1
|
Lee Y, Ahn S, Jung E, Lim Y, Koh D, Bae DH, Shin SY. (E)-3-(3-([1,1'-Biphenyl]-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-ones inducing reactive oxygen species generation through glutathione depletion. Bioorg Med Chem Lett 2025; 117:130043. [PMID: 39608685 DOI: 10.1016/j.bmcl.2024.130043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
The accumulation of reactive oxygen species (ROS) disrupts reduction-oxidation homeostasis, which can result in damage to cancer cells. To identify the compounds generating ROS, compounds containing Michael acceptors were designed because they are suggested to be critical for ROS elevation via glutathione depletion. Twelve (E)-3-(3-([1,1'-biphenyl]-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-ones were synthesized and identified using nuclear magnetic resonance spectroscopy and mass spectrometry. Intracellular ROS levels induced by treatment with the compounds were determined using fluorescence microscopy with the oxidant-sensing fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate. We selected compound 9, which showed the highest activity, and performed further biological experiments, including glutathione depletion and apoptosis assays, using MIA PaCa-2 pancreatic cancer cells. Additionally, the reason why the intracellular ROS level by compound 9 was lower than that of menadione used as a control was explained through in silico docking experiments. Our findings suggest that compound 9 has the potential to act as an anticancer agent by inducing ROS generation through the depletion of intracellular glutathione.
Collapse
Affiliation(s)
- Youngshim Lee
- Division of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunghyun Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Euitaek Jung
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Dong-Ho Bae
- Department of Food Sciences and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Nakagawa K, Kodama K, Nagata W, Takahashi S, Satoh Y, Ishizuka T. Molecular hydrogen inhibits neuroinflammation and ameliorates depressive-like behaviors and short-term cognitive impairment in senescence-accelerated mouse prone 8 mice. Behav Brain Res 2025; 478:115330. [PMID: 39522774 DOI: 10.1016/j.bbr.2024.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Neuroinflammation, a low-grade chronic inflammation of the central nervous system, is linked to age-related neuropsychiatric disorders such as senile depression and Alzheimer's disease. Recent studies have explored controlling neuroinflammation as a novel treatment strategy. Molecular hydrogen shows anti-inflammatory effects. However, its impacts on neuroinflammation and age-related neuropsychiatric disorders remain unelucidated. We investigated molecular hydrogen's effects on microglial activation, neuroinflammation, depressive-like behavior, and short-term cognitive decline in senescence-accelerated mouse-prone 8 (SAMP8) mice. METHODS Six-week-old SAMP8 or senescence-accelerated mouse-resistant 1 (SAMR1) mice received hydrogen-rich jelly (HRJ) or placebo jelly (PJ) from six weeks of age for 26-28 weeks. Depressive-like behavior was assessed using tail suspension and forced swimming tests, while cognitive function was evaluated using the Y-maze and object recognition tests. Brain tissues were used for immunohistochemical studies or to measure pro-inflammatory cytokine levels via enzyme-linked immunosorbent assay (ELISA). RESULTS HRJ intake reduced immobility time in both tail suspension and forced swimming tests and enhanced visual cognitive and spatial working memory in SAMP8 mice. Additionally, HRJ intake suppressed the 8-hydroxy-2'-deoxyguanosine (8-OHdG), Iba1, and cleaved caspase 3 expression levels in the medial prefrontal cortex and hippocampal dentate gyrus. Furthermore, HRJ intake significantly lowered IL-6 levels in brain tissues of SAMP8 mice. CONCLUSIONS These findings suggest that molecular hydrogen treatment may regulate neuroinflammation induced by activated microglia and improve depressive-like behavior and short-term cognitive impairment in SAMP8 mice.
Collapse
Affiliation(s)
- Keiichi Nakagawa
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Kayoko Kodama
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Wataru Nagata
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Sayaka Takahashi
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-0042, Japan.
| |
Collapse
|
3
|
Guo X, Wang S, Liang J, Xu M. Mitochondrial damage and associated combined toxicity induced by deoxynivalenol and Alternaria toxins co-exposure. Food Chem 2025; 465:142064. [PMID: 39571435 DOI: 10.1016/j.foodchem.2024.142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Deoxynivalenol and Alternaria toxins are common food contaminants posing significant threats to human and animal health. Although their individual toxicities have been extensively studied, the combined effects of co-exposure remain largely unexplored. Our findings revealed combined toxins displayed concentration-dependent synergistic and antagonistic interactions on human hepatocellular carcinoma cells. Co-exposure significantly reduced mitochondrial activity, increased intracellular ROS levels, and activated the mitochondrial-dependent caspase signaling pathway, ultimately leading to enhanced apoptosis. Metabolomics analysis revealed that combined exposure severely disrupted multiple key metabolic processes, including those related to energy (NAD+, adenosine, AMP, and ADP), amino acids (l-aspartate, l-glutamate), and carbohydrate (Glucose-6-phosphate) metabolisms. These findings highlight that co-occurrence exacerbates the disruption of overall metabolic balance, potentially impairing the normal function of cells by affecting energy production, protein synthesis, and cell proliferation. This study underscores the importance of considering combined mycotoxin exposure and provided possible ideas for inhibiting or mitigating toxicity to ensure food safety.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Shuyue Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Jiang Liang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China.
| |
Collapse
|
4
|
Ai Z, Yuan D, Dong R, Zhou S, Cao J. Rostellularia procumbens (L) Nees. extract attenuates adriamycin-induced nephropathy by maintaining mitochondrial dynamics balance via SIRT1/PGC-1α signaling pathway activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119297. [PMID: 39733803 DOI: 10.1016/j.jep.2024.119297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rostellularia procumbens (L) Nees. (R. procumbens) is a classical Chinese herbal medicine that has been used for effective treatment of kidney disease for nearly a thousand years in China. Recently, significant progress has been achieved in understanding the abnormal mitochondrial structure and function from chronic kidney disease (CKD). However, the regulatory mechanisms underlying R. procumbens treatment for CKD and its association with dysfunctional mitochondrial function remain elusive. AIM OF THE STUDY To study the protective effect of N-butanol extract from R. procumbens (J-NE) on chronic glomerulonephritis (CGN) mice using a mice model and mitochondrial function-related experiments. MATERIALS AND METHODS A renal injury mouse model was developed using a single tail vein injection of adriamycin (9 mg/kg). Renal pathology was analyzed through hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Cell apoptosis in kidney tissues was analyzed using TUNEL staining. Protein levels were measured via immunohistochemistry (HIF-1α, FN, α-SMA, and Collagen I) and Western blot (Mn-SOD, p-Drp-S637, MFN1, MFN2, OPA1, TFAM, Nrf1, ATP6, SIRT1, and PGC-1α) analysis. UHPLC-MS/MS was used to analyze the presence of bioactive phytocompounds in J-NE. RESULTS The results reported that the levels of kidney injury markers (urinary protein, glomerular atrophy, and renal cell apoptosis), mitochondrial dysfunction markers (mitochondrial ultrastructure, Mn-SOD, HIF-1α, FN and α-SMA),mitochondrial dynamic imbalance markers (p-Drp-S637, MFN1, MFN2 and OPA1) and SIRT1/PGC-1α signaling pathway markers (TFAM, Nrf1, ATP6, SIRT1, and PGC-1α) were settled to a significant improvement by the oral administration of J-NE. CONCLUSIONS In conclusion, R. procumbens could be able to protect the kidneys from podocyte injury caused mitochondrial dynamics and energy metabolism dysregulation by modulating the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dongfeng Yuan
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruotong Dong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shanshan Zhou
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Jigang Cao
- School of Basic Medical Science, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
5
|
Mohamed HRH, Mohamed BA, Hakeem GM, Elnawasani SH, Nagy M, Essam R, Diab A, Safwat G. Cobalt oxide nanoparticles induce cytotoxicity and excessive ROS mediated mitochondrial dysfunction and p53-independent apoptosis in melanoma cells. Sci Rep 2025; 15:2220. [PMID: 39820009 PMCID: PMC11739696 DOI: 10.1038/s41598-025-85691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Nanotherapy has emerged as a promising strategy for the targeted and efficient treatment of melanoma, the most aggressive and lethal form of skin cancer, with minimized systemic toxicity. However, the therapeutic efficacy of cobalt oxide nanoparticles (Co3O4NPs) in melanoma treatment remains unexplored. This study aimed to assess the therapeutic potential of Co3O4NPs in melanoma treatment by evaluating their impact on cell viability, genomic DNA and mitochondrial integrity, reactive oxygen species (ROS) generation and apoptosis induction in melanoma A-375 cells. Our findings demonstrated a concentration-dependent reduction in cell viability upon treatment with five Co3O4NP concentrations (0.2, 2, 20, 200, and 2000 µg/ml), with an IC50 value of 303.80 µg/ml. Treatment with this IC50 concentration significantly increased ROS generation, induced dramatic DNA damage, and disrupted mitochondrial membrane potential integrity. Flow cytometric analysis revealed apoptosis and necrosis induction following Co3O4NP exposure at the IC50 concentration value. Results of qRT-PCR analysis demonstrated remarkable dysregulation of apoptotic and mitochondrial genes, including a significant downregulation of apoptotic p53 and mitochondrial ND3 genes and marked upregulation of the anti-apoptotic gene Bcl2. These findings highlight the novel potential of Co3O4NPs as potent inducers of melanoma A-375 cell death in a concentration-dependent manner through excessive ROS production, genomic instability, mitochondrial dysfunction and dysregulation of apoptotic and mitochondrial gene expression, ultimately promoting apoptosis in A-375 cells. This study thus underscores the potential of Co3O4NPs as a promising nanotherapeutic candidate for melanoma treatment, warranting further exploration to elucidate their full biological and clinical applicability.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Basma A Mohamed
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - George M Hakeem
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Shahd H Elnawasani
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Maria Nagy
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Rawan Essam
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| |
Collapse
|
6
|
Huang A, Xue H, Xie T, Xiang L, Chen Z, Ma A, Yan H, Yuan J. A review of the pathogenesis of mitochondria in breast cancer and progress of targeting mitochondria for breast cancer treatment. J Transl Med 2025; 23:70. [PMID: 39815317 PMCID: PMC11734335 DOI: 10.1186/s12967-025-06077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
With breast cancer being the most common tumor among women in the world today, it is also the leading cause of cancer-related deaths. Standard treatments include chemotherapy, surgery, endocrine therapy, and targeted therapy. However, the heterogeneity, drug resistance, and poor prognosis of breast cancer highlight an urgent need for further exploration of its underlying mechanisms. Mitochondria, highly dynamic intracellular organelles, play a pivotal role in maintaining cellular energy metabolism. Altered mitochondrial function plays a critical role in various diseases, and recent studies have elucidated its pathophysiological mechanisms in breast carcinogenesis. This review explores the role of mitochondrial dysfunction in breast cancer pathogenesis and assesses potential mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Aoling Huang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Haochen Xue
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Ting Xie
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Lingyan Xiang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Zhengzhuo Chen
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Aolong Ma
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, P. R. China.
| |
Collapse
|
7
|
Nandha SR, Checker R, Patwardhan RS, Sharma D, Sandur SK. Anti-oxidants as therapeutic agents for oxidative stress associated pathologies: future challenges and opportunities. Free Radic Res 2025:1-25. [PMID: 39764687 DOI: 10.1080/10715762.2025.2450504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects. However, these trials failed to establish anti-oxidants as therapeutic agents due to lack of efficacy. This is attributed to the fact that living systems are under dynamic redox control wherein their redox behavior is compartmentalized and simple aggregation of redox couples, distributed throughout the system, is of miniscule importance while determining their overall redox state. Further, free radical metabolism is intriguingly complex as they play plural roles segregated in a spatio-temporal manner. Depending on quality, quantity and site of generation, free radicals exhibit beneficial or harmful effects. Use of nonspecific, non-targeted, general ROS scavengers lead to systemic elimination of all types of ROS and interferes in cellular signaling. Failure of anti-oxidants to act as therapeutic agents lies in this oversimplification of extremely dynamic cellular redox environment as a static and non-compartmentalized redox state. Rather than generalizing the term "oxidative stress" if we can identify the "type of oxidative stress" in different types of diseases, a targeted and more specific anti-oxidant therapy may be developed. In this review, we discuss the concept of redox dynamics, role and type of oxidative stress in disease conditions, and current status of anti-oxidants as therapeutic agents. Further, we probe the possibility of developing novel, targeted and efficacious anti-oxidants with drug-like properties.
Collapse
Affiliation(s)
- Shivani R Nandha
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
8
|
Meng Y, Zhou Q, Dian Y, Zeng F, Deng G, Chen X. Ferroptosis: A Targetable Vulnerability for Melanoma Treatment. J Invest Dermatol 2025:S0022-202X(24)03024-0. [PMID: 39797894 DOI: 10.1016/j.jid.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models. A deeper understanding of the ferroptosis landscape in melanoma based on its biology characteristics, including phenotypic plasticity, metabolic state, genomic alterations, and epigenetic changes, as well as the complex role and mechanisms of ferroptosis in immune cells could provide a foundation for developing effective treatments. In this review, we outline the molecular mechanisms of ferroptosis, decipher the role of melanoma biology in ferroptosis regulation, reveal the therapeutic potential of ferroptosis in melanoma, and discuss the pressing questions that should guide future investigations into ferroptosis in melanoma.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
9
|
Zhou N, Liu Z, Shi Z, Luo L, Xuan M, Zhu R, Hu K, Zhu X, Xu W, Li Y, Cao Z, Zhang Y. PARL regulates porcine oocyte meiotic maturation by mediating mitochondrial activity. Theriogenology 2025; 235:75-85. [PMID: 39798391 DOI: 10.1016/j.theriogenology.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
PARL is a rhomboid membrane protein that plays a crucial role in regulating the metabolism and maintaining the homeostasis of mitochondria which provide important energy and material reserves for oocyte maturation. However, the impact of PARL on oocyte maturation remains poorly understood. Here, we elucidated the pivotal role of PARL in oocyte maturation through its regulatory effects on mitochondrial activity. Specifically, our findings revealed that inhibiting PARL expression by interfering with RNA transcription in oocytes led to a substantial decrease in the rate of first polar body extrusion and early development of parthenogenetically activated embryos. Moreover, PARL deficiency disrupted mitochondrial distribution and activity, leading to the accumulation of ROS, abnormal distribution of CGs and actin, increased tubulin acetylation modification, disturbed spindle assembly and chromosome alignment, ultimately caused DNA damage in porcine oocytes at the metaphase II stage. Intriguingly, PARL deficiency did not cause occurrence of apoptosis in oocytes. Furthermore, our study highlighted that PARL deficiency caused the aberrant expression of genes associated with oocyte maturation, particularly those genes associated with mitochondrial function and DNA integrity. Collectively, these results demonstrate that the indispensable role of PARL in orchestrating porcine oocyte meiotic maturation though its modulation of mitochondrial activity.
Collapse
Affiliation(s)
- Naru Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China; Center for Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, 230001, China
| | - Zongliang Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenhu Shi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lei Luo
- Center for Reproduction and Genetics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, 230001, China
| | - Mengqing Xuan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ruiqing Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Kunlong Hu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xinyue Zhu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenhuan Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Fu H, Wang S, Gong Y, Dong H, Lai K, Yang Z, Fan C, Liu Z, Guo L. Triphenylphosphine-modified cyclometalated iridium III complexes as mitochondria-targeting anticancer agents with enhanced selectivity. Bioorg Chem 2025; 155:108148. [PMID: 39799728 DOI: 10.1016/j.bioorg.2025.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
This study presents the development and evaluation of triphenylphosphine-modified cyclometalated iridiumIII complexes as selective anticancer agents targeting mitochondria. By leveraging the mitochondrial localization capability of the triphenylphosphine group, these complexes displayed promising cytotoxicity in the micromolar range (3.12-7.24 μM) against A549 and HeLa cancer cells, these complexes exhibit significantly higher activity compared to their unmodified counterparts lacking the triphenylphosphine moiety. Moreover, they demonstrate improved specificity for cancer cells over normal cells, achieving selectivity index in the range of 5.46-14.83. Mechanistic studies confirmed that these complexes selectively target mitochondria rather than DNA, as shown by confocal microscopy and flow cytometry, where they accumulate to induce mitochondrial dysfunction. This disruption leads to mitochondrial membrane depolarization (MMP), elevated reactive oxygen species (ROS) levels, and activation of intrinsic apoptosis pathways. Furthermore, the complexes induce cell cycle arrest at the G2/M phase and suppress the migration of A549 cells.
Collapse
Affiliation(s)
- Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Shuli Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Chunyan Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China.
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China.
| |
Collapse
|
11
|
Fang S, Jiang M, Jiao J, Zhao H, Liu D, Gao D, Wang T, Yang Z, Yuan H. Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease. Aging Dis 2025:AD.2024.1253. [PMID: 39812539 DOI: 10.14336/ad.2024.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Increased entropy is a common cause of disease and aging. Lifespan entropy is the overall increase in disorder caused by a person over their lifetime. Aging leads to the excessive production of reactive oxygen species (ROS), which damage the antioxidant system and disrupt redox balance. Organ aging causes chronic inflammation, disrupting the balance of proinflammatory and anti-inflammatory factors. Inflammaging, which is a chronic low-grade inflammatory state, is activated by oxidative stress and can lead to immune system senescence. During this process, entropy increases significantly as the body transitions from a state of low order to high disorder. However, the connection among inflammation, aging, and immune system activity is still not fully understood. This review introduces the idea of the ROS-inflammation-immune balance for the first time and suggests that this balance may be connected to aging and the development of age-related diseases. We also explored how the balance of these three factors controls and affects age-related diseases. Moreover, imbalance in the relationship described above disrupts the regular structures of cells and alters their functions, leading to cellular damage and the emergence of a disorganized state marked by increased entropy. Maintaining a low entropy state is crucial for preventing and reversing aging processes. Consequently, we examined the current preclinical evidence for antiaging medications that target this balance. Ultimately, comprehending the intricate relationships between these three factors and the risk of age-related diseases in organisms will aid in the development of clinical interventions that promote long-term health.
Collapse
Affiliation(s)
- Sihang Fang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjun Jiang
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, China National Clinical Research Center of Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Juan Jiao
- Department of Clinical Laboratory, the Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dizhi Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Danni Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tenger Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ze Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Huiping Yuan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| |
Collapse
|
12
|
Zhu S, Ruan F, Ye L, Jiang S, Yang C, Zuo Z, He C. Black phosphorus quantum dots induce lipid accumulation through PPARγ activation and mitochondrial dysfunction in adipocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177972. [PMID: 39662394 DOI: 10.1016/j.scitotenv.2024.177972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Black phosphorus quantum dots (BPQDs) are believed to have broad prospects for application. Obesity has garnered significant attention, but the association between BPQDs and lipid metabolism has not been thoroughly investigated. Mice were orally exposed to BPQDs at doses of 0.1 and 1 mg/kg for 28 d. The exposed mice exhibited reduced insulin sensitivity, hypertrophy of white adipose tissues, and reduced thermogenic function of brown adipose tissues. In white adipocyte line (3T3-L1), exposure to 5-20 μg/mL BPQDs induced lipid accumulation, oxidative stress, and upregulated the expression of PPARγ and genes involved in de novo lipogenesis. Moreover, both a reactive oxygen species (ROS) scavenger and a PPARγ inhibitor were able to attenuate lipid accumulation and downregulate the expression of lipid-associated genes in white adipocytes. In mouse brown adipocytes, BPQDs exposure caused oxidative stress, mitochondrial dysfunction, and downregulation of thermogenic genes such as UCP1. The ROS scavenger attenuated the oxidative stress and improved the mitochondrial thermogenic function in brown adipocytes. In summary, this work demonstrates that oxidative stress induced by BPQDs mediates the lipid accumulation possibly through PPARγ activation and mitochondrial dysfunction of adipose tissues, highlighting the potential obesogenic effect of BPQDs. Our findings provide novel insights into the biosafety of BPQDs and their potential health risks to humans, offering important considerations for the sustainable application of BP materials. ENVIRONMENTAL IMPLICATION: BPQDs are a novel type of nanomaterials with unique physicochemical properties, and have broad applications in various fields, particularly in biomedicine. However, during the production and use of BPQDs as medical materials, they inevitably contact with the human body for long periods of time. Therefore, it is necessary to investigate the effects of BPQDs on organisms under long-term exposure, especially lipid metabolism. This study would be helpful decreasing the environmental health risk of BP materials and promoting their sustainable development of nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Sihao Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lingxiao Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Suhua Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China..
| |
Collapse
|
13
|
Liu X, Sun Y, Gao Y, Zhang X, Li X, Zheng W, Liu M, Zhao T, Yuan XA, Yue M, Liu Z. Anticancer behavior of cyclometallated iridium(III)-tributyltin(IV) carboxylate schiff base complexes with aggregation-induced emission. J Inorg Biochem 2025; 262:112767. [PMID: 39486100 DOI: 10.1016/j.jinorgbio.2024.112767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Cyclometallated iridium(III) and organotin(IV) carboxylate complexes have shown potential application value in the field of anticancer. However, the widespread aggregation-caused quenching (ACQ) effect of these complexes is not conducive to the exploration of their targeting and anticancer mechanism, and the idea of aggregation-induced emission (AIE) effect can effectively solve this problem. Then, AIE-activated cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes were designed and prepared in this study. Complexes exhibited AIE effect in highly concentrated solution or aggregative state, which facilitated the investigation of subcellular tissue targeting (mitochondria) and cell morphology. Compared with cyclometallated iridium(III) complex and tributyltin(IV) carboxylate monomers, these complexes showed the better in-vitro anti-proliferative activity toward A549 cells, confirming the favorable synergistic anticancer activity. Even for A549/DDP (cisplatin-resistance) cells, these complexes also exhibited the better activity. In addition, complexes showed a mitochondrial apoptotic pathway. Therefore, cyclometallated iridium(III)-tributyltin(IV) carboxylate Schiff base complexes can be used as the potential substitutes for platinum-based drugs and gain further application.
Collapse
Affiliation(s)
- Xicheng Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuan Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xinru Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaoshuang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenya Zheng
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mengxian Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ting Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Mingbo Yue
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
14
|
Mao K, Huang Y, Liu Z, Sui W, Liu C, Li Y, Zeng J, Qian X, Ma X, Lin X, Lou B. Oxidative stress mediates retinal damage after corneal alkali burn through the activation of the cGAS/STING pathway. Exp Eye Res 2024; 251:110228. [PMID: 39736315 DOI: 10.1016/j.exer.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/22/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025]
Abstract
Retinal damage accounts for irreversible vision loss following ocular alkali burn (OAB), but the underlying mechanisms remain largely unexplored. Herein, using an OAB mouse model, we examined the impact of oxidative stress (OS) in retinal damage and its molecular mechanism. Results revealed that OS in the retina was enhanced soon after alkali injury. Antioxidant therapy with N-acetylcysteine (NAC) preserved the retinal structure, suppressed cell apoptosis and decreased retinal inflammation, confirming the role of OS. Moreover, enhanced OS was linked to mitochondrial dysfunction, mtDNA leakage and initiation of the cytosolic DNA-sensing signaling. The activation of the major DNA sensors cyclic GMP-AMP Synthase (cGas) and cGAS-Stimulator of Interferon Genes (cGAS/STING) pathway was then identified. Notably, inhibiting cGAS/STING signaling with C-176 markedly reduced inflammation and cell apoptosis and ultimately protected the retina against OAB. Overall, our study reveals the vital function of OS in the occurrence of OAB-induced retinal damage and the involvement of cGAS/STING activation. Furthermore, our provides preclinical validation of the use of an antioxidant or a STING inhibitor as a potential therapeutic approach to protect the retina after OAB.
Collapse
Affiliation(s)
- Keli Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yanqiao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Wenjun Sui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Chong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Yujie Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Wang B, Huang Y, Cheng X, Song J, Wang Q, Zhu Y, Zhang L, Liu G. Transduction of jellyfish superoxide dismutase mediated by TAT peptide ameliorates H 2O 2-induced oxidative stress in HaCaT cells. Sci Rep 2024; 14:31037. [PMID: 39730660 DOI: 10.1038/s41598-024-82261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Superoxide dismutase (SOD) plays important roles in the balance of oxidation and antioxidation in body mostly by scavenging superoxide anion free radicals (O2.-). Previously, we reported a novel Cu/Zn SOD from jellyfish Cyanea capillata, named CcSOD1, which exhibited excellent SOD activity and high stability. TAT peptide is a common type of cell penetrating peptides (CPPs) that efficiently deliver extracellular biomacromolecules into cytoplasm. In this study, we constructed a recombinant expression vector that combined the coding sequences of TAT peptide and CcSOD1, and then obtained sufficient and high-purity TAT-CcSOD1 fusion protein. Compared with some reported SODs/CPP-SODs, TAT-CcSOD1 possessed stronger tolerance to heat and acid-base environment. TAT-CcSOD1 efficiently penetrated cell membrane and significantly enhanced the O2.- scavenging ability in cells, and attenuated H2O2-induced cytotoxicity and NO generation in HaCaT cells. This study serves as a critical step forward for the application of TAT-CcSOD1 as a potential protective/therapeutic agent against oxidative stress-related conditions in the future.
Collapse
Affiliation(s)
- Bo Wang
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
- Naval Special Medical Center, Naval Medical University, Shanghai, 200052, China
| | - Yichao Huang
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Xi Cheng
- Department of Pharmacy, Tianyou Hospital, Tongji University, Shanghai, China
| | - Juxingsi Song
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Qianqian Wang
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Yuanjie Zhu
- Naval Special Medical Center, Naval Medical University, Shanghai, 200052, China.
| | - Liming Zhang
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China.
| | - Guoyan Liu
- Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
16
|
Sharipov RR, Surin AM, Silonov SA, Smirnov EY, Neklesova MV, Vishnyakov IE, Gavrilova AA, Mikryukova AA, Moskovtsev AA, Bakaeva ZV, Kolesnikov SS, Kuznetsova IM, Turoverov KK, Fonin AV. Promyelocytic leukemia protein (PML) knockout increases mitochondrial Ca 2+ uptake in HeLa cells. Biochem Biophys Res Commun 2024; 739:150990. [PMID: 39550867 DOI: 10.1016/j.bbrc.2024.150990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
The multifunctional promyelocytic leukemia protein (PML) is involved in the regulation of various cellular processes in both physiological and pathological conditions. Specifically, PML is one of the inositol-1,4,5-trisphosphate receptors (IP3Rs) activity regulators and can influence Ca2+ transport from the endoplasmic reticulum (ER) to mitochondria. In this work, the effects of PML knockout on calcium homeostasis in the cytosol, ER, and mitochondria of HeLa cells were studied upon stimulation with histamine, which induces Ca2+ mobilization from the ER via IP3Rs. We utilized calcium indicators with different subcellular localizations, including synthetic dyes Fura-2 (cytosolic), Xrhod-5F (mitochondrial), and protein sensor R-CEPIAer (ER), as well as mitochondrial potential-sensitive probes Rh123 and TMRM. Our results show that PML knockout induced changes in HeLa cell and mitochondrial morphology, slightly decreased basal and integral Ca2+ levels, enhanced mitochondrial Ca2+ uptake from the cytoplasm, and maintained residual mitochondrial potential after depolarization. Additionally, it reduced the Ca2+ pool in ER membranes not associated with histamine receptor activation and, consequently, IP3Rs. These findings suggest that changes in calcium ion transport due to PML knockout in HeLa cells affect mitochondrial activity.
Collapse
Affiliation(s)
- R R Sharipov
- Institute of General Pathology and Pathophysiology, Moscow, Baltiyskaya St., 8, 125315, Russia
| | - A M Surin
- Institute of General Pathology and Pathophysiology, Moscow, Baltiyskaya St., 8, 125315, Russia
| | - S A Silonov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - E Y Smirnov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - M V Neklesova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - I E Vishnyakov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - A A Gavrilova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - A A Mikryukova
- Institute of General Pathology and Pathophysiology, Moscow, Baltiyskaya St., 8, 125315, Russia
| | - A A Moskovtsev
- Institute of General Pathology and Pathophysiology, Moscow, Baltiyskaya St., 8, 125315, Russia
| | - Z V Bakaeva
- National Medical Research Center for Children's Health, 119296, Moscow, Russia
| | - S S Kolesnikov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya St.3, 142290, Pushchino, Russia
| | - I M Kuznetsova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - K K Turoverov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia
| | - A V Fonin
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Tikhoretsky Av.4, 194064, Russia.
| |
Collapse
|
17
|
Lu W, Yang Y, Gao S, Wu J, Sun X. Taurine mechanism in preventing retinal cell damage from acute ocular hypertension through GTPBP3 regulation. Exp Eye Res 2024; 251:110222. [PMID: 39710098 DOI: 10.1016/j.exer.2024.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
We aimed to explore the protective effects and underlying mechanisms of taurine on retinal cells during acute ocular hypertension (AOH)-induced damage. Retinal morphology, apoptosis, mitochondrial structure, electroretinography, expression of GTP binding protein 3 (GTPBP3), and molecules in the unfolded protein response (UPR) were examined in an AOH mouse model and wild-type (WT) mice with or without intravitreal injection of taurine. For in vitro experiments, the GTPBP3 expression and endoplasmic reticulum (ER) stress were examined in R28 cell line under hydrogen peroxide (H2O2)-induced damage or hypoxia/reoxygenation (H/R)-induced damage, with or without taurine pretreatment. Taurine pretreatment alleviated retinal damage caused by AOH modeling. The GTPBP3 expression level decreased after AOH injury, and taurine pretreatment reversed this reduction. Retinas with decreased GTPBP3 expression showed reduced retinal ganglion cell (RGC) function, which could be reversed by intravitreal taurine injection. In H2O2-, H/R-, and AOH-induced damage, UPR were activated and alleviated by taurine pretreatment. GTPBP3 knockdown in R28 cells also activated the UPR, which was alleviated by taurine. A UPR activator downregulated GTPBP3 levels in normal R28 cells, whereas a UPR inhibitor upregulated GTPBP3 levels in GTPBP3 knockdown R28 cells. In conclusion, this study provides important evidence that taurine prevents retinal cell damage in mice exposed to AOH and modulates GTPBP3 expression via the UPR pathway. Interventions targeting this mechanism can be used as potential therapeutic targets for AOH damage.
Collapse
Affiliation(s)
- Wei Lu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Yuting Yang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Shunxiang Gao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Jihong Wu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
18
|
Ding L, Zhang R, Du W, Wang Q, Pei D. The role of cGAS-STING signaling pathway in ferroptosis. J Adv Res 2024:S2090-1232(24)00606-4. [PMID: 39710299 DOI: 10.1016/j.jare.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a crucial mechanism in antiviral defense and innate immunity pathway. Ferroptosis, characterized by iron dependence and lipid peroxidation, represents a specialized form of cell death. A burgeoning collection of studies has demonstrated that the cGAS-STING signaling pathway participates in the homeostatic regulation of the organism by modulating ferroptosis-associated enzyme activity or gene expression. Consequently, elucidating the specific roles of the STING signaling pathway and ferroptosis in vivo is vital for targeted disease intervention. This review systematically examines the interactions between the cGAS-STING signaling pathway and ferroptosis, highlighting their influence on disease progression in the contexts of inflammation, injury, and cancerous cell dynamics. Understanding these interactions may provide novel therapeutic strategies. The STING pathway has been implicated in the regulation of various cell death mechanisms, including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis. Our focus primarily addresses the role and mechanism of the cGAS-STING signaling pathway and ferroptosis in diseases, limiting discussion of other cell death modalities and precluding a comprehensive overview of the pathway's additional functions.
Collapse
Affiliation(s)
- Lina Ding
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| | - Ruicheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Wenqi Du
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China.
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
19
|
Qiu X, Yao Y, Chen Y, Li Y, Sun X, Zhu X. TRPC5 Promotes Intermittent Hypoxia-Induced Cardiomyocyte Injury Through Oxidative Stress. Nat Sci Sleep 2024; 16:2125-2141. [PMID: 39720578 PMCID: PMC11668249 DOI: 10.2147/nss.s494748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Purpose Intermittent hypoxia (IH), a defining feature of obstructive sleep apnea (OSA), is associated with heart damage and linked to transient receptor potential canonical channel 5 (TRPC5). Nonetheless, the function of TRPC5 in OSA-induced cardiac injury remains uncertain. For this research, we aimed to explore the role and potential mechanism of TRPC5 in cardiomyocyte injury induced by intermittent hypoxia. Methods 30 patients with newly diagnosed OSA and 30 patients with primary snoring(PS) were included in this study. Participants were subjected to polysomnography (PSG) for OSA diagnosis. Echocardiography was used to evaluate the structure and function of the heart, while peripheral blood samples were obtained. Additionally, RT-qPCR was utilized to quantify the relative expression level of TRPC5 mRNA in peripheral blood. H9c2 cells experienced IH or normoxia. TRPC5 levels in H9c2 cells were determined via RT-qPCR and Western blotting (WB) methods. H9c2 cells overexpressing TRPC5 were subjected to either normoxic or intermittent hypoxia conditions. Cell viability was determined by CCK8, the apoptosis rate, reactive oxygen species(ROS) levels, and Ca2+ concentration were assessed by flow cytometry, and the protein levels of TRPC5, Bcl-2, Bax, and Caspase-3 were analyzed by WB. Mitochondrial membrane potential(MMP), mitochondrial membrane permeability transition pore(mPTP), and transmission electron microscopy(TEM) were employed to observe mitochondrial function and structure. After inhibiting ROS with N-acetylcysteine (NAC), apoptosis, mitochondrial function and structure, and the concentration of Ca2+ were further detected. Results TRPC5 and left atrial diameter (LAD) were higher in OSA individuals, while the E/A ratio was lower(all P<0.05). IH impaired cell viability, triggered cell apoptosis, and enhanced TRPC5 expression in H9c2 cells(all P<0.05). The effects of IH on apoptosis, cell viability, mitochondrial function and structure damage, and oxidative stress (OxS) in H9c2 cells were accelerated by the overexpression of TRPC5(all P<0.05). Furthermore, cell apoptosis and mitochondrial structural and functional damage caused by overexpression of TRPC5 were attenuated by ROS inhibition. Conclusion TRPC5 is associated with structural and functional cardiac damage in patients with OSA, and TRPC5 promotes IH-induced apoptosis and mitochondrial damage in cardiomyocytes through OxS. TRPC5 may be a novel target for the diagnosis and treatment of OSA-induced myocardial injury.
Collapse
Affiliation(s)
- Xuan Qiu
- Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Yanli Yao
- Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Yulan Chen
- Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Yu Li
- Second Department of Comprehensive Internal Medicine of Healthy Care Center for Cadres, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Xiaojing Sun
- Department of Intensive Care Unit, the Seventh Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| | - Xiaoli Zhu
- Department of Cardiovasology, the Traditional Chinese Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People’s Republic of China
| |
Collapse
|
20
|
Liu Z, Fu H, Dong H, Lai K, Yang Z, Fan C, Luo Y, Qin W, Guo L. Triphenylphosphine-Modified Iridium III, Rhodium III, and Ruthenium II Complexes to Achieve Enhanced Anticancer Selectivity by Targeting Mitochondria. Inorg Chem 2024. [PMID: 39681494 DOI: 10.1021/acs.inorgchem.4c03975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The incorporation of an organelle-targeting moiety into compounds has proven to be an effective strategy in the development of targeted anticancer drugs. We herein report the synthesis, characterization, and biological evaluation of novel triphenylphosphine-modified half-sandwich iridiumIII, rhodiumIII, and rutheniumII complexes. The primary goal was to enhance anticancer selectivity through mitochondrial targeting. All these triphenylphosphine-modified complexes exhibited promising cytotoxicity in the micromolar range (5.13-23.22) against A549 and HeLa cancer cell lines, surpassing the activity of comparative complexes that lack the triphenylphosphine moiety. Noteworthy is their good selectivity toward cancer cells compared to normal BEAS-2B cells, underscored by selectivity index ranging from 7.3 to >19.5. Mechanistically, these complexes primarily target mitochondria rather than interacting with DNA. The targeting of mitochondria and triggering mitochondrial dysfunction were confirmed using both confocal microscopy and flow cytometry. Their ability to depolarize mitochondrial membrane potential (MMP) and enhance reactive oxygen species (ROS) was observed, thereby leading to intrinsic apoptotic pathways. Moreover, these complexes lead to cell cycle arrest in the G2/M phase and demonstrated antimigration effects, significantly inhibiting the migration of A549 cells in wound-healing assays.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chunyan Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuting Luo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenting Qin
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
21
|
Cao C, Chen N, Zhu H, Ouyang H, Li X. Selenium Ameliorates Aluminum Poisoning-Induced Impaired Production of Neutrophil Extracellular Traps in Chicken. Biol Trace Elem Res 2024:10.1007/s12011-024-04485-x. [PMID: 39674990 DOI: 10.1007/s12011-024-04485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Neutrophil extracellular traps (NETs) are released by neutrophils to modulate the immune response. Aluminum (Al) poisoning is linked to immunotoxicity, and selenium (Se) can maintain immune homeostasis. In this study, we investigated the toxic effects of Al on the release of NETs, the antagonistic effect of Se on Al-induced toxicity, and the potential molecular mechanisms underlying these processes. We assessed the cytotoxicity of aluminum on neutrophils using CCK-8 assay, visualized the structure of selenium/aluminum-induced NETs through immunofluorescence and scanning electron microscope, quantified ROS release during NETs formation using fluorescence microplate analysis, and employed the selenoprotein levels to dissect the mechanisms underlying selenium and aluminum-induced NETs release. Peripheral blood neutrophils were exposed to zymosan for a duration of 3 h to induce the formation of NETs. Microscopic analysis indicated that NETs formation was inhibited in the presence of aluminum. Furthermore, assessments using a multifunctional microplate reader demonstrated that aluminum suppressed both the production of extracellular DNA and the reactive oxygen species burst in neutrophils. Western blot analysis revealed that aluminum altered the levels of cellular selenoproteins. In contrast, Se reduced the Al-induced toxic reaction including restored NETs production, ROS burst, and selenoprotein levels. These results indicate that Al decreases the formation of NETs induced by Zym, while Se inhibits the Al toxicity, promoting the formation of NETs by modulating the expression of selenoprotein.
Collapse
Affiliation(s)
- Changyu Cao
- School of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, China
| | - Nixin Chen
- School of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, China
| | - Huquan Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, China
| | - Huimin Ouyang
- School of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, China
| | - Xinran Li
- School of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, China.
- Foshan University Veterinary Teaching Hospital, Foshan, 528225, Guangdong Province, China.
| |
Collapse
|
22
|
Kobayashi H, Imanaka S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int J Mol Sci 2024; 25:13144. [PMID: 39684855 DOI: 10.3390/ijms252313144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The efficacy of assisted reproductive technologies (ARTs) in older women remains constrained, largely due to an incomplete understanding of the underlying pathophysiology. This review aims to consolidate the current knowledge on age-associated mitochondrial alterations and their implications for ovarian aging, with an emphasis on the causes of mitochondrial DNA (mtDNA) mutations, their repair mechanisms, and future therapeutic directions. Relevant articles published up to 30 September 2024 were identified through a systematic search of electronic databases. The free radical theory proposes that reactive oxygen species (ROS) inflict damage on mtDNA and impair mitochondrial function essential for ATP generation in oocytes. Oocytes face prolonged pressure to repair mtDNA mutations, persisting for up to five decades. MtDNA exhibits limited capacity for double-strand break repair, heavily depending on poly ADP-ribose polymerase 1 (PARP1)-mediated repair of single-strand breaks. This process depletes nicotinamide adenine dinucleotide (NAD⁺) and ATP, creating a detrimental cycle where continued mtDNA repair further compromises oocyte functionality. Interventions that interrupt this destructive cycle may offer preventive benefits. In conclusion, the cumulative burden of mtDNA mutations and repair demands can lead to ATP depletion and elevate the risk of aneuploidy, ultimately contributing to ART failure in older women.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
23
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Li J, Zhao H, Yang J, Wang M, Cao Z, Wang Y, Gu Z. The role and mechanism of extracellular traps in chronic rhinosinusitis. Biomed Pharmacother 2024; 181:117655. [PMID: 39486368 DOI: 10.1016/j.biopha.2024.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is a common inflammatory disease of the nose that affects millions of individuals worldwide. Recent research has introduced the concept of an immunologic endotype based on the pathological characteristics of CRS and the types of inflammatory cell infiltration. This endotype concept is conducive to understanding CRS pathology and guiding further targeted therapy. Eosinophils and neutrophils infiltrate different proportions in different CRS endotypes and release extracellular traps (ETs) as a response to the extracellular immune response. The mechanisms of formation and biological roles of ETs are complex. ETs can trap extracellular microorganisms and limit the range of inflammation to some extent; however, excessive and long-term ETs may be related to disease severity. This review summarises and explores the mechanism of ETs and the advances in CRS research and proposes new insights into the interaction between ETs and programmed cell death (including autophagy, pyroptosis, and necroptosis) in CRS, providing new ideas for the targeted therapy of CRS.
Collapse
Affiliation(s)
- Jiani Li
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Yunxiu Wang
- Department of Clinical Trial Ward, Clinical Trial and Conversion Center, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
25
|
Li X, Zhou Z, Tao Y, He L, Zhan F, Li J. Linking homocysteine and ferroptosis in cardiovascular disease: insights and implications. Apoptosis 2024; 29:1944-1958. [PMID: 39044092 DOI: 10.1007/s10495-024-01999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Homocysteine (Hcy) is a metabolic intermediate product derived from methionine. Hyperhomocysteinemia is a condition associated with various diseases. Hcy is recognized as a risk factor for cardiovascular disease (CVD). Ferroptosis, a novel form of cell death, is primarily characterized by substantial iron accumulation and lipid peroxidation. Recent research indicates a close association between ferroptosis and the pathophysiological processes of tumors, neurological diseases, CVD, and other ailments. However, limited research has been conducted on the impact of Hcy on ferroptosis. Therefore, this paper aimed to investigate the potential roles and mechanisms of homocysteine and ferroptosis in the context of cardiovascular disease. By conducting comprehensive literature research and analysis, we aimed to summarize recent advancements in understanding the effects of homocysteine on ferroptosis in cardiovascular diseases. This research contributes to a profound understanding of this critical domain.
Collapse
Affiliation(s)
- Xiaozhong Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China
| | - Zheng Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China
| | - Yu Tao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lei He
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Fenfang Zhan
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
26
|
Zhang W, Guo C, Li Y, Wang H, Wang H, Wang Y, Wu T, Wang H, Cheng G, Man J, Chen S, Fu S, Yang L. Mitophagy mediated by HIF-1α/FUNDC1 signaling in tubular cells protects against renal ischemia/reperfusion injury. Ren Fail 2024; 46:2332492. [PMID: 38584135 PMCID: PMC11000611 DOI: 10.1080/0886022x.2024.2332492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Acute kidney injury (AKI) is associated with a high mortality rate. Pathologically, renal ischemia/reperfusion injury (RIRI) is one of the primary causes of AKI, and hypoxia-inducible factor (HIF)-1α may play a defensive role in RIRI. This study assessed the role of hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy in protection against RIRI in vitro and in vivo. The human tubular cell line HK-2 was used to assess hypoxia/reoxygenation (H/R)-induced mitophagy through different in vitro assays, including western blotting, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), and reactive oxygen species (ROS) measurement. Additionally, a rat RIRI model was established for evaluation by renal histopathology, renal Doppler ultrasound, and transmission electron microscopy to confirm the in vitro data. The selective HIF-1α inhibitor LW6 reduced H/R-induced mitophagy but increased H/R-induced apoptosis and ROS production. Moreover, H/R treatment enhanced expression of the FUN14 domain-containing 1 (FUNDC1) protein. Additionally, FUNDC1 overexpression reversed the effects of LW6 on the altered expression of light chain 3 (LC3) BII and voltage-dependent anion channels as well as blocked the effects of HIF-1α inhibition in cells. Pretreatment of the rat RIRI model with roxadustat, a novel oral HIF-1α inhibitor, led to decreased renal injury and apoptosis in vivo. In conclusion, the HIF-1α/FUNDC1 signaling pathway mediates H/R-promoted renal tubular cell mitophagy, whereas inhibition of this signaling pathway protects cells from mitophagy, thus aggravating apoptosis, and ROS production. Accordingly, roxadustat may protect against RIRI-related AKI.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Kidney Diseases, Lanzhou, China
| | - Chao Guo
- Scientific Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi Li
- Department of Anesthesiology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Hao Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huabing Wang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Yingying Wang
- Department of Nephrology, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Tingting Wu
- Department of Functional Examination in Children, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Huinan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Gang Cheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiangwei Man
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Siyu Chen
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Shengjun Fu
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
| | - Li Yang
- Department of Urology Surgery, Lanzhou University Affiliated Second Hospital, Lanzhou, China
- Gansu Provicne Clinical Research Center for Urology, Lanzhou, China
| |
Collapse
|
27
|
Li X, He Y, Yan Q, Kuai D, Zhang H, Wang Y, Wang K, Tian W. Dihydrotestosterone induces reactive oxygen species accumulation and mitochondrial fission leading to apoptosis of granulosa cells. Toxicology 2024; 509:153958. [PMID: 39332622 DOI: 10.1016/j.tox.2024.153958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
Dihydrotestosterone (DHT), which has significant androgenic activity,is a major player in follicle development and ovary function in females. However, an excess of androgens may result in increased follicular apoptosis with adverse effects on female fertility. This study aimed to explore the mechanism by which DHT induces apoptosis in human ovarian granulosa cells (GCs). The association between DHT and GC apoptosis was explored by the construction of rat models of polycystic ovary syndrome (PCOS). It was found that serum DHT levels were negatively correlated with thickness of the GC layer in PCOS model rats (R2=0.8342, p<0.0001), compared with control rats, together with significant increases in cofactors (Fis1: p=0.008; MFF: p=0.044). The GC SVOG cell line was used to clarify the mechanism by which DHT influenced GC apoptosis in in vitro experiments. The results confirmed that apoptosis in SVOG cells was positively associated with the DHT dose. The expression of the autophagy-related proteins LC3A/B (p=0.027) and the proapoptotic protein Bax (p=0.0095) were increased, while that of the anti-apoptotic protein Bcl-2 (p=0.0005) was decreased in the high-dose DHT group. ROS levels were significantly increased (p=0.0237) and the mitochondrial membrane potential ΔΨm was decreased (p=0.0194). Moreover, ultrastructural analysis of the mitochondria indicated significant damage. The results of RT-qPCR and western blotting showed that two fission cofactor-Fis1(p=0.034) and MFF (p=0.039) were significantly increased after treatment with high doses of DHT. Even though the overall expression of Drp1 did not change significantly (p=0.5961), that of activated Phosphor-Drp1(Ser616) was significantly increased (p=0.046), while the expression of Phosphor-Drp1 (Ser637) was markedly reduced (p=0.007) following exposure to high concentrations of DHT. All these effects could be reversed by the Drp1 inhibitor Mdivi-1. These findings indicated the impact of DHT on ROS aggregation and mitochondrial fission, resulting in GC apoptosis. An imbalance in Drp1 phosphorylation may be the key link in DHT-induced excessive mitochondrial fission.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying He
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiying Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Kan Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
28
|
Gu S, Lu F, Gao Z, Zhou Y, Xiao Y, Bao W, Wang H. Transcriptomics and metabolomics analyses of graphene oxide toxicity on porcine alveolar macrophages. Toxicology 2024; 509:153953. [PMID: 39265697 DOI: 10.1016/j.tox.2024.153953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Graphene oxide (GO) is a type of nanomaterial widely used in tissue engineering, photocatalysis, and biomedicine. GO has been found to produce adverse effects on a broad range of cells and tissues. However, the molecular mechanisms underlying GO toxicity still remain to be explored. In this study, using porcine alveolar macrophages as a study model, we explored the toxic effects of GO and performed genome-wide detection of genes and metabolites associated with GO exposure using RNA-seq and liquid chromatograph mass spectrometer techniques. GO exposure significantly inhibited cell viability and induced apoptosis and oxidative stress in porcine alveolar macrophages. Further, GO exposure promoted cellular inflammation by upregulating the expression of pro-inflammatory cytokines (IL-6, IL-8, and IL-12). Transcriptomic analysis of GO-exposed cells revealed 424 differentially expressed genes. Functional enrichment analysis showed that the differentially expressed genes were significantly enriched in the pathways of Ribosome and oxidative phosphorylation (OXPHOS). In addition, metabolic analysis identified 203 differential metabolites, and these metabolites were significantly enriched in biosynthesis of cofactors, purine metabolism, and nucleotide metabolism. Integrative analyses of transcriptome and metabolome showed that OXPHOS was the most significantly enriched pathway and the involved genes were downregulated. This study revealed the toxic effects of GO on porcine alveolar macrophages and provided global insights to the metabolomic and transcriptomic alterations related to GO exposure. The results contributed to our understanding of the molecular mechanism of GO, and may further promote the detection of biomarkers for the prediction and control of GO toxicity.
Collapse
Affiliation(s)
- Shanshen Gu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fan Lu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhongcheng Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
29
|
Yang H, Sun P, Zhou S, Tang Y, Li S, Li W, Yu X, Liu H, Wu Y. Chlamydia psittaci infection induces IFN-I and IL-1β through the cGAS-STING-IRF3/NLRP3 pathway via mitochondrial oxidative stress in human macrophages. Vet Microbiol 2024; 299:110292. [PMID: 39581075 DOI: 10.1016/j.vetmic.2024.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Chlamydia psittaci (C. psittaci) is a multi-host pathogen that elicits robust innate immune responses in macrophages. Chlamydiae target host mitochondria to manipulate the cellular fate and metabolic functions. However, the effect of C. psittaci on the host mitochondria remains obscure. This study investigated how C. psittaci, post-infection in human macrophages, induces mitochondrial oxidative stress and damage to activate the cGAS-STING-IRF3/NLRP3 pathway for IFN-I and IL-1β production. Results demonstrate that C. psittaci increased mitochondrial ROS (mtROS) production. This induced the release of oxidized mitochondrial DNA (mtDNA) into the cytoplasm of macrophages. It also augmented IFN-I and IL-1β production dependent on the cGAS-STING pathway. Macrophages pre-treated with mtROS inhibitor mito-TEMPO displayed reduced oxidized mtDNA. This consequently lowered IFN-I and IL-1β production via the cGAS-STING pathway induced by C. psittaci. Additionally, we found that mtROS production may inhibit C. psittaci proliferation through the synergistic action of IFN-I and IL-1β. In conclusion, our study reveals that C. psittaci induces mtROS production leading to mtDNA release. This activates the cGAS-STING-IRF3/NLRP3 pathway to increase IFN-I and IL-1β production. This study elucidates a novel mechanism of bacterial pathogen activation in the cGAS-STING pathway. This reveals the molecular mechanisms underlying the immune response to C. psittaci infection and proposes potential targets for the treatment of C. psittaci related diseases.
Collapse
Affiliation(s)
- Hongyu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Peiyuan Sun
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Shi Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuanyuan Tang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijia Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Xiang Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Hanying Liu
- Health Management Medicine Center, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
30
|
Huang Y, Li W, Sun H, Guo X, Zhou Y, Liu J, Liu F, Fan Y. Mitochondrial transfer in the progression and treatment of cardiac disease. Life Sci 2024; 358:123119. [PMID: 39395616 DOI: 10.1016/j.lfs.2024.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Mitochondria are the primary site for energy production and play a crucial role in supporting normal physiological functions of the human body. In cardiomyocytes (CMs), mitochondria can occupy up to 30 % of the cell volume, providing sufficient energy for CMs contraction and relaxation. However, some pathological conditions such as ischemia, hypoxia, infection, and the side effect of drugs, can cause mitochondrial dysfunction in CMs, leading to various myocardial injury-related diseases including myocardial infarction (MI), myocardial hypertrophy, and heart failure. Self-control of mitochondria quality and conversion of metabolism pathway in energy production can serve as the self-rescue measure to avoid autologous mitochondrial damage. Particularly, mitochondrial transfer from the neighboring or extraneous cells enables to mitigate mitochondrial dysfunction and restore their biological functions in CMs. Here, we described the homeostatic control strategies and related mechanisms of mitochondria in injured CMs, including autologous mitochondrial quality control, mitochondrial energy conversion, and especially the exogenetic mitochondrial donation. Additionally, this review emphasizes on the therapeutic effects and potential application of utilizing mitochondrial transfer in reducing myocardial injury. We hope that this review can provide theoretical clues for the developing of advanced therapeutics to treat cardiac diseases.
Collapse
Affiliation(s)
- Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hongyu Sun
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xin Guo
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yonghong Fan
- The General Hospital of Western Theater Command, Chengdu 610083, China.
| |
Collapse
|
31
|
Yu Z, Xie X, Li Q, Huang Y, Chen S, Song W, Tian J, Li Z, Wu C, Li B. A Supramolecular Self-Assembled Nanoprodrug for Enhanced Ferroptosis Therapy. ACS NANO 2024; 18:32534-32546. [PMID: 39541319 DOI: 10.1021/acsnano.4c09254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ferroptosis can induce cell death that leverages Fe2+-triggered Fenton reactions within living organisms, leading to an excessive accumulation of lipid peroxides (LPOs) and inducing cell death. Ferroptosis can effectively circumvent the inevitable drug resistance encountered with traditional apoptotic therapies. However, several issues remain in the clinical application of ferroptosis anticancer therapy, primarily due to the poor efficiency of intracellular Fenton reaction. To address this issue, we developed a supramolecular self-assembled codelivery nanoprodrug (DOX@C18Fc-Q[7] NPs) composed of ferrocene (Fc)-based supramolecular amphiphiles (C18Fc-Q[7]) and a nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) activator (doxorubicin, DOX). The C18Fc-Q[7] is based on Fc linked to a hydrophobic long-chain alkane via a disulfide linkage, which interacts with hydrophilic Q[7] to form self-assembled amphiphiles. Importantly, the host-guest interaction between Q[7] and Fc effectively enhances the solubility of Fc while maintaining the stability of the Fe2+ source. Moreover, C18Fc-Q[7] also acts as a good carrier for loading DOX due to its good self-assembly. In cancer cells, elevated glutathione (GSH) triggers the disassembly of nanoprodrug, leading to the release of DOX, which upregulates NOX4 expression and increases H2O2 level, thereby promoting an efficient Fenton reaction for Fc-induced ferroptosis. Moreover, DOX induces cell death through apoptosis, providing a synergistic effect to further enhance the ferroptosis therapy. In vivo studies have demonstrated that this enhanced ferroptosis therapy effectively inhibits tumor growth and metastasis while maintaining good biosafety.
Collapse
Affiliation(s)
- Zhengwei Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xie
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China
| | - Yong Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, P. R. China
| | - Siqin Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Zhiyao Li
- School of Pharmaceutical Science, Guizhou University, Guiyang 550025, P. R. China
| | - Chongzhi Wu
- School of Pharmaceutical Science, Guizhou University, Guiyang 550025, P. R. China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
- School of Pharmaceutical Science, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
32
|
Zhao Y, Yang M, Liang X. The role of mitochondria in iron overload-induced damage. J Transl Med 2024; 22:1057. [PMID: 39587666 PMCID: PMC11587765 DOI: 10.1186/s12967-024-05740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/06/2024] [Indexed: 11/27/2024] Open
Abstract
Iron overload is a pathological condition characterized by the abnormal accumulation of iron within the body, which may result from excessive iron intake, disorders of iron metabolism, or specific disease states. This condition can lead to significant health complications and may pose life-threatening risks. The excessive accumulation of iron can induce cellular stress, adversely affecting the structure and function of mitochondria, thereby compromising overall organ function. Given the critical role of mitochondria in cellular metabolism and homeostasis, it is imperative to investigate how mitochondrial dysfunction induced by iron overload contributes to disease progression, as well as to explore mitochondrial-related pathways as potential therapeutic targets for various iron overload disorders. This review examines the mechanisms by which mitochondria are implicated in iron overload-induced damage, including increased oxidative stress, mitochondrial DNA damage, and disruptions in energy metabolism. Additionally, it addresses the relationship between these processes and various forms of programmed cell death, as well as alterations in mitochondrial dynamics. Furthermore, the review discusses strategies aimed at alleviating and mitigating the complications associated with iron overload in patients by targeting mitochondrial pathways.
Collapse
Affiliation(s)
- Yangyang Zhao
- Department of Transfusion, Affiliated Hospital of North Sichuan Medical college, Nanchong, Sichuan, P.R. China
| | - Mengjiao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of North Sichuan Medical college, Nanchong, Sichuan, P.R. China
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Xiaoxue Liang
- Chengdu Qingbaijiang District People's Hospital, Chengdu, 610300, Sichuan, P.R. China.
| |
Collapse
|
33
|
Grujicic J, Allen AR. MnSOD Mimetics in Therapy: Exploring Their Role in Combating Oxidative Stress-Related Diseases. Antioxidants (Basel) 2024; 13:1444. [PMID: 39765773 PMCID: PMC11672822 DOI: 10.3390/antiox13121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Reactive oxygen species (ROS) are double-edged swords in biological systems-they are essential for normal cellular functions but can cause damage when accumulated due to oxidative stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key enzyme that neutralizes superoxide radicals (O2•-), maintaining cellular redox balance and integrity. This review examines the development and therapeutic potential of MnSOD mimetics-synthetic compounds designed to replicate MnSOD's antioxidant activity. We focus on five main types: Mn porphyrins, Mn salens, MitoQ10, nitroxides, and mangafodipir. These mimetics have shown promise in treating a range of oxidative stress-related conditions, including cardiovascular diseases, neurodegenerative disorders, cancer, and metabolic syndromes. By emulating natural antioxidant defenses, MnSOD mimetics offer innovative strategies to combat diseases linked to mitochondrial dysfunction and ROS accumulation. Future research should aim to optimize these compounds for better stability, bioavailability, and safety, paving the way for their translation into effective clinical therapies.
Collapse
Affiliation(s)
- Jovan Grujicic
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
34
|
Vallese A, Cordone V, Ferrara F, Guiotto A, Gemmo L, Cervellati F, Hayek J, Pecorelli A, Valacchi G. NLRP3 inflammasome-mitochondrion loop in autism spectrum disorder. Free Radic Biol Med 2024; 225:581-594. [PMID: 39433111 DOI: 10.1016/j.freeradbiomed.2024.10.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted interests and repetitive behavior. To date, no single cause has been demonstrated but both genetic and environmental factors are believed to be involved in abnormal brain development. In recent years, immunological and mitochondrial dysfunctions acquired particular interest in the study of the molecular mechanisms underlying the pathophysiology of ASD. For this reason, our study focused on evaluating the mitochondrial component and activation of the NLRP3 inflammasome, a critical player of the innate immune system. The assembly of NLRP3 with ASC mediates activation of Caspase-1, which in turn, by proteolytic cleavage, activates Gasdermin D and the proinflammatory cytokines IL-1β/IL-18 with their subsequent secretion. Using primary fibroblasts of autistic and control patients we studied basal and stimulated conditions. Specifically, LPS and ATP were used to activate the NLRP3 inflammasome and MCC950 for its inhibition. In addition, FCCP was used as a mitochondrial stressor and MitoTEMPO as a scavenger of mitochondrial ROS. Our results showed a hyperactivation of NLRP3 inflammasome in ASDs, as evidenced by the co-localization of the two main components, NLRP3 and ASC, by the higher levels of ASC specks, oligomers and dimers and by the increased amounts of active Caspase-1 and IL-1β. In addition, increased mitochondrial superoxide anion and reduced mitochondrial membrane potential were detected in ASD cells. These data are in accordance with the abnormal mitochondrial morphology evidenced by transmission electron microscopy analysis. Interestingly, NLRP3 inflammasome inhibition with MCC950 improved mitochondrial parameters, while the use of MitoTEMPO, in addition to decrease mitochondrial ROS production, was able to prevent NLRP3 inflammasome activation suggesting for the first time an abnormal bidirectional crosstalk between mitochondria and NLRP3 inflammasome in ASD.
Collapse
Affiliation(s)
- Andrea Vallese
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Valeria Cordone
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Dept. of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Laura Gemmo
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Dept. of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
35
|
Zhao F, Xie H, Guan Y, Teng J, Li Z, Gao F, Luo X, Ma C, Ai X. A redox-related lncRNA signature in bladder cancer. Sci Rep 2024; 14:28323. [PMID: 39550498 PMCID: PMC11569154 DOI: 10.1038/s41598-024-80026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
The redox status is intricately linked to the development and progression of cancer, a process that can be modulated by long non-coding RNAs (lncRNAs). Previous studies have demonstrated that redox regulation can be considered a potential therapeutic approach for cancer. However, the redox-related lncRNA predictive signature specific to bladder cancer (BCa) has yet to be fully elucidated. The purpose of our study is to establish a redox-related lncRNA signature to improve the prognostic prediction for BCa patients. To achieve this, we downloaded transcriptome and clinical data from the Cancer Genome Atlas (TCGA) database. Prognostic redox-related lncRNAs were identified through univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analysis, resulting in the establishment of two risk groups. A comprehensive analysis corresponding to clinical features between high-risk and low-risk groups was conducted. Eight redox-related lncRNAs (AC018653.3, AC090229.1, AL357033.4, AL662844.4, AP003352.1, LINC00649, LINC01138, and MAFG-DT) were selected to construct the risk model. The overall survival (OS) in the high-risk group was worse than that in the low-risk group (p < 0.001). The redox-related lncRNA signature exhibits superior predictive accuracy compared to traditional clinicopathological characteristics. Gene Set Enrichment Analysis (GSEA) showed that the MAPK signaling pathway and Wnt signaling pathway were enriched in the high-risk group. Compared with the low-risk group, patients in the high-risk group demonstrated increased sensitivity to cisplatin, docetaxel, and paclitaxel. Furthermore, IGF2BP2, a potential target gene of MAFG-DT, was found to be overexpressed in tumor tissues and correlated with overall survival (OS). Our study demonstrated that the predictive signature based on eight redox-related lncRNAs can independently and accurately predict the prognosis of BCa patients.
Collapse
Affiliation(s)
- Fuguang Zhao
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Hui Xie
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P.R. China
| | - Yawei Guan
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Jingfei Teng
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Zhihui Li
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Feng Gao
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Xiao Luo
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China
| | - Chong Ma
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China.
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China.
| | - Xing Ai
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100039, P.R. China.
- Department of Urology, The Seventh Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100700, P.R. China.
| |
Collapse
|
36
|
Wang G, Liu S, Fan X, Li J, Xue Q, Liu K, Li X, Yang Y, Wang X, Song M, Shao M, Li W, Han Y, Lv L, Su X. Mitochondrial Dysfunction and Cognitive Impairment in Schizophrenia: The Role of Inflammation. Schizophr Bull 2024:sbae196. [PMID: 39535935 DOI: 10.1093/schbul/sbae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The complex immune-brain interactions and the regulatory role of mitochondria in the immune response suggest that mitochondrial damage reported in schizophrenia (SZ) may be related to abnormalities observed in immune and brain functions. STUDY DESIGN Mitochondrial DNA copy number (mtDNA CN), a biomarker of mitochondrial function, was assessed in peripheral blood leukocytes (PBLs) of 121 healthy individuals and 118 SZ patients before and after 8 weeks of antipsychotic treatment, and a meta-analysis related to blood mtDNA CN was conducted. Plasma C-reactive protein (CRP) levels in SZ patients were obtained from the medical record system. Spearman correlation analysis and hierarchical linear regression were used to analyze the relationships among mtDNA CN, CRP levels, and cognitive function. A mediation model was constructed using the PROCESS program. STUDY RESULTS Our results revealed the decreased mtDNA CN in PBLs from SZ patients (P = .05). The meta-analysis supported the decreased blood mtDNA CN in SZ patients (P < .01). The mtDNA CN in PBL was positively correlated with working memory (P = .02) and negatively correlated with plasma CRP levels (P = .039). Furthermore, a lower mtDNA CN in PBL in SZ patients was a significant predictor of worse working memory (P = .006). CRP acted as a mediator with an 8.0% effect. CONCLUSIONS This study revealed an association between peripheral mitochondrial dysfunction and cognitive impairment in SZ, with inflammation acting as a mediating effect. Therefore, mitochondrial dysfunction might provide novel targets for new treatments for cognitive impairment in SZ.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Senqi Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Xiaoyun Fan
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Jinming Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Qianzi Xue
- The Second Clinical College of Xinxiang Medical University, Xinxiang 453003, China
| | - Kang Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xue Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xiujuan Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yong Han
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| |
Collapse
|
37
|
Chen S, Liu J, He G, Tang N, Zeng Y. Research Hotspots and Trends in Global Cancer immunometabolism:A Bibliometric Analysis from 2000 to 2023. J Multidiscip Healthc 2024; 17:5117-5137. [PMID: 39553266 PMCID: PMC11568773 DOI: 10.2147/jmdh.s495330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Cancer poses a major global health challenge, and immunotherapy, known as the third revolution in cancer treatment, has brought new hope to patients. The emerging field of immunometabolism has further enhanced the safety and efficacy of immunotherapy. Over the past two decades, this field has rapidly evolved in oncology, leading to numerous significant findings. This review systematically examines the literature on immunometabolism in cancer, visualizing research trends and identifying future directions. Methods A comprehensive literature search was conducted in the Web of Science, PubMed, and Scopus databases, covering publications from January 2000 to December 2023. We employed tools like Citespace, VOSviewer, and RStudio for visual analysis of publication trends, regional contributions, institutions, authors, journals, and keywords. Results A total of 3320 articles were published by 8090 authors across 1738 institutions, involving 71 countries. Leading contributors were China (n=469), the United States (n=361), and Germany (n=82). Harvard University was the most influential institution, while Frontiers in Immunology had the highest number of publications. The top research areas included glucose, lipid, and amino acid metabolism, the tumor microenvironment, and immune cell regulation. Conclusion International collaboration and interdisciplinary efforts are advancing the field of cancer immunometabolism. Future research will likely focus on the interplay between metabolism and immunity, metabolic markers, immune cell reprogramming, and tumor-immune metabolic competition.
Collapse
Affiliation(s)
- Shupeng Chen
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Jie Liu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Guilian He
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People’s Republic of China
| | - Nana Tang
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Yingjian Zeng
- Hematology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
38
|
Lin TK, Huang CR, Lin KJ, Hsieh YH, Chen SD, Lin YC, Chao AC, Yang DI. Potential Roles of Hypoxia-Inducible Factor-1 in Alzheimer's Disease: Beneficial or Detrimental? Antioxidants (Basel) 2024; 13:1378. [PMID: 39594520 PMCID: PMC11591038 DOI: 10.3390/antiox13111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The major pathological characteristics of Alzheimer's disease (AD) include senile plaques and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ) peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based on current experimental evidence in the literature, we then discuss the possible beneficial as well as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the induction or inhibition of HIF-1.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Kai-Jung Lin
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
39
|
Jang SK, Ahn SH, Kim G, Kim S, Hong J, Park KS, Park IC, Jin HO. Inhibition of VDAC1 oligomerization blocks cysteine deprivation-induced ferroptosis via mitochondrial ROS suppression. Cell Death Dis 2024; 15:811. [PMID: 39521767 PMCID: PMC11550314 DOI: 10.1038/s41419-024-07216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Ferroptosis, a regulated form of cell death dependent on reactive oxygen species (ROS), is characterized by iron accumulation and lethal lipid peroxidation. Mitochondria serve as the primary source of ROS and thus play a crucial role in ferroptosis initiation and execution. This study highlights the role of mitochondrial ROS and the significance of voltage-dependent anion channel 1 (VDAC1) oligomerization in ferroptosis induced by cysteine deprivation or ferroptosis-inducer RSL3. Our results demonstrate that the mitochondria-targeted antioxidants MitoQ and MitoT effectively block ferroptosis induction and that dysfunction of complex III of the mitochondrial electron transport chain contributes to ferroptosis induction. Pharmacological inhibitors that target VDAC1 oligomerization have emerged as potent suppressors of ferroptosis that reduce mitochondrial ROS production. These findings underscore the critical involvement of mitochondrial ROS production via complex III of the electron transport chain and the essential role of VDAC1 oligomerization in ferroptosis induced by cysteine deprivation or RSL3. This study deepens our understanding of the intricate molecular networks governing ferroptosis and provides insights into the development of novel therapeutic strategies targeting dysregulated cell death pathways.
Collapse
Affiliation(s)
- Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Se Hee Ahn
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Selim Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Jungil Hong
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
41
|
Yu Z, Luo F. The Role of Reactive Oxygen Species in Alzheimer's Disease: From Mechanism to Biomaterials Therapy. Adv Healthc Mater 2024; 13:e2304373. [PMID: 38508583 DOI: 10.1002/adhm.202304373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Alzheimer's disease (AD) is a chronic, insidious, and progressive neurodegenerative disease that remains a clinical challenge for society. The fully approved drug lecanemab exhibits the prospect of therapy against the pathological processes, while debatable adverse events conflict with the drug concentration required for the anticipated therapeutic effects. Reactive oxygen species (ROS) are involved in the pathological progression of AD, as has been demonstrated in much research regarding oxidative stress (OS). The contradiction between anticipated dosage and adverse event may be resolved through targeted transport by biomaterials and get therapeutic effects through pathological progression via regulation of ROS. Besides, biomaterials fix delivery issues by promoting the penetration of drugs across the blood-brain barrier (BBB), protecting the drug from peripheral degradation, and elevating bioavailability. The goal is to comprehensively understand the mechanisms of ROS in the progression of AD disease and the potential of ROS-related biomaterials in the treatment of AD. This review focuses on OS and its connection with AD and novel biomaterials in recent years against AD via OS to inspire novel biomaterial development. Revisiting these biomaterials and mechanisms associated with OS in AD via thorough investigations presents a considerable potential and bright future for improving effective interventions for AD.
Collapse
Affiliation(s)
- Zhuohang Yu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
42
|
Zeng X, Chen W, Yu N, Li Z, Li H, Chen Y, Gong F, Jiang X, Ji G. Trifluoperazine exerts anti-osteosarcoma effect by inducing mitochondria-dependent apoptosis via AKT/TXNIP signaling pathway. Toxicol Appl Pharmacol 2024; 492:117080. [PMID: 39216834 DOI: 10.1016/j.taap.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The survival rates for patients with osteosarcoma (OS) have stagnated over the past few decades. It is essential to find new therapies and drugs. A licensed antipsychotic medication called trifluoperazine (TFP) significantly reduces the growth of several cancers. However, the exact molecular pathways of TFP in OS remain to be discovered. Our research revealed that TFP greatly reduced OS cell migration and growth and caused the arrest of G0/G1 cell cycle. Combined with RNA-Seq data and further research, we confirmed that TFP promoted reactive oxygen species (ROS) production by elevating thioredoxin binding protein (TXNIP) expression to induce mitochondria-dependent apoptosis. Interestingly, we first demonstrated that AKT was an upstream regulatory target of TXNIP in OS cells. Dephosphorylation of AKT led to an increase in TXNIP expression, further elucidating the anticancer mechanism of TFP. In vivo, TFP inhibited subcutaneous OS cell proliferation and induced OS cell apoptosis without noticeable side effects. In conclusion, our findings imply that TFP is a potential treatment for OS.
Collapse
Affiliation(s)
| | - Wenkai Chen
- School of Medicine, Xiamen University, Xiamen, China
| | - Naichun Yu
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zongguang Li
- Department of Orthopedic Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Hongyu Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Yongjie Chen
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fengqing Gong
- Department of Orthopedic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xing Jiang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangrong Ji
- Department of Orthopedic Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China.
| |
Collapse
|
43
|
Yanagisawa S, Kamei T, Shimada A, Gladyck S, Aras S, Hüttemann M, Grossman LI, Kubo M. Resonance Raman spectral analysis of the heme site structure of cytochrome c oxidase with its positive regulator CHCHD2. J Inorg Biochem 2024; 260:112673. [PMID: 39094247 DOI: 10.1016/j.jinorgbio.2024.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Cytochrome c oxidase (CcO) reduces O2, pumps protons in the mitochondrial respiratory chain, and is essential for oxygen consumption in the cell. The coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2; also known as mitochondrial nuclear retrograde regulator 1 [MNRR1], Parkinson's disease 22 [PARK22] and aging-associated gene 10 protein [AAG10]) is a protein that binds to CcO from the intermembrane space and positively regulates the activity of CcO. Despite the importance of CHCHD2 in mitochondrial function, the mechanism of action of CHCHD2 and structural information regarding its binding to CcO remain unknown. Here, we utilized visible resonance Raman spectroscopy to investigate the structural changes around the hemes in CcO in the reduced and CO-bound states upon CHCHD2 binding. We found that CHCHD2 has a significant impact on the structure of CcO in the reduced state. Mapping of the heme peripheries that result in Raman spectral changes in the structure of CcO highlighted helices IX and X near the hemes as sites where CHCHD2 takes action. Part of helix IX is exposed in the intermembrane space, whereas helix X, located between both hemes, may play a key role in proton uptake to a proton-loading site in the reduced state for proton pumping. Taken together, our results suggested that CHCHD2 binds near helix IX and induces a structural change in helix X, accelerating proton uptake.
Collapse
Affiliation(s)
| | - Takuto Kamei
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Atsuhiro Shimada
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Stephanie Gladyck
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Minoru Kubo
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan.
| |
Collapse
|
44
|
Lu X, Wang Y, Geng N, Zou Z, Feng X, Wang Y, Xu Z, Zhang N, Pu J. Dysregulated Mitochondrial Calcium Causes Spiral Artery Remodeling Failure in Preeclampsia. Hypertension 2024; 81:2368-2382. [PMID: 39291377 DOI: 10.1161/hypertensionaha.124.23046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Calcium deficiency in women is strongly linked to an increased risk of developing preeclampsia. Mitochondrial calcium ([Ca2+]m) homeostasis is essential to regulate vascular smooth muscle cell (VSMC) function. However, the role of [Ca2+]m in preeclampsia development remains largely unknown. METHODS To investigate this, human spiral arteries obtained from normotensive and preeclamptic women were collected for vascular function, RNA sequencing, and VSMC studies. N(ω)-nitro-L-arginine methyl ester-induced preeclampsia animal experiments were established to investigate the effects of intervening in [Ca2+]m to improve the outcome for preeclamptic mothers or their infants. RESULTS Our initial findings revealed compromised vessel function in spiral arteries derived from patients with preeclampsia, as evidenced by diminished vasoconstriction and vasodilation responses to angiotensin II and sodium nitroprusside, respectively. Moreover, the spiral artery VSMCs from patients with preeclampsia exhibited phenotypic transformation and proliferation associated with the disrupted regulatory mechanisms of [Ca2+]m uptake. Subsequent in vitro experiments employing gain- and loss-of-function approaches demonstrated that the mitochondrial Na+/Ca2+ exchanger played a role in promoting phenotypic switching and impaired mitochondrial functions in VSMCs. Furthermore, mtNCLX (mitochondrial Na+/Ca2+ exchanger) inhibitor CGP37157 significantly improved VSMC phenotypic changes and restored mitochondrial function in both patients with preeclampsia-derived VSMCs and the preeclampsia rat model. CONCLUSIONS This study provides comprehensive evidence supporting the disrupted regulatory mechanisms of [Ca2+]m uptake in VSMCs of spiral arteries of patients with preeclampsia and further elucidates its correlation with VSMC phenotypic switching and defective spiral artery remodeling. The findings suggest that targeting mtNCLX holds promise as a novel therapeutic approach for managing preeclampsia.
Collapse
Affiliation(s)
- Xiyuan Lu
- Department of Cardiology (X.L., Yifan Wang, N.G., Z.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yifan Wang
- Department of Cardiology (X.L., Yifan Wang, N.G., Z.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Na Geng
- Department of Cardiology (X.L., Yifan Wang, N.G., Z.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhiguo Zou
- Department of Cardiology (X.L., Yifan Wang, N.G., Z.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xueqing Feng
- Department of Obstetrics Affiliated Hospital of Jining Medical University, China (X.F.)
| | - Yuehong Wang
- State Key Laboratory of Systems Medicine for Cancer (Yuehong Wang), School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, China
| | - Zhice Xu
- Wuxi Maternity and Child Health Care Hospital, China (Z.X.)
| | - Ning Zhang
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology (N.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital State Key Laboratory of Systems Medicine for Cancer (J.P.), School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, China
| |
Collapse
|
45
|
Zhu X, Zheng H, Zhang Z, Ma S, Feng Q, Wang J, Wu G, Ng HY. Cytotoxicity evaluation of organophosphorus flame retardants using electrochemical biosensors and elucidation of associated toxic mechanisms. WATER RESEARCH 2024; 265:122262. [PMID: 39167971 DOI: 10.1016/j.watres.2024.122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
In recent years, organophosphorus flame retardants (OPFRs) have been widely used as substitutes for brominated flame retardants with excellent properties, and their initial toxicological effects on the water ecosystem and human health have gradually emerged. However, to date, research on the cytotoxicity and health risks of OPFRs is still limited. Therefore, this study aims to systematically explore the cytotoxic effects and toxic mechanisms of OPFRs on cells. Human liver cancer (HepG2) cells were adopted as an ideal model for toxicity evaluation due to their rapid growth and metabolism. This study proposes a sensitive electrochemical cell-based sensor constructed on a graphitized multi-walled carbon nanotube/ionic liquid/gold nanoparticle-modified electrode. The sensor was used to detect the cytotoxicity of tri(2-butylxyethyl) phosphate (TBEP), tributyl phosphate (TnBP), triphenyl phosphate (TPhP), tri(1,3-dichloro-2-propyl) phosphate (TDCIPP), tri(2-chloropropyl) phosphate (TCPP) and tri(2-chloroethyl) phosphate (TCEP) in the liquid medium, providing insight into their toxicity in water environments. The half-maximal inhibitory concentration (IC50) of TBEP, TnBP, TPhP, TDCIPP, TCPP and TCEP on HepG2 cells were 179.4, 194.9, 219.8, 339.4, 511.8 and 859.0 μM, respectively. Additionally, the cytotoxic mechanism of six OPFRs was discussed from the perspective of oxidative stress and apoptosis, and four indexes were correlated with toxicity. Furthermore, transcriptome sequencing was conducted, followed by a thorough analysis of the obtained sequencing results. This analysis demonstrated a significant enrichment of the p53 and PPAR pathways, both of which are closely associated with oxidative stress and apoptosis. This study presents a simplified and efficient technique for conducting in vitro toxicity studies on organophosphorus flame retardants in a water environment. Moreover, it establishes a scientific foundation for further investigation into the mechanisms of cytotoxicity associated with these compounds.
Collapse
Affiliation(s)
- Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Huizi Zheng
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zhipeng Zhang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Shuang Ma
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qi Feng
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jinsheng Wang
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Guanlan Wu
- School of Environment, Northeast Normal University, Changchun 130117, PR China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
46
|
Beauvieux A, Bourjea J, Fromentin JM, Jean C, Ciccione S, Ballorain K, Romero D, Dbouk Z, Hirschler A, Bertile F, Schull Q. Tracing troubles: Unveiling the hidden impact of inorganic contamination on juvenile green sea turtle. MARINE POLLUTION BULLETIN 2024; 208:117048. [PMID: 39368147 DOI: 10.1016/j.marpolbul.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Human activities and climate change have negatively affected the world's oceans, leading to a decline of 30 to 60 % in coastal ecosystems' biodiversity and habitats. The projected increase in the human population to 9.7 billion by 2050 raises concerns about the sustainability of marine ecosystem conservation and exploitation. Marine turtles, as sentinel species, accumulate contaminants, including trace elements, due to their extensive migration and long-life span. However, there is a lack of data on the degree of contamination and their effects on marine turtles' health. This study focuses on assessing in-situ inorganic contamination in juvenile green sea turtles from La Réunion Island and its short-term impact on individual health, using conventional biomarkers and proteomics. The goals include examining contamination patterns in different tissues and identifying potential new biomarkers for long-term monitoring and conservation efforts. The study identified differential metal contamination between blood and scute samples, which could help illuminate temporal exposure to trace elements in turtle individuals. We also found that some conventional biomarkers were related to trace element exposure, while the proteome responded differently to various contaminant mixtures. Immune processes, cellular organization, and metabolism were impacted, indicating that contaminant mixtures in the wild would have an effect on turtle's health. Fifteen biomarker candidates associated with strong molecular responses of sea turtle to trace element contamination are proposed for future long-term monitoring. The findings emphasize the importance of using proteomic approaches to detect subtle physiological responses to contaminants in the wild and support the need for non-targeted analysis of trace elements in the biomonitoring of sea turtle health.
Collapse
Affiliation(s)
| | - Jérôme Bourjea
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | - Claire Jean
- Centre d'Etude et de Découverte des Tortues Marines (CEDTM) Saint-Leu, Reunion Island, France
| | - Stéphane Ciccione
- Centre d'Etude et de Découverte des Tortues Marines (CEDTM) Saint-Leu, Reunion Island, France
| | - Katia Ballorain
- Kélonia, The Marine Turtle Observatory of Reunion Island, 46 rue du Gal de Gaulle, Saint-Leu, Reunion Island, France
| | - Diego Romero
- Toxicology Department, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain
| | - Zahraa Dbouk
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Aurélie Hirschler
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Quentin Schull
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| |
Collapse
|
47
|
Wang J, Wang L, Feng X, Xu Y, Zhou L, Wang C, Wang M. Astragaloside IV attenuates fatty acid-induced renal tubular injury in diabetic kidney disease by inhibiting fatty acid transport protein-2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155991. [PMID: 39217653 DOI: 10.1016/j.phymed.2024.155991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Renal tubular injury induced by free fatty acid bound to albumin is the key pathological basis for the progression of diabetic kidney disease. However, effective interventions are limited. Astragaloside IV, as a major bioactive component purified from Astragalus membranaceus (Fisch.) Bunge, possesses pharmacological properties of lowering blood glucose and proteinuria, and renal tubular protection in diabetic kidney disease. Further work is needed to understand the underlying molecular mechanisms. PURPOSE This study was designed to investigate the mechanism of renal tubular protection by astragaloside IV in diabetic kidney disease. METHODS Rats receiving high-fat diet combined with streptozotocin (30 mg/kg, i.p.) were gavaged with astragaloside IV (10 mg/kg/d or 20 mg/kg/d) or empagliflozin (1.72 mg/kg/d) for 8 weeks. In vitro, the NRK-52E cells were treated with free fatty acid-deleted BSA or palmitic acid-bound BSA in the presence or absence of astragaloside IV (5 μM, 10 μM, 20 μM) or 5 μM of mcc950. The effects of astragaloside IV on mitochondrial function, NLRP3/ASC/IL-18/IL-1β inflammatory cascade, and renal tubular injury were detected by pathological staining, immunoblotting, MitoSOX Red staining. Next, to investigate the mechanism of renal tubular protection by astragaloside IV, we transfected Fatp2 siRNA into BSA-PA-treated NRK-52E cells and injected lipofermata (a FATP2 inhibitor) intraperitoneally into free fatty acid-bound BSA overloaded rats with concomitant astragaloside IV treatment. RESULTS Treatment with astragaloside IV for 8 weeks dose-dependently attenuated the blood glucose, ratio of urinary albumin to creatinine, disorder of lipid metabolism, and pathological injury in diabetic kidney disease rats. In addition, astragaloside IV dose-dependently attenuated mitochondrial-derived reactive oxygen species and subsequent inhibiting NLRP3-mediated inflammatory cascade in diabetic kidney disease rats and palmitic acid-bound BSA-treated NRK-52E cells, thereby exerting renal tubular protection. More importantly, the effects of astragaloside IV on restoration of mitochondrial function, inhibition of inflammatory response and amelioration of renal tubular injury in vivo and in vitro were further enhanced when used in combination with Fatp2 siRNA or lipofermata. CONCLUSION Astragaloside IV exerts antioxidant and anti-inflammatory effects in diabetic kidney disease by inhibiting FATP2-mediated fatty acid transport, thereby attenuating renal tubular injury.
Collapse
Affiliation(s)
- Jing Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
48
|
Yang Y, Jiang S, Mu Y, Liu C, Han Y, Jiang J, Wang Y. Berberine prevents against myocardial injury induced by acute β-adrenergic overactivation in rats. J Appl Toxicol 2024; 44:1700-1713. [PMID: 38981847 DOI: 10.1002/jat.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
The overactivation of β-adrenergic receptors (β-ARs) can result in acute myocardial ischemic injury, culminating in myocardial necrosis. Berberine (BBR) has exhibited promising potential for prevention and treatment in various heart diseases. However, its specific role in mitigating myocardial injury induced by acute β-AR overactivation remains unexplored. This study aimed to investigate the effects and underlying mechanisms of BBR pretreatment in a rat model of acute β-AR overactivation induced by a single dose of the nonselective β-adrenergic agonist isoprenaline (ISO). Rats were pretreated with saline or BBR (100 mg/kg/day) via gavage for 14 consecutive days, followed by a subcutaneous injection of ISO or saline on the 14th day. The findings indicated that BBR pretreatment significantly attenuated myocardial injury in ISO-stimulated rats, as evidenced by reduced pathological inflammatory infiltration, necrosis, and serum markers of myocardial damage. Additionally, BBR decreased oxidative stress and inflammation in the system and heart. Furthermore, BBR pretreatment enhanced myocardial ATP levels, improved mitochondrial dysfunction through increased Drp1 phosphorylation, and augmented myocardial autophagy. In a CoCl2-induced H9c2 cell hypoxic injury model, BBR pretreatment mitigated cellular injury, apoptosis, and oxidative stress while upregulating Drp1 and autophagy-associated proteins. Mechanistically, BBR pretreatment activated AKT, AMPK, and LKB1 both in vivo and in vitro, implicating the involvement of the AKT and LKB1/AMPK signaling pathways in its cardioprotective effects. Our study demonstrated the protective effects of BBR against myocardial injury induced by acute β-AR overactivation in rats, highlighting the potential of BBR as a preventive agent for myocardial injury associated with β-adrenergic overactivation.
Collapse
Affiliation(s)
- Yalin Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Mu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chilu Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhong Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Jadaun P, Harshithkumar R, Seniya C, Gaikwad SY, Bhoite SP, Chandane-Tak M, Borse S, Chavan-Gautam P, Tillu G, Mukherjee A. Mitochondrial resilience and antioxidant defence against HIV-1: unveiling the power of Asparagus racemosus extracts and Shatavarin IV. Front Microbiol 2024; 15:1475457. [PMID: 39507335 PMCID: PMC11537936 DOI: 10.3389/fmicb.2024.1475457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Asparagus racemosus (AR), an Ayurvedic botanical, possesses various biological characteristics, yet its impact on HIV-1 replication remains to be elucidated. This study aimed to investigate the inhibitory effects of AR root extracts and its principal bioactive molecule, Shatavarin IV (Shatavarin), on HIV-1 replication and their role in mitigating mitochondrial dysfunction during HIV-1 infection, utilizing both in vitro and in silico methodologies. The cytotoxicity of the extracts was evaluated using MTT and ATPlite assays. In vitro anti-HIV-1 activity was assessed in TZM-bl cells against X4 and R5 subtypes, and confirmed in peripheral blood mononuclear cells using HIV-1 p24 antigen capture ELISA and viral copy number assessment. Mechanistic insights were obtained through enzymatic assays targeting HIV-1 Integrase, Protease and Reverse Transcriptase. Shatavarin's activity was also validated via viral copy number and p24 antigen capture assays, along with molecular interaction studies against key HIV-1 replication enzymes. HIV-1 induced mitochondrial dysfunction was evaluated by detecting mitochondrial reactive oxygen species (ROS), calcium accumulation, mitochondrial potential, and caspase activity within the infected cells. Non-cytotoxic concentrations of both aqueous and hydroalcoholic extracts derived from Asparagus racemosus roots displayed dose-dependent inhibition of HIV-1 replication. Notably, the hydroalcoholic extract exhibited superior Reverse Transcriptase activity, complemented by moderate activity observed in the Protease assay. Molecular interaction studies revealed that Shatavarin IV, the key bioactive constituent of AR, formed hydrogen bonds within the active binding pocket site residues crucial for HIV replication enzyme catalysis, suggesting its potential in attenuating HIV-1 infection. Mitochondrial dysfunction induced by HIV-1 infection, marked by increased oxidative stress, mitochondrial calcium overload, loss of mitochondrial membrane potential, and elevated caspase activity, was effectively mitigated by treatment with AR extracts and Shatavarin IV. These findings underscore the potential of AR extracts and Shatavarin IV as antiviral agents, while enhancing mitochondrial function during HIV-1 infection. In conclusion, Asparagus racemosus extracts, particularly Shatavarin IV, demonstrate promising inhibitory effects against HIV-1 replication while concurrently ameliorating mitochondrial dysfunction induced by the virus. These findings suggest the therapeutic potential of AR extracts and Shatavarin in combating HIV-1 infection and improving mitochondrial health.
Collapse
Affiliation(s)
- Pratiksha Jadaun
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - R. Harshithkumar
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - Chandrabhan Seniya
- School of Biosciences, Engineering and Technology, VIT Bhopal University, Bhopal, India
| | - Shraddha Y. Gaikwad
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | | | - Madhuri Chandane-Tak
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - Swapnil Borse
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Girish Tillu
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Anupam Mukherjee
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| |
Collapse
|
50
|
Jin X, Lin T, Wang Y, Li X, Yang Y. Functions of p120-catenin in physiology and diseases. Front Mol Biosci 2024; 11:1486576. [PMID: 39498333 PMCID: PMC11532153 DOI: 10.3389/fmolb.2024.1486576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
p120-catenin (p120) plays a vital role in regulating cell-cell adhesion at adherens junctions, interacting with the juxtamembrane domain (JMD) core region of E-cadherin and regulates the stability of cadherin at the cell surface. Previous studies have shown significant functions of p120 in cell-cell adhesion, tumor progression and inflammation. In this review, we will discuss recent progress of p120 in physiological processes and diseases, and focus on the functions of p120 in the regulation of cancer and inflammation.
Collapse
Affiliation(s)
- Xin Jin
- The First Affiliated Hospital (The First School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunjuan Wang
- The First Affiliated Hospital (The First School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqian Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (The First School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|