1
|
Lv S, Zhou Y, Chen J, Yuan H, Zhang ZN, Luan B. Hepatic ER stress suppresses adipose browning through ATF4-CIRP-ANGPTL3 cascade. Cell Rep 2022; 40:111422. [PMID: 36170814 DOI: 10.1016/j.celrep.2022.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Hepatic endoplasmic reticulum (ER) stress is a hallmark of obesity-induced liver steatosis and contributes to the progress of steatosis and insulin resistance in liver. However, its influence on adipose function is still unclear. Here, we identify a hepatic ER stress-induced activating transcription factor 4 (ATF4)-cold-inducible RNA-binding protein (CIRP)-angiopoietin-related protein3 (ANGPTL3) cascade critical for the regulation of adipose browning. We find that obesity increases CIRP expression in liver through ER stress-induced ATF4. CIRP in turn binds to the 3' UTR and increases mRNA stability of ANGPTL3. ANGPTL3 secreted from liver suppresses uncoupling protein 1 expression through integrin αvβ3 and c-Jun N-terminal kinase in adipose tissue. While hepatic expression of either ATF4, CIRP, or ANGPTL3 suppresses adipose browning, knockdown of CIRP and ANGPTL3 in liver or administration of integrin αvβ3 inhibitor cilengitide increases adipose browning process. Taken together, we identify a communication mechanism to link hepatic ER stress and adipose browning that may imply a reciprocal regulation of obesity and liver steatosis.
Collapse
Affiliation(s)
- Sihan Lv
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Huiwen Yuan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Bing Luan
- Department of Endocrinology, Tongji Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
2
|
Bai N, Lu X, Jin L, Alimujiang M, Ma J, Hu F, Xu Y, Sun J, Xu J, Zhang R, Han J, Hu C, Yang Y. CLSTN3 gene variant associates with obesity risk and contributes to dysfunction in white adipose tissue. Mol Metab 2022; 63:101531. [PMID: 35753632 PMCID: PMC9254126 DOI: 10.1016/j.molmet.2022.101531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022] Open
Abstract
Objective White adipose tissue (WAT) possesses the remarkable remodeling capacity, and maladaptation of this ability contributes to the development of obesity and associated comorbidities. Calsyntenin-3 (CLSTN3) is a transmembrane protein that promotes synapse development in brain. Even though this gene has been reported to be associated with adipose tissue, its role in the regulation of WAT function is unknown yet. We aim to further assess the expression pattern of CLSTN3 gene in human adipose tissue, and investigate its regulatory impact on WAT function. Methods In our study, we observed the expression pattern of Clstn3/CLSTN3 gene in mouse and human WAT. Genetic association study and expression quantitative trait loci analysis were combined to identify the phenotypic effect of CLSTN3 gene variant in humans. This was followed by mouse experiments using adeno-associated virus-mediated human CLSTN3 overexpression in inguinal WAT. We investigated the effect of CLSTN3 on WAT function and overall metabolic homeostasis, as well as the possible underlying molecular mechanism. Results We observed that CLSTN3 gene was routinely expressed in human WAT and predominantly enriched in adipocyte fraction. Furthermore, we identified that the variant rs7296261 in the CLSTN3 locus was associated with a high risk of obesity, and its risk allele was linked to an increase in CLSTN3 expression in human WAT. Overexpression of CLSTN3 in inguinal WAT of mice resulted in diet-induced local dysfunctional expansion, liver steatosis, and systemic metabolic deficiency. In vivo and ex vivo lipolysis assays demonstrated that CLSTN3 overexpression attenuated catecholamine-stimulated lipolysis. Mechanistically, CLSTN3 could interact with amyloid precursor protein (APP) in WAT and increase APP accumulation in mitochondria, which in turn impaired adipose mitochondrial function and promoted obesity. Conclusion Taken together, we provide the evidence for a novel role of CLSTN3 in modulating WAT function, thereby reinforcing the fact that targeting CLSTN3 may be a potential approach for the treatment of obesity and associated metabolic diseases. CLSTN3 is expressed in the adipocyte fraction of human adipose tissue and mainly localizes to the plasma membrane. SNP rs7296261 in human CLSTN3 locus is associated with obesity risk. Overexpression of CLSTN3 leads to adipose tissue dysfunction in mice. CLSTN3 can attenuate catecholamine-stimulated lipolysis. CLSTN3 overexpression increases mitochondrial APP localization of mouse adipose tissue.
Collapse
Affiliation(s)
- Ningning Bai
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Xuhong Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Li Jin
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Miriayi Alimujiang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jingyuan Ma
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Fan Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Yuejie Xu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jingjing Sun
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Jun Xu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Shanghai, China.
| |
Collapse
|
3
|
Luo J, Wang Y, Gilbert E, Liu D. Deletion of GPR30 Drives the Activation of Mitochondrial Uncoupling Respiration to Induce Adipose Thermogenesis in Female Mice. Front Endocrinol (Lausanne) 2022; 13:877152. [PMID: 35592783 PMCID: PMC9110859 DOI: 10.3389/fendo.2022.877152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Thermogenic adipocytes possess a promising approach to combat obesity with its capability promoting energy metabolism. We previously discovered that deletion of GPR30 (GPRKO), a presumably membrane-associated estrogen receptor, protected female mice from developing obesity, glucose intolerance, and insulin resistance when challenged with a high-fat diet (HFD). In vivo, the metabolic phenotype of wild type (WT) and GPRKO female mice were measured weekly. Acute cold tolerance test was performed. Ex vivo, mitochondrial respiration of brown adipose tissue (BAT) was analyzed from diet-induced obese female mice of both genotypes. In vitro, stromal vascular fractions (SVF) were isolated for beige adipocyte differentiation to investigate the role of GPR30 in thermogenic adipocyte. Deletion of GPR30 protects female mice from hypothermia and the mitochondria in BAT are highly energetic in GPRKO animals while the WT mitochondria remain in a relatively quiescent stage. Consistently, GPR30 deficiency enhances beige adipocyte differentiation in white adipose tissue (WAT) and activates the thermogenic browning of subcutaneous WAT due to up-regulation of UCP-1, which thereby protects female mice from HFD-induced obesity. GPR30 is a negative regulator of thermogenesis, which at least partially contributes to the reduced adiposity in the GPRKO female mice. Our findings provide insight into the mechanism by which GPR30 regulates fat metabolism and adiposity in female mice exposed to excess calories, which may be instrumental in the development of new therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Jing Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yao Wang
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth Gilbert
- Department of Animal and Poultry Sciences, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Dongmin Liu,
| |
Collapse
|
4
|
Spiljar M, Steinbach K, Rigo D, Suárez-Zamorano N, Wagner I, Hadadi N, Vincenti I, Page N, Klimek B, Rochat MA, Kreutzfeldt M, Chevalier C, Stojanović O, Bejuy O, Colin D, Mack M, Cansever D, Greter M, Merkler D, Trajkovski M. Cold exposure protects from neuroinflammation through immunologic reprogramming. Cell Metab 2021; 33:2231-2246.e8. [PMID: 34687652 PMCID: PMC8570411 DOI: 10.1016/j.cmet.2021.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/24/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Autoimmunity is energetically costly, but the impact of a metabolically active state on immunity and immune-mediated diseases is unclear. Ly6Chi monocytes are key effectors in CNS autoimmunity with an elusive role in priming naive autoreactive T cells. Here, we provide unbiased analysis of the immune changes in various compartments during cold exposure and show that this energetically costly stimulus markedly ameliorates active experimental autoimmune encephalomyelitis (EAE). Cold exposure decreases MHCII on monocytes at steady state and in various inflammatory mouse models and suppresses T cell priming and pathogenicity through the modulation of monocytes. Genetic or antibody-mediated monocyte depletion or adoptive transfer of Th1- or Th17-polarized cells for EAE abolishes the cold-induced effects on T cells or EAE, respectively. These findings provide a mechanistic link between environmental temperature and neuroinflammation and suggest competition between cold-induced metabolic adaptations and autoimmunity as energetic trade-off beneficial for the immune-mediated diseases.
Collapse
Affiliation(s)
- Martina Spiljar
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karin Steinbach
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Dorothée Rigo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Suárez-Zamorano
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Noushin Hadadi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Mary-Aude Rochat
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland
| | - Claire Chevalier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ozren Stojanović
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Olivia Bejuy
- CIBM Centre for BioMedical Imaging, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Didier Colin
- Small Animal Preclinical Imaging Platform, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Matthias Mack
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospitals, Geneva, Switzerland.
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire (CMU), University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Improved Therapeutic Efficiency against Obesity through Transdermal Drug Delivery Using Microneedle Arrays. Pharmaceutics 2021; 13:pharmaceutics13060827. [PMID: 34199630 PMCID: PMC8226838 DOI: 10.3390/pharmaceutics13060827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
In this paper, we prepared patches that were composed of a degradable microneedle (MN) array with a soft backing provided for the skin tissue. We then performed a transdermal delivery of anti-obesity drugs to evaluate the effectiveness of β3 adrenergic receptor CL316243 in obesity treatment in overweight mice induced by a high-fat diet. Eighty male National Institutes of Health (NIH) mice were randomly divided into four obese groups or the control group. The obesity groups were given a high-fat diet for 15-18 weeks to establish an obese model. Afterward, the obese groups were divided into the following four groups: the control group, the unloaded MN group, the CL-316243 MN group, and the injection group. For the injection group, the group of mice was injected subcutaneously with CL316243 (1 mg/(kg·day)) for 15 days. Furthermore, the CL-316243 MN group was given a lower dose (0.1 mg/(kg·day)) for 15 days. After weighing the mice, we used Western blotting to detect the expression of uncoupling protein 1 (UCP1) in the adipose tissue around the mouse viscera. The results stated that the weight of the CL-316243 MN group and the injection group dropped, and the UCP1 protein expression of brown adipose tissue (BAT) significantly increased. The results demonstrated the β3 adrenergic receptor agonist CL316243 could be carried into the body through MN, and the dose applied was considerably smaller than the injection dose. The reason for this may arise from the CL-316243 being delivered by MN arrays to subcutaneous adipose tissue more efficiently, with an even distribution, compared to that of the injection dose. This technique provides a new and feasible way to treat obesity more effectively.
Collapse
|
6
|
Numa K, Ueno M, Fujita T, Ueda K, Hiramoto N, Mukai A, Tokuda Y, Nakano M, Sotozono C, Kinoshita S, Hamuro J. Mitochondria as a Platform for Dictating the Cell Fate of Cultured Human Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2021; 61:10. [PMID: 33275651 PMCID: PMC7718813 DOI: 10.1167/iovs.61.14.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Aiming to clarify the role of mitochondria in cell fate decision of cultured human corneal endothelial cell (cHCEC) subpopulations. Methods The mitochondrial respiratory ability were examined with Mito stress and Mito fuel flex test assays using an extracellular flux analyzer (XFe24; Agilent Technologies; Santa Clara, CA) for human corneal endothelium tissues, mature cHCECs and a variety of cell state transitioned cHCECs. Tricarboxylic acid cycle and acetyl-coenzyme A–related enzymes was analyzed by proteomics for cell lysates using liquid chromatography–tandem mass spectrometry for cHCEC subpopulations. Results The maximum oxygen consumption rate was found to become stable depending on the maturation of cHCECs. In the Mito stress tests, culture supplements, epidermal growth factor, SB203580, and SB431543 significantly repressed oxygen consumption rate, whereas a Rho-associated protein kinase inhibitor Y-27632 increased. Tricarboxylic acid cycle and mitochondria acetyl-coenzyme A–related enzymes were selectively upregulated in mature cHCECs, but not in cell state transitioned cHCECs. The maximum oxygen consumption rate was found to be higher in healthy human corneal endothelium tissues than those with deeply reduced cell density. An upregulated tricarboxylic acid cycle was linked with metabolic rewiring converting cHCECs to acquire the mitochondria-dependent oxidative phenotype. Conclusions Mitochondrial metabolic intermediates and energy metabolism are tightly linked to the endothelial cell fate and function. These findings will help us to standardize a protocol for endothelial cell injection.
Collapse
Affiliation(s)
- Kohsaku Numa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Fujita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Nao Hiramoto
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atushi Mukai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuichi Tokuda
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junji Hamuro
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
McNally LA, Altamimi TR, Fulghum K, Hill BG. Considerations for using isolated cell systems to understand cardiac metabolism and biology. J Mol Cell Cardiol 2020; 153:26-41. [PMID: 33359038 DOI: 10.1016/j.yjmcc.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Changes in myocardial metabolic activity are fundamentally linked to cardiac health and remodeling. Primary cardiomyocytes, induced pluripotent stem cell-derived cardiomyocytes, and transformed cardiomyocyte cell lines are common models used to understand how (patho)physiological conditions or stimuli contribute to changes in cardiac metabolism. These cell models are helpful also for defining metabolic mechanisms of cardiac dysfunction and remodeling. Although technical advances have improved our capacity to measure cardiomyocyte metabolism, there is often heterogeneity in metabolic assay protocols and cell models, which could hinder data interpretation and discernment of the mechanisms of cardiac (patho)physiology. In this review, we discuss considerations for integrating cardiomyocyte cell models with techniques that have become relatively common in the field, such as respirometry and extracellular flux analysis. Furthermore, we provide overviews of metabolic assays that complement XF analyses and that provide information on not only catabolic pathway activity, but biosynthetic pathway activity and redox status as well. Cultivating a more widespread understanding of the advantages and limitations of metabolic measurements in cardiomyocyte cell models will continue to be essential for the development of coherent metabolic mechanisms of cardiac health and pathophysiology.
Collapse
Affiliation(s)
- Lindsey A McNally
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Tariq R Altamimi
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Kyle Fulghum
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
8
|
Romeiro NC, Ferreira CM, Oliveira MF. Assessment of mitochondrial physiology of murine white adipose tissue by mechanical permeabilization and lipid depletion. Anal Biochem 2020; 611:113935. [PMID: 32898480 DOI: 10.1016/j.ab.2020.113935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/20/2022]
Abstract
White adipose tissue (WAT) represents a major site of triacylglycerol energy storage and is directly associated with metabolic disorders. Mitochondria regulate cellular energy expenditure and are active in WAT. Although isolated mitochondria have been classically used to assess their functions, several artifacts can be introduced by this approach. Furthermore, important limitations exist in the available methods to determine mitochondrial physiology in permeabilized WAT. Here, we established and validated a method for functional evaluation of mice mesenteric WAT (mWAT) mitochondria by using MEchanical Permeabilization and LIpid DEpletion (MEPLIDE) coupled to high-resolution respirometry. We observed that mild stirring of mWAT for 20 min at room temperature with 4% fatty acid-free albumin (FAF-BSA) followed by 50 min without FAF-BSA selectively permeabilized white adipocytes plasma membrane. In these conditions, mWAT mitochondria were intact, exhibiting succinate-induced respiratory rates that were sensitive to classical oxidative phosphorylation modulators. Finally, the respiratory capacity of mWAT in female mice was significantly higher than in males, an observation that agrees with reported data. Therefore, the functional assessment of mWAT mitochondria through MEPLIDE coupled to high resolution respirometry proposed here will contribute to a better understanding of WAT biology in several pathophysiological contexts.
Collapse
Affiliation(s)
- Natália C Romeiro
- Laboratório de Bioquímica de Resposta Ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Caroline M Ferreira
- Laboratório de Bioquímica de Resposta Ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Marcus F Oliveira
- Laboratório de Bioquímica de Resposta Ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Skeletal glucocorticoid signalling determines leptin resistance and obesity in aging mice. Mol Metab 2020; 42:101098. [PMID: 33045434 PMCID: PMC7596342 DOI: 10.1016/j.molmet.2020.101098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022] Open
Abstract
Objective Aging and chronic glucocorticoid excess share a number of critical features, including the development of central obesity, insulin resistance and osteoporosis. Previous studies have shown that skeletal glucocorticoid signalling increases with aging and that osteoblasts mediate the detrimental skeletal and metabolic effects of chronic glucocorticoid excess. Here, we investigated whether endogenous glucocorticoid action in the skeleton contributes to metabolic dysfunction during normal aging. Methods Mice lacking glucocorticoid signalling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice) and their wild-type littermates were studied until 3, 6, 12 and 18 months of age. Body composition, adipose tissue morphology, skeletal gene expression and glucose/insulin tolerance were assessed at each timepoint. Leptin sensitivity was assessed by arcuate nucleus STAT3 phosphorylation and inhibition of feeding following leptin administration. Tissue-specific glucose uptake and adipose tissue oxygen consumption rate were also measured. Results As they aged, wild-type mice became obese and insulin-resistant. In contrast, HSD2OB/OCY-tg mice remained lean and insulin-sensitive during aging. Obesity in wild-type mice was due to leptin resistance, evidenced by an impaired ability of exogenous leptin to suppress food intake and phosphorylate hypothalamic STAT3, from 6 months of age onwards. In contrast, HSD2OB/OCY-tg mice remained leptin-sensitive throughout the study. Compared to HSD2OB/OCY-tg mice, leptin-resistant wild-type mice displayed attenuated sympathetic outflow, with reduced tyrosine hydroxylase expression in both the hypothalamus and thermogenic adipose tissues. Adipose tissue oxygen consumption rate declined progressively in aging wild-type mice but was maintained in HSD2OB/OCY-tg mice. At 18 months of age, adipose tissue glucose uptake was increased 3.7-fold in HSD2OB/OCY-tg mice, compared to wild-type mice. Conclusions Skeletal glucocorticoid signalling is critical for the development of leptin resistance, obesity and insulin resistance during aging. These findings underscore the skeleton's importance in the regulation of body weight and implicate osteoblastic/osteocytic glucocorticoid signalling in the aetiology of aging-related obesity and metabolic disease. As they aged, wild-type CD1 mice became hyperphagic, obese and insulin-resistant. Mice lacking skeletal glucocorticoid signalling (HSD2OB/OCY-tg) were lean and healthy. Unlike wild-type mice, HSD2OB/OCY-tg mice remained leptin-sensitive during aging. Adipose tissue sympathetic outflow was maintained in aging HSD2OB/OCY-tg mice.
Collapse
|
10
|
Yao H, Peterson AL, Li J, Xu H, Dennery PA. Heme Oxygenase 1 and 2 Differentially Regulate Glucose Metabolism and Adipose Tissue Mitochondrial Respiration: Implications for Metabolic Dysregulation. Int J Mol Sci 2020; 21:ijms21197123. [PMID: 32992485 PMCID: PMC7582259 DOI: 10.3390/ijms21197123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Heme oxygenase (HO) consists of inducible (HO-1) and constitutive (HO-2) isoforms that are encoded by Hmox1 and Hmox2 genes, respectively. As an anti-inflammatory and antioxidant molecule, HO participates in the development of metabolic diseases. Whether Hmox deficiency causes metabolic abnormalities under basal conditions remains unclear. We hypothesized that HO-1 and HO-2 differentially affect global and adipose tissue metabolism. To test this hypothesis, we determined insulin sensitivity, glucose tolerance, energy expenditure, and respiratory exchange ratio in global Hmox1-/- and Hmox2-/- mice. Body weight was reduced in female but not male Hmox1-/- and Hmox2-/- mice. Reduced insulin sensitivity and physical activity were observed in Hmox1-/- but not Hmox2-/- mice. Deletion of either Hmox1 or Hmox2 had no effects on glucose tolerance, energy expenditure or respiratory exchange ratio. Mitochondrial respiration was unchanged in gonadal fat pads (white adipose tissue, WAT) of Hmox1-/- mice. Hmox2 deletion increased proton leak and glycolysis in gonadal, but not interscapular fat tissues (brown adipose tissue, BAT). Uncoupling protein and Hmox1 genes were unchanged in gonadal fat pads of Hmox2-/- mice. Conclusively, HO-1 maintains insulin sensitivity, while HO-2 represses glycolysis and proton leak in the WAT under basal condition. This suggests that HO-1 and HO-2 differentially modulate metabolism, which may impact the metabolic syndrome.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02860, USA; (H.Y.); (A.L.P.)
| | - Abigail L. Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02860, USA; (H.Y.); (A.L.P.)
| | - Jie Li
- Department of Epidemiology, Brown University, Providence, RI 02860, USA; (J.L.); (H.X.)
| | - Haiyan Xu
- Department of Epidemiology, Brown University, Providence, RI 02860, USA; (J.L.); (H.X.)
| | - Phyllis A. Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02860, USA; (H.Y.); (A.L.P.)
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02860, USA
- Correspondence: ; Tel.: +1-401-444-5648
| |
Collapse
|
11
|
Diao Y, Nie J, Tan P, Zhao Y, Zhao T, Tu J, Ji H, Cao Y, Wu Z, Liang H, Huang H, Li Y, Gao X, Zhou L. Long-term low-dose ethanol intake improves healthspan and resists high-fat diet-induced obesity in mice. Aging (Albany NY) 2020; 12:13128-13146. [PMID: 32639947 PMCID: PMC7377878 DOI: 10.18632/aging.103401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022]
Abstract
Numerous epidemiological studies have reported that moderate alcohol drinking has beneficial effects. However, few studies have focused on the beneficial effects of ethanol, the common component in alcoholic beverages. Here we fed the C57BL/6 mice with 3.5% v/v ethanol as drinking water substitute to investigate the effects of long-term low-dose ethanol intake in vivo. We evaluated the metabolic rate and mitochondrial function of the long-term low-dose ethanol-intake (LLE) mice, assessed the exercise ability of LLE mice, and fed the LLE mice with a high-fat diet to investigate the potential impact of ethanol on it. The LLE mice showed improved thermogenic activity, physical performance, and mitochondrial function, as well as resistance against the high-fat diet-induced obesity with elevated insulin sensitivity and subdued inflammation. Our results suggest that long-term low-dose ethanol intake can improve healthspan and resist high-fat diet-induced obesity in mice. It may provide new insight into understanding the protective effects of moderate alcohol drinking.
Collapse
Affiliation(s)
- Yan Diao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Department of Clinical Laboratory, Heilongjiang Province Hospital, Harbin, China
| | - Junhui Nie
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Peizhu Tan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, China
| | - Yuchen Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Tingting Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Jiajie Tu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Heng Ji
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Yuwei Cao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Zhaojing Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Huan Liang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, China
| | - Lingyun Zhou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, China
| |
Collapse
|
12
|
Beirowski B. Measuring Bioenergetic Signatures of Peripheral Nerve Segments by Extracellular Flux Analysis. Methods Mol Biol 2020; 2143:191-203. [PMID: 32524482 DOI: 10.1007/978-1-0716-0585-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Changes of energy metabolism in axons and their adjacent glia as well as alterations in metabolic axon-glia cross talk are emerging as central mechanistic components underlying axon degeneration. The analysis of extracellular flux with commercial metabolic analyzers greatly facilitates the measurement of key parameters of glycolytic and mitochondrial energy metabolism in cells and tissues. In this chapter, I describe a straightforward method to capture bioenergetic profiles of acutely isolated peripheral nerve segments using the Agilent Seahorse XFe24 platform.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Hunter James Kelly Research Institute, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS) RM B4-314, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA. .,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
13
|
Kandasamy J, Rezonzew G, Jilling T, Ballinger S, Ambalavanan N. Mitochondrial DNA variation modulates alveolar development in newborn mice exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L740-L747. [PMID: 31432715 DOI: 10.1152/ajplung.00220.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hyperoxia-induced oxidant stress contributes to the pathogenesis of bronchopulmonary dysplasia (BPD) in preterm infants. Mitochondrial functional differences due to mitochondrial DNA (mtDNA) variations are important modifiers of oxidant stress responses. The objective of this study was to determine whether mtDNA variation independently modifies lung development and mechanical dysfunction in newborn mice exposed to hyperoxia. Newborn C57BL6 wild type (C57n/C57mt, C57WT) and C3H/HeN wild type (C3Hn/C3Hmt, C3HWT) mice and novel Mitochondrial-nuclear eXchange (MNX) strains with nuclear DNA (nDNA) from their parent strain and mtDNA from the other-C57MNX (C57n/C3Hmt) and C3HMNX (C3Hn/C57mt)-were exposed to 21% or 85% O2 from birth to postnatal day 14 (P14). Lung mechanics and histopathology were examined on P15. Neonatal mouse lung fibroblast (NMLF) bioenergetics and mitochondrial superoxide (O2-) generation were measured. Pulmonary resistance and mitochondrial O2- generation were increased while alveolarization, compliance, and NMLF basal and maximal oxygen consumption rate were decreased in hyperoxia-exposed C57WT mice (C57n/C57mt) versus C57MNX mice (C57n/C3Hmt) and in hyperoxia-exposed C3HMNX mice (C3Hn/C57mt) versus C3HWT (C3Hn/C3Hmt) mice. Our study suggests that neonatal C57 mtDNA-carrying strains have increased hyperoxia-induced hypoalveolarization, pulmonary mechanical dysfunction, and mitochondrial bioenergetic and redox dysfunction versus C3H mtDNA strains. Therefore, mtDNA haplogroup variation-induced differences in mitochondrial function could modify neonatal alveolar development and BPD susceptibility.
Collapse
Affiliation(s)
- Jegen Kandasamy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gabriel Rezonzew
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
14
|
Petrus AT, Lighezan DL, Danila MD, Duicu OM, Sturza A, Muntean DM, Ionita I. Assessment of platelet respiration as emerging biomarker of disease. Physiol Res 2019; 68:347-363. [PMID: 30904011 DOI: 10.33549/physiolres.934032] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is currently acknowledged as a central pathomechanism of most common diseases of the 21(st) century. Recently, the assessment of the bioenergetic profile of human peripheral blood cells has emerged as a novel research field with potential applications in the development of disease biomarkers. In particular, platelets have been successfully used for the ex vivo analysis of mitochondrial respiratory function in several acute and chronic pathologies. An increasing number of studies support the idea that evaluation of the bioenergetic function in circulating platelets may represent the peripheral signature of mitochondrial dysfunction in metabolically active tissues (brain, heart, liver, skeletal muscle). Accordingly, impairment of mitochondrial respiration in peripheral platelets might have potential clinical applicability as a diagnostic and prognostic tool as well as a biomarker in treatment monitoring. The aim of this minireview is to summarize current information in the field of platelet mitochondrial dysfunction in both acute and chronic diseases.
Collapse
Affiliation(s)
- A T Petrus
- Department of Anatomy, Physiology and Pathophysiology, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania and Department of Functional Sciences - Pathophysiology, "Victor Babes" University of Medicine and Pharmacy of Timisoara, Timisoara, Romania.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zascavage RR, Planz JV. Admixture Effects on Coevolved Metabolic Systems. Front Genet 2019; 9:634. [PMID: 30619461 PMCID: PMC6299042 DOI: 10.3389/fgene.2018.00634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) is the primary energy generating system in eukaryotic organisms. The complexes within the OXPHOS pathway are of mixed genomic origin. Although most subunit-coding genes are located within the nuclear genome, several genes are coded for in the mitochondrial genome. There is strong evidence to support coadaptation between the two genomes in these OXPHOS gene regions in order to create tight protein interactions necessary for a functional energetics system. In this study, we begin to assess the physiological impact of separating coevolved protein motifs that make up the highly conserved energy production pathway, as we hypothesize that divergent matings will significantly diminish the protein interactions and therefore hinder efficient OXPHOS activity We measured mitochondrial activity in high energy-demanding tissues from six strains of Mus musculus with varying degrees of mixed ancestral background. Mice with divergent mitochondrial and nuclear backgrounds consistently yielded lower mitochondrial activity. Bioinformatic analysis of common single nucleotide variants across the nuclear and mitochondrial genomes failed to identify any non-synonymous variants that could account for the energetic differences, suggesting that interpopulational mating between ancestrally distinct groups influences energy production efficiency.
Collapse
Affiliation(s)
- Roxanne R Zascavage
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States.,Department of Criminology and Criminal Justice, University of Texas at Arlington, Arlington, TX, United States
| | - John V Planz
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
16
|
Transient Overexpression of Vascular Endothelial Growth Factor A in Adipose Tissue Promotes Energy Expenditure via Activation of the Sympathetic Nervous System. Mol Cell Biol 2018; 38:MCB.00242-18. [PMID: 30126894 DOI: 10.1128/mcb.00242-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Adipose-derived vascular endothelial growth factor A (VEGF-A) stimulates functional blood vessel formation in obese fat pads, which in turn facilitates healthy expansion of the adipose tissue. However, the detailed mechanism(s) governing the process remains largely unknown. Here, we investigated the role of sympathetic nervous system activation in the process. To this end, we induced overexpression of VEGF-A in an adipose tissue-specific doxycycline (Dox)-inducible transgenic mouse model for a short period of time during high-fat diet (HFD) feeding. We found that local overexpression of VEGF-A in adipose tissue stimulated lipolysis and browning rapidly after Dox induction. Immunofluorescence staining against tyrosine hydroxylase (TH) indicated higher levels of sympathetic innervation in adipose tissue of transgenic mice. In response to an increased norepinephrine (NE) level, expression of β3-adrenoceptor was significantly upregulated, and the downstream protein kinase A (PKA) pathway was activated, as indicated by enhanced phosphorylation of whole PKA substrates, in particular, the hormone-sensitive lipase (HSL) in adipocytes. As a result, the adipose tissue exhibited increased lipolysis, browning, and energy expenditure. Importantly, all of these effects were abolished upon treatment with the β3-adrenoceptor antagonist SR59230A. Collectively, these results demonstrate that transient overexpressed VEGF-A activates the sympathetic nervous system, which hence promotes lipolysis and browning in adipose tissue.
Collapse
|
17
|
Komakula SSB, Tumova J, Kumaraswamy D, Burchat N, Vartanian V, Ye H, Dobrzyn A, Lloyd RS, Sampath H. The DNA Repair Protein OGG1 Protects Against Obesity by Altering Mitochondrial Energetics in White Adipose Tissue. Sci Rep 2018; 8:14886. [PMID: 30291284 PMCID: PMC6173743 DOI: 10.1038/s41598-018-33151-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
Obesity and related metabolic pathologies represent a significant public health concern. Obesity is associated with increased oxidative stress that damages genomic and mitochondrial DNA. Oxidatively-induced lesions in both DNA pools are repaired via the base-excision repair pathway, initiated by DNA glycosylases such as 8-oxoguanine DNA glycosylase (OGG1). Global deletion of OGG1 and common OGG1 polymorphisms render mice and humans susceptible to metabolic disease. However, the relative contribution of mitochondrial OGG1 to this metabolic phenotype is unknown. Here, we demonstrate that transgenic targeting of OGG1 to mitochondria confers significant protection from diet-induced obesity, insulin resistance, and adipose tissue inflammation. These favorable metabolic phenotypes are mediated by an increase in whole body energy expenditure driven by specific metabolic adaptations, including increased mitochondrial respiration in white adipose tissue of OGG1 transgenic (Ogg1Tg) animals. These data demonstrate a critical role for a DNA repair protein in modulating mitochondrial energetics and whole-body energy balance.
Collapse
Affiliation(s)
- Sai Santosh Babu Komakula
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.,Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jana Tumova
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Deeptha Kumaraswamy
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Natalie Burchat
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Vladimir Vartanian
- Oregon Institute of Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hong Ye
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Harini Sampath
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
18
|
Neville KE, Bosse TL, Klekos M, Mills JF, Tipping M. Metabolic Analysis of Drosophila melanogaster Larval and Adult Brains. J Vis Exp 2018. [PMID: 30148485 PMCID: PMC6126682 DOI: 10.3791/58007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol describes a method for measuring the metabolism in Drosophila melanogaster larval and adult brains. Quantifying metabolism in whole organs provides a tissue-level understanding of energy utilization that cannot be captured when analyzing primary cells and cell lines. While this analysis is ex vivo, it allows for the measurement from a number of specialized cells working together to perform a function in one tissue and more closely models the in vivo organ. Metabolic reprogramming has been observed in many neurological diseases, including neoplasia, and neurodegenerative diseases. This protocol was developed to assist the D. melanogaster community's investigation of metabolism in neurological disease models using a commercially available metabolic analyzer. Measuring metabolism of whole brains in the metabolic analyzer is challenging due to the geometry of the brain. This analyzer requires samples to remain at the bottom of a 96-well plate. Cell samples and tissue punches can adhere to the surface of the cell plate or utilize spheroid plates, respectively. However, the spherical, three-dimensional shape of D. melanogaster brains prevents the tissue from adhering to the plate. This protocol requires a specially designed and manufactured micro-tissue restraint that circumvents this problem by preventing any movement of the brain while still allowing metabolic measurements from the analyzer's two solid-state sensor probes. Oxygen consumption and extracellular acidification rates are reproducible and sensitive to a treatment with metabolic inhibitors. With a minor optimization, this protocol can be adapted for use with any whole tissue and/or model system, provided that the sample size does not exceed the chamber generated by the restraint. While basal metabolic measurements and an analysis after a treatment with mitochondrial inhibitors are described within this protocol, countless experimental conditions, such as energy source preference and rearing environment, could be interrogated.
Collapse
Affiliation(s)
| | | | - Mia Klekos
- Department of Biology, Providence College
| | | | | |
Collapse
|
19
|
Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J. OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS One 2018; 13:e0199938. [PMID: 29995917 PMCID: PMC6040740 DOI: 10.1371/journal.pone.0199938] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/16/2018] [Indexed: 12/02/2022] Open
Abstract
The accurate quantification of cellular and mitochondrial bioenergetic activity is of great interest in medicine and biology. Mitochondrial stress tests performed with Seahorse Bioscience XF Analyzers allow the estimation of different bioenergetic measures by monitoring the oxygen consumption rates (OCR) of living cells in multi-well plates. However, studies of the statistical best practices for determining aggregated OCR measurements and comparisons have been lacking. Therefore, to understand how OCR behaves across different biological samples, wells, and plates, we performed mitochondrial stress tests in 126 96-well plates involving 203 fibroblast cell lines. We show that the noise of OCR is multiplicative, that outlier data points can concern individual measurements or all measurements of a well, and that the inter-plate variation is greater than the intra-plate variation. Based on these insights, we developed a novel statistical method, OCR-Stats, that: i) robustly estimates OCR levels modeling multiplicative noise and automatically identifying outlier data points and outlier wells; and ii) performs statistical testing between samples, taking into account the different magnitudes of the between- and within-plate variations. This led to a significant reduction of the coefficient of variation across plates of basal respiration by 45% and of maximal respiration by 29%. Moreover, using positive and negative controls, we show that our statistical test outperforms the existing methods, which suffer from an excess of either false positives (within-plate methods), or false negatives (between-plate methods). Altogether, this study provides statistical good practices to support experimentalists in designing, analyzing, testing, and reporting the results of mitochondrial stress tests using this high throughput platform.
Collapse
Affiliation(s)
- Vicente A. Yépez
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Laura S. Kremer
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Arcangela Iuso
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eliška Koňaříková
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Agnieszka Nadel
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Leonhard Wachutka
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
20
|
Understanding the Functionality of Human Activity Hotspots from Their Scaling Pattern Using Trajectory Data. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2017. [DOI: 10.3390/ijgi6110341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Albers RE, Waker CA, Keoni C, Kaufman MR, Bottomley MA, Min S, Natale DR, Brown TL. Gestational differences in murine placenta: Glycolytic metabolism and pregnancy parameters. Theriogenology 2017; 107:115-126. [PMID: 29145065 DOI: 10.1016/j.theriogenology.2017.10.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022]
Abstract
The placenta is a complex and essential organ composed largely of fetal-derived cells, including several different trophoblast subtypes that work in unison to support nutrient transport to the fetus during pregnancy. Abnormal placental development can lead to pregnancy-associated disorders that often involve metabolic dysfunction. The scope of dysregulated metabolism during placental development may not be fully representative of the in vivo state in defined culture systems, such as cell lines or isolated primary cells. Thus, assessing metabolic function in intact placental tissue would provide a better assessment of placental metabolism. In this study, we describe a methodology for assaying glycolytic function in structurally-intact mouse placental tissue, ex vivo, without culturing or tissue dissociation, that more closely resembles the in vivo state. Additionally, we present data highlighting sex-dependent differences of two mouse strains (C57BL/6 and ICR) in the pre-hypertrophic (E14.5) and hypertrophic (E18.5) placenta. These data establish a foundation for investigation of metabolism throughout gestation and provides a comprehensive assessment of glycolytic function during placental development.
Collapse
Affiliation(s)
- Renee E Albers
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Chanel Keoni
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States
| | - Michael A Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States
| | - Sarah Min
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - David R Natale
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, United States.
| |
Collapse
|
22
|
Ying F, Cai Y, Cai Y, Wang Y, Ching Tang EH. Prostaglandin E receptor subtype 4 regulates lipid droplet size and mitochondrial activity in murine subcutaneous white adipose tissue. FASEB J 2017; 31:4023-4036. [DOI: 10.1096/fj.201700191r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Fan Ying
- Department of Pharmacology and PharmacyState Key Laboratory of Pharmaceutical BiotechnologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yin Cai
- Department of AnesthesiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yu Cai
- Department of Pharmacology and PharmacyState Key Laboratory of Pharmaceutical BiotechnologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Yu Wang
- Department of Pharmacology and PharmacyState Key Laboratory of Pharmaceutical BiotechnologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Eva Hoi Ching Tang
- Department of Pharmacology and PharmacyState Key Laboratory of Pharmaceutical BiotechnologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| |
Collapse
|
23
|
Calderon‐Dominguez M, Alcalá M, Sebastián D, Zorzano A, Viana M, Serra D, Herrero L. Brown Adipose Tissue Bioenergetics: A New Methodological Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600274. [PMID: 28435771 PMCID: PMC5396156 DOI: 10.1002/advs.201600274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/13/2016] [Indexed: 06/07/2023]
Abstract
The rediscovery of brown adipose tissue (BAT) in humans and its capacity to oxidize fat and dissipate energy as heat has put the spotlight on its potential as a therapeutic target in the treatment of several metabolic conditions including obesity and diabetes. To date the measurement of bioenergetics parameters has required the use of cultured cells or extracted mitochondria with the corresponding loss of information in the tissue context. Herein, we present a method to quantify mitochondrial bioenergetics directly in BAT. Based on XF Seahorse Technology, we assessed the appropriate weight of the explants, the exact concentration of each inhibitor in the reaction, and the specific incubation time to optimize bioenergetics measurements. Our results show that BAT basal oxygen consumption is mostly due to proton leak. In addition, BAT presents higher basal oxygen consumption than white adipose tissue and a positive response to b-adrenergic stimulation. Considering the whole tissue and not just subcellular populations is a direct approach that provides a realistic view of physiological respiration. In addition, it can be adapted to analyze the effect of potential activators of thermogenesis, or to assess the use of fatty acids or glucose as a source of energy.
Collapse
Affiliation(s)
- María Calderon‐Dominguez
- Department of Biochemistry and PhysiologyInstitut de Biomedicina de la Universitat de Barcelona (IBUB)Universitat de BarcelonaE‐08028BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos IIIE‐28029MadridSpain
| | - Martín Alcalá
- Facultad de FarmaciaUniversidad CEU San PabloE‐28668MadridSpain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyDepartament de Bioquímica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaE‐08028BarcelonaSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIE‐28029MadridSpain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyDepartament de Bioquímica i Biomedicina MolecularFacultat de BiologiaUniversitat de BarcelonaE‐08028BarcelonaSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)Instituto de Salud Carlos IIIE‐28029MadridSpain
| | - Marta Viana
- Facultad de FarmaciaUniversidad CEU San PabloE‐28668MadridSpain
| | - Dolors Serra
- Department of Biochemistry and PhysiologyInstitut de Biomedicina de la Universitat de Barcelona (IBUB)Universitat de BarcelonaE‐08028BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos IIIE‐28029MadridSpain
| | - Laura Herrero
- Department of Biochemistry and PhysiologyInstitut de Biomedicina de la Universitat de Barcelona (IBUB)Universitat de BarcelonaE‐08028BarcelonaSpain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Instituto de Salud Carlos IIIE‐28029MadridSpain
| |
Collapse
|
24
|
Lv Y, Zhang SY, Liang X, Zhang H, Xu Z, Liu B, Xu MJ, Jiang C, Shang J, Wang X. Adrenomedullin 2 Enhances Beiging in White Adipose Tissue Directly in an Adipocyte-autonomous Manner and Indirectly through Activation of M2 Macrophages. J Biol Chem 2016; 291:23390-23402. [PMID: 27621315 DOI: 10.1074/jbc.m116.735563] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Indexed: 12/15/2022] Open
Abstract
Adrenomedullin 2 (ADM2) is an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family. Our previous studies showed that overexpression of ADM2 in mice reduced obesity and insulin resistance by increasing thermogenesis in brown adipose tissue. However, the effects of ADM2 in another type of thermogenic adipocyte, beige adipocytes, remain to be understood. The plasma ADM2 levels were inversely correlated with obesity in humans, and adipo-ADM2-transgenic (tg) mice displayed resistance to high-fat diet-induced obesity with increased energy expenditure. Beiging of subcutaneous white adipose tissues (WAT) was more noticeably induced in high-fat diet-fed transgenic mice with adipocyte-ADM2 overexpression (adipo-ADM2-tg mice) than in WT animals. ADM2 treatment in primary rat subcutaneous adipocytes induced beiging with up-regulation of UCP1 and beiging-related marker genes and increased mitochondrial uncoupling respiration, which was mainly mediated by activation of the calcitonin receptor-like receptor (CRLR)·receptor activity-modifying protein 1 (RAMP1) complex and PKA and p38 MAPK signaling pathways. Importantly, this adipocyte-autonomous beiging effect by ADM2 was translatable to human primary adipocytes. In addition, M2 macrophage activation also contributed to the beiging effects of ADM2 through catecholamine secretion. Therefore, our study reveals that ADM2 enhances subcutaneous WAT beiging via a direct effect by activating the CRLR·RAMP1-cAMP/PKA and p38 MAPK pathways in white adipocytes and via an indirect effect by stimulating alternative M2 polarization in macrophages. Through both mechanisms, beiging of WAT by ADM2 results in increased energy expenditure and reduced obesity, suggesting ADM2 as a novel anti-obesity target.
Collapse
Affiliation(s)
- Ying Lv
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Song-Yang Zhang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Xianyi Liang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Heng Zhang
- the Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhi Xu
- the Department of General Surgery, Peking University Third Hospital, Beijing 100191, China, and
| | - Bo Liu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Ming-Jiang Xu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Changtao Jiang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China,
| | - Jin Shang
- the Department of Cardiometabolic Disease, Merck Research Laboratories, Merck & Co, Inc., Kenilworth, New Jersey 07033
| | - Xian Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
25
|
Schneider K, Valdez J, Nguyen J, Vawter M, Galke B, Kurtz TW, Chan JY. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2). J Biol Chem 2016; 291:7754-66. [PMID: 26841864 DOI: 10.1074/jbc.m115.673756] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/12/2022] Open
Abstract
The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders.
Collapse
Affiliation(s)
- Kevin Schneider
- From the Department of Laboratory Medicine and Pathology and
| | - Joshua Valdez
- From the Department of Laboratory Medicine and Pathology and
| | - Janice Nguyen
- From the Department of Laboratory Medicine and Pathology and
| | - Marquis Vawter
- the Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697 and
| | - Brandi Galke
- the Department of Psychiatry and Human Behavior, University of California, Irvine, California 92697 and
| | - Theodore W Kurtz
- the Department of Laboratory Medicine, University of California, San Francisco, California 94107
| | | |
Collapse
|
26
|
Chang YJ, Pownall S, Jensen TE, Mouaaz S, Foltz W, Zhou L, Liadis N, Woo M, Hao Z, Dutt P, Bilan PJ, Klip A, Mak T, Stambolic V. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. eLife 2015; 4. [PMID: 26512886 PMCID: PMC4709268 DOI: 10.7554/elife.06011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 10/25/2015] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. DOI:http://dx.doi.org/10.7554/eLife.06011.001 Obesity is a growing public health concern around the world, and can lead to the development of type 2 diabetes, heart disease and cancer. Both genetics and environmental factors such as diet contribute to obesity. Fat cells are essential to good health, but the excess accumulation of fat cells in obese people involves a complex process that is regulated by interactions between numerous genes, cellular messengers and mechanical forces. Learning more about these factors could help prevent or treat obesity. One mutation in the gene encoding a protein called PDZ-RhoGEF has been linked to both obesity and type 2 diabetes. People with mutations in this gene are not responsive enough to insulin, a hormone important for sugar metabolism. This can interfere with the body’s ability to burn energy in food or lead to a dangerous build up of sugar in the blood as seen in type 2 diabetes. But exactly what PDZ-RhoGEF normally does to prevent this is unclear. Chang et al. now show that PDZ-RhoGEF controls fat cell production and the body’s ability to release the energy contained in food. First, mice that had been genetically engineered to lack PDZ-RhoGEF were compared to typical mice. The mice without PDZ-RhoGEF had fewer fat cells than the typical mice, and they burned more energy. The mutant mice walked around about as much as the typical mice but they were more likely to have repetitive movements, the mouse equivalent of human nervous ticks. Insulin normally stimulates the production of fat cells. But the mutant mice were less able to produce fat cells as they developed into adults. When fed a high fat food diet, the normal mice became fatter and insensitive to insulin and developed other health problems linked to excess fat in the body. The mutant mice on the same diet, however, stayed thin and avoided these health issues. The experiments show that PDZ-RhoGEF helps relay insulin’s message within the body, and as such it plays a critical role in regulating metabolism, sugar levels and fat accumulation. Future work should ask how PDZ-RhoGEF affects other complications linked to obesity, and explore the possibility of developing treatments for obesity based on the biology of this molecule. DOI:http://dx.doi.org/10.7554/eLife.06011.002
Collapse
Affiliation(s)
- Ying-Ju Chang
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Scott Pownall
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Thomas E Jensen
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Samar Mouaaz
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Warren Foltz
- Spatio-Temporal Targeting and Amplification of Radiation Response Program, Office of Research Trainees, University Health Network, Toronto, Canada
| | - Lily Zhou
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Nicole Liadis
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Minna Woo
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Zhenyue Hao
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Previn Dutt
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Tak Mak
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Saboktakin Rizi B, Braasch K, Salimi E, Butler M, Bridges GE, Thomson DJ. Monitoring the dielectric response of single cells following mitochondrial adenosine triphosphate synthase inhibition by oligomycin using a dielectrophoretic cytometer. BIOMICROFLUIDICS 2014; 8:064114. [PMID: 25553191 PMCID: PMC4257975 DOI: 10.1063/1.4903221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
One of the main uses of adenosine triphosphate (ATP) within mammalian cells is powering the Na(+)/K(+) ATPase pumps used to maintain ion concentrations within the cell. Since ion concentrations determine the cytoplasm conductivity, ATP concentration is expected to play a key role in controlling the cytoplasm conductivity. The two major ATP production pathways within cells are via glycolysis within the cytoplasm and via the electron transport chain within the mitochondria. In this work, a differential detector combined with dielectrophoretic (DEP) translation in a microfluidic channel was employed to observe single cell changes in the cytoplasm conductivity. The DEP response was made sensitive to changes in cytoplasm conductivity by measuring DEP response versus media conductivity and using double shell models to choose appropriate frequencies and media conductivity. Dielectric response of Chinese hamster ovary (CHO) cells was monitored following inhibition of the mitochondria ATP production by treatment with oligomycin. We show that in CHO cells following exposure to oligomycin (8 μg/ml) the cytoplasm conductivity drops, with the majority of the change occurring within 50 min. This work demonstrates that dielectric effects due to changes in ATP production can be observed at the single cell level.
Collapse
Affiliation(s)
- B Saboktakin Rizi
- Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba R3T5V6, Canada
| | - K Braasch
- Department of Microbiology, University of Manitoba , Winnipeg, Manitoba R3T5V6, Canada
| | - E Salimi
- Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba R3T5V6, Canada
| | - M Butler
- Department of Microbiology, University of Manitoba , Winnipeg, Manitoba R3T5V6, Canada
| | - G E Bridges
- Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba R3T5V6, Canada
| | - D J Thomson
- Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba R3T5V6, Canada
| |
Collapse
|
28
|
Feeley KP, Westbrook DG, Bray AW, Ballinger SW. An ex-vivo model for evaluating bioenergetics in aortic rings. Redox Biol 2014; 2:1003-7. [PMID: 25460736 PMCID: PMC4215468 DOI: 10.1016/j.redox.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 08/22/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and it exhibits a greatly increasing incidence proportional to aging. Atherosclerosis is a chronic condition of arterial hardening resulting in restriction of oxygen delivery and blood flow to the heart. Relationships between mitochondrial DNA damage, oxidant production, and early atherogenesis have been recently established and it is likely that aspects of atherosclerotic risk are metabolic in nature. Here we present a novel method through which mitochondrial bioenergetics can be assessed from whole aorta tissue. This method does not require mitochondrial isolation or cell culture and it allows for multiple technical replicates and expedient measurement. This procedure facilitates quantitative bioenergetic analysis and can provide great utility in better understanding the link between mitochondria, metabolism, and atherogenesis. Cardiovascular disease is a primary cause of mortality and morbidity in developed societies. Atherosclerosis is a common cause of cardiovascular disease, and manifests in the vasculature. Mitochondrial damage has been linked to the early events of atherogenesis; therefore an improved means for assessing mitochondrial function in vascular tissues is of interest. Current bioenergetics methods in vascular tissues are limited to transformed or cultured primary cells, or alternatively, isolated preparations of mitochondria. A novel method for ex vivo ascertainment of mitochondrial bioenergetics in aortic tissue is presented.
Collapse
Affiliation(s)
- Kyle P Feeley
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David G Westbrook
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander W Bray
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|