1
|
Santangelo C, Verratti V, Mrakic-Sposta S, Ciampini F, Bonan S, Pignatelli P, Pietrangelo T, Pilato S, Moffa S, Fontana A, Piccinelli R, Donne CL, Lobefalo L, Beccatelli M, Rizzini PL, Seletti D, Mecca R, Beccatelli T, Bondi D. Nutritional physiology and body composition changes during a rapid ascent to high altitude. Appl Physiol Nutr Metab 2024; 49:723-737. [PMID: 38320257 DOI: 10.1139/apnm-2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Exposure to high altitude might cause the body to adapt with negative energy and fluid balance that compromise body composition and physical performance. In this field study involving 12 healthy adults, sex-balanced, and aged 29 ± 4 years with a body mass index of 21.6 ± 1.8 kg/m2, we investigated the effects of a 4-day trekking up to 4556 m a.s.l. on Monte Rosa (Alps, Italy). The food intake was recorded using food diaries and nutrient averages were calculated. The bio-impedance analysis was performed at low and high altitudes, and a wearable biosensor (Swemax) was used to track hydro-saline losses in two participants. Daily total energy intake was 3348 ± 386 kcal for males and 2804 ± 415 kcal for females (13%-14% protein, 35% fat, 44%-46% carbohydrates). Although there was a significant body weight loss (65.0 ± 9.3 vs. 64.2 ± 9.10 kg, p < 0.001, d = 1.398), no significant changes in body composition parameter were found but a trend in the increase of the bioelectrical phase angle in males (p = 0.059, d = -0.991). Body water percentage significantly changed (p = 0.026, η2 p = 0.440), but the absolute water did not, suggesting that the weight loss was not due to water loss. Salivary and urinary osmolality did not change. A reduction in sweat rate at higher altitudes was observed in both participants. Interestingly, salivary leptin increased (p = 0.014, η2 p = 0.510), and salivary ghrelin decreased (p = 0.036, η2 p = 0.403). Therefore, the 4-day trekking at altitude of hypoxia exposure induced changes in satiety and appetite hormones. High altitude expeditions require more specific nutritional guidance, and using multiplex analysis could help in monitoring fluid balance and body composition.
Collapse
Affiliation(s)
- Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (ICF-CNR), Milano, Italy
| | - Federica Ciampini
- School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Sofia Bonan
- School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Pamela Pignatelli
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Serena Pilato
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Samanta Moffa
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Raffaela Piccinelli
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Roma, Italy
| | - Cinzia Le Donne
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, Roma, Italy
| | - Lucio Lobefalo
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Xu Y, Xiao W. NAD+: An Old but Promising Therapeutic Agent for Skeletal Muscle Ageing. Ageing Res Rev 2023; 92:102106. [PMID: 39492424 DOI: 10.1016/j.arr.2023.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
More than a century after the discovery of nicotinamide adenine dinucleotide (NAD+), our understanding of the molecule's role in the biology of ageing continues to evolve. As a coenzyme or substrate for many enzymes, NAD+ governs a wide range of biological processes, including energy metabolism, genomic stability, signal transduction, and cell fate. NAD+ deficiency has been recognised as a bona fide hallmark of tissue degeneration, and restoring NAD+ homeostasis helps to rejuvenate multiple mechanisms associated with tissue ageing. The progressive loss of skeletal muscle homeostasis with age is directly associated with high morbidity, disability and mortality. The aetiology of skeletal muscle ageing is complex, involving mitochondrial dysfunction, senescence and stem cell depletion, autophagy defects, chronic cellular stress, intracellular ion overload, immune cell dysfunction, circadian clock disruption, microcirculation disorders, persistent denervation, and gut microbiota dysbiosis. This review focuses on the therapeutic potential of NAD+ restoration to alleviate the above pathological factors and discusses the effects of in vivo administration of different NAD+ boosting strategies on skeletal muscle homeostasis, aiming to provide a reference for combating skeletal muscle ageing.
Collapse
Affiliation(s)
- Yingying Xu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
3
|
Roy R, MacDonald J, Dark P, Kalra PA, Green D. The estimation of glomerular filtration in acute and critical illness: Challenges and opportunities. Clin Biochem 2023; 118:110608. [PMID: 37479107 DOI: 10.1016/j.clinbiochem.2023.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Recent events have made it apparent that the creatinine based estimating equations for glomerular filtration have their flaws. Some flaws have been known for some time; others have prompted radical modification of the equations themselves. These issues persist in part owing to the behaviour of the creatinine molecule itself, particularly in acute and critical illness. There are significant implications for patient treatment decisions, including drug and fluid therapies and choice of imaging modality (contrast vs. non-contrast CT scan for example). An alternative biomarker, Cystatin C, has been used with some success both alone and in combination with creatinine to help improve the accuracy of particular estimating equations. Problems remain in certain circumstances and costs may limit the more widespread use of the alternative assay. This review will explore both the historical and more recent evidence for glomerular filtration estimation, including options to directly measure glomerular filtration (rather than estimate), perhaps the holy grail for both Biochemistry and Nephrology.
Collapse
Affiliation(s)
- Reuben Roy
- The University of Manchester, Manchester, Greater Manchester, United Kingdom.
| | - John MacDonald
- Northern Care Alliance NHS Foundation Trust Salford Care Organisation, Salford, Greater Manchester M6 8HD, United Kingdom
| | - Paul Dark
- The University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Philip A Kalra
- Northern Care Alliance NHS Foundation Trust Salford Care Organisation, Salford, Greater Manchester M6 8HD, United Kingdom
| | - Darren Green
- Northern Care Alliance NHS Foundation Trust Salford Care Organisation, Salford, Greater Manchester M6 8HD, United Kingdom
| |
Collapse
|
4
|
Nikolopoulos VK, Augustine R, Camci-Unal G. Harnessing the potential of oxygen-generating materials and their utilization in organ-specific delivery of oxygen. Biomater Sci 2023; 11:1567-1588. [PMID: 36688522 PMCID: PMC10015602 DOI: 10.1039/d2bm01329k] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The limited availability of transplantable organs hinders the success of patient treatment through organ transplantation. In addition, there are challenges with immune rejection and the risk of disease transmission when receiving organs from other individuals. Tissue engineering aims to overcome these challenges by generating functional three-dimensional (3D) tissue constructs. When developing tissues or organs of a particular shape, structure, and size as determined by the specific needs of the therapeutic intervention, a tissue specific oxygen supply to all parts of the tissue construct is an utmost requirement. Moreover, the lack of a functional vasculature in engineered tissues decreases cell survival upon implantation in the body. Oxygen-generating materials can alleviate this challenge in engineered tissue constructs by providing oxygen in a sustained and controlled manner. Oxygen-generating materials can be incorporated into 3D scaffolds allowing the cells to receive and utilize oxygen efficiently. In this review, we present an overview of the use of oxygen-generating materials in various tissue engineering applications in an organ specific manner as well as their potential use in the clinic.
Collapse
Affiliation(s)
- Vasilios K Nikolopoulos
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
| | - Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
5
|
Signals for Muscular Protein Turnover and Insulin Resistance in Critically Ill Patients: A Narrative Review. Nutrients 2023; 15:nu15051071. [PMID: 36904071 PMCID: PMC10005516 DOI: 10.3390/nu15051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Sarcopenia in critically ill patients is a highly prevalent comorbidity. It is associated with a higher mortality rate, length of mechanical ventilation, and probability of being sent to a nursing home after the Intensive Care Unit (ICU). Despite the number of calories and proteins delivered, there is a complex network of signals of hormones and cytokines that affect muscle metabolism and its protein synthesis and breakdown in critically ill and chronic patients. To date, it is known that a higher number of proteins decreases mortality, but the exact amount needs to be clarified. This complex network of signals affects protein synthesis and breakdown. Some hormones regulate metabolism, such as insulin, insulin growth factor glucocorticoids, and growth hormone, whose secretion is affected by feeding states and inflammation. In addition, cytokines are involved, such as TNF-alpha and HIF-1. These hormones and cytokines have common pathways that activate muscle breakdown effectors, such as the ubiquitin-proteasome system, calpain, and caspase-3. These effectors are responsible for protein breakdown in muscles. Many trials have been conducted with hormones with different results but not with nutritional outcomes. This review examines the effect of hormones and cytokines on muscles. Knowing all the signals and pathways that affect protein synthesis and breakdown can be considered for future therapeutics.
Collapse
|
6
|
Cordovil K, Crivelli M, Calixto Lima L, S. Barbosa F, Fleury M. Predictive Equations Overestimated the Rest Energy Expenditure by Indirect Calorimetry in Adults with Sickle Cell Disease. THE NORTH AFRICAN JOURNAL OF FOOD AND NUTRITION RESEARCH 2022; 6:94-106. [DOI: 10.51745/najfnr.6.14.94-106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/17/2022] [Indexed: 08/05/2024]
Abstract
Background: Traditionally, hypermetabolism is described in sickle cell disease (SCD). Despite this, few studies have compared rest energy expenditure (REE) with estimated by predictive equations (EEE) in the assessment of adults with SCD. Aims: To compare REE values determined by indirect calorimetry (IC) with that EEE in adults with SCD. Subjects and Methods: A cross-sectional observational study was performed with 46 individuals over 34 years old in the treatment from two reference centers for SCD located in the city of Rio de Janeiro, Brazil. The dual-energy X-ray absorptiometry (DXA) and IC were used to assess BC and REE, respectively. Blood levels were measured to assess hemolytic and protein markers. Pearson’s correlation test was used in the univariate correlation. The Intraclass Correlation Coefficient (ICC) and the Bland-Altman analysis were used in the comparison between EEE and IC. P-values ≤ 0.05 were considered statistically significant. Results: Most participants were from the female sex, Hb SS genotype (80.4%) and with black color (52.2%). The mean age was 50 years old. Weight (r= 0.469; p=0,001), LM (r = 0.631; p=0.000), BMC (r = 0.508; p=0.000) and CRP(r=0.319; p = 0.002) correlated positively with the REE. There was no linear correlation between makers of hemolysis with REE. The REE was overestimated in the EEE when compared to IC (p<0.001). Conclusions: The prediction equations developed for healthy populations are not accurate enough to determine the energy requirements and more studies are needed to better understand how REE role in middle-aged and elderly adults with SCD.
Collapse
|
7
|
Mekjavic IB, Amon M, Simpson EJ, Kölegård R, Eiken O, Macdonald IA. Energy Intake of Men With Excess Weight During Normobaric Hypoxic Confinement. Front Physiol 2022; 12:801833. [PMID: 35095562 PMCID: PMC8790566 DOI: 10.3389/fphys.2021.801833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the observations of weight loss at high altitude, normobaric hypoxia has been considered as a method of weight loss in obese individuals. With this regard, the aim of the present study was to determine the effect of hypoxia per se on metabolism in men with excess weight. Eight men living with excess weight (125.0 ± 17.7 kg; 30.5 ± 11.1 years, BMI: 37.6 ± 6.2 kg⋅m-2) participated in a randomized cross-over study comprising two 10-day confinements: normobaric (altitude of facility ≃ 940 m) normoxia (NORMOXIA; P I O2 = 133 mmHg), and normobaric hypoxia (HYPOXIA). The P I O2 in the latter was reduced from 105 (simulated altitude of 2,800 m) to 98 mmHg (simulated altitude of 3,400 m over 10 days. Before, and at the end of each confinement, participants completed a meal tolerance test (MTT). Resting energy expenditure (REE), circulating glucose, GLP-1, insulin, catecholamines, ghrelin, peptide-YY (PYY), leptin, gastro-intestinal blood flow, and appetite sensations were measured in fasted and postprandial states. Fasting REE increased after HYPOXIA (+358.0 ± 49.3 kcal⋅day-1, p = 0.03), but not after NORMOXIA (-33.1 ± 17.6 kcal⋅day-1). Postprandial REE was also significantly increased after HYPOXIA (p ≤ 0.05), as was the level of PYY. Furthermore, a tendency for decreased energy intake was concomitant with a significant body weight reduction after HYPOXIA (-0.7 ± 0.2 kg) compared to NORMOXIA (+1.0 ± 0.2 kg). The HYPOXIA trial increased the metabolic requirements, with a tendency toward decreased energy intake concomitant with increased PYY levels supporting the notion of a hypoxia-induced appetite inhibition, that could potentially lead to body weight reduction. The greater postprandial blood-glucose response following hypoxic confinement, suggests the potential development of insulin resistance.
Collapse
Affiliation(s)
- Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Mojca Amon
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Elizabeth J. Simpson
- Metabolic and Molecular Physiology Group, Faculty of Medicine and Health Sciences University of Nottingham Queen’s Medical Centre, Nottingham, United Kingdom
| | - Roger Kölegård
- Division of Environmental Physiology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ola Eiken
- Division of Environmental Physiology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ian A. Macdonald
- Metabolic and Molecular Physiology Group, Faculty of Medicine and Health Sciences University of Nottingham Queen’s Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
8
|
Zhang X, Zhao Y, Chen S, Shao H. Anti-diabetic drugs and sarcopenia: emerging links, mechanistic insights, and clinical implications. J Cachexia Sarcopenia Muscle 2021; 12:1368-1379. [PMID: 34676695 PMCID: PMC8718027 DOI: 10.1002/jcsm.12838] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Sarcopenia, characterized by loss of skeletal muscle mass, quality, and strength, has become a common hallmark of ageing and many chronic diseases. Diabetes mellitus patients have a higher prevalence of sarcopenia, which greatly aggravates the metabolic disturbance and compromises treatment response. Preclinical and clinical studies have shown differential impacts of anti-diabetic drugs on skeletal muscle mass, strength, and performance, highlighting the importance of rational therapeutic regimen from the perspective of sarcopenia risk. In this review, we provide an update on the regulation of muscle mass and quality by major anti-diabetic drugs, focusing primarily on emerging data from clinical studies. We also discuss the underlying mechanisms and clinical implications for optimal selection of anti-diabetic drugs to reduce the risk of sarcopenia. In view of the lifelong use of anti-diabetic drugs, we propose that a better understanding of the sarcopenia risk and interventional strategies is worthy of attention in future studies.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yi Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shuobing Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Ma XY, Chen FQ. Effects of anti-diabetic drugs on sarcopenia: Best treatment options for elderly patients with type 2 diabetes mellitus and sarcopenia. World J Clin Cases 2021; 9:10064-10074. [PMID: 34904076 PMCID: PMC8638038 DOI: 10.12998/wjcc.v9.i33.10064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/22/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Human life expectancy increases as society becomes more developed. This increased life expectancy poses challenges associated with the rapid aging of the population. Sarcopenia, an age-related disease, has become a worldwide health issue. Patients with sarcopenia experience decreases in muscle mass and function, becoming frail and eventually bedridden. Type 2 diabetes mellitus (T2DM) is also a major health issue; the incidence of T2DM increases with aging. T2DM is associated with reduced muscle strength and poor muscle quality and may contribute to acceleration of the aging process, augmenting age-related sarcopenia. Recent studies indicate that elderly patients with diabetes are at an increased risk for sarcopenia. Therefore, these older diabetic patients with sarcopenia need specific anti-diabetic therapies targeting not only glycemic control but also sarcopenia, with the goal of preventing sarcopenia in pre-sarcopenic patients. Presently, various types of hypoglycemic drugs are available, but which hypoglycemic drugs are better suited for geriatric T2DM patients with sarcopenia remains undetermined. In this review, we discuss the association between diabetes and sarcopenia in geriatric patients, and how anti-diabetic drugs may influence sarcopenia outcomes. This review will guide clinical workers in the selection of drugs best suited for this patient population.
Collapse
Affiliation(s)
- Xiao-Yu Ma
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Fen-Qin Chen
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
10
|
Zhang X, Ye L, Li X, Chen Y, Jiang Y, Li W, Wen Y. The association between sarcopenia susceptibility and polymorphisms of FTO, ACVR2B, and IRS1 in Tibetans. Mol Genet Genomic Med 2021; 9:e1747. [PMID: 34302448 PMCID: PMC8404241 DOI: 10.1002/mgg3.1747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Background Hypoxia within the plateau has a negative effect on skeletal muscle and may play a role in the development of sarcopenia in humans. Tibetans having lived in the Qinghai‐Tibet Plateau for thousands of years, are a high‐risk group for sarcopenia; however, they have a distinctive suite of genetic traits that enable them to tolerate environmental hypoxia and are genetically significantly different from Han Chinese and other lowland populations. Sarcopenia has been consistently found to be associated with single‐nucleotide polymorphisms, but few studies have investigated the role of single‐nucleotide polymorphisms in a range of muscle phenotypes and sarcopenia in Tibetan peoples. Methods Our study aimed to investigate the skeletal muscle mass and fat mass of 160 Tibetans (80 men and 80 women) from Lhasa (altitude of 3600 meters) and analyze the association between the polymorphisms of fat mass and obesity protein (FTO) rs9939609, FTO rs9936385, activin type IIB receptor (ACVR2B) rs2276541, insulin receptor substrate 1 (IRS1) 2943656 and sarcopenia. Result FTO rs9939609 and rs9936385 polymorphisms were associated with lower limb skeletal muscle mass and sarcopenia for Tibetan women, and TT homozygotes had a higher risk for sarcopenia. But ACVR2B rs2276541 and IRS1 2943656 polymorphisms were unassociated with sarcopenia in Tibetan. Conclusion In Tibetans, FTO rs9939609 and rs9936385 polymorphisms were associated with sarcopenia, and ACVR2B rs2276541 and IRS1 2943656 polymorphisms were unassociated with sarcopenia.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Liping Ye
- Department of Pathophysiology, Jinzhou Medical University, Jinzhou, China
| | - Xin Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Ying Chen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Yaqiong Jiang
- Tama Community Health Center of Chengguan District, Lhasa, China
| | - Wenhui Li
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| | - Youfeng Wen
- Institute of Biological Anthropology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
11
|
Feng Z, Zhao H, Kang W, Liu Q, Wu J, Bragazzi NL, Ma X, Wang W, Rong P. Association of Paraspinal Muscle Measurements on Chest Computed Tomography With Clinical Outcomes in Patients With Severe Coronavirus Disease 2019. J Gerontol A Biol Sci Med Sci 2021; 76:e78-e84. [PMID: 33355656 PMCID: PMC7799309 DOI: 10.1093/gerona/glaa317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 01/08/2023] Open
Abstract
Background Skeletal muscle depletion is common in the elderly and individuals with chronic comorbidities, who have an increased risk of developing severe coronavirus disease 2019 (COVID-19), which is defined by hypoxia requiring supplemental oxygen. This study aimed to determine the association between skeletal muscle depletion and clinical outcomes in patients with severe COVID-19. Methods One hundred and sixteen patients with severe COVID-19 who underwent chest computed tomography (CT) scan on admission were included in this multicentre, retrospective study. Paraspinal muscle index (PMI) and radiodensity (PMD) were measured using CT images. The primary composite outcome was the occurrence of critical illness (respiratory failure requiring mechanical ventilation, shock, or intensive care unit admission) or death, and the secondary outcomes were the duration of viral shedding and pulmonary fibrosis in the early rehabilitation phase. Logistic regression and Cox proportional hazards models were employed to evaluate the associations. Results The primary composite outcome occurred in 48 (41.4%) patients, who were older and had lower PMD (both P < 0.05). Higher PMD was associated with reduced risk of critical illness or death in a fully adjusted model overall (OR per SD increment: 0.87, 95% CI: 0.80-0.95; P = 0.002) and in female patients (OR per SD increment: 0.71, 95% CI: 0.56-0.91; P = 0.006), although the effect was not statistically significant in male patients (P = 0.202). Higher PMD (HR per SD increment: 1.08, 95% CI: 1.02-1.14; P = 0.008) was associated with shorter duration of viral shedding among female survivors. However, no significant association was found between PMD and pulmonary fibrosis in the early rehabilitation phase, or between PMI and any outcome in both men and women. Conclusion Higher PMD, a proxy measure of lower muscle fat deposition, was associated with a reduced risk of disease deterioration and decreased likelihood of prolonged viral shedding among female patients with severe COVID-19.
Collapse
Affiliation(s)
- Zhichao Feng
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Molecular Imaging Research Center, Central South University, Changsha, Hunan, China
| | - Huafei Zhao
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wendi Kang
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianzhen Wu
- Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Xiaoqian Ma
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Molecular Imaging Research Center, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Molecular Imaging Research Center, Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Molecular Imaging Research Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Resistance Training in Hypoxia as a New Therapeutic Modality for Sarcopenia-A Narrative Review. Life (Basel) 2021; 11:life11020106. [PMID: 33573198 PMCID: PMC7912455 DOI: 10.3390/life11020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxic training is believed to be generally useful for improving exercise performance in various athletes. Nowadays, exercise intervention in hypoxia is recognized as a new therapeutic modality for health promotion and disease prevention or treatment based on the lower mortality and prevalence of people living in high-altitude environments than those living in low-altitude environments. Recently, resistance training in hypoxia (RTH), a new therapeutic modality combining hypoxia and resistance exercise, has been attempted to improve muscle hypertrophy and muscle function. RTH is known to induce greater muscle size, lean mass, increased muscle strength and endurance, bodily function, and angiogenesis of skeletal muscles than traditional resistance exercise. Therefore, we examined previous studies to understand the clinical and physiological aspects of sarcopenia and RTH for muscular function and hypertrophy. However, few investigations have examined the combined effects of hypoxic stress and resistance exercise, and as such, it is difficult to make recommendations for implementing universal RTH programs for sarcopenia based on current understanding. It should also be acknowledged that a number of mechanisms proposed to facilitate the augmented response to RTH remain poorly understood, particularly the role of metabolic, hormonal, and intracellular signaling pathways. Further RTH intervention studies considering various exercise parameters (e.g., load, recovery time between sets, hypoxic dose, and intervention period) are strongly recommended to reinforce knowledge about the adaptational processes and the effects of this type of resistance training for sarcopenia in older people.
Collapse
|
13
|
Liu X, Wang L, Gao M, Wang G, Tang K, Yang J, Song W, Yang J, Lyu L, Cheng X. Comparison of Muscle Density in Middle-Aged and Older Chinese Adults Between a High-Altitude Area (Kunming) and a Low-Altitude Area (Beijing). Front Endocrinol (Lausanne) 2021; 12:811770. [PMID: 35002981 PMCID: PMC8740240 DOI: 10.3389/fendo.2021.811770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE A high-altitude environment was known to have a negative effect on bone and lead to a higher incidence of hip fracture. However, the dependence of muscle composition on altitude is unclear. Thus, we aimed to compare muscle density and area in plateau and low altitude area and to determine the effect of the altitude on these outcomes. METHODS Community dwelling adults over 60 years old living in Beijing (elevation 50 m; 300 subjects,107 men and 193 women) or Kunming (elevation 2000 m; 218 subjects,83 men and 135 women) for more than 10 years were enrolled. Quantitative CT was performed in all subjects and cross-sectional area and attenuation measured in Hounsfield units (HU) were determined for the trunk, gluteus, and mid-thigh muscles. RESULTS Compared to Beijing, Kunming adults were slimmer (Beijing men vs Kunming men: 25.08 ± 2.62 vs 23.94 ± 3.10kg/m2, P=0.013; Beijing women vs Kunming women: 25.31 ± 3.1 vs 23.98 ± 3.54 kg/m2, P= 0.001) and had higher muscle density in the L2-trunk and gluteus maximus muscles after adjustment for age and BMI (L2-trunk muscles: Beijing men 29.99 ± 4.17 HU vs Kunming men 37.35 ± 4.25 HU, P< 0.0001; Beijing women 27.37 ± 3.76 HU vs Kunming women 31.51 ± 5.12 HU, P< 0.0001; Gluteus maximus muscle: Beijing men 35.11 ± 6.54 HU vs Kunming men 39.36 ± 4.39 HU, P= 0.0009; Beijing women 31.47 ± 6.26 HU vs Kunming women 34.20 ± 5.87 HU P=0.0375). Age was similar in both cohorts and no differences were observed in the gluteus medius and minimus muscle or the mid-thigh muscle, either in the area or density. CONCLUSIONS Compared with Beijing, the adults in Kunming had higher muscle density of the gluteus maximus and L2 trunk muscles, showing that living at a higher altitude might be beneficial to muscle quality.
Collapse
Affiliation(s)
- Xingli Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Meng Gao
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Gang Wang
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Kai Tang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jin Yang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wei Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingsong Yang
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Liang Lyu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
- Department of Radiology, The First People’s Hospital of Yunnan Province, Kunming, China
- Department of Radiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Liang Lyu, ; Xiaoguang Cheng,
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Liang Lyu, ; Xiaoguang Cheng,
| |
Collapse
|
14
|
Kooman JP, Stenvinkel P, Shiels PG, Feelisch M, Canaud B, Kotanko P. The oxygen cascade in patients treated with hemodialysis and native high-altitude dwellers: lessons from extreme physiology to benefit patients with end-stage renal disease. Am J Physiol Renal Physiol 2020; 320:F249-F261. [PMID: 33356957 DOI: 10.1152/ajprenal.00540.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Patients treated with hemodialysis (HD) repeatedly undergo intradialytic low arterial oxygen saturation and low central venous oxygen saturation, reflecting an imbalance between upper body systemic oxygen supply and demand, which are associated with increased mortality. Abnormalities along the entire oxygen cascade, with impaired diffusive and convective oxygen transport, contribute to the reduced tissue oxygen supply. HD treatment impairs pulmonary gas exchange and reduces ventilatory drive, whereas ultrafiltration can reduce tissue perfusion due to a decline in cardiac output. In addition to these factors, capillary rarefaction and reduced mitochondrial efficacy can further affect the balance between cellular oxygen supply and demand. Whereas it has been convincingly demonstrated that a reduced perfusion of heart and brain during HD contributes to organ damage, the significance of systemic hypoxia remains uncertain, although it may contribute to oxidative stress, systemic inflammation, and accelerated senescence. These abnormalities along the oxygen cascade of patients treated with HD appear to be diametrically opposite to the situation in Tibetan highlanders and Sherpa, whose physiology adapted to the inescapable hypobaric hypoxia of their living environment over many generations. Their adaptation includes pulmonary, vascular, and metabolic alterations with enhanced capillary density, nitric oxide production, and mitochondrial efficacy without oxidative stress. Improving the tissue oxygen supply in patients treated with HD depends primarily on preventing hemodynamic instability by increasing dialysis time/frequency or prescribing cool dialysis. Whether dietary or pharmacological interventions, such as the administration of L-arginine, fermented food, nitrate, nuclear factor erythroid 2-related factor 2 agonists, or prolyl hydroxylase 2 inhibitors, improve clinical outcome in patients treated with HD warrants future research.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Division of Nephrology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences and Integrative Physiology and Critical Illness Group, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Bernard Canaud
- Montpellier University, School of Medicine, Montpellier, France & Global Medical Office, Fresenius Medical Care, Bad Homburg, Germany
| | - Peter Kotanko
- Renal Research Institute, New York, New York.,Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
15
|
Abstract
Abstract
Purpose
Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography (CuATSM PET) is a non-invasive imaging technique that can be used to detect hypoxia and inform prognosis in cancer. Hypoxia and oxidative stress are also hallmarks of various age-related diseases. Whether CuATSM PET has a role in the evaluation of hypoxia and oxidative stress in age-related diseases has yet to be established. The aim of this systematic review is to evaluate the utility of CuATSM PET in the diagnosis and management of age-related diseases.
Methods
EMBASE, Medline, Scopus, Web of Science and Psychinfo were systematically searched for articles published between January 1st 1997 and February 13th 2020. We included articles published in English reporting the use of CuATSM PET in the diagnosis and management of age-related diseases in humans or animals.
Results
Nine articles were included describing CuATSM PET measures in neurological and cardiovascular disease. There was higher CuATSM uptake in diseased compared to control subjects in Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), myocardial ischemia (MI), cardiac dysautonomia and atherosclerosis. Higher CuATSM uptake was seen in diseased compared to control anatomical areas in PD, cerebrovascular disease (CVD), MI and atherosclerosis. CuATSM uptake was associated with disease severity in PD, ALS, CVD and atherosclerosis. An association between CuATSM uptake and disease duration was shown in atherosclerosis.
Conclusion
CuATSM uptake is higher in neurological and cardiovascular diseases and associated with disease severity and duration. Further investigations using CuATSM PET in other age-related diseases are needed.
Collapse
|
16
|
Affiliation(s)
- John E. Morley
- Division of Geriatric MedicineSaint Louis University School of MedicineSt. LouisMOUSA
| | | | - Stefan D. Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative TherapiesGerman Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin,BerlinGermany
| |
Collapse
|
17
|
Effects of high altitude mountaineering on body composition: a systematic review. NUTR HOSP 2020; 36:1189-1195. [PMID: 31516006 DOI: 10.20960/nh.02582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction High altitude mountaineering is characterized by high energetic requirements due to the environment in which the activity is developed: negative energy balance, extreme cold, high altitude and the assumption of potential risks can be found during the practice of this sport. High altitude mountaineering, as a result of the previous factors, induces changes in body composition which have never been studied previously in a systematic review. A search within four different databases (PubMed, SportDiscus, Scopus and Medline) was performed using the thesaurus terms "Mountaineering" and "Body composition". A second search was performed using the following terms "Altitude" and "Body composition". The selection criteria included studies with healthy adults which evaluated the effects of at least 14 days of uninterrupted stays at altitudes above 4,000 m. The studies included in the review assessed body composition through different methods such as anthropometry, bioimpedance, dual energy x-ray absorptiometry, hydrostatic weighing and air displacement plethysmography. The search was performed up to and including December 1st 2018. Eleven observational studies met the inclusion criteria. All studies reported weight loss, of which five reported significant reductions in lean mass and six reported reductions in fat mass. Also, three studies reported reductions in both fat mass and lean mass. Current evidence is limited to observational studies with important confounding factors affecting the final conclusions. Longitudinal studies with a better methodological design and control groups are needed in order to verify these results.
Collapse
|
18
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Tomas-Carus P, Olcina G, Timón R, Brazo-Sayavera J. Effects of whole-body vibration under hypoxic exposure on muscle mass and functional mobility in older adults. Aging Clin Exp Res 2020; 32:625-632. [PMID: 31236796 DOI: 10.1007/s40520-019-01246-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ageing is accompanied by a loss of muscle mass and function, which are associated with decrease of functional capacity. Combination of WBV training with normobaric hypoxic exposure could augment the beneficial effects due to synergic effects of both treatments. AIMS The purpose of this study was to examine the effects of 36 sessions of the combined WBV training and normobaric hypoxic exposure on muscle mass and functional mobility in older adults. METHODS Nineteen elderly people were randomly assigned to a: vibration normoxic exposure group (NWBV; n = 10; 20.9% FiO2) and vibration hypoxic exposure group (HWBV; n = 9). Participants developed 36 sessions of WBV training along 18 weeks, which included 4 bouts of 30 s (12.6 Hz in frequency and 4 mm in amplitude) with 60 s of rest between bouts, inside a hypoxic chamber for the HWBV. The "Timed Up and Go Test" evaluated functional mobility. Percentages of lean mass were obtained with dual-energy X-ray absorptiometry. RESULTS Neither statistically significant within group variations nor statistically significant differences between both groups were detected to any parameter. DISCUSSION Baseline characteristics of population, training protocol and the level of hypoxia employed could cause different adaptations on muscle mass and function. CONCLUSIONS The combination of WBV training and hypoxic exposure did not cause any effect on either legs lean mass or functional mobility of older adults.
Collapse
|
19
|
Diagnostic reference values for sarcopenia in Tibetans in China. Sci Rep 2020; 10:3067. [PMID: 32080301 PMCID: PMC7033155 DOI: 10.1038/s41598-020-60027-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia is an age-associated disease characterized by loss of muscle mass and function, but the diagnostic cutoff values remain controversial. To investigate the diagnostic cutoff values and incidence of sarcopenia in a plateau population, the limb skeletal muscle mass, gait speed and grip strength of 2318 Tibetan adults were measured according to the criteria of the Asian Working Group for Sarcopenia. We found that the diagnostic reference values for sarcopenia in the high-altitude population were significantly lower than those in the plain population, and the incidences of sarcopenia in the high-altitude population over 60 years old were 17.2% in men and 36.0% in women, which were significantly higher than those in the plain population. Our study proposes reference values for the diagnosis of sarcopenia in Tibet. We suggest that the cutoff value for sarcopenia in the plateau population should be established based on altitude. Hypoxia may be an important risk factor for sarcopenia.
Collapse
|
20
|
Keenan DM, Pichler Hefti J, Veldhuis JD, Von Wolff M. Regulation and adaptation of endocrine axes at high altitude. Am J Physiol Endocrinol Metab 2020; 318:E297-E309. [PMID: 31770013 DOI: 10.1152/ajpendo.00243.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a model of extreme conditions, eight healthy women, part of a 40-member Nepal mountain-climbing expedition, were monitored for dynamic endocrine adaptations. Endocrine measurements were made at frequent intervals over a 6-10-h period at four altitudes: 450 m, 4,800 m (base camp), 6,050 m, and again at 4,800 m (on descent) after an acclimatization (A) period (4,800 mA). Quantified hormones were growth hormone (GH), prolactin (PROL), cortisol (Cort), thyroid-stimulating hormone (TSH), and free thyroxine. These hormones are important to the anabolic/catabolic balance of the body, and are vital to growth, homeostasis, hypothalamic inhibition, regulation of stress, and metabolism. A key secondary question was the degree to which acclimatization can stabilize hormonal disruption. On the basis of statistical false discovery rates, the present analyses unveil marked adaptive changes in the thyroid axis at the level of pulsatile secretion of the pituitary hormone TSH and its downstream product, free thyroxine; strong effects on the mass of GH, TSH, Cort, and PROL secretion per burst; and prominent pulsatile frequency disruption and recovery for PROL and Cort. Because pulsatility changes reflect de facto perturbations in hypothalamo-pituitary control mechanisms, the present data introduce the concept of both frequency- and amplitude-dependent adaptive control of brain-pituitary neuroendocrine signals under conditions of extreme altitude exertion and exposure.
Collapse
Affiliation(s)
- Daniel M Keenan
- Department of Statistics, University of Virginia, Charlottesville, Virginia
| | - Jacqueline Pichler Hefti
- Department of Pulmonary Medicine, University Hospital and University of Berne, Inselspital, Berne, Switzerland
| | - Johannes D Veldhuis
- Department of Medicine, Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Michael Von Wolff
- Women's University Hospital, Department of Gynecological endocrinology and Reproductive Medicine, Berne, Switzerland
| |
Collapse
|
21
|
Wandrag L, Brett SJ, Frost GS, Bountziouka V, Hickson M. Exploration of muscle loss and metabolic state during prolonged critical illness: Implications for intervention? PLoS One 2019; 14:e0224565. [PMID: 31725748 PMCID: PMC6855435 DOI: 10.1371/journal.pone.0224565] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Muscle wasting in the critically ill is up to 2% per day and delays patient recovery and rehabilitation. It is linked to inflammation, organ failure and severity of illness. The aims of this study were to understand the relationship between muscle depth loss, and nutritional and inflammatory markers during prolonged critical illness. Secondly, to identify when during critical illness catabolism might decrease, such that targeted nutritional strategies may logically be initiated. Methods This study was conducted in adult intensive care units in two large teaching hospitals. Patients anticipated to be ventilated for >48 hours were included. Serum C-reactive protein (mg/L), urinary urea (mmol/24h), 3-methylhistidine (μmol/24h) and nitrogen balance (g/24h) were measured on days 1, 3, 7 and 14 of the study. Muscle depth (cm) on ultrasound were measured on the same days over the bicep (bicep and brachialis muscle), forearm (flexor compartment of muscle) and thigh (rectus femoris and vastus intermedius). Results Seventy-eight critically ill patients were included with mean age of 59 years (SD: 16) and median Intensive care unit (ICU) length of stay of 10 days (IQR: 6–16). Starting muscle depth, 8.5cm (SD: 3.2) to end muscle depth, 6.8cm (SD: 2.2) were on average significantly different over 14 days, with mean difference -1.67cm (95%CI: -2.3 to -1cm), p<0.0001. Protein breakdown and inflammation continued over 14 days of the study. Conclusion Our patients demonstrated a continuous muscle depth loss and negative nitrogen balance over the 14 days of the study. Catabolism remained dominant throughout the study period. No obvious ‘nutritional tipping point” to identify anabolism or recovery could be identified in our cohort. Our ICU patient cohort is one with a moderately prolonged stay. This group showed little consistency in data, reflecting the individuality of both disease and response. The data are consistent with a conclusion that a time based assumption of a tipping point does not exist. Trial registration International Standard Randomised Controlled Trial Number: ISRCTN79066838. Registration 25 July 2012.
Collapse
Affiliation(s)
- Liesl Wandrag
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Imperial College London, England, United Kingdom
- Department of Nutrition and Dietetics, Guy’s and St Thomas’ NHS Foundation Trust, London, England, United Kingdom
- Department of Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, London, England, United Kingdom
- * E-mail:
| | - Stephen J. Brett
- Centre for Peri-operative Medicine and Critical Care Research, Imperial College Healthcare NHS Trust, London, England, United Kingdom
| | - Gary S. Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Imperial College London, England, United Kingdom
| | - Vasiliki Bountziouka
- Statistical Support Service, Population, Policy and Practice Programme, Institute of Child Health, University College, London, United Kingdom
| | - Mary Hickson
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Imperial College London, England, United Kingdom
- Institute of Health and Community, University of Plymouth, Devon, England, United Kingdom
| |
Collapse
|
22
|
Piovezan RD, Hirotsu C, Moizinho R, de Sá Souza H, D'Almeida V, Tufik S, Poyares D. Associations between sleep conditions and body composition states: results of the EPISONO study. J Cachexia Sarcopenia Muscle 2019; 10:962-973. [PMID: 31125517 PMCID: PMC6818458 DOI: 10.1002/jcsm.12445] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Evidence suggests anthropometric indicators of obesity are associated with changes in sleep quality and quantity, and the presence of obstructive sleep apnoea (OSA). Investigations including diverse and objective evaluations of sleep and body composition are scarce. We aimed to evaluate the associations between indicators of sleep impairment and body composition states in a sample from a population-based study. METHODS Participants of the first follow-up of the EPISONO (São Paulo, Brazil) >50 years were cross-sectionally evaluated. Sleep was assessed through questionnaires, actigraphy, and polysomnography. Body composition was evaluated by bioelectrical impedance analysis. Appendicular skeletal muscle mass adjusted for body mass index defined sarcopenia (men <0.789 and women <0.512). Total body fat defined obesity (men >30% and women >40%). The overlap between both conditions defined sarcopenic obesity (SO). Final results were obtained by multinomial logistic regression analysis. RESULTS Three hundred fifty-nine adults [mean (standard deviation) age, 61 (8.8) years; 212 (59.1%) female] were enrolled. Obesity was detected in 22.6% of the sample, sarcopenia in 5.6%, and SO in 16.2%. After controlling for covariates, OSA was associated with SO [odds ratio = 3.14, 95% confidence interval (CI) = 1.49-6.61]. Additionally, nocturnal hypoxaemia was associated with both obesity (adjusted odds ratio = 2.59, 95% CI = 1.49-4.49) and SO (odds ratio = 2.92, 95% CI = 1.39-6.13). Other indicators of poor sleep/sleep disorders were not associated with body composition states. CONCLUSIONS Sarcopenic obesity but not obesity alone was associated with OSA. Both obesity and SO but not sarcopenia were associated with nocturnal hypoxaemia. The findings suggest a complex pathophysiologic relationship between adverse body composition states and OSA. Upcoming research on risk factors and therapeutic interventions for OSA should target synchronically the lean and adipose body tissues.
Collapse
Affiliation(s)
- Ronaldo D Piovezan
- Department of Psychobiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Camila Hirotsu
- Department of Psychobiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Renato Moizinho
- Department of Psychobiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Helton de Sá Souza
- Department of Psychobiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Vania D'Almeida
- Department of Psychobiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Dalva Poyares
- Department of Psychobiology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Grocott MPW, Levett DZH, Ward SA. Exercise physiology: exercise performance at altitude. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Brazo-Sayavera J, Olcina G, Tomas-Carus P, Timón R. Evaluation of 18-Week Whole-Body Vibration Training in Normobaric Hypoxia on Lower Extremity Muscle Strength in an Elderly Population. High Alt Med Biol 2019; 20:157-164. [PMID: 31021265 DOI: 10.1089/ham.2018.0129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Therapeutic benefits of hypoxic training have been suggested for clinical populations, such as elderly who could suffer loss of lower limb muscle strength and higher risk of falling. This study investigated the effects of 18 weeks of whole-body vibration (WBV) training in normobaric hypoxia on the strength parameters of an elderly population. Thirty-one healthy elderly participants were randomly assigned to a hypoxic whole-body vibration group (HWBV; n = 10), normoxic whole-body vibration group (NWBV; n = 11), or control group (n = 10). The experimental groups received the same vibration treatment in a hypoxia chamber (HWBV: 16.1% fraction of inspired oxygen [FiO2]; NWBV: 21.0% FiO2). Isokinetic leg muscle strength was evaluated using a Biodex System-3 isokinetic dynamometer. Body composition was obtained with dual-energy X-ray absorptiometry. There were no significant differences between groups in either strength or body composition parameters. The NWBV group showed statistically significant improvements in the maximal strength of knee extensors, with a small effect size (p = 0.004; d = 0.54). No significant differences were found in any variable of the HWBV group. The combination of WBV training and exposure to normobaric cyclic hypoxia carried out in the present study did not have an effect on strength parameters in healthy elderly subjects.
Collapse
Affiliation(s)
| | | | - Javier Brazo-Sayavera
- 2 Instituto Superior de Educación Física, Universidad de la República, Rivera, Uruguay.,3 Polo de Desarrollo Universitario EFISAL, Rivera, Uruguay
| | - Guillermo Olcina
- 1 Faculty of Sport Science, University of Extremadura, Caceres, Spain
| | - Pablo Tomas-Carus
- 4 Departamento de Desporto e Saúde, Escola de Cie^ncia e Tecnologia, Universidade de Évora, Évora, Portugal.,5 Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| | - Rafael Timón
- 1 Faculty of Sport Science, University of Extremadura, Caceres, Spain
| |
Collapse
|
25
|
GIFFORD ROBERTM, O’LEARY THOMAS, COBB RINN, BLACKADDER-WEINSTEIN JODIE, DOUBLE REBECCA, WARDLE SOPHIEL, ANDERSON RICHARDA, THAKE CDOUG, HATTERSLEY JOHN, IMRAY CHRISTOPHERHE, WILSON ADRIAN, GREEVES JULIEP, REYNOLDS REBECCAM, WOODS DAVIDR. Female Reproductive, Adrenal, and Metabolic Changes during an Antarctic Traverse. Med Sci Sports Exerc 2019; 51:556-567. [DOI: 10.1249/mss.0000000000001803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
O'Brien KA, Atkinson RA, Richardson L, Koulman A, Murray AJ, Harridge SDR, Martin DS, Levett DZH, Mitchell K, Mythen MG, Montgomery HE, Grocott MPW, Griffin JL, Edwards LM. Metabolomic and lipidomic plasma profile changes in human participants ascending to Everest Base Camp. Sci Rep 2019; 9:2297. [PMID: 30783167 PMCID: PMC6381113 DOI: 10.1038/s41598-019-38832-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
At high altitude oxygen delivery to the tissues is impaired leading to oxygen insufficiency (hypoxia). Acclimatisation requires adjustment to tissue metabolism, the details of which remain incompletely understood. Here, metabolic responses to progressive environmental hypoxia were assessed through metabolomic and lipidomic profiling of human plasma taken from 198 human participants before and during an ascent to Everest Base Camp (5,300 m). Aqueous and lipid fractions of plasma were separated and analysed using proton (1H)-nuclear magnetic resonance spectroscopy and direct infusion mass spectrometry, respectively. Bayesian robust hierarchical regression revealed decreasing isoleucine with ascent alongside increasing lactate and decreasing glucose, which may point towards increased glycolytic rate. Changes in the lipid profile with ascent included a decrease in triglycerides (48-50 carbons) associated with de novo lipogenesis, alongside increases in circulating levels of the most abundant free fatty acids (palmitic, linoleic and oleic acids). Together, this may be indicative of fat store mobilisation. This study provides the first broad metabolomic account of progressive exposure to environmental hypobaric hypoxia in healthy humans. Decreased isoleucine is of particular interest as a potential contributor to muscle catabolism observed with exposure to hypoxia at altitude. Substantial changes in lipid metabolism may represent important metabolic responses to sub-acute exposure to environmental hypoxia.
Collapse
Affiliation(s)
- Katie A O'Brien
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK.
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics King's College London Guy's Campus London, London, UK
| | - Larissa Richardson
- NIHR BRC Nutritional Biomarker Laboratory, University of Cambridge, Pathology building level 4, Addenbrooke's Hospital, Cambridge, UK
| | - Albert Koulman
- NIHR BRC Nutritional Biomarker Laboratory, University of Cambridge, Pathology building level 4, Addenbrooke's Hospital, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Daniel S Martin
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, First Floor, 170 Tottenham Court Road, London, W1T 7HA, UK
- Critical Care Unit, Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Denny Z H Levett
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Integrative Physiological and Critical Illness Group, Division of Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Kay Mitchell
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Integrative Physiological and Critical Illness Group, Division of Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Monty G Mythen
- University College London Hospitals National Institute of Health Research Biomedical Research Centre, London, UK
| | - Hugh E Montgomery
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, First Floor, 170 Tottenham Court Road, London, W1T 7HA, UK
- Centre for Human Health and Performance, Department of Medicine, University College London, London, UK
| | - Michael P W Grocott
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Integrative Physiological and Critical Illness Group, Division of Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Lindsay M Edwards
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.
- Respiratory Data Sciences Group, Respiratory TAU, GlaxoSmithKline Medicines Research, Stevenage, UK.
| |
Collapse
|
27
|
Magi F, Dimauro I, Margheritini F, Duranti G, Mercatelli N, Fantini C, Ripani FR, Sabatini S, Caporossi D. Telomere length is independently associated with age, oxidative biomarkers, and sport training in skeletal muscle of healthy adult males. Free Radic Res 2018; 52:639-647. [DOI: 10.1080/10715762.2018.1459043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fiorenza Magi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Fabrizio Margheritini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Guglielmo Duranti
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Francesca Romana Ripani
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, University “La Sapienza”, Rome, Italy
| | - Stefania Sabatini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
28
|
Effects of Resistance and Aerobic Exercise Training or Education Associated with a Dietetic Program on Visfatin Concentrations and Body Composition in Overweight and Obese Women. Asian J Sports Med 2017. [DOI: 10.5812/asjsm.57690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|