PK activity in response to oxidative stress, was blocked. We suppose that c9,t11-CLA modified the membrane structure, thus disturbing the intracellular EGFR transport and the EGFR-dependent pro-survival signalling, both functionally associated with lipid raft properties. GENERAL SIGNIFICANCE The results point to the importance of the cell membrane interactions with the nucleus after injury inflicted by X -rays. Compounds like c9,t11-CLA, that specifically alter membrane properties, could be used to develop new anticancer strategies.
Collapse
|
33
|
Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN ONCOLOGY 2012; 2012:137289. [PMID: 23119185 PMCID: PMC3483701 DOI: 10.5402/2012/137289] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/28/2012] [Indexed: 12/03/2022]
Abstract
The generation of reactive oxygen species (ROS) and an altered redox status are common biochemical aspects in cancer cells. ROS can react with the polyunsaturated fatty acids of lipid membranes and induce lipid peroxidation. The end products of lipid peroxidation, 4-hydroxynonenal (HNE), have been considered to be a second messenger of oxidative stress.
Beyond ROS involvement in carcinogenesis, increased ROS level can inhibit tumor cell growth. Indeed, in tumors in advanced stages, a further increase of oxidative stress, such as that occurs when using several anticancer drugs and radiation therapy, can overcome the antioxidant defenses of cancer cells and drive them to apoptosis. High concentrations of HNE can also induce apoptosis in cancer cells. However, some cells escape the apoptosis induced by chemical or radiation therapy through the adaptation to intrinsic oxidative stress which confers drug resistance. This paper is focused on recent advances in the studies of the relation between oxidative stress, lipid peroxidation products, and cancer progression with particular attention to the pro-oxidant anticancer agents and the drug-resistant mechanisms, which could be modulated to obtain a better response to cancer therapy.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Department of Medicine and Experimental Oncology, University of Turin, Corso Raffaello 30, 10125 Torino, Italy
| |
Collapse
|
34
|
A pathway from leukemogenic oncogenes and stem cell chemokines to RNA processing via THOC5. Leukemia 2012; 27:932-40. [PMID: 23032722 DOI: 10.1038/leu.2012.283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
THOC5 is a member of the THO complex that is involved in processing and transport of mRNA. We have shown previously that hematopoietic stem cells have an absolute requirement for THOC5 for survival and that THOC5 is phosphorylated on tyrosine 225 as a consequence of leukemogenic protein tyrosine kinase (PTK) action. We have investigated pathways for THOC5 phosphorylation to develop an understanding of THO complex modulation by tyrosine kinase (TK) oncogenes in leukemias. We demonstrate that THOC5 phosphorylation is mediated by Src PTK and CD45 protein tyrosine phosphatase action and that this event is sensitive to oxidative status. We show that THOC5 phosphorylation is elevated in stem cells from patients with chronic myeloid leukemia (CML) and that this phosphorylation is sensitive to the frontline drugs used in CML treatment. Further we show that THOC5 Y225 phosphorylation governs mRNA binding. In addition, CXCL12 is shown to induce THOC5 Y225 phosphorylation, and site-directed mutagenesis demonstrates that this modulates motile response. In conclusion, we delineate a signaling pathway stimulated by leukemogenic PTKs, chemokines and oxidative stress that can affect THO complex mediation of gene expression describing mechanisms for post-transcriptional regulation of protein levels.
Collapse
|
35
|
Khurshid H, Dipetrillo T, Ng T, Mantripragada K, Birnbaum A, Berz D, Radie-Keane K, Perez K, Constantinou M, Luppe D, Schumacher A, Leonard K, Safran H. A Phase I Study of Dasatinib with Concurrent Chemoradiation for Stage III Non-Small Cell Lung Cancer. Front Oncol 2012; 2:56. [PMID: 22666662 PMCID: PMC3364482 DOI: 10.3389/fonc.2012.00056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 05/13/2012] [Indexed: 11/13/2022] Open
Abstract
Objectives: Src family kinases (SFKs) are expressed in non-small cell lung cancer (NSCLC) and may be involved in tumor growth and metastases. Inhibition of SFK may also enhance radiation. The purpose of this study was to evaluate if a maximum dose of 100 mg of dasatinib could be safely administered with concurrent chemoradiation and then continued as maintenance for patients with newly diagnosed stage III NSCLC. Methods: Patients with stage III locally advanced NSCLC received paclitaxel, 50 mg/m2/week, with carboplatin area under the curve (AUC) = 2, weekly for 7 weeks, and concurrent radiotherapy, 64.8 Gy. Three dose levels of dasatinib 50, 70, and 100 mg/day were planned. Results: 11 patients with locally advanced NSCLC were entered. At the 70 mg dose level 1 patient had grade 5 pneumonitis not responsive to therapy, and one patient had reversible grade 3 pneumonitis and grade 3 pericardial effusion. Due to these toxicities the Brown University Oncology Group Data Safety Monitoring Board terminated the study. Conclusion: Dasatinib could not be safely combined with concurrent chemoradiation for stage 3 lung cancer due to pneumonitis.
Collapse
|
36
|
Huber SM, Misovic M, Mayer C, Rodemann HP, Dittmann K. EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human A549 lung adenocarcinoma cells. Radiother Oncol 2012; 103:373-9. [PMID: 22516777 DOI: 10.1016/j.radonc.2012.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 02/13/2012] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Solid tumor cells may adapt to an ischemic microenvironment by upregulation of sodium/glucose cotransport (SGLT) in the plasma membrane which supplies the tumor cell with glucose even at very low extracellular glucose concentration. Since SGLT activity has been shown to depend on the epithelial growth factor receptor (EGFR) and EGFR reportedly is activated by ionizing radiation, we tested for irradiation-induced SGLT activity. MATERIALS AND METHODS A549 lung adenocarcinoma and FaDu head and neck squamous cancer cells were irradiated with 0 and 4 Gy X-ray and electrogenic SGLT transport activity was recorded by patch clamp current clamp in the presence and absence of extracellular glucose (5mM), the SGLT inhibitor phlorizin (500 μM), and the inhibitor of the EGFR tyrosine kinase activity erlotinib (1 μM). In addition, the effect of phlorizin and erlotinib on glucose uptake and clonogenic survival was tested in irradiated and control cells by tracer flux and colony formation assays, respectively. RESULTS Irradiated A549 cells exhibited a significantly lower membrane potential 3h after irradiation than the control cells. Phlorizin, erlotinib or removal of extracellular glucose, hyperpolarized the irradiated A549 cells to a significantly higher extent than the control cells. Similarly, but less pronounced, glucose removal hyperpolarized irradiated FaDu cells. In addition, irradiated A549 cells exhibited a highly increased (3)H-glucose uptake which was sensitive to phlorizin. Finally, phlorizin radiosensitized the A549 and FaDu cells as evident from the colony formation assays. CONCLUSIONS Taken together, these data suggest an irradiation-stimulated and EGFR-mediated increase in SGLT-generated glucose uptake which is required for the survival of the genotoxically stressed tumor cells.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
37
|
Graham K, Moran-Jones K, Sansom OJ, Brunton VG, Frame MC. FAK deletion promotes p53-mediated induction of p21, DNA-damage responses and radio-resistance in advanced squamous cancer cells. PLoS One 2011; 6:e27806. [PMID: 22194793 PMCID: PMC3237418 DOI: 10.1371/journal.pone.0027806] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/25/2011] [Indexed: 01/19/2023] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is elevated in a variety of human cancers. While FAK is implicated in many cellular processes that are perturbed in cancer, including proliferation, actin and adhesion dynamics, polarisation and invasion, there is only some limited information regarding the role of FAK in radiation survival. We have evaluated whether FAK is a general radio-sensitising target, as has been suggested by previous reports. We used a clean genetic system in which FAK was deleted from mouse squamous cell carcinoma (SCC) cells (FAK -/-), and reconstituted with exogenous FAK wild type (wt). Surprisingly, the absence of FAK was associated with increased radio-resistance in advanced SCC cells. FAK re-expression inhibited p53-mediated transcriptional up-regulation of p21, and a sub-set of other p53 target genes involved in DNA repair, after treatment with ionizing radiation. Moreover, p21 depletion promoted radio-sensitisation, implying that FAK-mediated inhibition of p21 induction is responsible for the relative radio-sensitivity of FAK-proficient SCC cells. Our work adds to a growing body of evidence that there is a close functional relationship between integrin/FAK signalling and the p53/p21 pathway, but demonstrates that FAK's role in survival after stress is context-dependent, at least in cancer cells. We suggest that there should be caution when considering inhibiting FAK in combination with radiation, as this may not always be clinically advantageous.
Collapse
Affiliation(s)
- Kathryn Graham
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, Scotland
| | - Kim Moran-Jones
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, Scotland
| | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, Scotland
| | - Valerie G. Brunton
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, Scotland
| | - Margaret C. Frame
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
38
|
Huang WC, Chen YJ, Hung MC. Implication of nuclear EGFR in the development of resistance to anticancer therapies. Biomedicine (Taipei) 2011. [DOI: 10.1016/j.biomed.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Nuclear transport: a switch for the oxidative stress-signaling circuit? JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:208650. [PMID: 22028962 PMCID: PMC3195498 DOI: 10.1155/2012/208650] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/05/2011] [Indexed: 01/01/2023]
Abstract
Imbalances in the formation and clearance of reactive oxygen species (ROS) can lead to oxidative stress and subsequent changes that affect all aspects of physiology. To limit and repair the damage generated by ROS, cells have developed a multitude of responses. A hallmark of these responses is the activation of signaling pathways that modulate the function of downstream targets in different cellular locations. To this end, critical steps of the stress response that occur in the nucleus and cytoplasm have to be coordinated, which makes the proper communication between both compartments mandatory. Here, we discuss the interdependence of ROS-mediated signaling and the transport of macromolecules across the nuclear envelope. We highlight examples of oxidant-dependent nuclear trafficking and describe the impact of oxidative stress on the transport apparatus. Our paper concludes by proposing a cellular circuit of ROS-induced signaling, nuclear transport and repair.
Collapse
|
40
|
Rodemann HP, Wouters BG. Frontiers in molecular radiation biology/oncology. Radiother Oncol 2011; 101:1-6. [DOI: 10.1016/j.radonc.2011.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 12/15/2022]
|
41
|
Steinle M, Palme D, Misovic M, Rudner J, Dittmann K, Lukowski R, Ruth P, Huber SM. Ionizing radiation induces migration of glioblastoma cells by activating BK K+ channels. Radiother Oncol 2011; 101:122-6. [DOI: 10.1016/j.radonc.2011.05.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/21/2011] [Accepted: 05/26/2011] [Indexed: 01/02/2023]
|
42
|
Nijkamp MM, Hoogsteen IJ, Span PN, Takes RP, Lok J, Rijken PF, van der Kogel AJ, Bussink J, Kaanders JH. Spatial relationship of phosphorylated epidermal growth factor receptor and activated AKT in head and neck squamous cell carcinoma. Radiother Oncol 2011; 101:165-70. [DOI: 10.1016/j.radonc.2011.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 05/30/2011] [Accepted: 06/12/2011] [Indexed: 11/29/2022]
|
43
|
Valerie NCK, Casarez EV, Dasilva JO, Dunlap-Brown ME, Parsons SJ, Amorino GP, Dziegielewski J. Inhibition of neurotensin receptor 1 selectively sensitizes prostate cancer to ionizing radiation. Cancer Res 2011; 71:6817-26. [PMID: 21903767 DOI: 10.1158/0008-5472.can-11-1646] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy combined with androgen depletion is generally successful for treating locally advanced prostate cancer. However, radioresistance that contributes to recurrence remains a major therapeutic problem in many patients. In this study, we define the high-affinity neurotensin receptor 1 (NTR1) as a tractable new molecular target to radiosensitize prostate cancers. The selective NTR1 antagonist SR48692 sensitized prostate cancer cells in a dose- and time-dependent manner, increasing apoptotic cell death and decreasing clonogenic survival. The observed cancer selectivity for combinations of SR48692 and radiation reflected differential expression of NTR1, which is highly expressed in prostate cancer cells but not in normal prostate epithelial cells. Radiosensitization was not affected by androgen dependence or androgen receptor expression status. NTR1 inhibition in cancer cell-attenuated epidermal growth factor receptor activation and downstream signaling, whether induced by neurotensin or ionizing radiation, establish a molecular mechanism for sensitization. Most notably, SR48692 efficiently radiosensitized PC-3M orthotopic human tumor xenografts in mice, and significantly reduced tumor burden. Taken together, our findings offer preclinical proof of concept for targeting the NTR1 receptor as a strategy to improve efficacy and outcomes of prostate cancer treatments using radiotherapy.
Collapse
Affiliation(s)
- Nicholas C K Valerie
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Overgaard J. Advancing radiation oncology through scientific publication – 100 volumes of Radiotherapy and Oncology. Radiother Oncol 2011; 100:1-6. [DOI: 10.1016/j.radonc.2011.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Toulany M, Schickfluss TA, Fattah KR, Lee KJ, Chen BPC, Fehrenbacher B, Schaller M, Chen DJ, Rodemann HP. Function of erbB receptors and DNA-PKcs on phosphorylation of cytoplasmic and nuclear Akt at S473 induced by erbB1 ligand and ionizing radiation. Radiother Oncol 2011; 101:140-6. [PMID: 21723633 DOI: 10.1016/j.radonc.2011.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE In the present study effect of erbB2 as well as DNA-PKcs on ionizing radiation (IR)- and erbB1 ligand-induced phosphorylation of Akt at S473 in cytoplasmic and nuclear fractions was investigated. MATERIALS AND METHODS DNA-PKcs proficient and deficient syngeneic colon carcinoma sublines of HCT116 and the glioblastoma cell lines MO59K and MO59J as well as the lung carcinoma cell line A549 were used. Akt-S473 phosphorylation was investigated in cells pre-treated with pharmacological inhibitors or transfected with siRNA by immunoprecipitation, Western blotting and confocal microscopy after different stimuli, i.e., ligands and IR. RESULTS IR-induced phosphorylation of Akt in both MO59K and MO59J cell lines but not in HCT116 cells was DNA-PKcs dependent. In A549 cells, IR-induced phosphorylation of nuclear Akt-S473 was dependent on erbB1, erbB2, and DNA-PKcs. EGF induced phosphorylation of nuclear Akt-S473 in a DNA-PKcs and erbB2 independent manner. CONCLUSION Data indicate that the function of DNA-PKcs on IR-induced Akt-S473 phosphorylation is cell line specific. IR-induced, but not EGF-induced phosphorylation of cytoplasmic and/or nuclear Akt-S473 is erbB2 dependent.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Eberhard Karls University, Tuebingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bonner JA, Yang ES, Trummell HQ, Nowsheen S, Willey CD, Raisch KP. Inhibition of STAT-3 results in greater cetuximab sensitivity in head and neck squamous cell carcinoma. Radiother Oncol 2011; 99:339-43. [PMID: 21704410 DOI: 10.1016/j.radonc.2011.05.070] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 05/21/2011] [Accepted: 05/26/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The inhibition of epidermal growth factor receptor (EGFr) with the monoclonal antibody cetuximab reduces cell proliferation and survival which correlates with increased DNA damage. Since the signal transducer and activator of transcription-3 (STAT-3) is involved in the EGFr-induced signaling pathway, we hypothesized that depletion of STAT-3 may augment cetuximab-induced processes in human head and neck cancer cells. MATERIALS AND METHODS Human head and neck squamous carcinoma cells (UM-SCC-5) were transfected with short hairpin RNA (shRNA) against STAT-3 (STAT3-2.4 and 2.9 cells). A mutated form of this shRNA was transfected for a control (NEG4.17 cells). Radiosensitivity was assessed by a standard colony formation assay. Proliferation was assessed by daily cell counts following treatment and apoptosis was assessed by an annexin V-FITC assay. The alkaline comet assay was used to assess DNA damage. RESULTS The STAT-3 knockdown cells (STAT3-2.4 and STAT3-2.9 cells) demonstrated enhanced radiosensitivity compared to control NEG4.17 cells, which correlated with increased apoptosis. Also, the STAT-3 knockdown cells demonstrated decreased proliferation with cetuximab treatments compared to control cells (NEG4.17). The increased cetuximab sensitivity of the STAT-3 knockdown cells correlated with increased apoptosis and DNA damage compared to control cells (NEG4.17). CONCLUSION These studies revealed that the greater anti-proliferative effects and increased cytotoxicity of cetuximab in the STAT3-2.4 and STAT3-2.9 cells compared to control NEG4.17 cells, may be a result of STAT3-mediated effects on cellular apoptosis and DNA damage.
Collapse
Affiliation(s)
- James A Bonner
- Department of Radiation Oncology, The University of Alabama at Birmingham, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Epithelial-mesenchymal-transition induced by EGFR activation interferes with cell migration and response to irradiation and cetuximab in head and neck cancer cells. Radiother Oncol 2011; 101:158-64. [PMID: 21665310 DOI: 10.1016/j.radonc.2011.05.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE The role of epithelial-mesenchymal transition (EMT) in the poor outcome of EGFR-overexpressing SCCHN was evaluated. MATERIAL AND METHODS SCCHN cell lines were characterized for their cell morphology and expression of EGFR and the EMT-associated factors E-cadherin, vimentin and Snail1. The migratory potential of cells was assessed in motility assays. Response to irradiation and cetuximab was determined using clonogenic survival assays. RESULTS High basal expression of E-cadherin but low to absent vimentin expression could be observed in all SCCHN cell lines. Although E-cadherin expression levels did not change after treatment with EGF we observed a significant change in cell morphology resembling EMT. SCCHN cells with high basal levels of Snail1 resulting from constitutive EGFR activation were characterized by mesenchymal-like morphology, elevated migratory potential, reduced sensitivity to irradiation and cetuximab but increased sensitivity to the combined treatment. CONCLUSIONS Autocrine activation of EGFR leading to EMT is associated with a metastatic phenotype and reduced sensitivity of SCCHN cells to single-modality treatment with cetuximab or irradiation. The potential of Snail1 as biomarker for selection of patients who will mostly benefit from a combination of cetuximab and radiotherapy has to be evaluated in future clinical studies.
Collapse
|
48
|
Molecular and translational radiation biology/oncology: What’s up? Radiother Oncol 2011; 99:257-61. [DOI: 10.1016/j.radonc.2011.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 01/02/2023]
|
49
|
D’Andrea FP, Safwat A, Kassem M, Gautier L, Overgaard J, Horsman MR. Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance. Radiother Oncol 2011; 99:373-8. [DOI: 10.1016/j.radonc.2011.05.086] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 12/29/2022]
|
50
|
Nuclear epidermal growth factor receptor modulates cellular radio-sensitivity by regulation of chromatin access. Radiother Oncol 2011; 99:317-22. [DOI: 10.1016/j.radonc.2011.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 01/04/2023]
|