1
|
Zhan JQ, Wu JX, Fu JJ, Li GS, Wu F, Chen YW. Antioxidant synergistic anti-inflammatory effect in the MAPK/NF-κB pathway of peptide KGEYNK (KK-6) from giant salamander (Andrias davidianus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8613-8620. [PMID: 38953326 DOI: 10.1002/jsfa.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Giant salamander protein peptide is a peptide with rich functional properties. Giant salamander protein peptide KGEYNK (KK-6) is a peptide with both antioxidant and anti-inflammatory properties. The antioxidant and anti-inflammatory mechanisms of KK-6 are still unclear. When we studied the functional mechanism of KK-6, we found that the antioxidant property of KK-6 has a synergistic and promoting effect on anti-inflammatory properties. RESULTS KK-6 enhances cellular resistance to LPS via the MAPK/NF-κB signaling pathway, leading to increased levels of inflammatory factors: interleukin-1β (764.81 ng mL-1), interleukin-6 (1.06 ng mL-1) and tumor necrosis factor-α (4440.45 ng mL-1). KK-6 demonstrates potent antioxidant properties by activating the Nrf2 signaling pathway, resulting in elevated levels of antioxidant enzymes (glutathione peroxidase: 0.03 μg mL-1; superoxide dismutase: 0.589 μg mL-1) and a reduction in the concentration of the oxidative product malondialdehyde (967.05 μg mL-1). CONCLUSION Our findings highlight the great potential of KK-6, a peptide extracted from giant salamander protein, as a remedy for intestinal inflammation. Through its dual role as an antioxidant and anti-inflammatory agent, KK-6 offers a promising avenue for alleviating inflammation-related damage and oxidative stress. This study lays the foundation for further exploration of giant salamander products and highlights their importance in health and novel food development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun-Qi Zhan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Jun-Xin Wu
- Zhejiang Shanding Biotechnology Co., Ltd, Zhejiang, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Gao-Shang Li
- School of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Fang Wu
- Zhejiang Shanding Biotechnology Co., Ltd, Zhejiang, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
2
|
Ma GH, Jiang SQ, Liu LP, Feng J, Zhang JS, Li EX, Li SH, Liu YF. Liquid-Phase Adsorption Behavior of β-D-Glucooligosaccharides When Using Activated Carbon for Separation, and the Antioxidant Stress Activity of Purified Fractions. Foods 2024; 13:1634. [PMID: 38890863 PMCID: PMC11172381 DOI: 10.3390/foods13111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
The adsorption characteristics of β-glucooligosaccharides on activated carbon and the purification were systematically investigated. The maximum adsorption capacity of activated carbon reached 0.419 g/g in the optimal conditions. The adsorption behavior was described to be monolayer, spontaneous, and exothermic based on several models' fitting results. Five fractions with different degrees of polymerization (DPs) and structures of β-glucooligosaccharides were obtained by gradient ethanol elution. 10E mainly contained disaccharides with dp2a (G1→6G) and dp2b (G1→3G). 20E possessed trisaccharides with dp3a (G1→6G1→3G) and dp3b (G1→3G1→3G). 30E mainly consisted of dp3a and dp4a (G1→3G1→3(G1→6)G), dp4b (G1→6G1→3G1→3G), and dp4c (G1→3G1→3G1→3G). In addition to tetrasaccharides, 40E and 50E also contained pentasaccharides and hexasaccharides with β-(1→3)-linked or β-(1→6)-linked glucose residues. All fractions could inhibit the accumulation of intracellular reactive oxygen species (ROS) in H2O2-induced Caco-2 cells, and they could improve oxidative stress damage by increasing the activity of superoxide dismutase (SOD) and reduced glutathione (GSH), which were related to their DPs and structures. 50E with high DPs showed better anti-oxidative stress activity.
Collapse
Affiliation(s)
- Guan-Hua Ma
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (G.-H.M.); (L.-P.L.); (J.F.); (J.-S.Z.)
| | - Si-Qi Jiang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (G.-H.M.); (L.-P.L.); (J.F.); (J.-S.Z.)
| | - Li-Ping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (G.-H.M.); (L.-P.L.); (J.F.); (J.-S.Z.)
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (G.-H.M.); (L.-P.L.); (J.F.); (J.-S.Z.)
| | - Jing-Song Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (G.-H.M.); (L.-P.L.); (J.F.); (J.-S.Z.)
| | - E-Xian Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (E.-X.L.); (S.-H.L.)
| | - Shu-Hong Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (E.-X.L.); (S.-H.L.)
| | - Yan-Fang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; (G.-H.M.); (L.-P.L.); (J.F.); (J.-S.Z.)
| |
Collapse
|
3
|
Song Z, Fang J, Wang D, Tian Y, Xu Y, Wang Z, Geng J, Wang C, Li M. Inhibition of LPS-Induced Skin Inflammatory Response and Barrier Damage via MAPK/NF-κB Signaling Pathway by Houttuynia cordata Thunb Fermentation Broth. Foods 2024; 13:1470. [PMID: 38790770 PMCID: PMC11120194 DOI: 10.3390/foods13101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Houttuynia cordata Thunb is rich in active substances and has excellent antioxidant and anti-inflammatory activity. Scanning electron microscopy and gel permeation chromatography were used to analyze the molecular characteristics of the fermentation broth of Houttuynia cordata Thunb obtained through fermentation with Clavispora lusitaniae (HCT-f). The molecular weight of HCT-f was 2.64265 × 105 Da, and the polydispersity coefficient was 183.10, which were higher than that of unfermented broth of Houttuynia cordata Thunb (HCT). By investigating the active substance content and in vitro antioxidant activity of HCT-f and HCT, the results indicated that HCT-f had a higher active substance content and exhibited a superior scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals and hydroxyl radicals, with IC50 values of 11.85% and 9.01%, respectively. Our results showed that HCT-f could effectively alleviate the increase in the secretion of inflammatory factors and apoptotic factors caused by lipopolysaccharide (LPS) stimulation, and had a certain effect on repairing skin barrier damage. HCT-f could exert an anti-inflammatory effect by down-regulating signaling in the MAPK/NF-κB pathway. The results of erythrocyte hemolysis and chicken embryo experiments showed that HCT-f had a high safety profile. Therefore, this study provides a theoretical basis for the application of HCT-f as an effective ingredient in food and cosmetics.
Collapse
Affiliation(s)
- Zixin Song
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Jiaxuan Fang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Dongdong Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Yuncai Tian
- Shanghai AZ Science & Technology Co., Ltd., Shanghai 201100, China; (Y.T.); (Y.X.)
| | - Yuhua Xu
- Shanghai AZ Science & Technology Co., Ltd., Shanghai 201100, China; (Y.T.); (Y.X.)
| | - Ziwen Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Jiman Geng
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Changtao Wang
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| | - Meng Li
- School of Light Industry Science and Engineering, Beijing Technology & Business University, Beijing 100048, China; (Z.S.); (J.F.); (Z.W.); (J.G.); (C.W.); (M.L.)
| |
Collapse
|
4
|
Li B, Zhang X, Zhang Q, Zheng T, Li Q, Yang S, Shao J, Guan W, Zhang S. Nutritional strategies to reduce intestinal cell apoptosis by alleviating oxidative stress. Nutr Rev 2024:nuae023. [PMID: 38626282 DOI: 10.1093/nutrit/nuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The gut barrier is the first line of defense against harmful substances and pathogens in the intestinal tract. The balance of proliferation and apoptosis of intestinal epithelial cells (IECs) is crucial for maintaining the integrity of the intestinal mucosa and its function. However, oxidative stress and inflammation can cause DNA damage and abnormal apoptosis of the IECs, leading to the disruption of the intestinal epithelial barrier. This, in turn, can directly or indirectly cause various acute and chronic intestinal diseases. In recent years, there has been a growing understanding of the vital role of dietary ingredients in gut health. Studies have shown that certain amino acids, fibers, vitamins, and polyphenols in the diet can protect IECs from excessive apoptosis caused by oxidative stress, and limit intestinal inflammation. This review aims to describe the molecular mechanism of apoptosis and its relationship with intestinal function, and to discuss the modulation of IECs' physiological function, the intestinal epithelial barrier, and gut health by various nutrients. The findings of this review may provide a theoretical basis for the use of nutritional interventions in clinical intestinal disease research and animal production, ultimately leading to improved human and animal intestinal health.
Collapse
Affiliation(s)
- Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Li C, Qi X, Xu L, Sun Y, Chen Y, Yao Y, Zhao J. Preventive Effect of the Total Polyphenols from Nymphaea candida on Sepsis-Induced Acute Lung Injury in Mice via Gut Microbiota and NLRP3, TLR-4/NF-κB Pathway. Int J Mol Sci 2024; 25:4276. [PMID: 38673868 PMCID: PMC11050158 DOI: 10.3390/ijms25084276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the preventive effects of the total polyphenols from Nymphaea candida (NCTP) on LPS-induced septic acute lung injury (ALI) in mice and its mechanisms. NCTP could significantly ameliorate LPS-induced lung tissue pathological injury in mice as well as lung wet/dry ratio and MPO activities (p < 0.05). NCTP could significantly decrease the blood leukocyte, neutrophil, monocyte, basophil, and eosinophil amounts and LPS contents in ALI mice compared with the model group (p < 0.05), improving lymphocyte amounts (p < 0.05). Moreover, compared with the model group, NCTP could decrease lung tissue TNF-α, IL-6, and IL-1β levels (p < 0.05) and downregulate the protein expression of TLR4, MyD88, TRAF6, IKKβ, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, NLRP3, ASC, and Caspase1 in lung tissues (p < 0.05). Furthermore, NCTP could inhibit ileum histopathological injuries, restoring the ileum tight junctions by increasing the expression of ZO-1 and occludin. Simultaneously, NCTP could reverse the gut microbiota disorder, restore the diversity of gut microbiota, increase the relative abundance of Clostridiales and Lachnospiraceae, and enhance the content of SCFAs (acetic acid, propionic acid, and butyric acid) in feces. These results suggested that NCTP has preventive effects on septic ALI, and its mechanism is related to the regulation of gut microbiota, SCFA metabolism, and the TLR-4/NF-κB and NLRP3 pathways.
Collapse
Affiliation(s)
- Chenyang Li
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; (C.L.); (X.Q.)
| | - Xinxin Qi
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; (C.L.); (X.Q.)
| | - Lei Xu
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| | - Yuan Sun
- School of Pharmacy, Xinjiang Medical University, Urumqi 830011, China;
| | - Yan Chen
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| | - Yuhan Yao
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| | - Jun Zhao
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; (C.L.); (X.Q.)
- Xinjiang Key Laboratory for Uighur Medicine, Institute of Materia Medica of Xinjiang, Urumqi 830004, China; (L.X.); (Y.C.); (Y.Y.)
| |
Collapse
|
6
|
Xu R, Feng N, Li Q, Wang H, Li L, Feng X, Su Y, Zhu W. Pectin supplementation accelerates post-antibiotic gut microbiome reconstitution orchestrated with reduced gut redox potential. THE ISME JOURNAL 2024; 18:wrae101. [PMID: 38857378 PMCID: PMC11203915 DOI: 10.1093/ismejo/wrae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/12/2024]
Abstract
Antibiotic-induced gut dysbiosis (AID) presents a big challenge to host health, and the recovery from this dysbiosis is often slow and incomplete. AID is typically characterized by elevation in redox potential, Enterobacteriaceae load, and aerobic metabolism. In our previous study, a pectin-enriched diet was demonstrated to decrease fecal redox potential and modulate the gut microbiome. Therefore, we propose that pectin supplementation may modulate gut redox potential and favor post-antibiotic gut microbiome reconstitution from dysbiosis. In the present study, rats with AIDwere used to investigate the effects of pectin supplementation on post-antibiotic gut microbiome reconstitution from dysbiosis. The results showed that pectin supplementation accelerated post-antibiotic reconstitution of gut microbiome composition and function and led to enhancement of anabolic reductive metabolism and weakening of catabolic oxidative pathways. These results were corroborated by the measurement of redox potential, findings suggesting that pectin favors post-antibiotic recovery from dysbiosis. Pectin-modulated fecal microbiota transplantation accelerated the decrease in antibiotics-elevated redox potential and Enterobacteriaceae load similarly to pectin supplementation. Moreover, both pectin supplementation and Pectin-modulated fecal microbiota transplantation enriched anaerobic members, primarily from Lachnospiraceae orchestration with enhancement of microbial reductive metabolism in post-antibiotic rats. These findings suggested that pectin supplementation accelerated post-antibiotic gut microbiome reconstitution orchestrated with reduced gut redox potential and that the effect of pectin on redox potential was mediated by remodeling of the intestinal microbiota.
Collapse
Affiliation(s)
- Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ni Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuke Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Feng
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Dias IHK, Shokr H. Oxysterols as Biomarkers of Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:307-336. [PMID: 38036887 DOI: 10.1007/978-3-031-43883-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols derive from either enzymatic or non-enzymatic oxidation of cholesterol. Even though they are produced as intermediates of bile acid synthesis pathway, they are recognised as bioactive compounds in cellular processes. Therefore, their absence or accumulation have been shown to be associated with disease phenotypes. This chapter discusses the contribution of oxysterol to ageing, age-related diseases such as neurodegeneration and various disorders such as cancer, cardiovascular disease, diabetes, metabolic and ocular disorders. It is clear that oxysterols play a significant role in development and progression of these diseases. As a result, oxysterols are being investigated as suitable markers for disease diagnosis purposes and some drug targets are in development targeting oxysterol pathways. However, further research will be needed to confirm the suitability of these potentials.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Martins-Gomes C, Nunes FM, Silva AM. Natural Products as Dietary Agents for the Prevention and Mitigation of Oxidative Damage and Inflammation in the Intestinal Barrier. Antioxidants (Basel) 2024; 13:65. [PMID: 38247489 PMCID: PMC10812469 DOI: 10.3390/antiox13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Food intake is a basic need to sustain life, but foodborne pathogens and food-related xenobiotics are also the main health concerns regarding intestinal barrier homeostasis. With a predominant role in the well-being of the entire human body, intestinal barrier homeostasis is strictly regulated by epithelial and immune cells. These cells are also the main intervenients in oxidative stress and inflammation-related diseases in the intestinal tract, triggered, for example, by genetic/epigenetic factors, food additives, pesticides, drugs, pathogens, and their metabolites. Nevertheless, the human diet can also be seen as a solution for the problem, mainly via the inclusion of functional foods or nutraceuticals that may act as antioxidant/anti-inflammatory agents to prevent and mitigate acute and chronic oxidative damage and inflammation. A literature analysis of recent advances in this topic highlights the significant role of Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways in these biological processes, with many natural products and phytochemicals targeting endogenous antioxidant systems and cytokine production and balance. In this review, we summarized and discussed studies using in vitro and in vivo models of the intestinal tract used to reproduce oxidative damage and inflammatory events, as well as the role of natural products as modulators of Nrf2 and NK-kB pathways.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
9
|
Vigne S, Pot C. Implication of Oxysterols and Phytosterols in Aging and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:231-260. [PMID: 38036883 DOI: 10.1007/978-3-031-43883-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is easily oxidized and can be transformed into numerous oxidation products, among which oxysterols. Phytosterols are plant sterols related to cholesterol. Both oxysterols and phytosterols can have an impact on human health and diseases.Cholesterol is a member of the sterol family that plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized into several molecules including bile acids, hormones, and oxysterols. On the other hand, phytosterols are plant-derived compounds structurally related to cholesterol, which can also have an impact on human health. Here, we review the current knowledge about the role of oxysterols and phytosterols on human health and focus on the impact of their pathways on diseases of the central nervous system (CNS), autoimmune diseases, including inflammatory bowel diseases (IBD), vascular diseases, and cancer in both experimental models and human studies. We will first discuss the implications of oxysterols and then of phytosterols in different human diseases.
Collapse
Affiliation(s)
- Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland.
| |
Collapse
|
10
|
Beton-Mysur K, Brożek-Płuska B. A new modality for cholesterol impact tracking in colon cancer development - Raman imaging, fluorescence and AFM studies combined with chemometric analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5199-5217. [PMID: 37781815 DOI: 10.1039/d3ay01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Obesity, alcohol consumption, smoking, high consumption of red or processed meat and a diet with low fibre, fruit, and vegetable intake increase CRC risk. Despite advances in surgery (the basic treatment for recovery), chemotherapy, and radiotherapy, CRC remains the second leading cause of cancer-related deaths in the world. Therefore the social importance of this problem stimulates research aimed at developing new tools for rapid CRC diagnosis and analysis of CRC risk factors. Considering the association between the cholesterol level and CRC, we hypothesize that cholesterol spectroscopic and AFM (atomic force microscopy) studies combined with chemometric analysis can be new, powerful tools used to visualize the cholesterol distribution, estimate cholesterol content and determine its influence on the biochemical and nanomechanical properties of colon cells. Our paper presents the analysis of human colon tissues: normal and cancer and human colon single cells normal CCD18-Co and cancer CaCo-2 in the physiological state and CaCo-2 upon mevastatin supplementation. Based on vibrational features we have shown that Raman spectroscopy and imaging allow cholesterol content in human colon tissues and human colon single cells of both types to be tracked and allow the effectiveness of mevastatin in the mevalonate pathway modulation and disruption of the cholesterol level to be proven. All observations have been confirmed by chemometric analysis including principal component analysis (PCA) and partial least squares discriminant analysis (PLSDA). The positive impact of statins on cholesterol content has also been studied by using fluorescence microscopy and atomic force microscopy (AFM). A significant increase in Young modulus as a mechanomarker for CaCo-2 human cancer colon cells upon mevastatin supplementation compared to CCD18-Co human normal colon cells was observed. This paper is one of the first reports about the use of Raman spectroscopic techniques in cholesterol investigations and the first one about cholesterol investigation using Raman spectroscopy (RS) on human cells ex vivo in the context of colon cancer development.
Collapse
Affiliation(s)
- K Beton-Mysur
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - B Brożek-Płuska
- Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
11
|
Yan C, Huang SH, Ding HF, Kwek E, Liu JH, Chen ZX, Ma KY, Chen ZY. Adverse effect of oxidized cholesterol exposure on colitis is mediated by modulation of gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132057. [PMID: 37467611 DOI: 10.1016/j.jhazmat.2023.132057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Both cholesterol and oxidized cholesterol (OXC) are present in human diets. The incidence of inflammatory bowel diseases (IBDs) is increasing in the world. The present study was to investigate the mechanism by which OXC promotes colitis using C57BL/6 mice as a model. Results shown that more severe colitis was developed in OXC-treated mice with the administration of dextran sulfate sodium (DSS) in water. Direct effects of short-term OXC exposure on gut barrier or inflammation were not observed in healthy mice. However, OXC exposure could cause gut microbiota dysbiosis with a decrease in the relative abundance of short-train fatty acids (SCFAs)-producing bacteria (Lachnospiraceae_NK4A136_group and Blautia) and an increase in the abundance of some potential harmful bacteria (Bacteroides). OXC-induced symptoms of colitis were eliminated when mice were administered with antibiotic cocktails, indicating the promoting effect of OXC on DSS-induced colitis was mediated by its effect on gut microbiota. Moreover, bacteria-depleted mice colonized with gut microbiome from OXC-DSS-exposed mice exhibited a severe colitis, further proving the gut dysbiosis caused by OXC exposure was the culprit in exacerbating the colitis. It was concluded that dietary OXC exposure increased the susceptibility of colitis in mice by causing gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Chi Yan
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Shou-He Huang
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Hua-Fang Ding
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Erika Kwek
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jian-Hui Liu
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Zi-Xing Chen
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ka Ying Ma
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Zhen-Yu Chen
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
12
|
Finnegan D, Tocmo R, Loscher C. Targeted Application of Functional Foods as Immune Fitness Boosters in the Defense against Viral Infection. Nutrients 2023; 15:3371. [PMID: 37571308 PMCID: PMC10421353 DOI: 10.3390/nu15153371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In recent times, the emergence of viral infections, including the SARS-CoV-2 virus, the monkeypox virus, and, most recently, the Langya virus, has highlighted the devastating effects of viral infection on human life. There has been significant progress in the development of efficacious vaccines for the prevention and control of viruses; however, the high rates of viral mutation and transmission necessitate the need for novel methods of control, management, and prevention. In recent years, there has been a shift in public awareness on health and wellbeing, with consumers making significant dietary changes to improve their immunity and overall health. This rising health awareness is driving a global increase in the consumption of functional foods. This review delves into the benefits of functional foods as potential natural means to modulate the host immune system to enhance defense against viral infections. We provide an overview of the functional food market in Europe and discuss the benefits of enhancing immune fitness in high-risk groups, including the elderly, those with obesity, and people with underlying chronic conditions. We also discuss the immunomodulatory mechanisms of key functional foods, including dairy proteins and hydrolysates, plant-based functional foods, fermentates, and foods enriched with vitamin D, zinc, and selenium. Our findings reveal four key immunity boosting mechanisms by functional foods, including inhibition of viral proliferation and binding to host cells, modulation of the innate immune response in macrophages and dendritic cells, enhancement of specific immune responses in T cells and B cells, and promotion of the intestinal barrier function. Overall, this review demonstrates that diet-derived nutrients and functional foods show immense potential to boost viral immunity in high-risk individuals and can be an important approach to improving overall immune health.
Collapse
Affiliation(s)
| | | | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (D.F.); (R.T.)
| |
Collapse
|
13
|
Li H, Christman LM, Yagiz Y, Washington TL, Wang GP, Gu L. Dealcoholized muscadine wine was partially effective in preventing and treating dextran sulfate sodium-induced colitis and restoring gut dysbiosis in mice. Food Funct 2023; 14:5994-6011. [PMID: 37310366 DOI: 10.1039/d3fo00047h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Muscadine wine has a unique polyphenol profile consisting of anthocyanins, ellagic acids, and flavonols. This study aims to compare the prevention, treatment, and combined activity (P + T) of dealcoholized muscadine wine (DMW) on DSS-induced colitis in mice and its impact on the gut microbiome. Male C57BL/6 mice in the healthy and colitis group received an AIN-93M diet for 28 days. In the prevention, treatment, and P + T (prevention + treatment) groups, mice received an AIN-93M diet containing 2.79% (v/w) DMW on days 1-14, 15-28, and 1-28, respectively. Except for mice in the healthy group, all mice were given water with 2.5% (w/v) DSS on days 8-14 to induce colitis. DMW in all three receiving groups reduced myeloperoxidase activity, histology scores, and phosphorylation of Iκb-α in the colon. Colon shortening, serum IL-6, and colonic mRNA of TNF-α were blunted only in the P + T group. Gut permeability was reduced in the treatment and P + T groups. DMW in P + T group showed higher activity to increase microbiome evenness, modulate β-diversity, elevate the cecal content of SCFAs, and enrich SCFA-producing bacteria, including Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Peptococcaceae. This was accompanied by a decrease in pathogenic Burkholderiaceae in mice. This study suggests that muscadine wine has partial preventive and therapeutic effects against inflammatory bowel disease. The combination of prevention and treatment using DMW showed better activities than either prevention or treatment.
Collapse
Affiliation(s)
- Hao Li
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Lindsey M Christman
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Yavuz Yagiz
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Taylor L Washington
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| | - Gary P Wang
- Division of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, Florida 32611, USA
| | - Liwei Gu
- Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, USA.
| |
Collapse
|
14
|
Hashempour-Baltork F, Farshi P, Mirza Alizadeh A, Eskandarzadeh S, Abedinzadeh S, Azadmard-Damirchi S, Torbati M. Effect of Refined Edible Oils on Neurodegenerative Disorders. Adv Pharm Bull 2023; 13:461-468. [PMID: 37646051 PMCID: PMC10460797 DOI: 10.34172/apb.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 09/01/2023] Open
Abstract
Neurodegenerative diseases are comprise a prominent class of neurological diseases. Generally, neurodegenerative diseases cannot be cured, and the available treatments can only regulate the symptoms or delay the disease progression. Among the several factors which could clarify the possible pathogenesis of neurodegenerative diseases, next to aging as the main risk, the dietary related diseases are the most important. Vegetable oils, which are composed of triacyclglycerols as the main components and several other components in a trace amount, are the main part of our diet. This review aims to study the effect of refined or unrefined vegetable oil consumption as a preventive or aiding strategy to slow or halt the progression of neurodegenerative diseases. In the refining process, owing to the chemical materials or severe temperatures of the refining process, removal of the desirable minor components is sometimes unavoidable and thus a worrisome issue affecting physical and neurological health.
Collapse
Affiliation(s)
- Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan, KS, USA
| | - Adel Mirza Alizadeh
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sevda Eskandarzadeh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Farhan N, Rageh Al-Maleki A, Ataei S, Muhamad Sarih N, Yahya R. Synthesis, DFT study, theoretical and experimental spectroscopy of fatty amides based on extra-virgin olive oil and their antibacterial activity. Bioorg Chem 2023; 135:106511. [PMID: 37027951 DOI: 10.1016/j.bioorg.2023.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Medication products from natural materials are preferred due to their minimal side effects. Extra-virgin olive oil (EVOO) is a highly acclaimed Mediterranean diet and a common source of lipids that lowers morbidity and disease severity. This study synthesised two fatty amides from EVOO: hydroxamic fatty acids (FHA) and fatty hydrazide hydrate (FHH). The Density Functional Theory (DFT) was applied to quantum mechanics computation. Nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), and element analysis were used to characterise fatty amides. Likewise, the minimum inhibitory concentration (MIC) and timing kill assay were determined. The results revealed that 82 % for FHA and 80 % for FHH conversion were achieved. The amidation reagent/EVOO ratio (mmol: mmol) was 7:1, using the reaction time of 12 h and hexane as an organic solvent. The results further revealed that fatty amides have high antibacterial activity with low concentration at 0.04 μg/mL during eight h of FHA and 0.3 μg/mL during ten h of FHH. This research inferred that FHA and FHH could provide an alternative and effective therapeutic strategy for bacterial diseases. Current findings could provide the basis for the modernisation/introduction of novel and more effective antibacterial drugs derived from natural products.
Collapse
|
16
|
The In Vitro, Ex Vivo, and In Vivo Effect of Edible Oils: A Review on Cell Interactions. Pharmaceutics 2023; 15:pharmaceutics15030869. [PMID: 36986730 PMCID: PMC10056871 DOI: 10.3390/pharmaceutics15030869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Consumption of edible oils is a significant part of the dietary pattern in the developed and developing world. Marine and vegetable oils are assumed to be part of a healthy food pattern, especially if one takes into account their potential role in protecting against inflammation, cardiovascular disease, and metabolic syndrome due to the presence of polyunsaturated fatty acids and minor bioactive compounds. Exploring the potential effect of edible fats and oils on health and chronic diseases is an emerging field worldwide. This study reviews the current knowledge of the in vitro, ex vivo, and in vivo effect of edible oils in contact with various cell types and aims to demonstrate which nutritional and bioactive components of a variety of edible oils present biocompatibility, antimicrobial properties, antitumor activity, anti-angiogenic activity, and antioxidant activity. Through this review, a wide variety of cell interactions with edible oils and their potential to counteract oxidative stress in pathological conditions are presented as well. Moreover, the gaps in current knowledge are also highlighted, and future perspectives on edible oils and their health benefits and potential to counteract a wide variety of diseases through possible molecular mechanisms are also discussed.
Collapse
|
17
|
Casula E, Pisano MB, Serreli G, Zodio S, Melis MP, Corona G, Costabile A, Cosentino S, Deiana M. Probiotic lactobacilli attenuate oxysterols-induced alteration of intestinal epithelial cell monolayer permeability: Focus on tight junction modulation. Food Chem Toxicol 2023; 172:113558. [PMID: 36528245 DOI: 10.1016/j.fct.2022.113558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Oxidative stress and inflammation lead by dietary oxidised lipids, as oxysterols, have been linked to the loss of intestinal barrier integrity, a crucial event in the initiation and progression of intestinal disorders. In the last decade, probiotic lactobacilli have emerged as an interesting tool to improve intestinal health, thanks to their antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the ability of two commercial probiotic strains of lactobacilli (Lactiplantibacillus plantarum 299v® (DMS 9843) and Lacticaseibacillus casei DG® (CNCMI-1572)), both as live bacteria and intracellular content, to attenuate the oxysterols-induced alteration of intestinal epithelial Caco-2 cell monolayer permeability. Our investigation was focused on the modulation of tight junctions (TJs) proteins, occludin, ZO-1 and JAM-A, in relation to redox-sensitive MAPK p38 activation. Obtained results provided evidence on the ability of the two probiotics to counteract the alteration of monolayer permeability and loss of TJs proteins, at least in part, through the modulation of p38 pathway. The protective action was exerted by live bacteria, whose adhesion to Caco-2 cells was not altered by oxysterols, and bacterial intracellular components equally able to interact with the signaling pathway.
Collapse
Affiliation(s)
- Emanuela Casula
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| | - Maria Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy.
| | - Sonia Zodio
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| | - Maria Paola Melis
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| | - Giulia Corona
- School of Life and Health Sciences, University of Roehampton, London, SW15 4JD, UK
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton, London, SW15 4JD, UK
| | - Sofia Cosentino
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, 09042, Cagliari, Italy.
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042, Cagliari, Italy
| |
Collapse
|
18
|
Burgos-Pino J, Gual-Orozco B, Vera-Ku M, Loría-Cervera EN, Guillermo-Cordero L, Martínez-Vega PP, Torres-Tapia LW, Castro-Valencia K, Peraza-Sánchez SR, Gamboa-León R. Acute oral toxicity in BALB/c mice of Tridax procumbens and Allium sativum extracts and (3S)-16,17-didehydrofalcarinol. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115840. [PMID: 36257342 DOI: 10.1016/j.jep.2022.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Approximately 80% of people in developing countries depend on medicinal plants for their health care. Tridax procumbens (T. procumbens) and Allium sativum (A. sativum) have beneficial effects against parasitic and bacterial diseases. On the other side, the biological activity of the oxylipin (3S)-16,17-didehydrofalcarinol isolated from T. procumbens against the parasite Leishmania mexicana has been verified. AIM OF THE STUDY To evaluate the acute oral toxicity of the methanolic extract of T. procumbens, the aqueous extract of A. sativum, their mixture, and pure oxylipin (3S)-16,17-didehydrofalcarinol in BALB/c mice. MATERIALS AND METHODS Doses of 2000 and 5000 mg/kg of the methanolic extract of T. procumbens, the aqueous extract of A. sativum, and their mixture (1:1), and doses of 300 and 500 mg/kg of pure oxylipin were administered orally to female mice of the strain BALB/c, which were observed for 72 h in search of signs of toxicity. After 14 days, the animals were euthanized, blood was extracted for the measurement of transaminases, and the livers were recovered and stained with hematoxylin/eosin for histopathological analysis. RESULTS No clinical signs of toxicity were observed in any of the animals dosed with T. procumbens and A. sativum extracts, while the majority of the animals dosed with pure oxylipin showed signs of toxicity and died. There was no difference in the weight index in most of the animals, except for the animals treated with T. procumbens at doses of 2000 mg/kg who presented an increase in the weight index, nor was there a correlation between the dose of A. sativum and the mixture and food consumption; however, a direct proportional correlation was observed between T. procumbens dose and food consumption. In none of the animals dosed with T. procumbens, A. sativum, and the mixture there was a difference in the levels of transaminases. In the histopathology study, slight lesions were observed in the hepatocytes of the mice treated with T. procumbens, A. sativum, and their mixture at doses of 2000 and 5000 mg/kg. On the other side, moderate injuries were observed in animals treated with pure oxylipin and it was considered as toxic due to almost all the animals died. CONCLUSION The extracts of T. procumbens and A. sativum evaluated and applied orally did not cause signs of acute toxicity or severe liver damage, suggesting to evaluate their chronic toxicity including other biochemical parameters in the future. However, pure oxylipin caused signs of acute toxicity and death so it is recommended to work with lower doses.
Collapse
Affiliation(s)
- Janelly Burgos-Pino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5 Tizapán, 97100, Mérida, Yucatán, Mexico.
| | - Brandon Gual-Orozco
- CONACYT-GERMOLAB/Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Marina Vera-Ku
- CONACYT-GERMOLAB/Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Elsy Nalleli Loría-Cervera
- Laboratorio de Inmunología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Av. Itzaes por 59, No. 490, Centro, 97000, Mérida, Yucatán, Mexico.
| | - Leonardo Guillermo-Cordero
- Cuerpo Académico en Salud Animal de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5 Tizapán, 97100, Mérida, Yucatán, Mexico.
| | - Pedro Pablo Martínez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Av. Itzaes por 59, No. 490, Centro, 97000, Mérida, Yucatán, Mexico.
| | - Luis W Torres-Tapia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Karla Castro-Valencia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Sergio R Peraza-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Calle 43 No. 130, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| | - Rubi Gamboa-León
- Laboratorio de Ciencias Biomédicas, Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí, Km. 5 Carretera Tamazunchale-San Martin, 79960, Tamazunchale, San Luis Potosí, Mexico.
| |
Collapse
|
19
|
Pagliari S, Forcella M, Lonati E, Sacco G, Romaniello F, Rovellini P, Fusi P, Palestini P, Campone L, Labra M, Bulbarelli A, Bruni I. Antioxidant and Anti-Inflammatory Effect of Cinnamon ( Cinnamomum verum J. Presl) Bark Extract after In Vitro Digestion Simulation. Foods 2023; 12:452. [PMID: 36765979 PMCID: PMC9914695 DOI: 10.3390/foods12030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Cinnamon bark is widely used for its organoleptic features in the food context and growing evidence supports its beneficial effect on human health. The market offers an increasingly wide range of food products and supplements enriched with cinnamon extracts which are eliciting beneficial and health-promoting properties. Specifically, the extract of Cinnamomum spp. is rich in antioxidant, anti-inflammatory and anticancer biomolecules. These include widely reported cinnamic acid and some phenolic compounds, such asproanthocyanidins A and B, and kaempferol. These molecules are sensitive to physical-chemical properties (such as pH and temperature) and biological agents that act during gastric digestion, which could impair molecules' bioactivity. Therefore, in this study, the cinnamon's antioxidant and anti-inflammatory bioactivity after simulated digestion was evaluated by analyzing the chemical profile of the pure extract and digested one, as well as the cellular effect in vitro models, such as Caco2 and intestinal barrier. The results showed that the digestive process reduces the total content of polyphenols, especially tannins, while preserving other bioactive compounds such as cinnamic acid. At the functional level, the digested extract maintains an antioxidant and anti-inflammatory effect at the cellular level.
Collapse
Affiliation(s)
- Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Grazia Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Romaniello
- Innovhub Stazioni Sperimentali per l’Industria S.r.l., Via Giuseppe Colombo 79, 20133 Milano, Italy
| | - Pierangela Rovellini
- Innovhub Stazioni Sperimentali per l’Industria S.r.l., Via Giuseppe Colombo 79, 20133 Milano, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Luca Campone
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Massimo Labra
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Ilaria Bruni
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
20
|
Serreli G, Deiana M. Role of Dietary Polyphenols in the Activity and Expression of Nitric Oxide Synthases: A Review. Antioxidants (Basel) 2023; 12:antiox12010147. [PMID: 36671009 PMCID: PMC9854440 DOI: 10.3390/antiox12010147] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) plays several key roles in the functionality of an organism, and it is usually released in numerous organs and tissues. There are mainly three isoforms of the enzyme that produce NO starting from the metabolism of arginine, namely endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and neuronal nitric oxide synthase (nNOS). The expression and activity of these isoforms depends on the activation/deactivation of different signaling pathways at an intracellular level following different physiological and pathological stimuli. Compounds of natural origin such as polyphenols, which are obtainable through diet, have been widely studied in recent years in in vivo and in vitro investigations for their ability to induce or inhibit NO release, depending on the tissue. In this review, we aim to disclose the scientific evidence relating to the activity of the main dietary polyphenols in the modulation of the intracellular pathways involved in the expression and/or functionality of the NOS isoforms.
Collapse
|
21
|
Yan C, Kwek E, Ding HF, He Z, Ma KY, Zhu H, Chen ZY. Dietary Oxidized Cholesterol Aggravates Chemically Induced Murine Colon Inflammation and Alters Gut Microbial Ecology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13289-13301. [PMID: 36198042 DOI: 10.1021/acs.jafc.2c05001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Western diet with a higher intake of fat and cholesterol has been claimed as an intestinal inflammation trigger. Human diet contains both cholesterol and oxidized cholesterol. Oxidized cholesterol has been claimed to be associated with various inflammation diseases, but its effects on colitis and gut microbiome remain largely unknown. The present study was the first time to investigate the effect of the oxidized cholesterol on gut microbiota and dextran sodium sulfate-induced colitis using mice as a model. The results showed that oxidized cholesterol promoted colitis by exacerbating bleeding, body weight decrease, colon shortening, gut barrier damage, oxidative stress, and gut inflammation, whereas non-oxidized cholesterol had no effect. Meanwhile, oxidized cholesterol could adversely modulate the gut microbiota by increasing the relative abundance of pro-inflammatory bacteria (including Escherichia-Shigella and Bacteroides) and decreasing that of beneficial bacteria (Lachnospiraceae_NK4A136_group and Odoribacter). In addition, oxidized cholesterol significantly reduced the production of fecal short-chain fatty acids in colitis mice. It was concluded that oxidized cholesterol was a potential dietary factor of gut dysbiosis.
Collapse
Affiliation(s)
- Chi Yan
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Erika Kwek
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Hua-Fang Ding
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Zouyan He
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- School of Public Health, Guanxi Medical University, Nanning 530021, China
| | - Ka Ying Ma
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Hanyue Zhu
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- School of Food Science and Engineering/South China Food Safety Research Center, Foshan University, Foshan 528000, Guangdong, China
| | - Zhen-Yu Chen
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
22
|
Yan J, Wang L, Gu Y, Hou H, Liu T, Ding Y, Cao H. Dietary Patterns and Gut Microbiota Changes in Inflammatory Bowel Disease: Current Insights and Future Challenges. Nutrients 2022; 14:nu14194003. [PMID: 36235658 PMCID: PMC9572174 DOI: 10.3390/nu14194003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a result of a complex interplay between genes, host immune response, gut microbiota, and environmental factors. As one of the crucial environmental factors, diet plays a pivotal role in the modulation of gut microbiota community and the development of IBD. In this review, we present an overview of dietary patterns involved in the pathogenesis and management of IBD, and analyze the associated gut microbial alterations. A Westernized diet rich in protein, fats and refined carbohydrates tends to cause dysbiosis and promote IBD progression. Some dietary patterns have been found effective in obtaining IBD clinical remission, including Crohn's Disease Exclusion Diet (CDED), Mediterranean diet (MD), Anti-Inflammatory Diet (AID), the low-"Fermentable Oligo-, Di-, Mono-saccharides and Polyols" (FODMAP) diet, Specific Carbohydrate Diet (SCD), and plant-based diet, etc. Overall, many researchers have reported the role of diet in regulating gut microbiota and the IBD disease course. However, more prospective studies are required to achieve consistent and solid conclusions in the future. This review provides some recommendations for studies exploring novel and potential dietary strategies that prevent IBD.
Collapse
Affiliation(s)
- Jing Yan
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Nutrition, the Second Affiliated Hospital, Air Force Medical University, Xi’an 710038, China
| | - Lei Wang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Gastroenterology and Hepatology, the Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Yu Gu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huiqin Hou
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianyu Liu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yiyun Ding
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence:
| |
Collapse
|
23
|
Costa M, Costa V, Lopes M, Paiva-Martins F. A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo. Crit Rev Food Sci Nutr 2022; 64:1403-1428. [PMID: 36094444 DOI: 10.1080/10408398.2022.2116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The chemistry of the phenolic compounds found in virgin olive oil (VOO) is very complex due, not only to the different classes of polyphenols that can be found in it, but, above all, due to the existence of a very specific phenol class found only in oleaceae plants: the secoiridoids. Searching in the Scopus data base the keywords flavonoid, phenolic acid, lignin and secoiridoid, we can find a number of 148174, 79435, 11326 and 1392 research articles respectively, showing how little is devote to the latter class of compounds. Moreover, in contrast with other classes, that include only phenolic compounds, secoiridoids may include phenolic and non-phenolic compounds, being the articles concerning phenolic secoiridoids much less than the half of the abovementioned articles. Therefore, it is important to clarify the structures of these compounds and their chemistry, as this knowledge will help understand their bioactivity and metabolism studies, usually performed by researchers with a more health science's related background. In this review, all the structures found in many research articles concerning VOO phenolic compounds chemistry and metabolism was gathered, with a special attention devoted to the secoiridoids, the main phenolic compound class found in olives, VOO and olive leaf.
Collapse
Affiliation(s)
- Marlene Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Vânia Costa
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Margarida Lopes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Effects of Avocado Oil Supplementation on Insulin Sensitivity, Cognition, and Inflammatory and Oxidative Stress Markers in Different Tissues of Diet-Induced Obese Mice. Nutrients 2022; 14:nu14142906. [PMID: 35889863 PMCID: PMC9319255 DOI: 10.3390/nu14142906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity induces insulin resistance, chronic inflammation, oxidative stress, and neurocognitive impairment. Avocado oil (AO) has antioxidants and anti-inflammatory effects. This study evaluated the effect of AO supplementation on obese mice in the adipose tissue, muscle, liver, and hippocampus. Male C57BL/6J mice received a standard and high-fat diet (20 weeks) and then were supplemented with AO (4 mL/kg of body weight, 90 days) and divided into the following groups: control (control), control + avocado oil (control + AO), diet-induced obesity (DIO), and diet-induced obesity + avocado oil (DIO + AO) (n = 10/group). AO supplementation was found to improve insulin sensitivity and decrease hepatic fat accumulation and serum triglyceride levels in DIO mice. AO improved cognitive performance and did not affect mood parameters. Oxidative marker levels were decreased in DIO + AO mice in all the tissues and were concomitant with increased catalase and superoxide dismutase activities in the epididymal adipose tissue and quadriceps, as well as increased catalase activity in the liver. AO in obese animals further induced reductions in TNF-α and IL-1β expressions in the epididymal adipose tissue and quadriceps. These results suggest that AO supplementation has the potential to be an effective strategy for combating the effects of obesity in rats, and human studies are needed to confirm these findings.
Collapse
|
25
|
Beneficial health effects of polyphenols metabolized by fermentation. Food Sci Biotechnol 2022; 31:1027-1040. [DOI: 10.1007/s10068-022-01112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 11/04/2022] Open
|
26
|
Rezagholizadeh L, Aghamohammadian M, Oloumi M, Banaei S, Mazani M, Ojarudi M. Inhibitory effects of Ficus carica and Olea europaea on pro-inflammatory cytokines: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:268-275. [PMID: 35656183 PMCID: PMC9148402 DOI: 10.22038/ijbms.2022.60954.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/29/2022] [Indexed: 11/17/2022]
Abstract
Objectives Ficus carica (fig) and Olea europaea (olive) are valuable nutritional plants that are widely used in diet and traditional medicine. Different parts of the plants such as fruit and leaves contain beneficial compounds with diverse pharmacological properties, among which anti-inflammatory activities are remarkable. The purpose of this review is to discuss the anti-inflammatory effects of F. carica and O. europaea with emphasis on their impact on pivotal pro-inflammatory cytokines including IL-1, IL-6, and TNF-α. Materials and Methods To prepare the present review, the sites utilized included Scopus, PubMed, Science Direct, and Google Scholar and studied relevant articles from 2000 until 2021. Results As a result, we observed that most of the compounds in fig and olive including polyphenols, flavonoids, etc., exert their anti-inflammatory effects through inhibiting or decreasing pro-inflammatory cytokines. Moreover, some natural antioxidants are common between these two plants. Conclusion We suggest that consuming figs and olives simultaneously or alone can be useful in the prevention or treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Lotfollah Rezagholizadeh
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Mahya Oloumi
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shokofeh Banaei
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran,Corresponding author: Shokofeh Banaei. Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohammad Mazani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoud Ojarudi
- Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran
| |
Collapse
|
27
|
Effects of Olive Oil and Its Components on Intestinal Inflammation and Inflammatory Bowel Disease. Nutrients 2022; 14:nu14040757. [PMID: 35215407 PMCID: PMC8875923 DOI: 10.3390/nu14040757] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
With the rising global burden of inflammatory bowel disease (IBD) and the rising costs of novel biological drugs, there is an increasing need for dietary approaches and functional foods that could modulate the course of IBD. The Mediterranean diet has proven to be efficacious in managing chronic inflammatory diseases, and recent studies have also shown its benefits in the setting of IBD. Since olive oil and its compounds have been shown to provide a considerable anti-inflammatory effect, in this review, we aim to discuss the latest evidence concerning the impact of olive oil and its bioactive compounds on IBD. Numerous preclinical studies have exhibited solid evidence on the mechanisms by which polyphenol-rich extra-virgin olive oil (EVOO) or specific polyphenols like hydroxytyrosol (HT) provide their anti-inflammatory, antioxidative, antitumour, and microbiota-modulation effects. Accordingly, several human studies that explored the effects of olive oil on patients with IBD further confirmed the evidence brought forward by preclinical studies. Nevertheless, there is a need for larger-scale, multicentric, randomized control trials that would finally elucidate olive oil’s level of efficacy in modulating the course of IBD.
Collapse
|
28
|
Du G, Bai F, Zhan X, Zhang W, Tong J, Wang Y, Xia X, Shi C. Citral mitigates inflammation of Caco-2 cells induced by Cronobacter sakazakii. Food Funct 2022; 13:3540-3550. [DOI: 10.1039/d2fo00098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to explore the anti-inflammatory effect and mechanism of citral in Cronobacter sakazakii-stimulated Caco-2 cells. Safe doses of citral were first determined in Caco-2 cells....
Collapse
|
29
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
30
|
Kim MS, Kim YD, Kang S, Kwon O, Shin JH, Kim JY. Cinnamon(Cinnamomum japonicum) subcritical water extract suppresses gut damage induced by dextran sodium sulfate in mouse colitis model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
31
|
Sinapic Acid Alleviated Inflammation-Induced Intestinal Epithelial Barrier Dysfunction in Lipopolysaccharide- (LPS-) Treated Caco-2 Cells. Mediators Inflamm 2021; 2021:5514075. [PMID: 34539242 PMCID: PMC8443358 DOI: 10.1155/2021/5514075] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
The integrity and permeability of the intestinal epithelial barrier are important indicators of intestinal health. Impaired intestinal epithelial barrier function and increased intestinal permeability are closely linked to the onset and progression of various intestinal diseases. Sinapic acid (SA) is a phenolic acid that has anti-inflammatory, antihyperglycemic, and antioxidant activities; meanwhile, it is also effective in the protection of inflammatory bowel disease (IBD), but the specific mechanisms remain unclear. Here, we evaluated the anti-inflammatory of SA and investigated its potential therapeutic activity in LPS-induced intestinal epithelial barrier and tight junction (TJ) protein dysfunction. SA improved cell viability; attenuated epithelial permeability; restored the protein and mRNA expression of claudin-1, ZO-1, and occludin; and reversed the redistribution of the ZO-1 and claudin-1 proteins in LPS-treated Caco-2 cells. Moreover, SA reduced the inflammatory response by downregulating the activation of the TLR4/NF-κB pathway and attenuated LPS-induced intestinal barrier dysfunction by decreasing the activation of the MLCK/MLC pathway. This study demonstrated that SA has strong anti-inflammatory activity and can alleviate the occurrence of high intercellular permeability in Caco-2 cells exposed to LPS.
Collapse
|
32
|
Serreli G, Naitza MR, Zodio S, Leoni VP, Spada M, Melis MP, Boronat A, Deiana M. Ferulic Acid Metabolites Attenuate LPS-Induced Inflammatory Response in Enterocyte-like Cells. Nutrients 2021; 13:nu13093152. [PMID: 34579029 PMCID: PMC8471535 DOI: 10.3390/nu13093152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Ferulic acid (FA) is a polyphenol pertaining to the class of hydroxycinnamic acids present in numerous foods of a plant origin. Its dietary consumption leads to the formation of several phase I and II metabolites in vivo, which represent the largest amount of ferulates in the circulation and in the intestine in comparison with FA itself. In this work, we evaluated their efficacy against the proinflammatory effects induced by lipopolysaccharide (LPS) in intestinal Caco-2 cell monolayers, as well as the mechanisms underlying their protective action. LPS-induced overexpression of proinflammatory enzymes such as inducible nitric oxide synthase (iNOS) and the consequent hyperproduction of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were limited by physiological relevant concentrations (1 µM) of FA, its derivatives isoferulic acid (IFA) and dihydroferulic acid (DHFA), and their glucuronidated and sulfated metabolites, which acted upstream by limiting the activation of MAPK p38 and ERK and of Akt kinase, thus decreasing the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) translocation into the nucleus. Furthermore, the compounds were found to promote the expression of Nrf2, which may have contributed to the downregulation of NF-ĸB activity. The overall data show that phase I/II metabolites retain the efficacy of their dietary free form in contrasting inflammatory response.
Collapse
Affiliation(s)
- Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Micaela Rita Naitza
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Sonia Zodio
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Vera Piera Leoni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Martina Spada
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Maria Paola Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain;
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria SS 554, 09042 Monserrato, Italy; (G.S.); (M.R.N.); (S.Z.); (V.P.L.); (M.S.); (M.P.M.)
- Correspondence: ; Tel.: +39-070-675-4126
| |
Collapse
|
33
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
34
|
The gut microbiome-immune axis as a target for nutrition-mediated modulation of food allergy. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Bucciantini M, Leri M, Nardiello P, Casamenti F, Stefani M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2021; 10:antiox10071044. [PMID: 34209636 PMCID: PMC8300823 DOI: 10.3390/antiox10071044] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation triggered by increased oxidative stress are the cause of many chronic diseases. The lack of anti-inflammatory drugs without side-effects has stimulated the search for new active substances. Plant-derived compounds provide new potential anti-inflammatory and antioxidant molecules. Natural products are structurally optimized by evolution to serve particular biological functions, including the regulation of endogenous defense mechanisms and interaction with other organisms. This property explains their relevance for infectious diseases and cancer. Recently, among the various natural substances, polyphenols from extra virgin olive oil (EVOO), an important element of the Mediterranean diet, have aroused growing interest. Extensive studies have shown the potent therapeutic effects of these bioactive molecules against a series of chronic diseases, such as cardiovascular diseases, diabetes, neurodegenerative disorders and cancer. This review begins from the chemical structure, abundance and bioavailability of the main EVOO polyphenols to highlight the effects and the possible molecular mechanism(s) of action of these compounds against inflammation and oxidation, in vitro and in vivo. In addition, the mechanisms of inhibition of molecular signaling pathways activated by oxidative stress by EVOO polyphenols are discussed, together with their possible roles in inflammation-mediated chronic disorders, also taking into account meta-analysis of population studies and clinical trials.
Collapse
Affiliation(s)
- Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy; (M.L.); (M.S.)
- Correspondence:
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy; (M.L.); (M.S.)
| | - Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50134, Italy; (P.N.); (F.C.)
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50134, Italy; (P.N.); (F.C.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy; (M.L.); (M.S.)
| |
Collapse
|
36
|
Alesci A, Miller A, Tardugno R, Pergolizzi S. Chemical analysis, biological and therapeutic activities of Olea europaea L. extracts. Nat Prod Res 2021; 36:2932-2945. [PMID: 34160309 DOI: 10.1080/14786419.2021.1922404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Olea europaea L. is a very well-known and widely used plant, especially for its nutritional qualities. Its extracts from leaves and fruits are widely used in contrasting and preventing various pathologies. In this review, the collected data highlight important chemical analyses and biological effects of this plant extracts. It exhibits cholesterol-lowering, hypoglycemic, cytotoxic, antibacterial, neuroprotective, antioxidant, anti-inflammatory and hypotensive activities. The results show that extracts from O. europaea could be used as a food additive in the supplementary treatment of many diseases.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Roberta Tardugno
- Science4life s.r.l., Spin-off of the University of Messina, Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
37
|
Huang G, Wang Z, Wu G, Zhang R, Dong L, Huang F, Zhang M, Su D. Lychee ( Litchi chinensis Sonn.) Pulp Phenolics Activate the Short-Chain Fatty Acid-Free Fatty Acid Receptor Anti-inflammatory Pathway by Regulating Microbiota and Mitigate Intestinal Barrier Damage in Dextran Sulfate Sodium-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3326-3339. [PMID: 33533603 DOI: 10.1021/acs.jafc.0c07407] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The preventive effect of lychee pulp phenolics (LPP) on dextran sulfate sodium (DSS)-induced colitis of mice and its underlying mechanisms were investigated in this research. LPP supplementation mitigated DSS-induced breakage of the gut barrier as evidenced by the increased tight junction proteins and the enhanced integrity of epithelial cells. Both LPP and 5-ASA treatments could downregulate the expressions of toll-like receptor 4 (TLR-4), NOD protein-like receptor 3 (NLRP3), and proinflammatory cytokines to normal levels. Notably, treatment with LPP at a dosage of 500 mg/kg/day effectively upregulated FFAR2 and FFAR3 expression and contents of short-chain fatty acids (SCFAs), suggesting the activation of the SCFA-FFAR (free fatty acid receptor) pathway. Consistently, the abundances of probiotic taxa and microbiota (Akkermansia, Lactobacillus, Coprococcus, and Bacteroides uniformis) associated with SCFA synthesis were elevated, whereas harmful bacteria (Enterococcus and Aggregatibacter) were suppressed. These data indicate that LPP ameliorates gut barrier damage, activates the microbiota-SCFA-FFAR signaling cascade, and suppresses the TLR4/NLRP3-NF-κB pathway, and therefore, LPP supplementation could be a promising way to protect the intestinal tract.
Collapse
Affiliation(s)
- Guitao Huang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| | - Zhineng Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P.R. China
- College of Life Science, Yangtze University, Jingzhou 434025, P.R. China
| | - Guangxu Wu
- College of Life Science, Yangtze University, Jingzhou 434025, P.R. China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P.R. China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P.R. China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P.R. China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P.R. China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P.R. China
| |
Collapse
|
38
|
Long J, Guan P, Hu X, Yang L, He L, Lin Q, Luo F, Li J, He X, Du Z, Li T. Natural Polyphenols as Targeted Modulators in Colon Cancer: Molecular Mechanisms and Applications. Front Immunol 2021; 12:635484. [PMID: 33664749 PMCID: PMC7921316 DOI: 10.3389/fimmu.2021.635484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
Colon cancer commonly develops from long-term chronic inflammation in the intestine and seriously threatens human health. Natural polyphenols have been valued as a crucial regulator of nutrient metabolism and metabolic diseases, owing to their anti-inflammatory and antioxidant functions and the ability to maintain a balance between gut microbes and their hosts. Notably, experimental and clinical evidence has shown that natural polyphenols could act as a targeted modulator to play a key role in the prevention or treatment of colon cancer. Thus, in this review, we summarized recent advances in the possible regulatory mechanism and the potential application of natural polyphenols in colon cancer, which might be regarded as a novel platform for the colon cancer management.
Collapse
Affiliation(s)
- Jing Long
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Peng Guan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xian Hu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Lingyuan Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xingguo He
- Changsha Green Leaf Biotechnology Co., Ltd., Changsha, China
| | - Zhiliang Du
- Cloud Computing Center, Chinese Academy of Sciences, Dongguan, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
39
|
Cao J, Li Q, Shen X, Yao Y, Li L, Ma H. Dehydroepiandrosterone attenuates LPS-induced inflammatory responses via activation of Nrf2 in RAW264.7 macrophages. Mol Immunol 2021; 131:97-111. [PMID: 33461765 DOI: 10.1016/j.molimm.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Dehydroepiandrosterone (DHEA) is the major steroid hormone in humans and animals, which can regulate the body's inflammatory responses. However, the detail mechanism of this beneficial function is still poorly understood. The present study aimed to explore the anti-inflammation effect of DHEA and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The findings showed that DHEA significantly inhibited the inflammation-related mediators production and pro-inflammatory cytokines expression level. Further research found that DHEA obviously blocked the LPS-stimulated PI3K/AKT, MAPK and NF-κB activation in RAW 264.7 cells. Meanwhile, DHEA enhanced the autophagy-dependent Keap1 protein degradation, subsequently activated the Nrf2 pathway to alleviate the redox imbalance and inflammatory responses. In conclusion, our data demonstrated that DHEA suppresses inflammatory responses through the activation of Nrf2 and inhibition of NF-κB in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Extra Virgin Olive Oil Phenolic Extract on Human Hepatic HepG2 and Intestinal Caco-2 Cells: Assessment of the Antioxidant Activity and Intestinal Trans-Epithelial Transport. Antioxidants (Basel) 2021; 10:antiox10010118. [PMID: 33467632 PMCID: PMC7829860 DOI: 10.3390/antiox10010118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the framework of research aimed at promoting the nutraceutical properties of the phenolic extract (BUO) obtained from an extra virgin olive oil of the Frantoio cultivar cultivated in Tuscany (Italy), with a high total phenols content, this study provides a comprehensive characterization of its antioxidant properties, both in vitro by Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl assays, and at the cellular level in human hepatic HepG2 and human intestinal Caco-2 cells. Notably, in both cell systems, after H2O2 induced oxidative stress, the BUO extract reduced reactive oxygen species, lipid peroxidation, and NO overproduction via modulation of inducible nitric oxide synthase protein levels. In parallel, the intestinal transport of the different phenolic components of the BUO phytocomplex was assayed on differentiated Caco-2 cells, a well-established model of mature enterocytes. The novelty of our study lies in having investigated the antioxidant effects of a complex pool of phenolic compounds in an extra virgin olive oil (EVOO) extract, using either in vitro assays or liver and intestinal cell models, rather than the effects of single phenols, such as hydroxytyrosol or oleuropein. Finally, the selective trans-epithelial transport of some oleuropein derivatives was observed for the first time in differentiated Caco-2 cells.
Collapse
|
41
|
Fabiani R, Vella N, Rosignoli P. Epigenetic Modifications Induced by Olive Oil and Its Phenolic Compounds: A Systematic Review. Molecules 2021; 26:molecules26020273. [PMID: 33430487 PMCID: PMC7826507 DOI: 10.3390/molecules26020273] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many studies demonstrated that olive oil (especially extra virgin olive oil: EVOO) phenolic compounds are bioactive molecules with anti-cancer, anti-inflammatory, anti-aging and neuroprotective activities. These effects have been recently attributed to the ability of these compounds to induce epigenetics modifications such as miRNAs expression, DNA methylation and histone modifications. In this study, we systematically review and discuss, following the PRISMA statements, the epigenetic modifications induced by EVOO and its phenols in different experimental systems. At the end of literature search through “PubMed”, “Web of Science” and “Scopus”, 43 studies were selected.Among them, 22 studies reported data on miRNAs, 15 on DNA methylation and 13 on histone modification. Most of the “epigenomic” changes observed in response to olive oil phenols’ exposure were mechanistically associated with the cancer preventive and anti-inflammatory effects. In many cases, the epigenetics effects regarding the DNA methylation were demonstrated for olive oil but without any indication regarding the presence or not of phenols. Overall, the findings of the present systematic review may have important implications for understanding the epigenetic mechanisms behind the health effects of olive oil. However, generally no direct evidence was provided for the causal relationships between epigenetics modification and EVOO health related effects. Further studies are necessary to demonstrate the real physiological consequences of the epigenetics modification induced by EVOO and its phenolic compounds.
Collapse
|
42
|
Inhibition of Enterovirus A71 by a Novel 2-Phenyl-Benzimidazole Derivative. Viruses 2021; 13:v13010058. [PMID: 33406781 PMCID: PMC7823780 DOI: 10.3390/v13010058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) infection has emerged as a significant public health concern at the global level. Epidemic events of EV-A71 have been reported worldwide, and this succession of outbreaks has heightened concern that EV-A71 may become a public health threat. In recent years, widespread A71 enterovirus also occurred in European countries. EV-A71 infection causes hand-foot-mouth disease (HFMD), herpangina, and fever. However, it can sometimes induce a variety of neurological complications, including encephalitis, aseptic meningitis, pulmonary edema, and acute flaccid paralysis. We identified new benzimidazole derivatives and described theirin vitrocytotoxicity and broad-spectrum anti-enterovirus activity. Among them, derivative 2b resulted in interesting activity against EV-A71, and therefore it was selected for further investigations. Compound 2b proved to be able to protect cell monolayers from EV-A71-induced cytopathogenicity, with an EC50 of 3 µM. Moreover, Vero-76 cells resulted in being significantly protected from necrosis and apoptosis when treated with 2b at 20 and 80 µM. Compound 2b reduced viral adsorption to Vero-76 cells, and when evaluated in a time-of-addition assay, the derivative had the highest effect when added during the infection period. Moreover, derivative 2b reduced viral penetration into host cells. Besides, 2b did not affect intestinal monolayers permeability, showing no toxic effects. A detailed insight into the efficacy of compound 2b against EV-A71 showed a dose-dependent reduction in the viral titer, also at low concentrations. Mechanism of action investigations suggested that our derivative can inhibit viral endocytosis by reducing viral attachment to and penetration into host cells. Pharmacokinetic and toxicity predictions validated compound 2b as a good candidate for furtherin vivoassays.
Collapse
|
43
|
Aggarwal V, Kumar G, Aggarwal D, Yerer MB, Cumaoğlu A, Kumar M, Sak K, Mittal S, Tuli HS, Sethi G. Cancer preventive role of olives and olive oil via modulation of apoptosis and nuclear factor-kappa B activation. OLIVES AND OLIVE OIL IN HEALTH AND DISEASE PREVENTION 2021:377-388. [DOI: 10.1016/b978-0-12-819528-4.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
44
|
Jin Y, Zhai Z, Jia H, Lai J, Si X, Wu Z. Kaempferol attenuates diquat-induced oxidative damage and apoptosis in intestinal porcine epithelial cells. Food Funct 2021; 12:6889-6899. [PMID: 34338265 DOI: 10.1039/d1fo00402f] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Kaempferol, a flavonol component of plants, is well-known to exhibit multiple bioactivities, such as anti-oxidative and anti-apoptotic effects. However, the underlying mechanisms responsible for the beneficial effects remain elusive. This study was conducted to test the hypothesis that kaempferol attenuated diquat-induced oxidative damage and intestinal barrier dysfunction by ameliorating oxidative damage and apoptosis in intestinal porcine epithelial cells. Compared with the control group, diquat treatment led to enhanced intracellular ROS production, increased mitochondrial depolarization, and apoptosis, which were accompanied by cell cycle arrest at the G1 phase, reduced cell migration, and disrupted intestinal epithelial barrier function. These effects triggered by diquat were reversed by kaempferol. Further study showed that the protective effect of kaempferol was associated with an enhanced mRNA level of genes related to cell cycle progression (cyclin D1, CDK4, and E2F1) and genes implicated in the anti-oxidant system (GSR, GSTA4, and HO-1), up-regulated abundance of tight junctions (ZO-1, ZO-2, occludin, and claudin-4), as well as enhanced Nrf2, an anti-oxidant transcription factor. In conclusion, we revealed a functional role of kaempferol in the intestinal barrier. Ingestion of kaempferol-rich foods might be a potential strategy to improve the integrity and function of enterocytes.
Collapse
Affiliation(s)
- Yuhang Jin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
45
|
Parisio C, Lucarini E, Micheli L, Toti A, Bellumori M, Cecchi L, Calosi L, Bani D, Di Cesare Mannelli L, Mulinacci N, Ghelardini C. Extra virgin olive oil and related by-products (Olea europaea L.) as natural sources of phenolic compounds for abdominal pain relief in gastrointestinal disorders in rats. Food Funct 2020; 11:10423-10435. [PMID: 33237043 DOI: 10.1039/d0fo02293d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Management of abdominal pain, a common symptom of IBDs and IBS, is still a clinical problem. Extra virgin olive oil (EVOO), a main component of the Mediterranean diet, shows positive effects on chronic inflammation in IBDs. In this study, the effect of the oral administration of EVOO (3 mL) and two olive milling by-products, DPA (300 mg kg-1) and DRF (300 mg kg-1), on preventing the development of abdominal pain in a DNBS-induced colitis model in rats was evaluated. The doses were chosen with the aim of simulating a plausible daily intake in humans. DPA and EVOO treatments significantly reduced the abdominal viscero-motor response to colon-rectal distension at 2 and 3 mL of balloon distension volume, both 7 and 14 days after the DNBS-injection. DRF showed efficacy in the reduction of visceral hypersensitivity only with 3 mL balloon inflation. In awake animals, DPA and DRF reduced pain perception (evaluated as abdominal withdrawal reflex) with all balloon distension volumes, while EVOO was effective only with higher distension volumes. Fourteen days after the DNBS-injection, all samples reduced the macroscopic intestinal damage (quantified as the macroscopic damage score) also showing, at the microscopic level, a reduction of the inflammatory infiltrate (quantified by hematoxylin and eosin analysis), fibrosis (highlighted by picrosirius red staining), the increase in mast cells and their degranulation (analyzed by triptase immunohistochemistry). This is the first report on the promotion of abdominal pain relief in a rat model obtained administering EVOO and two derived by-products. Our results suggest a protective role of phenol-rich EVOO and milling by-products, which may be proposed as food ingredients for novel functional foods.
Collapse
Affiliation(s)
- Carmen Parisio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Motawea MH, Abd Elmaksoud HA, Elharrif MG, Desoky AAE, Ibrahimi A. Evaluation of Anti-inflammatory and Antioxidant Profile of Oleuropein in Experimentally Induced Ulcerative Colitis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:224-233. [PMID: 33274185 PMCID: PMC7703659 DOI: 10.22088/ijmcm.bums.9.3.224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
Oleuropein is one of the main phenolic secoiridoid of the olive leaf extract, which is known for its antioxidant and anti-inflammatory effects. The main objective of the present study was to investigate the effectiveness of oleuropein in the ulcerative colitis treatment. An experimental study was designed on rats, which were divided into three groups, group 1 (normal control), group 2 (induced for ulcerative colitis and untreated), and group 3 (induced for ulcerative colitis and treated with oleuropein). Colonic tissue samples were collected from all studied groups and the oxidative stress and antioxidant activity were assessed by evaluating malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), myeloperoxidase (MPO), and nitric oxide (NO) levels. The expression levels of pro-inflammatory cytokines such as IL-1β, TNF-α, IL-10, COX-2, iNOS, TGF-β1, MCP-1, and NF-κB, the pro-apoptotic gene Bax, and the anti-apoptotic gene Bcl2 were assessed in colon tissues to evaluate the effectiveness of oleuropein treatment. Oleuropein was effective on reducing the mortality rate and disease activity index. Oleuropein caused a significant reduction in colon MDA, MPO, and NO levels and a significant elevation in SOD, CAT, and GPX levels and induced the down regulation of analyzed proinflammatory cytokines. Also, downregulation of Bax and upregulation of Bcl2 were observed as a result of oleuropein treatment in comparison with untreated acetic acid induced ulcerative colitis group. Oleuropein showed intestinal anti-inflammatory, antioxidant, and anti-apoptotic effects in ulcerative colitis experimental model.
Collapse
Affiliation(s)
| | | | | | | | - Asmaa Ibrahimi
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| |
Collapse
|
47
|
Efficacy of theobromine in preventing intestinal CaCo-2 cell damage induced by oxysterols. Arch Biochem Biophys 2020; 694:108591. [DOI: 10.1016/j.abb.2020.108591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
|
48
|
Yammine A, Zarrouk A, Nury T, Vejux A, Latruffe N, Vervandier-Fasseur D, Samadi M, Mackrill JJ, Greige-Gerges H, Auezova L, Lizard G. Prevention by Dietary Polyphenols (Resveratrol, Quercetin, Apigenin) Against 7-Ketocholesterol-Induced Oxiapoptophagy in Neuronal N2a Cells: Potential Interest for the Treatment of Neurodegenerative and Age-Related Diseases. Cells 2020; 9:cells9112346. [PMID: 33114025 PMCID: PMC7690753 DOI: 10.3390/cells9112346] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/03/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
The Mediterranean diet is associated with health benefits due to bioactive compounds such as polyphenols. The biological activities of three polyphenols (quercetin (QCT), resveratrol (RSV), apigenin (API)) were evaluated in mouse neuronal N2a cells in the presence of 7-ketocholesterol (7KC), a major cholesterol oxidation product increased in patients with age-related diseases, including neurodegenerative disorders. In N2a cells, 7KC (50 µM; 48 h) induces cytotoxic effects characterized by an induction of cell death. When associated with RSV, QCT and API (3.125; 6.25 µM), 7KC-induced toxicity was reduced. The ability of QCT, RSV and API to prevent 7KC-induced oxidative stress was characterized by a decrease in reactive oxygen species (ROS) production in whole cells and at the mitochondrial level; by an attenuation of the increase in the level and activity of catalase; by attenuating the decrease in the expression, level and activity of glutathione peroxidase 1 (GPx1); by normalizing the expression, level and activity of superoxide dismutases 1 and 2 (SOD1, SOD2); and by reducing the decrease in the expression of nuclear erythroid 2-like factor 2 (Nrf2) which regulates antioxidant genes. QCT, RSV and API also prevented mitochondrial dysfunction in 7KC-treated cells by counteracting the loss of mitochondrial membrane potential (ΨΔm) and attenuating the decreased gene expression and/or protein level of AMP-activated protein kinase α (AMPKα), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) implicated in mitochondrial biogenesis. At the peroxisomal level, QCT, RSV and API prevented the impact of 7KC by counteracting the decrease in ATP binding cassette subfamily D member (ABCD)3 (a peroxisomal mass marker) at the protein and mRNA levels, as well as the decreased expresssion of genes associated with peroxisomal biogenesis (Pex13, Pex14) and peroxisomal β-oxidation (Abcd1, Acox1, Mfp2, Thiolase A). The 7KC-induced decrease in ABCD1 and multifunctional enzyme type 2 (MFP2), two proteins involved in peroxisomal β-oxidation, was also attenuated by RSV, QCT and API. 7KC-induced cell death, which has characteristics of apoptosis (cells with fragmented and/or condensed nuclei; cleaved caspase-3; Poly(ADP-ribose) polymerase (PARP) fragmentation) and autophagy (cells with monodansyl cadaverine positive vacuoles; activation of microtubule associated protein 1 light chain 3–I (LC3-I) to LC3-II, was also strongly attenuated by RSV, QCT and API. Thus, in N2a cells, 7KC induces a mode of cell death by oxiapoptophagy, including criteria of OXIdative stress, APOPTOsis and autoPHAGY, associated with mitochondrial and peroxisomal dysfunction, which is counteracted by RSV, QCT, and API reinforcing the interest for these polyphenols in prevention of diseases associated with increased 7KC levels.
Collapse
Affiliation(s)
- Aline Yammine
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon; (H.G.-G.); (L.A.)
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, University Monastir, 5019 Monastir, Tunisia;
- Faculty of Medicine, University Sousse, 4000 Sousse, Tunisia
| | - Thomas Nury
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
| | - Anne Vejux
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
| | - Norbert Latruffe
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Depterment of Chemistry, University Lorraine, Metz Technopôle, 57070 Metz, France;
| | - John J. Mackrill
- Department of Physiology, School of Medicine, University College Cork, T12 Cork, Ireland;
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon; (H.G.-G.); (L.A.)
| | - Lizette Auezova
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon; (H.G.-G.); (L.A.)
| | - Gérard Lizard
- Team Bio-peroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; (A.Y.); (T.N.); (A.V.); (N.L.)
- Correspondence: ; Tel.: +333-80-39-62-56; Fax: +333-80-39-62-50
| |
Collapse
|
49
|
Fernandes S, Ribeiro C, Paiva-Martins F, Catarino C, Santos-Silva A. Protective effect of olive oil polyphenol phase II sulfate conjugates on erythrocyte oxidative-induced hemolysis. Food Funct 2020; 11:8670-8679. [PMID: 32939526 DOI: 10.1039/d0fo01690j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The consumption of extra virgin olive oil (EVOO) has been associated with a lower incidence of cardiovascular diseases partly due to its polyphenol content. The metabolites hydroxytyrosol sulfate and hydroxytyrosol acetate sulfate were shown to be the most concentrated polyphenol metabolites found in plasma after EVOO consumption. Therefore, the capacity of hydroxytyrosol, hydroxytyrosol acetate, homovanillyl alcohol, homovanillyl alcohol acetate and tyrosol sulfate metabolites, to protect red blood cells (RBCs) from oxidative injury induced by the radical initiator 2,2'-azo-bis(2-amidinopropane) dihydrochloride (AAPH) was evaluated. In the presence of AAPH, all non-sulfated compounds and the hydroxytyrosol and hydroxytyrosol acetate monosulfate metabolites showed a significant protective activity against RBCs induced oxidative hemolysis. Moreover, even at 5 μM, the protection was highly significant for hydroxytyrosol acetate, hydroxytyrosol and hydroxytyrosol acetate 3' and 4' monosulfates. The morphological changes of RBC and the nature of their hemoglobin were in accordance with the hemolysis assay. Results showed that a free phenolic hydroxyl group is needed for the antioxidant protection given by compounds. Hydroxytyrosol metabolites present as phase II sulfate conjugates are actually able to protect RBC from oxidative injury by a non-transcriptional mechanism and are likely to contribute for the anti-atherosclerosis properties of regular EVOO consumption.
Collapse
Affiliation(s)
- Sara Fernandes
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Catarina Ribeiro
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Fátima Paiva-Martins
- REQUIMTE-LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal.
| | - Cristina Catarino
- REQUIMTE-UCIBIO, Serviço de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Alice Santos-Silva
- REQUIMTE-UCIBIO, Serviço de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| |
Collapse
|
50
|
A Medium-Throughput System for In Vitro Oxidative Stress Assessment in IPEC-J2 Cells. Int J Mol Sci 2020; 21:ijms21197263. [PMID: 33019601 PMCID: PMC7583761 DOI: 10.3390/ijms21197263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
The feed industry continuously seeks new molecules with antioxidant capacity since oxidative stress plays a key role in intestinal health. To improve screening of new antioxidants, this study aims to set up an assay to assess oxidative stress in the porcine small intestinal epithelial cell line IPEC-J2 using plate-reader-based analysis of fluorescence. Two oxidants, H2O2 and menadione, were tested at 1, 2 and 3 mM and 100, 200 and 300 µM, respectively. Trolox (2 mM) was used as the reference antioxidant and the probe CM-H2DCFDA was used to indicate intracellular oxidative stress. Cell culture, reactive oxygen species (ROS) production and assessment conditions were optimized to detect a significant ROS accumulation that could be counteracted by pre-incubation with trolox. Menadione (200 µM) reproducibly increased ROS levels, H2O2 failed to do so. Trolox significantly decreased intracellular ROS levels in menadione (200 µM)-exposed cells in a consistent way. The system was further used to screen different concentrations of the commercially available antioxidant ELIFE®. Concentrations between 100 and 200 ppm protected best against intracellular ROS accumulation. In conclusion, the combination of CM-H2DCFDA fluorescence analysis by a plate-reader, trolox as a reference antioxidant and 200 µM of menadione as a stressor agent, provides a replicable and reliable medium-throughput setup for the evaluation of intracellular oxidative stress in IPEC-J2 cells.
Collapse
|