1
|
Fu K, Sun H, Chen X, Cao Y, Liu L, Zhao J, Li S, Ma W. Computer-aided design and construction of a novel electro-responsive ion-imprinted sensor for the individual/simultaneous detection of Cd(II) and Pb(II) in water environments. Food Chem 2025; 465:142052. [PMID: 39591870 DOI: 10.1016/j.foodchem.2024.142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/16/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
A novel method for detecting Cd(II) and Pb(II) in water using composite ion-imprinted membranes (Cd@Pb-IIM/Ag@MOF@CHI) was developed. Pre-polymerization ratios were optimized via computer simulations and applied on Ag@MOF@CHI-modified electrodes using infrared light initiation. Characterization of the membranes through SEM and electrochemical methods revealed detailed morphology and composition. The sensor showed a dynamic linear response for Cd(II) and Pb(II) concentrations ranging from 1.1 × 10-9 to 1.2 × 10-6 mol L-1, with a detection limit of 1.0 × 10-10 mol L-1. In samples with various non-target ions, the sensor exhibited high selectivity, attributed to the optimal coordination ratio (Cd(II): Pb(II): PAR = 1:1:3). Successful tests were conducted in tap, lake, and river water, highlighting its potential for environmental monitoring.
Collapse
Affiliation(s)
- Kaixi Fu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Huizhen Sun
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xiuhua Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, China.
| | - Yilin Cao
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Longsi Liu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Junnan Zhao
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Shaoyuan Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Wenhui Ma
- School of Materials and Energy, Yunnan University, Kunming 650091, China; School of Engineering, Yunnan University, Kunming 650500, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
2
|
Esquivel S, Zuñiga M, Meléndrez M, Pereira E, Urbano BF, Rivas BL, Palacio DA. Removal of ciprofloxacin using polymeric nanocomposites synthesized from alkylated chitosan ionic macromonomers, ionic monomers and hydrotalcite. Int J Biol Macromol 2025; 300:140303. [PMID: 39864708 DOI: 10.1016/j.ijbiomac.2025.140303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
The contamination of water systems by antibiotics such as ciprofloxacin (CIP), which is used to treat bacterial infections, poses severe risks to environmental safety and public health. To address this issue, a novel zwitterionic polymeric nanocomposite (PNs-HTC) was developed in this study. This novel material was synthesized using alkylated chitosan ionic macromonomers, ionic monomers and combined with hydrotalcite (HTC) via in situ free radical polymerization. The incorporation of quaternary ammonium and vinyl groups into the chitosan backbone, along with varying HTC contents, considerably impacted the properties of the nanocomposite. The nanocomposite was characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, X-ray diffraction, and thermogravimetric analysis. The effectiveness of PNs-HTC in removing CIP from water was evaluated under different conditions. PNs-HTC exhibited a CIP adsorption capacity of up to 84.43 mg g-1 at 318 K. Equilibrium data fitted well to the Temkin isotherm and pseudo-second-order kinetic models. The pH, ionic strength (30 % using 0.1 M NaCl), and HTC content in the nanocomposite influenced CIP adsorption, which reached a maximum of 80 % using 0.03 g of PNs-HTC. Thermodynamic studies indicated that the adsorption process was favorable, spontaneous, and endothermic and was marked by significant randomness. These findings underscore the potential of PNs-HTC as a robust material for mitigating antibiotic pollution in aquatic environments.
Collapse
Affiliation(s)
- Samir Esquivel
- Polymers Department, Faculty of Chemical Sciences, University of Concepción, Box 160-C, Concepción 4070371, Chile
| | - Martina Zuñiga
- Polymers Department, Faculty of Chemical Sciences, University of Concepción, Box 160-C, Concepción 4070371, Chile
| | - Manuel Meléndrez
- Faculty of Healthcare Sciences, San Sebastián University, Las Tres Pascualas Campus, Lientur 1457, Concepción 4060000, Chile
| | - Eduardo Pereira
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, University of Concepción, Box 160-C, Concepción 4070371, Chile
| | - Bruno F Urbano
- Polymers Department, Faculty of Chemical Sciences, University of Concepción, Box 160-C, Concepción 4070371, Chile
| | - Bernabé L Rivas
- San Sebastián University, Las Tres Pascualas Campus, Lientur 1457, Concepción 4060000, Chile
| | - Daniel A Palacio
- Polymers Department, Faculty of Chemical Sciences, University of Concepción, Box 160-C, Concepción 4070371, Chile.
| |
Collapse
|
3
|
Lee CR, Lee SJ, Kim TI, Chathuranga K, Lee JS, Kim S, Kim MH, Park WH. Chitosan-gallic acid conjugate edible coating film for perishable fruits. Food Chem 2025; 463:141322. [PMID: 39303471 DOI: 10.1016/j.foodchem.2024.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Approximately 30 % of global agricultural land is used to produce food that is ultimately lost or wasted, making it imperative to explore strategies for mitigating this waste. This study explored the potential of chitosan (CS) derivatives as edible coatings to extend food shelf life. Although soluble CS derivatives such as glycol CS are suitable coatings, their antimicrobial properties often diminish with increased solubility. To address this issue, gallic acid (GA), a polyphenol, was conjugated with CS using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry to create edible coating solutions. The resulting CS-GA films exhibited remarkable solubility, mechanical strength, UV-blocking properties, and superior antioxidant and antimicrobial properties. Furthermore, these films exhibited a high affinity for hydrophobic fruit surfaces while also facilitating easy washing, making them an alternative for consumers who are averse to film-coated products. The CS-GA-coated fruits exhibited minimal surface spoilage, decreased mass loss, and increased firmness. Therefore, these CS-GA conjugate coatings hold significant potential as eco-friendly, edible, and washable food packaging coatings.
Collapse
Affiliation(s)
- Cho Rok Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Su Jin Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Tae In Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Kiramage Chathuranga
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Jong Soo Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Sangsik Kim
- Department of Energy Chemical Engineering, Kyungpook National University, Sangju 37224, South Korea
| | - Min Hee Kim
- Department of Textile Engineering, Kyungpook National University, Sangju 37224, South Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
4
|
Jogi M, Asnani H, Singh S, Kumar P. Nimbolide: A Potential Phytochemical Agent in Multimodal Pancreatic Cancer Therapies. Mini Rev Med Chem 2025; 25:27-41. [PMID: 38874049 DOI: 10.2174/0113895575293138240527061556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 06/15/2024]
Abstract
A significant contributor to cancer-related death, pancreatic cancer (PC) has a terrible prognosis in general that has not altered over many years. Currently, it is extremely difficult to prevent disease or discover it early enough to initiate treatment. PC is a challenging malignancy to treat, and several major impediments significantly impact the effectiveness of its treatment. These obstacles primarily include chemoresistance, drug toxicity, and limited drug bioavailability. Phytochemicals can be used as an alternative to chemotherapeutic drugs, or they can augment the anticancer properties of the chemotherapeutic agents. Nimbolide (NL) is a prominent limonoid compound found in Azadirachta indica, and has garnered substantial attention as a phytochemical with anticancer potential. It has powerful antiproliferative effects on a variety of cancer cell lines and is effective as a chemotherapeutic in preclinical studies. The primary modes of action of NL include suppression of metastasis and angiogenesis, activation of apoptosis, anti-proliferation, and control of enzymes that metabolize carcinogens. Despite numerous pharmacodynamic (PD) investigations, NL is still in the early stages of the drug development process because no comprehensive pharmacokinetic studies or long-term toxicity studies. Preclinical and toxicological assessments should be conducted to establish an appropriate dosage range, ensuring the safety of NL for its application in initial human clinical trials. This review endeavors to provide a comprehensive summary of the current developmental stage of NL along with nanoparticles as a principal candidate for therapeutic purposes in PC.
Collapse
Affiliation(s)
- Mukesh Jogi
- Division of Molecular Biology, ICMR-National Institute of Cancer Prevention and Research (NICPR), NOIDA, India
- Amity Institute of Biotechnology, Amity University, NOIDA, India
- Department of Biotecnology ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Hitakshi Asnani
- Banasthli Vidyapith, Radha Kishnpura, Rajasthan, 304022, India
| | - Sohini Singh
- Amity Institute of Biotechnology, Amity University, NOIDA, India
| | - Pramod Kumar
- Division of Molecular Biology, ICMR-National Institute of Cancer Prevention and Research (NICPR), NOIDA, India
| |
Collapse
|
5
|
Wang M, Wang Y, Chen G, Gao H, Peng Q. Chitosan-Based Multifunctional Biomaterials as Active Agents or Delivery Systems for Antibacterial Therapy. Bioengineering (Basel) 2024; 11:1278. [PMID: 39768096 PMCID: PMC11673874 DOI: 10.3390/bioengineering11121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Antibiotic therapy has been a common method for treating bacterial infections over the past century, but with the rise in bacterial resistance caused by antibiotic abuse, better control and more rational use of antibiotics have been increasingly demanded. At the same time, a journey to explore alternatives to antibiotic therapies has also been undertaken. Chitosan and its derivatives, materials with good biocompatibility, biodegradability, and excellent antibacterial properties, have garnered significant attention, and more and more studies on chitosan and its derivatives have been conducted in recent years. In this work, we aim to elucidate the biological properties of chitosan and its derivatives and to track their clinical applications, as well as to propose issues that need to be addressed and possible solutions to further their future development and application.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Schopmans H, Utesch T, Théato P, Mroginski MA, Kozlowska M. Side-chain-induced changes in aminated chitosan: Insights from molecular dynamics simulations. Int J Biol Macromol 2024; 282:136159. [PMID: 39357716 DOI: 10.1016/j.ijbiomac.2024.136159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Chitosan is a functional polymer with diverse applications in biomedicine, agriculture, water treatment, and beyond. Via derivatization of pristine chitosan, its functionality can be tailored to desired applications, e.g. immobilization of biomolecules. Here, we performed molecular dynamics simulations of three aminated chitosan polymers, where one, two, and three long-distanced side chains have been incorporated. These polymers have been previously synthesized and their properties were investigated experimentally, however, the observed dependencies could not be fully explained on the molecular level. Here, we develop a computational protocol for the simulation of functionalized chitosan polymers and perform advanced analysis of their conformational states, intramolecular interactions, and water binding. We demonstrate that intra- and intermolecular forces, especially hydrogen bonds induced by polymer side chain modifications, modulate dihedral angle conformational states of the polymer backbone and interactions with water. We explain the role of the chemical composition of the functionalized chitosans in their tendency to collapse and reveal the key role of the protonation of the amino group near the polymer backbone on the reduction of polymer collapse. We demonstrate that specific binding of water molecules, especially the intermediate water, is more pronounced in the polymer exhibiting such an amino group.
Collapse
Affiliation(s)
- Henrik Schopmans
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany; Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Tillmann Utesch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. Campus, Berlin-Buch Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Patrick Théato
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany; Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Maria Andrea Mroginski
- Institute of Chemistry, Technical University Berlin, Str. des 17. Juni 135, 10623 Berlin, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
7
|
El Mahamdi M, Daoudi W, Naguib IA, Benhadi L, Dagdag O, Berisha A, Kim H, Noureddine B, El Aatiaoui A. Enhanced corrosion protection of copper in saline environments using bio-nanocomposite coatings based on chitosan and chitosan Schiff base. Int J Biol Macromol 2024; 282:136702. [PMID: 39522355 DOI: 10.1016/j.ijbiomac.2024.136702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
An in-depth study focuses on developing new environmentally friendly bio-nanocomposites, by incorporating SrTiO3 (STO) ceramic nanoparticles into matrices of chitosan and its derivatives, aiming to use them as protective coatings against corrosion. The various stages of this study include the cross-linking of chitosan, the synthesis of Schiff base chitosan, the cross-linking of Schiff base chitosan, and the preparation of nanocomposite coatings. The coatings' structure and composition were analyzed using different methods, including Fourier Transform Infrared Spectroscopy - Attenuated Total Reflectance (FTIR-ATR), X-ray Diffraction (XRD), Transmission Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (TEM-EDX), and Scanning Electron Microscopy (SEM). In addition, Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Polarization (PDP) measurements were carried out to assess the inhibitory efficacy of chitosan crosslinked with epichlorohydrin (Cs-Ep), epichlorohydrin-crosslinked chitosan-salicylaldehyde Schiff base (CS-S-Ep) and CS-Ep-STO and CS-S-Ep-STO nanocomposite coatings, as well as the long-term protection durability of CS-S-Ep-STO. These techniques revealed a significant reduction in corrosion current density after chemical modification of chitosan and incorporation of SrTiO3 (STO) nanoparticles into CS-Ep and CS-S-Ep matrices, confirming a notable improvement in the inhibitory efficiency of these coatings against copper corrosion in a saline environment. Computational modeling methods like Density Functional Theory (DFT), Molecular Dynamics (MD), and Monte Carlo (MC) simulations reinforced these results by demonstrating efficient adsorption of CS-S-Ep-STO nanocomposites on metal surfaces through the interaction with heteroatoms present in the functional groups (-C=N-, -C-O-, -OH) and STO nanoparticles. The present study's findings provide key information for developing innovative protective coatings, highlighting the potential of chitosan-based nanocomposites and derivatives, particularly with SrTiO3 incorporation, in mitigating metal surface corrosion in aggressive environments.
Collapse
Affiliation(s)
- Mohamed El Mahamdi
- Laboratory of Applied Chemistry and Environment (LCAE-URAC18), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco
| | - Walid Daoudi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Lamyae Benhadi
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| | - Omar Dagdag
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, 10000 Prishtina, Kosovo.
| | - Hansang Kim
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| | - Benchat Noureddine
- Laboratory of Applied Chemistry and Environment (LCAE-URAC18), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO Box 717, 60000 Oujda, Morocco
| | - Abdelmalik El Aatiaoui
- Laboratory of Molecular Chemistry, Materials and Environment (LCM2E), Department of Chemistry, Multidisciplinary Faculty of Nador, University Mohamed I, 60700 Nador, Morocco
| |
Collapse
|
8
|
Dinga DK, Khokh A, Kynast UH. Water-Soluble Chitosan-Europium Hybrid Sensor for Singlet Oxygen Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23252-23258. [PMID: 39454184 DOI: 10.1021/acs.langmuir.4c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The ability to effectively monitor singlet oxygen (1O2) with fluorescence probes in biological systems is severely restricted mainly by the background autofluorescence of these systems. Though the application of lanthanide complexes as 1O2 monitors successfully resolves this problem with time-gated luminescence measurements, the insolubility of these complexes in an aqueous medium heavily limits their application in biological systems. Here, we present a water-soluble 1O2 sensor based on a chitosan-europium hybrid material. A procedure for the modification of chitosan to expand its solubility to neutral and basic pH, while maintaining its free active amine groups, is described. These are then coupled covalently to a europium-based probe for the detection of 1O2. The resulting hybrid sensor is readily soluble in water across the pH scale and efficiently signals the presence of 1O2 at physiological pH, with the characteristic Eu3+ emission at 611 nm yielding up to a 15-fold increase in emission intensity and a decay time of 332 μs. Being of particular interest for time-gated measurements, this long decay time, coupled with the biocompatibility of chitosan, describes a material with potential biological applications, where 1O2 plays a vital role.
Collapse
Affiliation(s)
- Daniel K Dinga
- Chemical Engineering, Muenster University of Applied Sciences, Stegerwaldstr. 39, Steinfurt 48565, Germany
| | - Aliaksandra Khokh
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstraße 400, Dresden 01328, Germany
| | - Ulrich H Kynast
- Chemical Engineering, Muenster University of Applied Sciences, Stegerwaldstr. 39, Steinfurt 48565, Germany
| |
Collapse
|
9
|
Sajjadi M, Nasrollahzadeh M, Ghafuri H. Functionalized chitosan-inspired (nano)materials containing sulfonic acid groups: Synthesis and application. Carbohydr Polym 2024; 343:122443. [PMID: 39174086 DOI: 10.1016/j.carbpol.2024.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nature-inspired chitosan (CS) materials show a high potential for the design/fabrication of sustainable heterogeneous (nano)materials with extraordinary structural/physical features, such as superior biodegradability/biocompatibility, simplicity of chemical modification, environmental safety, high availability, cost-effectiveness, high electrochemical activity, good film-forming ability, and antioxidant, antimicrobial/antibacterial, and anticoagulant activities. Industrialization and growth of industrial wastes or by-products induce an increasing demand for the development of clean, low-cost, and renewable natural systems to minimize or eliminate the utilization of environmentally toxic compounds. The preparation of novel heterogeneous functionalized polysaccharide-inspired bio(nano)materials via chemical modifications of natural CS to improve its physicochemical/biochemical properties has recently become tremendously attractive for many researchers. The most abundantly available and cost-effective functionalized CS-inspired (nano)materials are considerably valuable in terms of the economic aspects of production of (nano)catalysts, (nano)hydrogels, (nano)composite/blend membranes, and thus their commercialization. In this respect, the preparation of functionalized CS-inspired (nano)materials containing -SO3H groups has been represented as a valid alternative to the homogenous unmodified biomaterials for various applications. Sulfonated derivatives of CS-inspired (nano)materials may possess huge surface areas, catalytic activity, adsorption, and biological/biomedical properties. This review article is aimed at the investigation of different methods and potential applications of sulfonated CS-inspired (nano)materials in catalysis, fuel cells, adsorption of ions, membranes, and biological applications.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
10
|
Arshad N, Chaudhary AA, Saleem S, Akram M, Qureshi MAUR. Surface modification of surgical suture by chitosan-based biocompatible hybrid coatings: In-vitro anti-corrosion, antibacterial, and in-vivo wound healing studies. Int J Biol Macromol 2024; 281:136571. [PMID: 39419154 DOI: 10.1016/j.ijbiomac.2024.136571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
This work aims to develop chitosan-based biocompatible hybrid coatings on synthetic surgical sutured by direct current electrophoretic deposition (DC-EPD) method. The chitosan (CS), curcumin (CR), aloe-vera (AV), and 2-aminothiazolidin-4-one-5-ethanoic acid (AT) were used as suspensions of varying combinations and compositions (A-I). Each suspension has a further 05 samples (Aa-Ae-Ia-Ie) at selected DC-EPD set parameters (2-10 V, t; 240 s, D; 1 cm). Potentiodynamic polarization measurements (PDP) were carried out in the ringer solution. Among all samples, Ed (CS, 1.6 g/L; 8 V) and Hb (CS-CR-AT, 1.6 g/Leach; 4 V) have shown greatest corrosion inhibition efficiency (IEPDP: 99 %), least corrosion rates (CR; 0.001 mm/y and 0.017 mm/y, respectively), and least corrosion current density (Icorr.; 0.01 A cm-2). SEM and FTIR further confirmed these two best coatings stable and corrosion resistant before and after performing corrosion test, while the coating thickness by profilometry test was found to be greater (16.28 μm) for Hb. Mechanical stress and strain of bare and coated samples were found to have no significant difference. Antibacterial activity revealed greater resistance of Hb against S. aureus as compared to Ed. In-vivo incision wound model study further revealed better healing and less inflammation with coated sutures with comparatively enhanced wound healing effect of Hb coated suture.
Collapse
Affiliation(s)
- Nasima Arshad
- Department of Chemistry, Allama Iqbal Open University, 44000 Islamabad, Pakistan.
| | | | - Samreen Saleem
- Faculty of Life Sciences, Health Services Academy (HSA), 44000 Islamabad, Pakistan
| | - Muhammad Akram
- Department of Chemistry, Allama Iqbal Open University, 44000 Islamabad, Pakistan
| | | |
Collapse
|
11
|
Huang Z, Li W, Xu S, Xu X, Ou M. A novel sponge-like composite biosorbent fabricated by sodium alginate and polyethyleneimine for uranium(VI) extraction from seawater. Int J Biol Macromol 2024; 279:135004. [PMID: 39214226 DOI: 10.1016/j.ijbiomac.2024.135004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Uranium extraction from seawater (UES) has important strategic significance for maintaining the sustainable development of nuclear energy. This article presents the preparation of a low-cost, efficient, and highly reusable biosorbent sodium alginate/polyethyleneimine (SA/PEI) through a simple one-step crosslinking process. The chemical crosslinking between PEI and SA provides biosorbent excellent mechanical strength and thermal stability. SA/PEI was characterized by using FTIR, XRD, TGA, EDS, XPS, SEM before and after adsorption of uranium. Thermodynamic research results show that the uranium adsorption of SA/PEI is a spontaneous, entropy increasing endothermic process. The adsorption fitted the pseudo-second-order kinetic model and Langmuir model with maximum adsorption capacity reach 353.09 mg g-1, illustrating that the adsorption mechanism is monolayer chemical adsorption. The interaction between SA/PEI and uranium is synergistic chelation by amino and carboxyl, which is consistent with the results calculated by DFT. After 14 days of adsorption in 100 L natural seawater, the adsorption capacity of SA/PEI was 3.58 mg g-1, with an average adsorption efficiency of 0.256 mg g-1 day-1, which is faster than most reported alginate adsorbents. The cost of using SA/PEI to UES is $168 per kilogram of uranium. These results indicate that SA/PEI hydrogel has great potential in practical seawater application.
Collapse
Affiliation(s)
- Zhixuan Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Wanying Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Suyan Xu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xiaoping Xu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Minrui Ou
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
12
|
Abdelaziz MA, Alalawy AI, Sobhi M, Alatawi OM, Alaysuy O, Alshehri MG, Mohamed ELI, Abdelaziz MM, Algrfan IA, Mohareb RM. Elaboration of chitosan nanoparticles loaded with star anise extract as a therapeutic system for lung cancer: Physicochemical and biological evaluation. Int J Biol Macromol 2024; 279:135099. [PMID: 39197631 DOI: 10.1016/j.ijbiomac.2024.135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
The research study aimed to maximize the important medical role of star anise extract (SAE) through its loading on a widely available natural polymer (chitosan, Cs). Thus, SAE loaded chitosan nanoparticles (CsNPs) was prepared. The finding illustrated the formation of spherical particles of SAE loaded CsNPs as proved by transmission electron microscope (TEM). In addition, the average particle size of CsNPs and SAE loaded CsNPs are 131.8 ± 24.63 and 318.5 ± 73.94 nm, respectively. Scanning electron microscope (SEM) showed the presence of many spherical particles deposited on the surface of CsNPs owing to the deposition of SAE on the surface and encapsulated into pores of CsNPs. It also showed the presence of elements such as sodium, potassium, copper, magnesium, zinc, calcium, and iron, as well as the elements that accompanied with CsNPs: carbon, oxygen, nitrogen, and phosphorus. The extract was rich in bioactive components, such as anethole, shikimic acid, and different flavonoids, contributing to its medicinal qualities. The bioactive molecules in SAE were assessed by chromatographic analysis. Using the agar well diffusion test, the antibacterial qualities of CsNPs and SAE loaded CsNPs were evaluated against pathogenic bacteria linked to lung illnesses. The most significant inhibition zones showed that the SAE loaded CsNPs had the most antibacterial activity. The anticancer activity using MTT assay was used in the biological assessments to determine the cytotoxicity against the NCl-H460 lung cancer cell line. The results showed that CsNPs loaded with SAE considerably decreased cell viability in a dose-dependent manner, with the most significant anticancer impact by SAE loaded CsNPs. Furthermore, in vivo tests on lung cancer therapy revealed that when compared to other treatment groups, the SAE loaded CsNPs group showed the greatest reduction in tumor biomarkers and inflammation, as seen by decreased levels of Plasma malondialdehyde (MDA), tumor protein 53 (p53), Tumor necrosis factor-alpha (TNF- alpha), and fibronectin. Results concluded that these thorough characterizations, biological assessments, and antibacterial tests have confirmed the effective integration of SAE into CsNPs. Further, SAE loaded CsNPs could be a suitable option for various biomedical applications in tackling lung cancer and the inactivation of bacterial infection.
Collapse
Affiliation(s)
- Mahmoud A Abdelaziz
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Mohamed Sobhi
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Omar M Alatawi
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Omaymah Alaysuy
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Maryam G Alshehri
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - ELsiddig Idriss Mohamed
- Department of Statistics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Maiar M Abdelaziz
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Ibrahim A Algrfan
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
| | - Rafat M Mohareb
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Chellathurai MS, Chung LY, Hilles AR, Sofian ZM, Singha S, Ghosal K, Mahmood S. Pharmaceutical chitosan hydrogels: A review on its design and applications. Int J Biol Macromol 2024; 280:135775. [PMID: 39307491 DOI: 10.1016/j.ijbiomac.2024.135775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/10/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CS) has become a focal point of extensive research in the pharmaceutical industry due to its remarkable biodegradability, biocompatibility and sustainability. Chitosan hydrogels (CS HGs) are characterized by their viscoelasticity, flexibility and softness. The polar surfaces exhibit properties that mitigate interfacial tension between the hydrogel and body fluids. The inherent compatibility of CS HGs with body tissues and fluids positions them as outstanding polymers for delivering therapeutic proteins, peptides, DNA, siRNA, and vaccines. Designed to release drugs through mechanisms such as swelling-based diffusion, bioerosion, and responsiveness to stimuli, CS HGs offer a versatile platform for drug delivery. CS HGs play pivotal roles in serving purposes such as prolonging the duration of preprogrammed drug delivery, enabling stimuli-responsive smart delivery to target sites, protecting encapsulated drugs within the mesh network from adverse environments, and facilitating mucoadhesion and penetration through cell membranes. This review comprehensively outlines various novel preparation methods of CS HGs, delving into the parameters influencing drug delivery system design, providing a rationale for CS HG utilization in drug delivery, and presenting diverse applications across the pharmaceutical landscape. In synthesizing these facets, the review seeks to contribute to a nuanced understanding of the multifaceted role that CS HGs play in advancing drug delivery methodologies.
Collapse
Affiliation(s)
- Melbha Starlin Chellathurai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ayah R Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Souvik Singha
- Nanofabrication and Tissue Engineering Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Kajal Ghosal
- Nanofabrication and Tissue Engineering Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Universiti Malaya-Research Center for Biopharmaceuticals and Advanced Therapeutics (UBAT), Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Valadi M, Doostan M, Khoshnevisan K, Doostan M, Maleki H. Enhanced healing of burn wounds by multifunctional alginate-chitosan hydrogel enclosing silymarin and zinc oxide nanoparticles. Burns 2024; 50:2029-2044. [PMID: 39181767 DOI: 10.1016/j.burns.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
Multifunctional wound dressings have been applied for burn injuries to avoid complications and promote tissue regeneration. In the present study, we fabricated a natural alginate-chitosan hydrogel comprising silymarin and green-synthesized zinc oxide nanoparticles (ZnO NPs). Then, the physicochemical attributes of ZnO NPs and loaded hydrogels were analyzed. Afterward, wound healing efficacy was evaluated in a rat model of full-thickness dermal burn wounds. The findings indicated that ZnO NPs were synthesized via reduction with phytochemicals from Elettaria cardamomum seeds extract. The microscopic images exhibited fairly spherical ZnO NPs (35-45 nm), and elemental analysis verified the relevant composition. The hydrogel, containing silymarin and biosynthesized ZnO NPs, displayed a uniform appearance, smooth surfaces, and a porous structure. Moreover, infrared spectroscopy identified functional groups, confirming the successful loading without adverse interactions. The obtained hydrogel exhibited great water absorption, high porosity, sustainable degradation for several days, and enhanced antioxidant capability of the combined loaded component. In vivo studies revealed faster and superior wound healing, achieving nearly complete closure by day 21. Histopathology confirmed improved cell growth, tissue regeneration, collagen deposition, and neovascularization. It is believed that this multifunctional hydrogel-based wound dressing can be applied for effective burn wound treatment.
Collapse
Affiliation(s)
- Moein Valadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Maleki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Chitosan Derivatives: Preparation, Properties and Applications in Pharmacy and Medicine. Gels 2024; 10:701. [PMID: 39590057 PMCID: PMC11593520 DOI: 10.3390/gels10110701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chitosan (CS) derivatives have been extensively investigated to enhance the physicochemical and biological properties of CS, such as its solubility, biocompatibility, and bioactivity, which are required in various areas of pharmacy and medicine. The present work emphasizes the ongoing research and development in this field, suggesting that the further exploration of CS derivatives could lead to innovative solutions that benefit society. The physicochemical properties, biological activities, methods of preparation, advantages, limitations, intended application areas, and realized practical implementations of particular CS derivatives are summarized and discussed herein. Despite the numerous promising attributes of CS derivatives as reported in this paper, however, challenges like target selectivity, standardization (purity, chitosan structural variability), and cost-effectiveness still need addressing for widespread implementation, especially in drug delivery. Therefore, basic research studies still prevail in CS drug delivery systems. However, for specific applications such as wound healing and tissue engineering, implementations of CS derivatives in practice are found to be more frequent. To obtain a more complex view of the topic, information from the scientific papers reviewed is supplemented with information from actual patents and clinical studies. Both basic research advances and the most successful and important medical implementations of CS derivatives are discussed concerning further challenges and future perspectives.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia; (D.Ž.); (V.M.)
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia; (D.Ž.); (V.M.)
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Faculty of Pharmacy, Toxicological and Antidoping Center, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
17
|
Sawant ND, Tatke PA, Desai ND. Systematic Approach in the Development of Chitosan Functionalized Iloperidone Nanoemulsions for Transnasal Delivery, In Vitro and In Vivo Studies. AAPS PharmSciTech 2024; 25:247. [PMID: 39433704 DOI: 10.1208/s12249-024-02964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Iloperidone, a second-generation USFDA approved antipsychotic and BCS class II drug shows poor oral bioavailability of 28%. The present research deals with optimization of transnasal nanoemulsions of Iloperidone using Design Expert (Version 11) and further surface functionalization with chitosan for potentiating nose to brain delivery. Chitosan functionalized transnasal Iloperidone nanoemulsions were developed using oleic acid, charge inducer, Tween 80, Transcutol HP and chitosan using ultrasonication technique and evaluated. Droplet size, polydispersity index and zeta potential of Iloperidone nanoemulsions was found to be 173 ± 0.5 nm, 0.413 ± 0.2 and - 22.5 ± 0.1 mV while that of chitosan functionalized Iloperidone nanoemulsions was 146.4 ± 0.5 nm, 0.291 ± 0.02 and + 23.6 ± 0.3 mV respectively. Ninhydrin assay, TEM and FTIR studies confirmed surface functionalization of Iloperidone nanoemulsion droplets with chitosan. In vitro release of Iloperidone from nanoemulsions and chitosan functionalized nanoemulsions was 90.41 ± 2.1% and 72.02 ± 0.21% while ex vivo permeation of Iloperidone across goat nasal mucosa was 1270.58 ± 0.023 μg/cm2 and 1096.13 ± 0.043 μg/cm2 respectively at the end of 8 h. Studies in RPMI 2650 nasal and Neuro2A brain cell line lines indicated safety of chitosan functionalized transnasal Iloperidone nanoemulsions. Studies in Wistar rats showed increased cataleptic effects, reduced cognitive impairment and anxiety-related behaviour with greater brain accumulation indicating promising potential of this approach in nose to brain drug delivery.
Collapse
Affiliation(s)
- Niserga D Sawant
- C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai, Maharashtra, 400049, India
| | - Pratima A Tatke
- C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai, Maharashtra, 400049, India
| | - Namita D Desai
- C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai, Maharashtra, 400049, India.
| |
Collapse
|
18
|
Chen YW, He AC, Huang TY, Lai DH, Wang YP, Liu WW, Kuo WT, Hou HH, Cheng SJ, Lee CY, Chuang WC, Chang CC, Lee BS. Iontophoresis-Enhanced Buccal Delivery of Cisplatin-Encapsulated Chitosan Nanoparticles for Treating Oral Cancer in a Mouse Model. Int J Nanomedicine 2024; 19:10435-10453. [PMID: 39430308 PMCID: PMC11491087 DOI: 10.2147/ijn.s475742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Cisplatin is one of the most effective chemotherapeutic drugs used in oral cancer treatment, but systemic administration has side effects. The purpose of this study was to evaluate the effect of iontophoresis on the enhancement of cisplatin release from cisplatin-encapsulated chitosan nanoparticles. Methods The effect of different mass ratios of chitosan to tripolyphosphate (TPP) (5:1, 10:1, 15:1, 20:1) on the encapsulation efficiency of cisplatin was investigated. Uptake of cisplatin-encapsulated chitosan by cells was observed using a confocal laser scanning microscope. The cell viability at different cisplatin concentrations was examined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Three iontophoresis methods, namely constant-current chronopotentiometry (CCCP), cyclic chronopotentiometry (CCP), and differential pulse voltammetry (DPV), were used to enhance cisplatin release from cisplatin-encapsulated chitosan nanoparticles. In addition, mouse oral squamous cell carcinoma cell lines were implanted into the mouse oral mucosa to induce oral cancer. The effects of enhanced cisplatin release by CCCP, CCP, and DPV on tumor suppression in mice were evaluated. Tumors and lymph nodes were isolated for hematoxylin-eosin staining and immunohistochemistry staining including Ki-67 and pan CK after sacrifice. Inductively coupled plasma mass spectrometry was conducted to quantify the platinum content within the tumors. Results The results showed that nanoparticles with a mass ratio of 15:1 exhibited the highest cisplatin encapsulation efficiency (approximately 15.6%) and longest continued release (up to 35 days) in phosphate buffered saline with a release rate of 100%. Cellular uptake results suggested that chitosan nanoparticles were delivered to the cytoplasm via endocytosis. The results of the MTT assay revealed that the survival rate of cells decreased as the cisplatin concentration increased. The CCP (1 mA, on:off = 1 s: 1 s) and DPV (0-0.06 V) groups were the most effective in inhibiting tumor growth, and both groups exhibited the lowest percentage of Ki-67 positive and pan CK positive. Conclusion This study is the first to investigate and determine the efficacy of DPV in enhancing in vivo drug release from nanoparticles for the treatment of cancer in animals. The results suggest that the CCP and DPV methods have the potential to be combined with surgery for oral cancer treatment.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Ai-Chia He
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Tzu-Yun Huang
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - De-Hao Lai
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Yi-Ping Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Wei-Wen Liu
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Wei-Ting Kuo
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Hsin-Han Hou
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| | - Chen-Yi Lee
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Wei-Chun Chuang
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
| | - Che-Chen Chang
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Bor-Shiunn Lee
- Department of Dentistry, National Taiwan University Hospital, Taipei, 100229, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, 100229, Taiwan
| |
Collapse
|
19
|
Zhu M, Xiang D, Wang S, Chen Y, Liu X, Zhu R, Ye J, Wang S, Fu L. One-step functionalization of chitosan with rich sulfur and nitrogen adsorption sites for efficient recovery of silver ions from actual wastewater. Int J Biol Macromol 2024; 276:134000. [PMID: 39032878 DOI: 10.1016/j.ijbiomac.2024.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The recovery of silver ions from wastewater is of great importance due to their adverse environmental impact and significant economic value. This paper introduces a novel adsorbent (CS-AHMT) that can be easily synthesized via a one-step functionalization of chitosan with 4-Amino-3-hydrazino-1,2,4-triazol-5-thiol to efficiently recover silver ions from actual wastewater. CS-AHMT demonstrated superior adsorption performance, achieving an adsorption capacity of 241.4 mg·g-1 at pH 5 and 318 K, and the adsorption equilibrium was rapidly attained within 60 to 120 min. Kinetic and isotherm studies indicate that the adsorption process conforms to the pseudo-nth-order (PNO) and Sips models, suggesting a monolayer adsorption that incorporates both physical and chemical processes, with internal mass transfer being the primary rate-limiting step. Electrostatic and coordination interactions are primarily involved in the adsorption mechanism of silver ions on CS-AHMT, as further validated by density functional theory (DFT) calculations. The selectivity and practical applicability of CS-AHMT were confirmed in real wastewater containing high concentrations of competing ions. The findings underscore the potential of CS-AHMT as an effective adsorbent for silver ion recovery in wastewater treatment applications.
Collapse
Affiliation(s)
- Manying Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Dawei Xiang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Shuai Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Yuefeng Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Xiang Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Rong Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Jianqiang Ye
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Likang Fu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| |
Collapse
|
20
|
Piszko PJ, Piszko A, Kiryk S, Kiryk J, Horodniczy T, Struzik N, Wiśniewska K, Matys J, Dobrzyński M. Bone Regeneration Capabilities of Scaffolds Containing Chitosan and Nanometric Hydroxyapatite-Systematic Review Based on In Vivo Examinations. Biomimetics (Basel) 2024; 9:503. [PMID: 39194482 DOI: 10.3390/biomimetics9080503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
In this systematic review, the authors aimed to investigate the state of knowledge on in vivo evaluations of chitosan and nanometric hydroxyapatite (nanohydroxyapatite, nHAp) scaffolds for bone-tissue regeneration. In March 2024, an electronic search was systematically conducted across the PubMed, Cochrane, and Web of Science databases using the keywords (hydroxyapatite) AND (chitosan) AND (scaffold) AND (biomimetic). Methodologically, the systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol to the letter. Initially, a total of 375 studies were screened, and 164 duplicates were removed. A further 188 articles were excluded because they did not correspond to the predefined topics, and an additional 3 articles were eliminated due to the inability to obtain the full text. The final compilation included 20 studies. All publications indicated a potential beneficial effect of the scaffolds in in vivo bone defect repair. A beneficial effect of hydroxyapatite as a scaffold component was observed in 16 studies, including greater mechanical resistance, cellular differentiation, and enhanced bone damage regeneration. The addition of chitosan and apatite ceramics, which combined the strengths of both materials, had the potential to become a useful bone-tissue engineering material.
Collapse
Affiliation(s)
- Paweł J Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Aleksandra Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Sylwia Kiryk
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Jan Kiryk
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Tomasz Horodniczy
- Ortho.pl Centrum Zdrowego Uśmiechu, Buforowa 34, 52-131 Wrocław, Poland
| | - Natalia Struzik
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-368 Wrocław, Poland
| | - Kamila Wiśniewska
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Jacek Matys
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland
| |
Collapse
|
21
|
Sripetthong S, Nalinbenjapun S, Basit A, Ovatlarnporn C. Synthesis of Quarternized Chitosans and Their Potential Applications in the Solubility Enhancement of Indomethacin by Solid Dispersion. AAPS PharmSciTech 2024; 25:179. [PMID: 39107500 DOI: 10.1208/s12249-024-02893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 09/05/2024] Open
Abstract
This study was designed to synthesize quarternized chitosans (Q-CS) and explore their potential application in aqueous solubility enhancement of indomethacin (IND), a BCS class-II drug. Three different Q-CS; N,N,N-trimethyl chitosan chloride (TMC), N-(4-N'-methylpyridinylmethyl) chitosan chloride (mPyCS), and N-(4-N',N',N'-trimethylaminobenzyl) chitosan chloride (TmBzCS) were synthesized and characterized through various spectroscopic analysis. Q-CS-based solid-dispersion (SD) composites of IND (Q-CS-IND) were prepared using the spray-drying method and characterized through Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential-scanning calorimetry (DSC), and powder X-ray diffraction (P-XRD). The solubility and dissolution profiles of SD-composites of IND were evaluated and compared with physical mixtures (PM). The IND contents were quantified and validated in the composites using UV-Vis spectrophotometer. FTIR and NMR analysis showed the successful preparation of Q-CS. TMC was found with the highest yield (55.13%) and mPyCS with the highest degree of quaternization (DQ) (63.37%). FT-IR analysis of IND-Q-CS composites demonstrated chemical interaction between carbonyl moieties of IND with functional groups of Q-CS. DSC and PXRD analyses demonstrated the transformation of IND in SD composites from crystalline to an amorphous form. All the IND-Q-CS composites were observed with a significant increase in the solubility and dissolution rate of the drug (1996.0 µg/min) compared to PM (1306.8 µg/min), which is higher than pure IND (791.6 µg/min). The contents of IND in TMC, mPyCS, and TmBzCS composites were 97.69-99.92%, 97.66-100.25%, and 97.18-100.11% respectively. Overall, the findings encourage the applications of Q-CS derivatives for increasing IND water solubility and warrant further in vivo biological profiling of IND composites.
Collapse
Affiliation(s)
- Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Sirinporn Nalinbenjapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
22
|
Masimov R, Wasan EK. Chitosan non-particulate vaccine delivery systems. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12921. [PMID: 39114808 PMCID: PMC11303186 DOI: 10.3389/jpps.2024.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.
Collapse
Affiliation(s)
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
23
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
24
|
Băbuțan M, Botiz I. Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics (Basel) 2024; 9:396. [PMID: 39056837 PMCID: PMC11274445 DOI: 10.3390/biomimetics9070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Biopolymers exhibit a large variety of attractive properties including biocompatibility, flexibility, gelation ability, and low cost. Therefore, especially in more recent years, they have become highly suitable for a wider and wider range of applications stretching across several key sectors such as those related to food packaging, pharmaceutic, and medical industries, just to name a few. Moreover, biopolymers' properties are known to be strongly dependent on the molecular arrangements adopted by such chains at the nanoscale and microscale. Fortunately, these arrangements can be altered and eventually optimized through a plethora of more or less efficient polymer processing methods. Here, we used a space-confined solvent vapor annealing (C-SVA) method to subject various biopolymers to rich swelling in solvent vapors in order to favor their further crystallization or self-assembly, with the final aim of obtaining thin biopolymer films exhibiting more ordered chain conformations. The results obtained by atomic force microscopy revealed that while the gelatin biopolymer nucleated and then crystallized into granular compact structures, other biopolymers preferred to self-assemble into (curved) lamellar rows composed of spherical nanoparticles (glycogen and chitosan) or into more complex helix-resembling morphologies (phytagel). The capability of the C-SVA processing method to favor crystallization and to induce self-assembly in various biopolymeric species or even monomeric units further emphasizes its great potential in the future structuring of a variety of biological (macro)molecules.
Collapse
Affiliation(s)
- Mihai Băbuțan
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Ioan Botiz
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
| |
Collapse
|
25
|
Amamou O, Kefil S, Denis JP, Boubaker T, Cardinal S. Revisiting the Determination of the Degree of Deacetylation Using Potentiometric Titration: A New Equation for Modified Chitosan. Molecules 2024; 29:2962. [PMID: 38998916 PMCID: PMC11242947 DOI: 10.3390/molecules29132962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
Chitosan is a biopolymer that can be subjected to a variety of chemical modifications to generate new materials. The properties of modified chitosan are affected by its degree of deacetylation (DDA), which corresponds to the percentage of D-glucosamine monomers in its polymeric structure. Potentiometric titration is amongst the simplest, most readily available, and most cost-effective methods of determining the DDA. However, this method often suffers from a lack of precision, especially for modified chitosan resins. This is in large part because the equation used to calculate the DDA does not consider the molecular weight of the chemically modified monomeric units. In this paper, we introduce a new equation that is especially suited for modified chitosan bearing three different types of monomers. To test this equation, we prepared naphthalene-chitosan resins and subjected them to potentiometric titration. Our results show that our new equation, which is truer to the real structure of the polymeric chains, gives higher DDA values than those of the routinely used equations. These results show that the traditional equations underestimate the DDA of modified chitosan resins.
Collapse
Affiliation(s)
- Ons Amamou
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39), Faculté des Sciences, Université de Monastir, Monastir 5000, Tunisia
| | - Sarah Kefil
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Jean-Philippe Denis
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Taoufik Boubaker
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39), Faculté des Sciences, Université de Monastir, Monastir 5000, Tunisia
| | - Sébastien Cardinal
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
26
|
Amin H, Ibrahim IM, Hassanein EHM. Weaponizing chitosan and its derivatives in the battle against lung cancer. Int J Biol Macromol 2024; 272:132888. [PMID: 38844273 DOI: 10.1016/j.ijbiomac.2024.132888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Lung cancer (LC) is a crisis of catastrophic proportions. It is a global problem and urgently requires a solution. The classic chemo drugs are lagging behind as they lack selectivity, where their side effects are spilled all over the body, and these adverse effects would be terribly tragic for LC patients. Therefore, they could make a bad situation worse, inflict damage on normal cells, and inflict pain on patients. Since our confidence in classic drugs is eroding, chitosan can offer a major leap forward in LC therapy. It can provide the backbone and the vehicle that enable chemo drugs to penetrate the hard shell of LC. It could be functionalized in a variety of ways to deliver a deadly payload of toxins to kill the bad guys. It is implemented in formulation of polymeric NPs, lipidic NPs, nanocomposites, multiwalled carbon nanotubes, and phototherapeutic agents. This review is a pretty clear proof of chitosan's utility as a weapon in battling LC. Chitosan-based formulations could work effectively to kill LC cells. If a researcher is looking for a vehicle for medication for LC therapy, chitosan can be an appropriate choice.
Collapse
Affiliation(s)
- Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| |
Collapse
|
27
|
Wang C, Zhang X, Nadzir MM, Uyama H, Tang W, Fu D, Xie Z, Wang C, Wang J, Yang J. All-in-one bio-derived poly(L-lactic acid)-based composite with fire-resistance and smoke-suppression performance. Int J Biol Macromol 2024; 271:132610. [PMID: 38788876 DOI: 10.1016/j.ijbiomac.2024.132610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The flammability of bio-derived poly(L-lactic acid) (PLA) greatly limits its application and eco-friendly multifunctional fire-fighting PLA-based composites are highly desired. In this work, a fully bio-based modified CS (C-CS) and commercially available eco-friendly ammonium polyphosphate (APP) were used as a synergistic flame retardant agent (C-CS/APP) to investigate its effects on fire-proofing performance and diverse properties of the PLA. The PLA/5%C-CS/5%APP composite exhibited excellent fire-resistant performance with anti-droplet, smoke-suppression and self-extinguishing property, and its limited oxygen index enhanced by 37 % (compared with neat PLA). This composite reached the highest V-0 fire safety rating, and its peak of heat release rate and total smoke production reduced by 26.5 % and 68.3 %, respectively. In addition, the char residue yield after the cone calorimeter test increased by 46 times in the composite, indicating an outstanding char-forming capacity. The condensed phase flame retardancy played a crucial role on the fire-fighting of this composite, that is, significantly enhanced char residue (as a physical barrier) blocked the heat exchange and O2 entry, and further suppressed the combustion reaction. Additionally, the PLA-based composite showed outstanding UV-absorption property, good anti-bacterial effect, and increased hydrophilicity and crystallizability.
Collapse
Affiliation(s)
- Chen Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Xiaolei Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Masrina Mohd Nadzir
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wencong Tang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Dandan Fu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Zhanghua Xie
- Tianjin Nengpu Science and Technology Co., Ltd, Huading New Area 1-2-10, Haitai Inovation 6 Road, Huayuan Industrial Park, Tianjin 300384, China
| | - Chenwan Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China.
| | - Junsheng Wang
- Tianjin Fire Research Institute of the Ministry of Emergency Management, Tianjin 300381, China.
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Chandrasekaran M, Paramasivan M. Chitosan derivatives act as a bio-stimulants in plants: A review. Int J Biol Macromol 2024; 271:132720. [PMID: 38845257 DOI: 10.1016/j.ijbiomac.2024.132720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Chitosan has been considered an eco-friendly biopolymer. Chitosan is a natural polycationic linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine linked by β-1,4-glycosidic bonds. Chitosan has been used as an eco-friendly biopolymer for so many agricultural applications. Unfortunately, the relatively poor solubility and poor antimicrobial properties limit its widespread applications in agriculture sciences. Hence, chitosan derivatives are produced via various chemical approaches such as cross-linking, carboxylation, ionic binding, and so on. As an alternative to chemical fertilizers, chitosan derivatives, chitosan conjugates, nanostructures, semisynthetic derivatives, oligo mixes, chitosan nanoparticles, and chitosan nano-carriers are synthesized for various agricultural applications. Its several chemical and physical properties such as biocompatibility, biodegradability, permeability, cost-effectiveness, low toxicity, and environmental friendliness make it useful for many agricultural applications. Hence, popularizing its use as an elicitor molecule for different host-pathogen interaction studies. Thus, the versatile and plethora of chitosan derivatives are gaining momentum in agricultural sciences. Bio-stimulant properties and multifunctional benefits are associated with further prospective research. Therefore, in the present review, we decipher the potential pros and cons of chitosan derivatives in plants.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, 209, Neundong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | | |
Collapse
|
29
|
Rykowska I, Michałkiewicz O, Nowak I, Nowak R. Drug-Modified Contact Lenses-Properties, Release Kinetics, and Stability of Active Substances with Particular Emphasis on Cyclosporine A: A Review. Molecules 2024; 29:2609. [PMID: 38893485 PMCID: PMC11173495 DOI: 10.3390/molecules29112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The following review focuses on the manufacturing and parameterizing of ocular drug delivery systems (DDS) using polymeric materials to create soft contact lenses. It discusses the types of drugs embedded into contact lenses, the various polymeric materials used in their production, methods for assessing the mechanical properties of polymers, and techniques for studying drug release kinetics. The article also explores strategies for investigating the stability of active substances released from contact lenses. It specifically emphasizes the production of soft contact lenses modified with Cyclosporine A (CyA) for the topical treatment of specific ocular conditions. The review pays attention to methods for monitoring the stability of Cyclosporine A within the discussed DDS, as well as investigating the influence of polymer matrix type on the stability and release of CyA.
Collapse
Affiliation(s)
- Iwona Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Ola Michałkiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Iwona Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Rafał Nowak
- Department of Ophthalmology, Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland;
| |
Collapse
|
30
|
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers (Basel) 2024; 16:1351. [PMID: 38794545 PMCID: PMC11125164 DOI: 10.3390/polym16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia;
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
31
|
Ma Y, Zhou X, Mo Z, Zhou Q, Hui B, Cai Z, Wang X, Li H, Tang S. Quaternary ammonium carboxymethyl chitosan composite hydrogel with efficient antibacterial and antioxidant properties for promoting wound healing. Int J Biol Macromol 2024; 268:131871. [PMID: 38677691 DOI: 10.1016/j.ijbiomac.2024.131871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/29/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Multifunctional hydrogels have been developed to meet the various requirements of wound healing. Herein, an innovative hydrogel (QCMC-HA-PEG) was formed through the Schiff base reaction, composed of quaternary ammonium-modified carboxymethyl chitosan (QCMC), hyaluronic acid (HA), and 8-arms Polyethylene Glycol aldehyde (8-ARM-PEG-CHO). The resulting hydrogels exhibited good mechanical and adhesive properties with improved antibacterial efficacy against both Gram-positive and Gram-negative bacteria compared to CMC hydrogels. QCMC-HA-PEG hydrogels demonstrated remarkable adhesive ability in lap-shear test. Furthermore, the incorporation of MnO2 nanosheets into the hydrogel significantly enhanced its reactive oxygen species (ROS) scavenging and oxygen generation capabilities. Finally, experimental results from a full-thickness skin wound model revealed that the QCMC-HA-PEG@MnO2 hydrogel promoted skin epithelization, collagen deposition, and inflammatory regulation significantly accelerated the wound healing process. Therefore, QCMC-HA-PEG@MnO2 hydrogel could be a promising wound dressing to promote wound healing.
Collapse
Affiliation(s)
- Yahao Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xujie Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhendong Mo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bingyu Hui
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhuangzhuang Cai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaoying Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Hang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Shunqing Tang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
32
|
Haldhar R, Raorane CJ, Mishra VK, Tuzun B, Berdimurodov E, Kim SC. Surface adsorption and corrosion resistance performance of modified chitosan: Gravimetric, electrochemical, and computational studies. Int J Biol Macromol 2024; 264:130769. [PMID: 38467215 DOI: 10.1016/j.ijbiomac.2024.130769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Two novel chitosan derivatives (water soluble and acid soluble) modified with thiocarbohydrazide were produced by a quick and easy technique using formaldehyde as links. The novel compounds were synthesized and then characterized by thermogravimetric analysis, elemental analysis, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. Their surface morphologies were examined using scanning electron microscopy. These chitosan derivatives could produce pH-dependent gels. The behavior of mild steel in 5 % acetic acid, including both inhibitors at various concentrations, was investigated using gravimetric and electrochemical experiments. According to the early findings, both compounds (TCFACN and TCFWCN) functioned as mixed-type metal corrosion inhibitors. Both inhibitors showed their best corrosion inhibition efficiency at 80 mg L-1. TCFACN and TCFWCN, showed approximately 92 % and 94 % corrosion inhibition, respectively, at an optimal concentration of 80 mg L-1, according to electrochemical analysis. In the corrosion test, the water contact angle of the polished MS sample at 87.90 °C was reduced to 51 °C. The water contact angles for MS inhibited by TCFACN and TCFWCN in the same electrolyte were greater, measuring 78.10 °C and 93.10 °C, respectively. The theoretical results also support the experimental findings.
Collapse
Affiliation(s)
- Rajesh Haldhar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | - V K Mishra
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Burak Tuzun
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Elyor Berdimurodov
- Chemical & Materials Engineering, New Uzbekistan University, Movarounnahr Street 1, Tashkent 100000, Uzbekistan; University of Tashkent for Applied Sciences, Str. Gavhar 1, Tashkent 100149, Uzbekistan; Faculty of Chemistry, National University of Uzbekistan, Tashkent 100034, Uzbekistan
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
33
|
Mondal MIH, Chandra Chakraborty S, Rahman MS, Marjuban SMH, Ahmed F, Zhou JL, Ahmed MB, Zargar M. Adsorbents from rice husk and shrimp shell for effective removal of heavy metals and reactive dyes in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123637. [PMID: 38408507 DOI: 10.1016/j.envpol.2024.123637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Widespread contamination by heavy metals (HMs) and dyes poses a major health risk to people and ecosystems requiring effective treatment. In this work, rice husk (RH) and shrimp shells were extracted to obtain amorphous silica and chitosan, respectively, which were utilized to produce nano-chitosan-coated silica (NCCS). To ensure the stability of the nanoparticles, silica was freeze-dried after being coated with nano-chitosan. Functional groups (-NH2, -OH, P]O) from chitosan nanoparticles (CNPs) were introduced to the surface of silica during this process. Dyes such as brilliant green (BG), methylene blue (MB) and reactive brown (RB) as well as HMs (Cr6+, Pb2+, Cd2+, Ni2+) were removed by adsorbents. CNPs showed the highest adsorption capacity for RB (59.52 mg/g) among dyes and Cr6+ (42.55 mg/g) among HMs. CNPs showed the highest adsorption capacity for HMs among different adsorbents. Although NCCS and CNPs showed similar adsorption capabilities for HMs and dyes, NCCS showed the best stability. The adsorption performance decreased as RB > Cr6+ > MB > BG > Pb2+ > Cd2+ > Ni2+. The adsorption reactions followed both pseudo-first-order and second-order kinetics, and was spontaneous from thermodynamic analysis. In summary, the waste-derived adsorbents demonstrated excellent potential for removing HMs and dyes from water, while supporting effective management solid waste.
Collapse
Affiliation(s)
- Md Ibrahim H Mondal
- Polymer and Textile Research Lab, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Shovra Chandra Chakraborty
- Polymer and Textile Research Lab, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md Saifur Rahman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | - Firoz Ahmed
- Polymer and Textile Research Lab, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh; BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi 6206, Bangladesh
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia.
| | - Mohammad Boshir Ahmed
- Institute for Sustainability, Energy and Resources, School of Chemical Engineering, The University of Adelaide, North Terrace Campus, Adelaide 5005, Australia; School of Engineering, Edith Cowan University, 6027 Joondalup, WA, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 6027 Joondalup, WA, Australia
| |
Collapse
|
34
|
Almajidi YQ, Abdullaev S, Haydar S, Al-Hetty HRAK, Ahmad I, Shafik SS, Alawadi AH, Alsalamy A, Bisht YS, Abbas HA. Magnetic nanocomposite based on chitosan-gelatin hydrogel embedded with copper oxide nanoparticles: A novel and promising catalyst for the synthesis of polyhydroquinoline derivatives. Int J Biol Macromol 2024; 263:130211. [PMID: 38423902 DOI: 10.1016/j.ijbiomac.2024.130211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Nanocatalysts are vital in several domains, such as chemical processes, energy generation, energy preservation, and environmental pollution mitigation. An experimental study was conducted at room temperature to evaluate the catalytic activity of the new gelatin-chitosan hydrogel/CuO/Fe3O4 nanocomposite in the asymmetric Hantzsch reaction. All components of the nanocomposite exhibit a synergistic effect as a Lewis acid, promote the reaction. Dimedone, ammonium acetate, ethyl acetoacetate, and other substituted aldehydes were used to synthesize diverse polyhydroquinoline derivatives. The nanocomposite exhibited exceptional efficacy (over 90 %) and durability (retaining 80 % of its original capacity after 5 cycles) as a catalyst in the one-pot asymmetric synthesis of polyhydroquinoline derivatives. Also, turnover numbers (TON) and turnover frequency (TOF) have been checked for catalyst (TON and TOF = 50,261 and 100,524 h-1) and products. The experiment demonstrated several benefits, such as exceptional product efficacy, rapid reaction time, functioning at ambient temperature without specific requirements, and effortless separation by the use of an external magnet after the reaction is finished. The results suggest the development of a magnetic nanocatalyst with exceptional performance. The composition of the Ge-CS hydrogel/CuO/Fe3O4 nanocomposite was thoroughly analyzed using several methods including FT-IR, XRD, FE-SEM, EDX, VSM, BET, and TGA. These analyses yielded useful information into the composition and characteristics of the nanocomposite, hence further enhancing the knowledge of its possible uses.
Collapse
Affiliation(s)
- Yasir Qasim Almajidi
- Baghdad College of Medical Sciences-department of pharmacy (pharmaceutics), Baghdad, Iraq
| | - Sherzod Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan.
| | - Sami Haydar
- Faculty of Mechanics and Design, Moscow Automobile and Road Construction State Technical University, Moscow, Russia; Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Hussein Riyadh Abdul Kareem Al-Hetty
- Center Of Desert, University Of Anbar, Ramadi, Anbar, Iraq; Department of Biology, College of Education for Pure Sciences, University Of Anbar, Ramadi 31001, Anbar, Iraq.
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Yashwant Singh Bisht
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Hussein Abdullah Abbas
- College of Technical Engineering, National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
35
|
Pawariya V, De S, Dutta J. Synthesis and characterization of citric acid-modified chitosan Schiff base with enhanced antibacterial properties for the elimination of Bismarck Brown R and Rhodamine B dyes from wastewater. Int J Biol Macromol 2024; 264:130664. [PMID: 38453113 DOI: 10.1016/j.ijbiomac.2024.130664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
In this study, a new chitosan Schiff base with surface modification using citric acid was synthesized for efficient removal of pernicious dyes, namely Bismarck Brown R (BBR) and Rhodamine B (RhB), from wastewater. The physicochemical properties of the modified chitosan Schiff base were comprehensively investigated. Adsorption studies demonstrated that BBR adsorption occurred through monolayer formation, while RhB adsorption proceeded via multilayer formation on the heterogeneous surface. The synthesized adsorbent exhibited exceptional dye removal efficiency, with a Langmuir saturation capacity of 348 ± 11.0 mg.g-1 for BBR and 145 ± 18.44 mg.g-1 for RhB. Isotherm data fitting revealed consistency with the Langmuir isotherm model for BBR and the Freundlich isotherm model for RhB. Notably, the modified chitosan Schiff base showcased enhanced antibacterial properties, effectively inhibiting both gram-positive and gram-negative bacteria. The study's findings underscore the potential of this novel chitosan-based Schiff base as an efficient adsorbent for the removal of various dyes from wastewater, emphasizing its versatility and practical applicability in water treatment processes.
Collapse
Affiliation(s)
- Varun Pawariya
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon-122413, Haryana, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Silchar-788010, Assam, India
| | - Joydeep Dutta
- Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurgaon-122413, Haryana, India.
| |
Collapse
|
36
|
Hameed H, Khan MA, Paiva-Santos AC, Ereej N, Faheem S. Chitin: A versatile biopolymer-based functional therapy for cartilage regeneration. Int J Biol Macromol 2024; 265:131120. [PMID: 38527680 DOI: 10.1016/j.ijbiomac.2024.131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Chitin is the second most abundant biopolymer and its inherent biological characteristics make it ideal to use for tissue engineering. For many decades, its properties like non-toxicity, abundant availability, ease of modification, biodegradability, biocompatibility, and anti-microbial activity have made chitin an ideal biopolymer for drug delivery. Research studies have also shown many potential benefits of chitin in the formulation of functional therapy for cartilage regeneration. Chitin and its derivatives can be processed into 2D/3D scaffolds, hydrogels, films, exosomes, and nano-fibers, which make it a versatile and functional biopolymer in tissue engineering. Chitin is a biomimetic polymer that provides targeted delivery of mesenchymal stem cells, especially of chondrocytes at the injected donor sites to accelerate regeneration by enhancing cell proliferation and differentiation. Due to this property, chitin is considered an interesting polymer that has a high potential to provide targeted therapy in the regeneration of cartilage. Our paper presents an overview of the method of extraction, structure, properties, and functional role of this versatile biopolymer in tissue engineering, especially cartilage regeneration.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| |
Collapse
|
37
|
Asad K, Shams S, Ibáñez-Arancibia E, De los Ríos-Escalante PR, Badshah F, Ahmad F, Khan MS, Khan A. Anti-Inflammatory, Antipyretic, and Analgesic Potential of Chitin and Chitosan Derived from Cockroaches ( Periplaneta americana) and Termites. J Funct Biomater 2024; 15:80. [PMID: 38535273 PMCID: PMC10970791 DOI: 10.3390/jfb15030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 09/28/2024] Open
Abstract
The chitin and chitosan biopolymers are extremely valuable because of their numerous industrial and pharmacological uses. Chitin and chitosan were extracted from the exoskeleton of Periplaneta americana (cockroaches) and termites using various acid and alkali techniques. The extraction process involves an initial demineralization step, during which integument dry powder was subjected to 500 mL (2.07 mol/L) of concentrated HCl at 100 degrees Celsius for 30 min, followed by meticulous rinsing with distilled water to restore the pH to its baseline. Deproteinization was conducted at 80 degrees Celsius using 500 mL (1 mol/L) of NaOH solution, which was repeated for 24 h. A total of 250 mL (0.06 mol/L) of NaOH was added at 100 degrees Celsius for 4 h to obtain chitosan, followed by extensive washing and subsequent drying. FTIR analysis was used to identify the functional groups in Periplaneta americana and termites. The crystallinity of these biopolymers, which have a face-centered cubic structure, was determined by X-ray diffraction analysis. This study assessed the analgesic properties of chitin and chitosan via an acetic-acid-induced writhing test in mice, revealing a significant reduction in writhing behavior following the chitin and chitosan extract. Notably, chitin exhibits the highest degree of analgesic activity compared to chitosan. Both chitin and chitosan show anti-inflammatory effects, with chitosan absorbing proton ions at sites of inflammation, while chitin effectively inhibits ear edema and elicits an analgesic response in mice. Furthermore, the present study revealed antipyretic activity, with termite chitin demonstrating the most significant effect at a concentration of 500 µL/mL, followed by chitosan and chitin at 100 µL/mL. These findings indicate the potential of using chitin and chitosan derived from termites and Periplaneta americana as natural anti-inflammatory compounds, implying prospective uses in anti-inflammatory, antipyretic, and analgesic capabilities.
Collapse
Affiliation(s)
- Khushbakht Asad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan (A.K.)
| | - Sumaira Shams
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan (A.K.)
| | - Eliana Ibáñez-Arancibia
- PhD Program in Sciences Mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco 4780000, Chile
- Laboratory of Engineering, Biotechnology and Applied Biochemistry—LIBBA, Department of Chemical Engineering, Faculty of Engineering and Science, La Frontera University, Temuco 4780000, Chile
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile;
| | - Patricio R. De los Ríos-Escalante
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile;
- Nucleus of Environmental Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco 4780000, Chile
| | - Farhad Badshah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan (A.K.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Farooq Ahmad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan (A.K.)
| | - Muhammad Salman Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan (A.K.)
| | - Asar Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan (A.K.)
| |
Collapse
|
38
|
Gholap AD, Kapare HS, Pagar S, Kamandar P, Bhowmik D, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Rojekar S, Hatvate N, Mohanto S. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements. Int J Biol Macromol 2024; 260:129581. [PMID: 38266848 DOI: 10.1016/j.ijbiomac.2024.129581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
One of the critical steps in gene therapy is the successful delivery of the genes. Immunogenicity and toxicity are major issues for viral gene delivery systems. Thus, non-viral vectors are explored. A cationic polysaccharide like chitosan could be used as a nonviral gene delivery vector owing to its significant interaction with negatively charged nucleic acid and biomembrane, providing effective cellular uptake. However, the native chitosan has issues of targetability, unpacking ability, and solubility along with poor buffer capability, hence requiring modifications for effective use in gene delivery. Modified chitosan has shown that the "proton sponge effect" involved in buffering the endosomal pH results in osmotic swelling owing to the accumulation of a greater amount of proton and chloride along with water. The major challenges include limited exploration of chitosan as a gene carrier, the availability of high-purity chitosan for toxicity reduction, and its immunogenicity. The genetic drugs are in their infancy phase and require further exploration for effective delivery of nucleic acid molecules as FDA-approved marketed formulations soon.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Sakshi Pagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pallavi Kamandar
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Deblina Bhowmik
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru, Karnataka 575018, India
| |
Collapse
|
39
|
Simin A, Ghaffarifar F, Delavari H, Dayer MS, Hamidianfar N, Baghkhani F. In vitro and In vivo Effects of Ethanolic Extract of Fumaria parviflora Lam. Embedded in Chitosan Nanoparticles Against Leishmania major. Acta Parasitol 2024; 69:628-638. [PMID: 38294710 DOI: 10.1007/s11686-023-00784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Fumaria has been traditionally used to treat skin damages due to anti-inflammatory properties. In the present study, we evaluated the effect of the ethanolic extract of Fumaria parviflora Lam. (F. parviflora) against Leishmania major (L. major) using chitosan biopolymer drug delivery system both In vitro and In vivo models. MATERIALS AND METHODS The ethanolic extract of F. parviflora was analyzed by HPLC to determine its active ingredients content. The extract was then loaded on chitosan nanoparticles (CNPs). The parasite was treated with various concentrations of the ethanolic extract, CNPs and CNPs loaded with F. parviflora extract (CNPs@ F. parviflora). The size of lesions of treated mice were measured on a weekly basis. The parasite burden was evaluated 8 weeks after treatment. RESULTS The HPLC analysis showed the presence of Fumaric acid at a high concentration. The percentage of the drug released from CNPs@ F. parviflora within 24 and 72 h were 65% and 90% respectively. The results showed that F. parviflora extract and CNPs@ F. parviflora caused 84% and 96% growth inhibition of L. major promastigotes as revealed by Neubauer chamber counting and MTT test respectively. The IC50 values of F. parviflora extract and CNPs@ F. parviflora were 450 and 68.4 µg/ml respectively. In amastigote assay, the best results showed in CNPs@ F. parviflora that only 2% of macrophages were infected with amastigotes. In vivo experiments for mice treated with F. parviflora and CNPs @ F. parviflora in comparison to control group showed a significant reduction (P < 0.05) in the mean diameter of the lesions (2.3 and 1.72 mm and 9.91 mm respectively). CONCLUSION The ethanolic extract of F. parviflora both as standalone and loaded in CNPs showed promising inhibitory effects against L. major both upon In vitro and In vivo experimentation as well as therapeutic effects for wound healing in infected mice.
Collapse
Affiliation(s)
- Azar Simin
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran
| | - Fatemeh Ghaffarifar
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran.
| | - Hamid Delavari
- Department of Materials Engineering, Nanomaterials Group, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Saaid Dayer
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran
| | - Najla Hamidianfar
- Department of Natural Resources and Environmental Sciences, Faculty of Agriculture and Natural Resources, Islamic Azad University Khorasgan (Isfahan) Branch, Isfahan, Islamic Republic of Iran
| | - Farzaneh Baghkhani
- Parasitology and Entomology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran
| |
Collapse
|
40
|
M R K, Panicker LR, Narayan R, Kotagiri YG. Biopolymer-protected graphene-Fe 3O 4 nanocomposite based wearable microneedle sensor: toward real-time continuous monitoring of dopamine. RSC Adv 2024; 14:7131-7141. [PMID: 38414985 PMCID: PMC10898425 DOI: 10.1039/d4ra00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Neurological disorders can occur in the human body as a result of nano-level variations in the neurotransmitter levels. Patients affected by neuropsychiatric disorders, that are chronic require continuous monitoring of these neurotransmitter levels for effective disease management. The current work focus on developing a highly sensitive and personalized sensor for continuous monitoring of dopamine. Here we propose a wearable microneedle-based electrochemical sensor, to continuously monitor dopamine in interstitial fluid (ISF). A chitosan-protected hybrid nanomaterial Fe3O4-GO composite has been used as a chemical recognition element protected by Nafion antifouling coating layer. The morphological and physiochemical characterizations of the nanocomposite were carried out with XRD, XPS, FESEM, EDAX and FT-IR. The principle of the developed sensor relies on orthogonal detection of dopamine with square wave voltammetry and chronoamperometric techniques. The microneedle sensor array exhibited an attractive analytical performance toward detecting dopamine in phosphate buffer and artificial ISF. The limit of detection (LOD) of the developed sensor was observed to be low, 90 nM in square wave voltammetry and 0.6 μM in chronoamperometric analysis. The practical applicability of the microneedle sensor array has been demonstrated on a skin-mimicking phantom gel model. The microneedle sensor also exhibited good long-term storage stability, reproducibility, and sensitivity. All of these promising results suggest that the proposed microneedle sensor array could be reliable for the continuous monitoring of dopamine.
Collapse
Affiliation(s)
- Keerthanaa M R
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Roger Narayan
- Department of Biomedical Engineering, NC State University Raleigh NC 27695 USA
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| |
Collapse
|
41
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
42
|
MohammadAlizadeh A, Elmi F. Flame retardant and superoleophilic polydopamine/chitosan-graft (g)-octanal coated polyurethane foam for separation oil/water mixtures. Int J Biol Macromol 2024; 259:129237. [PMID: 38191114 DOI: 10.1016/j.ijbiomac.2024.129237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/11/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The discharge of crude petroleum oils and their derivatives poses serious environmental challenges, which can be mitigated through oil/water separation. In this study, polyurethane (PU)/polydopamine (PDA)/chitosan-graft (g)-octanal foam was prepared by immersing of PU foam in PDA and chitosan-g-octanal solutions. The fabricated PU foam exhibited thermal stability, flame retardancy, and hydrophobicity/superoleophilicity. The coated PU foam can selectively absorb heavy and light oils from dynamic and static oil/water mixtures. The maximum sorption capacity for olive oil was found to be as high as 41.48 g/g. PU/PDA/chitosan-g-octanal foam also demonstrated excellent flame retardancy and the ability to quickly extinguish fire, as confirmed by the limiting oxygen index (LOI) test.
Collapse
Affiliation(s)
- AmirHossein MohammadAlizadeh
- Department of Marine Chemistry, Faculty of Marine & Environmental Sciences, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Elmi
- Department of Marine Chemistry, Faculty of Marine & Environmental Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
43
|
Yang JT, Wu D, Li J, Zhao C, Zhu L, Xu C, Xu N. An Injectable Composite Hydrogel of Verteporfin-Bonded Carboxymethyl Chitosan and Oxidized Sodium Alginate Facilitates Scarless Full-Thickness Skin Regeneration. Macromol Biosci 2024; 24:e2300165. [PMID: 37681479 DOI: 10.1002/mabi.202300165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/22/2023] [Indexed: 09/09/2023]
Abstract
Full-thickness skin defect has always been a major challenge in clinics due to fibrous hyperplasia in the repair process. Hydrogel composite dressings loaded with anti-fibrotic drugs have been considered as a promising strategy for scarless skin regeneration. In this work, a hydrogel composite (VP-CMCS-OSA) of carboxymethyl chitosan (CMCS) and oxidized sodium alginate (OSA), with loading anti-fibrotic drug verteporfin (VP), is developed based on two-step chemical reactions. Verteporfin is bonded with carboxymethyl chitosan through EDC/NHS treatment to form VP-CMCS, and then VP-CMCS is crosslinked with oxidized sodium alginate by Schiff base reaction to form VP-CMCS-OSA hydrogel. The characterization by SEM, FTIR, and UV-Vis shows the microstructure and chemical bonding of VP-CMCS-OSA. VP-CMCS-OSA hydrogel demonstrates the properties of high tissue adhesion, strong self-healing, and tensile ability. In the full-thickness skin defect model, the VP-CMCS-OSA composite hydrogels hasten wound healing due to the synergistic effects of hydrogels and verteporfin administration. The histological examination reveals the regular collagen arrangement and more skin appendages after VP-CMCS-OSA composite hydrogel treatment, indicating the full-thickness skin regeneration without potential scar formation. The outcomes suggest that the verteporfin-loaded composite hydrogel could be a potential method for scarless skin regeneration.
Collapse
Affiliation(s)
- Jiang-Tao Yang
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Dingwei Wu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jianping Li
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Chenchen Zhao
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lian Zhu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chengchen Xu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Na Xu
- College of Life Sciences and Health, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
44
|
Nkoh JN, Guan P, Li JY, Xu RK. Effect of carbon and nitrogen mineralization of chitosan and its composites with hematite/gibbsite on soil acidification of an Ultisol induced by urea. CHEMOSPHERE 2024; 349:140896. [PMID: 38070606 DOI: 10.1016/j.chemosphere.2023.140896] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/26/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Chitosan is a biodegradable polymer with a vast range of applications. Along with its metal composites, chitosan has been applied in the remediation of polluted soils as well as a biofertilizer. However, little attention has been given to the degradation of chitosan composites in soil and how they affect soil respiration rate and other physicochemical parameters. In this study, the degradation of chitosan and its composites with gibbsite and hematite in an acidic Ultisol and the effect on urea (200 mg N kg-1) transformation were investigated in a 70-d incubation experiment. The results showed that the change trends of soil pH, N forms, and CO2 emissions were similar for chitosan and its composites when applied at rates <5 g C kg-1. At a rate of 5 g C kg-1, the C and N mineralization trends suggested that the chitosan-gibbsite composite was more stable in soil and this stability was owed to the formation of a new chemical bond (CH-N-Al-Gibb) as observed in the Fourier-transform infrared spectrum at 1644 cm-1. The mineralization of the added materials significantly increased soil pH and decreased soil exchangeable acidity (P < 0.01). This played an important role in decreasing the amount of H+ produced during urea transformation in the soil. The soil's initial pH was an important factor influencing C and N mineralization trends. For instance, increasing the initial soil pH significantly increased the nitrification rate and chitosan decomposition trend (P < 0.01) and thus, the contribution of chitosan and its composites to increase soil pH and inhibit soil acidification during urea transformation was significantly decreased (P < 0.01). These findings suggest that to achieve long-term effects of chitosan in soils, applying it as a chitosan-gibbsite complex is a better option.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon; Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Guan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Arvand MP, Moghimi A, Salehi N. A novel removal of Ni 2+ ions from water solutions using dispersive solid-phase extraction method with nano Fe 3O 4/chitosan-acrylamide hydrogel. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:136. [PMID: 38200248 DOI: 10.1007/s10661-023-12149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/18/2023] [Indexed: 01/12/2024]
Abstract
The effluent release containing heavy metals as Ni2+ ions has drastic risks to both the natural environment and human health. In this research, the nano Fe3O4/chitosan-acrylamide hydrogel was prepared as a novel nano sorbent for dispersive solid-phase extraction of Ni2+ ions and applied to the water sample solution. The pH, amount and type of elution solvent, the extraction time, etc. were optimized to improve the efficiency of the proposed method. Analytical parameters such as concentration factor and relative standard deviation (%) were achieved as 33.3 and 1.8%, respectively. The capacity in equilibrium sorption was calculated at 22.54 mg g-1. Furthermore, to estimate the adsorption mode, Freundlich, Langmuir, and Temkin models were fitted with experimental isotherm data. Besides, to check the basic process of the metal adsorption mechanism, pseudo-first-order, pseudo-second-order, and Roginsky-Zeldovich models were investigated and the results were fitted with the pseudo-second-order model. The value of change in entropy (⊿S) obtained is -65.24 (J(mol K)-1). Negative values of change in enthalpy, ⊿H in (kJ mol-1) is -24.45 (kJ mol-1) which indicates both physical and chemical adsorptions involved in the process of adsorption. Finally, the nano Fe3O4/chitosan-acrylamide hydrogel exhibited high performance to remove the Ni2+ ions from water sample solution.
Collapse
Affiliation(s)
| | - Ali Moghimi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Narges Salehi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
46
|
Bekchanov D, Mukhamediev M, Yarmanov S, Lieberzeit P, Mujahid A. Functionalizing natural polymers to develop green adsorbents for wastewater treatment applications. Carbohydr Polym 2024; 323:121397. [PMID: 37940289 DOI: 10.1016/j.carbpol.2023.121397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
The present study provides an overview of scientific developments made in the last decade in the field of green adsorbents focusing on the modifications in natural polymers and their applications such as, wastewater treatment, and ion exchange. For this purpose, an introduction to the various methods of modifying natural polymers is first given, and then the properties, application, and future priorities of green adsorbents are also discussed. Methods of modification of natural polymers under homogeneous and heterogeneous conditions using modifiers with different properties are also described. Various methods for modifying natural polymers and the use of the obtained green adsorbents are reviewed. A comparison of the sorption properties of green adsorbents based on natural polymers and other adsorbents used in industry has also been carried out. With the participation of green adsorbents based on natural polymers, the properties of treated wastewaters having toxic metal ions, organic dyes, petroleum products, and other harmful compounds was analyzed. Future perspectives on green adsorbents based on natural polymers are as also highlighted.
Collapse
Affiliation(s)
- Davronbek Bekchanov
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Mukhtar Mukhamediev
- Department of Polymer Chemistry, Faculty of Chemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | | | - Peter Lieberzeit
- Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Adnan Mujahid
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
47
|
Sinad KVG, Ebubechukwu RC, Chu CK. Recent advances in double network hydrogels based on naturally-derived polymers: synthesis, properties, and biological applications. J Mater Chem B 2023; 11:11460-11482. [PMID: 38047404 DOI: 10.1039/d3tb00773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hydrogels composed of naturally-derived biopolymers have garnered significant research interest due to the bioavailability and biocompatibility of starting materials. However, translating these advantages to practical use is challenged by limitations of mechanical properties and stability of the resulting materials. The development of double network (DN) hydrogels has led to greatly enhanced mechanical properties and shows promise toward broadening the applications of conventional synthetic or natural hydrogels. This review highlights recently developed protein-based and polysaccharide-based DN hydrogels. For each biopolymer, we focus on a subset of DN hydrogels centered around a theme related to synthetic design or applications. Network structures and crosslinking mechanisms that endow enhanced mechanical properties and performance to the materials are discussed. Important applications, including tissue engineering, drug delivery, bioadhesives, wound healing, and wearable sensors, that arise from the inherent properties of the natural polymer or its combination with other materials are also emphasized. Finally, we discuss ongoing challenges to stimulate the discovery of new design principles for the future of DN hydrogels based on naturally-derived polymers for biological applications.
Collapse
Affiliation(s)
| | - Ruth C Ebubechukwu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| | - Crystal K Chu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
48
|
Jia X, Dou Z, Zhang Y, Li F, Xing B, Hu Z, Li X, Liu Z, Yang W, Liu Z. Smart Responsive and Controlled-Release Hydrogels for Chronic Wound Treatment. Pharmaceutics 2023; 15:2735. [PMID: 38140076 PMCID: PMC10747460 DOI: 10.3390/pharmaceutics15122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic wounds are a major health challenge that require new treatment strategies. Hydrogels are promising drug delivery systems for chronic wound healing because of their biocompatibility, hydration, and flexibility. However, conventional hydrogels cannot adapt to the dynamic and complex wound environment, which involves low pH, high levels of reactive oxygen species, and specific enzyme expression. Therefore, smart responsive hydrogels that can sense and respond to these stimuli are needed. Crucially, smart responsive hydrogels can modulate drug release and eliminate pathological factors by changing their properties or structures in response to internal or external stimuli, such as pH, enzymes, light, and electricity. These stimuli can also be used to trigger antibacterial responses, angiogenesis, and cell proliferation to enhance wound healing. In this review, we introduce the synthesis and principles of smart responsive hydrogels, describe their design and applications for chronic wound healing, and discuss their future development directions. We hope that this review will inspire the development of smart responsive hydrogels for chronic wound healing.
Collapse
Affiliation(s)
- Xintao Jia
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zixuan Dou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Fanqin Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zheming Hu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhongyan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Wenzhuo Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.J.); (Z.D.); (Y.Z.); (B.X.); (Z.H.); (X.L.); (Z.L.); (W.Y.)
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
49
|
Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. ENVIRONMENTAL RESEARCH 2023; 235:116580. [PMID: 37474094 DOI: 10.1016/j.envres.2023.116580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kheng Lim Goh
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; Newcastle University in Singapore, 567739, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohit Sharma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
50
|
Wang S, Song S, Yang X, Xiong Z, Luo C, Wei D, Wang H, Liu L, Yang X, Li S, Xia Y. Method for Simulating the Anti-Damage Performance of Consolidation Soil Balls at the Roots of Seedlings during Transportation Using Consolidated Soil Columns. Polymers (Basel) 2023; 15:4083. [PMID: 37896327 PMCID: PMC10610797 DOI: 10.3390/polym15204083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
In the process of landscaping or afforestation in challenging terrain, in order to improve the survival rate of transplanted seedlings, it is necessary to transplant seedlings with a mother soil ball attached. During transportation, the soil ball at the root of the seedlings is very susceptible to breakage due to compression, bumps, and collisions. In order to ensure the integrity of the soil ball of the transplanted seedlings and improve the survival rate of seedlings, a method of chemically enhancing the soil surface strength was employed. Specifically, a polymer-based soil consolidating agent was used to solidify the root balls of the seedlings. To examine the abrasion resistance performance of the soil balls formed by consolidating the surface with polymer adhesive during the transportation process, we utilized a polymer-based consolidating agent to prepare test soil columns and developed a method to simulate the damage resistance performance of seedling root balls during transportation using these soil columns. The method primarily encompasses two aspects of testing: compressive strength testing of the consolidated soil columns and resistance to transportation vibration testing. The first method for testing the resistance to transportation vibration of the consolidated soil columns is a combination test that includes three sets of tests: highway truck transportation vibration testing, combined wheel vehicle transportation vibration testing, and impact testing. Although the method is cumbersome, testing is more accurate. The second method for testing the resistance to transportation vibration of the consolidated soil columns involves simultaneously testing multiple consolidated soil columns using a simulated transportation vibration test platform. The testing method is concise and efficient, and the test results are more intuitive. The combined assessment of the resistance to transportation vibration and compressive strength testing of the consolidated soil columns allows for a comprehensive evaluation of the soil columns' resistance to damage during transportation. This study mainly provides a quick and effective method for detecting the damage resistance of consolidated soil columns/balls during transportation, providing technical support for the application of polymer-based consolidation agents in the field of seedling transplantation.
Collapse
Affiliation(s)
- Shaoli Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China
| | - Shengju Song
- R&D Center, China Academy of Launch Vehicle Technology, Beijing 100076, China
| | - Xuping Yang
- Security Department, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhengqi Xiong
- College of Material and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Chaoxing Luo
- College of Material and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Donglu Wei
- College of Material and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Hong Wang
- College of Material and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Lili Liu
- College of Material and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Xinxin Yang
- Management Center of Songshushan Nature Reserve, Inner Mongolia, Songshushan Forestry Center, Wengniute Banner, Chifeng 024500, China
| | - Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongxiu Xia
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|