1
|
Maruri A, Anchordoquy JP, Farnetano NA, Flaherti AL, Rosa DE, Balbi M, Lombardo D, Furnus CC, Anchordoquy JM. Effect of zinc supplementation on bovine luteal function: In vivo and in vitro findings. Theriogenology 2025; 238:117365. [PMID: 40024097 DOI: 10.1016/j.theriogenology.2025.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Zinc (Zn) is an essential trace element for cellular processes such as oxidative stress regulation. Research on the relationship between Zn and the corpus luteum (CL) is limited, showing contradictory findings. Zinc supplementation before artificial insemination (AI) increases bovine CL size and progesterone (P4) levels. In mice, in vitro experiments suggest that Zn may reduce P4 production. This study aimed to evaluate the role of Zn in bovine luteal cell function by assessing 1) the effect of parenteral Zn supplementation (400 mg) 7 days after AI on CL size and plasma P4 levels in vivo, and 2) the impact of Zn supplementation (0, 0.8 and 1.2 μg/ml) on P4 production, reactive oxygen species (ROS) levels and luteal cell viability in vitro. In vivo, Zn supplementation increased CL size but reduced plasma P4 levels. In vitro, 0.8 μg/ml Zn decreased P4 synthesis and ROS levels while enhancing cell viability, whereas 1.2 μg/ml Zn had no significant effect compared to the control. These findings indicate that Zn modulates luteal function in a dose-dependent manner, reducing oxidative stress while impairing P4 production. Further studies are needed to optimize Zn supplementation strategies during assisted reproductive technologies and clarify Zn mechanisms of action.
Collapse
Affiliation(s)
- Alejandro Maruri
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO, CABA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Juan Patricio Anchordoquy
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Nicolás Agustín Farnetano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Ana Laura Flaherti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Diana Esther Rosa
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Marianela Balbi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daniel Lombardo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO, CABA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Cecilia Cristina Furnus
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina
| | - Juan Mateo Anchordoquy
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Calles 60 y 118, La Plata, B1904AMA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Veselinović A, Zeković M, Paunović M, Šorak M, Ristić-Medić D, Vučić V. Zinc as a Modulator of Male Fertility: Interplay Between Lipid Metabolism, Oxidative Stress, and Sperm Function. Biol Trace Elem Res 2025:10.1007/s12011-025-04615-z. [PMID: 40237945 DOI: 10.1007/s12011-025-04615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Infertility is a multifaceted and pressing global health challenge, with male reproductive impairment playing a significant role in its overall burden. Zinc (Zn), a biologically indispensable trace element, is fundamental to spermatogenesis and overall male reproductive function. This narrative review explores the following aspects: (1) the mechanistic function of Zn in spermatogenesis, (2) the impact of oxidative stress on Zn status and male infertility, (3) the interplay between Zn and lipid metabolism in male reproductive physiology, (4) the relationship between Zn concentrations and semen parameters, and (5) the effects of Zn supplementation on sperm quality, alongside relevant institutional recommendations. The molecular pathways underlying Zn deficiency-induced enzymatic dysfunction, oxidative stress, and lipid homeostasis disruption remain partially elucidated, warranting further investigation into their interdependent effects on male infertility. While accumulating evidence suggests that Zn supplementation may have therapeutic potential in male infertility management, guidelines for its clinical application vary considerably across institutions and regions. To establish a clear and evidence-based framework for the function of Zn in male reproductive health, future research should prioritize determining of optimal Zn levels, the mechanistic links between Zn and lipid metabolism, and the long-term clinical outcomes of Zn supplementation in infertile populations.
Collapse
Affiliation(s)
- Aleksandra Veselinović
- Cognitive Neuroscience Department, Research and Development Institute "Life Activities Advancement Institute", Belgrade, Serbia.
- Department of Speech, Language and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia.
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Marija Paunović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Šorak
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Biomedically Assisted Reproduction, Clinic for Gynecology and Obstetrics, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Danijela Ristić-Medić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Vučić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Guo Y, Shen M, Yang H, Lin S, Wang D. Nanoparticle delivery of CD68 siRNA inhibits neuroimmune responses by inhibiting activation of M1 macrophages. Int Immunopharmacol 2025; 152:114380. [PMID: 40064056 DOI: 10.1016/j.intimp.2025.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
CD68 is a vital costimulatory molecule expressed on macrophages/microglia (M/Ms) and plays a critical role in their activation. By targeting this molecule, therapeutic interventions can potentially prevent the homing of M/Ms. to the lesion site. In this study, we developed a biomimetic nanoparticle-based system (siCD68/NPs) to deliver CD68 small interfering RNA (siCD68) more efficiently into M/Ms.Administration of siCD68/NPs was found to not only polarize M1 macrophages toward M2 phenotype, but also reduce the reactive oxygen species (ROS) levels in lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) induced macrophages/microglia (M/Ms). Moreover, treatment with siCD68/NPs significantly extended the survival time in a mouse spinal cord injury (SCI) model.In summary, siCD68/NPs were found to activate an anti-neuroinflammatory immune response and reprogram the polarization of M/Ms., leading to a significant improvement in the recovery of spinal cord injury. This study contributes to the field of biomimetic nanoparticle-based therapies and offers novel insights into potential treatments for neuroinflammation-induced SCI.
Collapse
Affiliation(s)
- Yue Guo
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Mao Shen
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hongkai Yang
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, China; Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sen Lin
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, China; Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Dahao Wang
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, China; Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
4
|
Gogoi J, Pawar KI, Sivakumar K, Bhatnagar A, Suma K, Ann KJ, Pottabathini S, Kruparani SP, Sankaranarayanan R. A metal ion mediated functional dichotomy encodes plasticity during translation quality control. Nat Commun 2025; 16:3625. [PMID: 40240361 PMCID: PMC12003907 DOI: 10.1038/s41467-025-58787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Proofreading during translation of the genetic code is a key process for not only translation quality control but also for its modulation under stress conditions to provide fitness advantage. A major class of proofreading modules represented by editing domains of alanyl-tRNA synthetase (AlaRS-Ed) and threonyl-tRNA synthetase (ThrRS-Ed) features a common fold and an invariant Zn2+ binding motif across life forms. Here, we reveal the structural basis and functional consequence along with the necessity for their operational dichotomy, i.e., the metal ion is ubiquitous in one and inhibitor for the other. The universally conserved Zn2+ in AlaRS-Ed protects its proofreading activity from reactive oxygen species (ROS) to maintain high fidelity Ala-codons translation, necessary for cell survival. On the other hand, mistranslation of Thr-codons is well tolerated by the cells, thereby allowing for a ROS-based modulation of ThrRS-Ed's activity. A single residue rooted over ~3.5 billion years of evolution has been shown to be primarily responsible for the functional divergence. The study presents a remarkable example of how protein quality control is integrated with redox signalling through leveraging the tunability of metal binding sites from the time of last universal common ancestor (LUCA).
Collapse
Affiliation(s)
- Jotin Gogoi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Komal Ishwar Pawar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Koushick Sivakumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akshay Bhatnagar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Katta Suma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Kezia J Ann
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | | | - Shobha P Kruparani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rajan Sankaranarayanan
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Yu K, Gu Y, Yao Y, Li J, Chen S, Guo H, Li Y, Liu J. The Role of Cuproptosis in Hyperoxia-Induced Lung Injury and Its Potential for Treatment. J Inflamm Res 2025; 18:4651-4664. [PMID: 40195958 PMCID: PMC11975008 DOI: 10.2147/jir.s512187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/21/2025] [Indexed: 04/09/2025] Open
Abstract
Background Oxygen supplementation is essential for patients with a multitude of diseases but can cause severe hyperoxia-induced lung injury (HLI), necessitating the identification of therapeutic targets to improve clinical outcomes. Cuproptosis, a novel copper-dependent form of cell death characterized by proteotoxic stress resulting from lipoylated protein aggregation and loss of iron-sulfur cluster proteins, is distinct from other forms of cell death. However, the role of cuproptosis in HLI remains unclear. Methods We established an HLI model in MLE-12 cells and C57BL/6 mice to investigate the involvement of cuproptosis in hyperoxia-induced toxicity. Results We observed a time-dependent increase in the cuproptosis-related gene Fdx1 under hyperoxia. Moreover, hyperoxia activated the membrane-associated copper transporter SLC31A1 and significantly elevated copper levels in MLE-12 cells, as well as in the serum and lung tissue of C57BL/6 mice. Further analysis revealed that hyperoxia significantly altered the expression of cuproptosis-related genes without affecting DLAT levels, but significantly increased lipoylated-DLAT levels. ELISA, CCK-8 assays, HE staining, lung wet-to-dry weight ratio, and bronchoalveolar lavage fluid analysis demonstrated that treatment with the cuproptosis inhibitor TTM reduced pro-inflammatory cytokines (TNF-α and IL-1β) and alleviated hyperoxia-induced injury in both MLE-12 cells and C57BL/6 mice. Conclusion Our study identifies the involvement of cuproptosis in HLI, providing new insights into the pathogenesis of hyperoxic lung injury and potential therapeutic strategies.
Collapse
Affiliation(s)
- Kaihua Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yunfei Gu
- Anesthesiology Department, Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu, People’s Republic of China
| | - Ying Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jianchun Li
- Department of Intensive Care Unit, Suzhou Science and Technology City Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Suheng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Hong Guo
- Department of Anesthesiology, Inner Mongolia Hospital of Peking University Cancer Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yulan Li
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jian Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
6
|
Scholzen KC, Arnér ESJ. Cellular activity of the cytosolic selenoprotein thioredoxin reductase 1 (TXNRD1) is modulated by copper and zinc levels in the cell culture medium. J Trace Elem Med Biol 2025; 88:127624. [PMID: 39983285 DOI: 10.1016/j.jtemb.2025.127624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Selenium (Se), Copper (Cu) and Zinc (Zn) are essential trace elements, required for several cellular functions, showcasing toxicity in either insufficient or excessive concentrations. The selenoprotein thioredoxin reductase 1 (TXNRD1) is directly affected by Se availability and here we hypothesized that it may also be affected by high Cu and Zn concentrations. METHODS AND RESULTS Using an optimized protocol for the highly selective TXNRD1 activity probe, RX1, we discovered a direct inhibitory effect of Zn on the intracellular TXNRD1 activity, using two different commonly used human cancer cell lines, A549 lung carcinoma and HeLa cervical carcinoma cells. Subsequently, after initial inhibition by Zn, the TXNRD1 activity recovered in both cell lines, in HeLa cells concomitantly with activation of the redox regulatory transcription factor NRF2. High extracellular Cu concentrations did not induce an immediate decrease of intracellular TXNRD1 activity, but decreased its activity upon long-term exposure. While the expression levels of TXNRD1 did not change upon long-term Cu exposure, the selenoprotein glutathione peroxidase 1 (GPX1), that is more dependent upon selenocysteine incorporation, was downregulated, suggesting that higher Cu exposure generally impaired selenoprotein synthesis. CONCLUSION Our findings support the importance of understanding trace element exposure and availability in basic research, especially in redox biology research, as well as considering Cu and Zn as potential modulators of the cellular capacity of the thioredoxin system and other selenoproteins.
Collapse
Affiliation(s)
- Karoline C Scholzen
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
7
|
Qin S, Hu Y, Luo H, Chu W, Deng R, Ma J. Metal ions and nanomaterials for targeted bone cancer immunotherapy. Front Immunol 2025; 16:1513834. [PMID: 40165969 PMCID: PMC11955472 DOI: 10.3389/fimmu.2025.1513834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Bone cancer remains a significant challenge in oncology, with limited success in current therapeutic approaches, particularly immunotherapy. Emerging research highlights the potential of integrating metal ions and nanomaterials for targeted immunotherapy in bone cancer. Metal ions, including calcium, magnesium, and zinc, play a significant role in modulating immune responses within the tumor microenvironment, affecting essential pathways necessary for immune activation. Meanwhile, nanomaterials, particularly metallic nanoparticles, offer precise drug delivery and immune system modulation, improving the efficacy of immunotherapeutic agents. This review explores the synergistic effects of metal ion-nanomaterial conjugates, discussing their role in enhancing immune cell activation, particularly T-cells and macrophages, and their potential for controlled drug release. We highlight preclinical advancements in bone cancer treatment using metal ion-responsive nanoparticles, and address current challenges such as biocompatibility and toxicity. Finally, we discuss the future prospects of these technologies in personalized and precision medicine, aiming to revolutionize bone cancer immunotherapy.
Collapse
Affiliation(s)
- Sen Qin
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - YaoFeng Hu
- Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - HuaSong Luo
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - Wei Chu
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - RuCui Deng
- Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - JinLiang Ma
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Zhu B, Yang C, Hua S, Li K, Shang P, Li Z, Qian W, Xue S, Zhi Q, Hua Z. Decoding the Implications of Zinc in the Development and Therapy of Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412225. [PMID: 39887881 PMCID: PMC11884550 DOI: 10.1002/advs.202412225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/04/2025] [Indexed: 02/01/2025]
Abstract
Zinc plays a central role in the hematological development. Therapeutic interventions with zinc are shown to improve the health status of patients with malignancies by stimulating the immune system and reducing side effects. Despite the abnormal zinc homeostasis in leukemia, the role and mechanisms of zinc signaling in leukemia development remain poorly understood. Recently, some important breakthroughs are made in laboratory and clinical studies of zinc in leukemia, such as the role of zinc in regulating ferroptosis and the effects of zinc in immunotherapy. Zinc-based strategies are urgently needed to refine the current zinc intervention regimen for side-effect free therapy in chemotherapy-intolerant patients. This review provides a comprehensive overview of the role of zinc homeostasis in leukemia patients and focuses on the therapeutic potential of zinc signaling modulation in leukemia.
Collapse
Affiliation(s)
- Bo Zhu
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Chunhao Yang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Siqi Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Kaiqiang Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Pengyou Shang
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
| | - Zhonghua Li
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Wei Qian
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Shunkang Xue
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
| | - Qi Zhi
- Department of RadiologyAffiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Zichun Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjing211198China
- Changzhou High‐tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou213164China
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjing210023China
- Faculty of Pharmaceutical SciencesXinxiang Medical UniversityXinxiang453003China
| |
Collapse
|
9
|
Wang Y, Li Y, Zang X, Moussian B, Shah D, Pang M, Zhu C, Qiao H, Tian X, Li J, Yang S, Zhang X, Du S, Sun S, Yuchi Z, Liu X. Lead (Pb) load interacts with oxidative stress in Drosophila melanogaster through MTF-1/Nrf2/JNK mediated metallothionein expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117921. [PMID: 39978107 DOI: 10.1016/j.ecoenv.2025.117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Lead (Pb) is one of the most severe and hazardous forms of heavy metal pollution, exerting its cytotoxicity primarily by inducing oxidative stress. The existing research focused on the effects of Pb on the redox balance of various organisms. However, the comprehension of the regulatory function of oxidative stress in Pb metabolism, particularly in insects, remains unknown. In this research, we observed that Pb exposure indeed elevated reactive oxygen species (ROS) levels and triggered oxidative stress in the midgut of fruit flies. Surprisingly, we observed a reduction in Pb contents in the bodies of Pb-fed fruit flies after treatment with oxidants, while an increase in Pb content was noted after treatment with antioxidants. The ROS influenced Pb accumulation in fruit flies by inducing the expression of metallothioneins (MTs), particularly MtnB. Further study shown that ROS-induced MT expression in fruit flies is mediated by a network involving the MTF-1, JNK, and Nrf2 pathways. This insight offers a new perspective on the crosstalk between oxidative stress and metal metabolism, enhances our understanding of how insects respond to metal toxicity and the environmental implications of metal pollution.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Ying Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiya Zang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Bernard Moussian
- INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, Université Côte d'Azur, Nice 06108, France
| | - Dawood Shah
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chunfeng Zhu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaohan Tian
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Jingyi Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Shuyu Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Shaoshan Du
- Department of Gastroenterology, Tianjin University Jinnan Hospital (Tianjin Jinnan Hospital), Tianjin 300350, China
| | - Shushen Sun
- Department of Gastroenterology, Tianjin University Jinnan Hospital (Tianjin Jinnan Hospital), Tianjin 300350, China.
| | - Zhiguang Yuchi
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Xiuyun Liu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Chen L, Shen Q, Liu Y, Zhang Y, Sun L, Ma X, Song N, Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct Target Ther 2025; 10:31. [PMID: 39894843 PMCID: PMC11788444 DOI: 10.1038/s41392-024-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
As essential micronutrients, metal ions such as iron, manganese, copper, and zinc, are required for a wide range of physiological processes in the brain. However, an imbalance in metal ions, whether excessive or insufficient, is detrimental and can contribute to neuronal death through oxidative stress, ferroptosis, cuproptosis, cell senescence, or neuroinflammation. These processes have been found to be involved in the pathological mechanisms of neurodegenerative diseases. In this review, the research history and milestone events of studying metal ions, including iron, manganese, copper, and zinc in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), will be introduced. Then, the upstream regulators, downstream effector, and crosstalk of mental ions under both physiologic and pathologic conditions will be summarized. Finally, the therapeutic effects of metal ion chelators, such as clioquinol, quercetin, curcumin, coumarin, and their derivatives for the treatment of neurodegenerative diseases will be discussed. Additionally, the promising results and limitations observed in clinical trials of these metal ion chelators will also be addressed. This review will not only provide a comprehensive understanding of the role of metal ions in disease development but also offer perspectives on their modulation for the prevention or treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yingjuan Liu
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yunqi Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Liping Sun
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Xizhen Ma
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
11
|
Mierek-Adamska A, Kulasek M, Dąbrowska GB, Blindauer CA. Type 4 plant metallothioneins - players in zinc biofortification? Biol Rev Camb Philos Soc 2025. [PMID: 39901667 DOI: 10.1111/brv.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025]
Abstract
Food security is defined as uninterrupted access to food that meets people's dietary needs. One essential trace element of a complete diet is zinc, which is vital for various processes, including growth, development, and the immune response. The estimated global prevalence of zinc deficiency is around 30%. Meat and meat products provide an abundant and also bioavailable source of zinc. However, in developing countries, access to meat is restricted, and in developed countries, meat consumption has declined for ethical and environmental reasons. The potential for zinc deficiency arises from (i) low concentrations of this element in plant-based diets, (ii) poor zinc absorption from plant-based food in the human intestine, and (iii) the risk of uptake of toxic metals together with essential ones. This review summarises the current knowledge concerning type 4 metallothioneins, which represent promising targets for zinc biofortification. We describe their place in the zinc route from soil to seed, their expression patterns, their role in plants, and their three-dimensional protein structure and how this affects their selectivity towards zinc. This review aims to provide a comprehensive theoretical basis for the potential use of type 4 plant metallothioneins to create zinc-biofortified crops.
Collapse
Affiliation(s)
- Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Milena Kulasek
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | - Grażyna B Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | | |
Collapse
|
12
|
Wang X, Zhang M, Ma J, Tie Y, Wang S. Biochemical Markers of Zinc Nutrition. Biol Trace Elem Res 2024; 202:5328-5338. [PMID: 38319550 DOI: 10.1007/s12011-024-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Zinc is an important trace element involved in the biochemical and physiological functions of the organism and is essential in the human body. It has been reported that 17.3% of people around the world are at risk of many diseases due to zinc deficiency, which has already affected people's healthy lives. Currently, mild zinc deficiency is difficult to diagnose early due to the lack of typical clinical manifestations, so finding zinc biomarkers is crucial for people's health. The present article reviews the main representative zinc biomarkers, such as body fluid zinc levels, zinc-dependent proteins, tissue zinc, and zinc-containing enzymes, to provide a reference for actively promoting the study of zinc nutritional status and early clinical diagnosis.
Collapse
Affiliation(s)
- Xinying Wang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Menghui Zhang
- North China University of Science and Technology, Tangshan, Hebei Province, 063210, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China
| | - Yanqing Tie
- Hebei General Hospital, Shijiazhuang, Hebei Province, 050051, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, Hebei Province, 050071, China.
| |
Collapse
|
13
|
Kim Y, Chang JY, Kim YY, Lee JW, Kho HS. Effects of Zinc Compounds on the Enzymatic Activities of Lysozyme and Peroxidase and Their Antifungal Activities. Biol Trace Elem Res 2024; 202:5850-5862. [PMID: 38376730 PMCID: PMC11502591 DOI: 10.1007/s12011-024-04110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
This study aimed to investigate the effects of zinc compounds on the enzymatic activities of lysozyme, peroxidase, and the glucose oxidase-mediated peroxidase (GO-PO) system and their antifungal activities. Four different zinc compounds (zinc chloride, gluconate, lactate, and sulfate) were incubated with hen egg-white lysozyme (HEWL), bovine lactoperoxidase (bLPO), the GO-PO system, and human unstimulated whole saliva in solution and on a hydroxyapatite surface. Enzymatic activities of lysozyme, peroxidase, and the GO-PO system were measured through the hydrolysis of Micrococcus lysodeikticus, oxidation of fluorogenic 2',7'-dichlorofluorescin, and glucose assay, respectively. Interactions between zinc and enzymes were analyzed by surface plasmon resonance (SPR). The minimum inhibitory concentration (MIC) and candidacidal activities of zinc compounds were examined against three Candida albicans strains. Zinc gluconate and sulfate significantly increased the enzymatic activities of salivary lysozyme in the solution assay and of HEWL and salivary lysozyme on the hydroxyapatite surface. However, all examined zinc compounds significantly decreased the enzymatic activities of bLPO and salivary peroxidase in solution and on the surface. SPR analyses revealed binding of zinc to lysozyme and peroxidase, with affinity differing according to the zinc compounds. The MIC of zinc compounds against C. albicans was 1.0-2.4 mM. Candidacidal activities were 17.7-38.8% and 23.7-47.0% at 1.0 and 10 mM concentrations, respectively. In conclusion, zinc compounds enhanced lysozyme activity but inhibited peroxidase activity. Zinc compounds exhibited concentration-dependent candidacidal activity against C. albicans. Zinc compounds are potential therapeutic agents for oral health, especially for geriatric patients.
Collapse
Affiliation(s)
- Yongdae Kim
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Ji-Youn Chang
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Yoon-Young Kim
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
| | - Jae Wook Lee
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute, 679 Saimdang-Ro, Gangneung, 25451, South Korea
- National University of Science and Technology, Daejeon, South Korea
| | - Hong-Seop Kho
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
- Institute of Aging, Seoul National University, Seoul, South Korea.
| |
Collapse
|
14
|
Luo Y, He X, Du Q, Xu L, Xu J, Wang J, Zhang W, Zhong Y, Guo D, Liu Y, Chen X. Metal-based smart nanosystems in cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230134. [PMID: 39713201 PMCID: PMC11655314 DOI: 10.1002/exp.20230134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/12/2024] [Indexed: 12/24/2024]
Abstract
Metals are an emerging topic in cancer immunotherapy that have shown great potential in modulating cancer immunity cycle and promoting antitumor immunity by activating the intrinsic immunostimulatory mechanisms which have been identified in recent years. The main challenge of metal-assisted immunotherapy lies in the fact that the free metals as ion forms are easily cleared during circulation, and even cause systemic metal toxicity due to the off-target effects. With the rapid development of nanomedicine, metal-based smart nanosystems (MSNs) with unique controllable structure become one of the most promising delivery carriers to solve the issue, owing to their various endogenous/external stimuli-responsiveness to release free metal ions for metalloimmunotherapy. In this review, the state-of-the-art research progress in metal-related immunotherapy is comprehensively summarized. First, the mainstream mechanisms of MSNs-assisted immunotherapy will be delineated. The immunological effects of certain metals and categorization of MSNs with different characters and compositions are then provided, followed by the representative exemplar applications of MSNs in cancer treatment, and synergistic combination immunotherapy. Finally, we conclude this review with a summary of the remaining challenges associated with MSNs and provide the authors' perspective on their further advances.
Collapse
Affiliation(s)
- Ying Luo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaojing He
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qianying Du
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Lian Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Jie Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Junrui Wang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Wenli Zhang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yixin Zhong
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Dajing Guo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yun Liu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
15
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Lin Z, Zhang L, Li D. Interpret the potential role of zinc against oxidative stress in inflammation with a practical fluorescent assay. Bioorg Chem 2024; 153:107886. [PMID: 39490137 DOI: 10.1016/j.bioorg.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Zinc plays a critical role in inflammation and apoptosis, potentially offering new insights into health and disease beyond its established involvement in various biological processes. A fluorescent probe, SPI, has been designed and synthesized for the real-time detection of dynamic changes of zinc ions (Zn2+) in the potential resistance to oxidative stress, showing fluorescence enhancement at approximately 639 nm with a limit of detection of around 65 pM, which allowed it to identify even low concentrations of Zn2+ with intrinsic excellent biocompatibility. By establishing a cellular inflammation and apoptosis model using HT-DNA, hydrogen peroxide (H2O2), and dexamethasone (DXMS), the study effectively simulates conditions that can alter Zn2+ dynamics. Monitoring the fluorescence changes of SPI in response to these conditions allows researchers to observe how Zn2+ levels fluctuate in real-time, providing a clearer picture of its role in maintaining intracellular redox homeostasis. The findings indicate that SPI can be instrumental in elucidating the detailed molecular mechanisms through which Zn2+ influences immune responses and associates with cellular stress pathways. Overall, the development of SPI not only replenishes a potential assay into the toolbox to study Zn2+ in living cells but also opens new avenues for the further investigations into the therapeutic potential of modulating zinc levels in various pathological conditions.
Collapse
Affiliation(s)
- Zengyan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Lanlan Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
17
|
Banach K, Kowalska J, Maszczyk M, Rzepka Z, Rok J, Wrześniok D. An In Vitro Strategy to Evaluate Ketoprofen Phototoxicity at the Molecular and Cellular Levels. Int J Mol Sci 2024; 25:12647. [PMID: 39684359 DOI: 10.3390/ijms252312647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the cytotoxicity and phototoxicity of ketoprofen towards human melanocytes and fibroblasts in three different treatment schemes in order to optimize the study. Cytometric tests (studies of viability, proliferation, intracellular thiol levels, mitochondrial potential, cell cycle, and DNA fragmentation), Western blot analysis (cytochrome c and p44/p42 protein levels), and confocal microscopy imaging were performed to assess the impact of the developed treatments on skin cells. Research on experimental schemes may help reduce or eliminate the risk of phototoxic reactions. In the case of ketoprofen, we found that the strongest phototoxic potential was exhibited in the treatment where the drug was present in the solution during the irradiation of cells, both pigmented and non-pigmented cells. These results indicate that the greatest risk of photosensitivity reactions related to ketoprofen occurs after direct contact with the drug and UV exposure.
Collapse
Affiliation(s)
- Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Mateusz Maszczyk
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
18
|
Yang S, Zhu Y, Ji C, Zhu H, Lao A, Zhao R, Hu Y, Zhou Y, Zhou J, Lin K, Xu Y. A five-in-one novel MOF-modified injectable hydrogel with thermo-sensitive and adhesive properties for promoting alveolar bone repair in periodontitis: Antibacterial, hemostasis, immune reprogramming, pro-osteo-/angiogenesis and recruitment. Bioact Mater 2024; 41:239-256. [PMID: 39149594 PMCID: PMC11324614 DOI: 10.1016/j.bioactmat.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by plaque that destroys the alveolar bone tissues, resulting in tooth loss. Poor eradication of pathogenic microorganisms, persistent malignant inflammation and impaired osteo-/angiogenesis are currently the primary challenges to control disease progression and rebuild damaged alveolar bone. However, existing treatments for periodontitis fail to comprehensively address these issues. Herein, an injectable composite hydrogel (SFD/CS/ZIF-8@QCT) encapsulating quercetin-modified zeolitic imidazolate framework-8 (ZIF-8@QCT) is developed. This hydrogel possesses thermo-sensitive and adhesive properties, which can provide excellent flowability and post-injection stability, resist oral fluid washout as well as achieve effective tissue adhesion. Inspirationally, it is observed that SFD/CS/ZIF-8@QCT exhibits a rapid localized hemostatic effect following implantation, and then by virtue of the sustained release of zinc ions and quercetin exerts excellent collective functions including antibacterial, immunomodulation, pro-osteo-/angiogenesis and pro-recruitment, ultimately facilitating excellent alveolar bone regeneration. Notably, our study also demonstrates that the inhibition of osteo-/angiogenesis of PDLSCs under the periodontitis is due to the strong inhibition of energy metabolism as well as the powerful activation of oxidative stress and autophagy, whereas the synergistic effects of quercetin and zinc ions released by SFD/CS/ZIF-8@QCT are effective in reversing these biological processes. Overall, our study presents innovative insights into the advancement of biomaterials to regenerate alveolar bone in periodontitis.
Collapse
Affiliation(s)
- Shiyuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chunxiao Ji
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - An Lao
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zhao
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jia Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanjin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
19
|
Löser A, Schwarz M, Kipp AP. NRF2 and Thioredoxin Reductase 1 as Modulators of Interactions between Zinc and Selenium. Antioxidants (Basel) 2024; 13:1211. [PMID: 39456464 PMCID: PMC11505002 DOI: 10.3390/antiox13101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Selenium and zinc are essential trace elements known to regulate cellular processes including redox homeostasis. During inflammation, circulating selenium and zinc concentrations are reduced in parallel, but underlying mechanisms are unknown. Accordingly, we modulated the zinc and selenium supply of HepG2 cells to study their relationship. METHODS HepG2 cells were supplied with selenite in combination with a short- or long-term zinc treatment to investigate intracellular concentrations of selenium and zinc together with biomarkers describing their status. In addition, the activation of the redox-sensitive transcription factor NRF2 was analyzed. RESULTS Zinc not only increased the nuclear translocation of NRF2 after 2 to 6 h but also enhanced the intracellular selenium content after 72 h, when the cells were exposed to both trace elements. In parallel, the activity and expression of the selenoprotein thioredoxin reductase 1 (TXNRD1) increased, while the gene expression of other selenoproteins remained unaffected or was even downregulated. The zinc effects on the selenium concentration and TXNRD activity were reduced in cells with stable NRF2 knockdown in comparison to control cells. CONCLUSIONS This indicates a functional role of NRF2 in mediating the zinc/selenium crosstalk and provides an explanation for the observed unidirectional behavior of selenium and zinc.
Collapse
Affiliation(s)
- Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Anna Patricia Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.L.); (M.S.)
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, 14558 Nuthetal, Germany
| |
Collapse
|
20
|
Anju BS, Nair NR, Rajput J, Bertke JA, Mondal B, Kundu S. Role of ancillary ligands in S-nitrosothiol and NO generation from nitrite-thiol interactions at mononuclear zinc(ii) sites. Chem Sci 2024:d4sc04853a. [PMID: 39416287 PMCID: PMC11474386 DOI: 10.1039/d4sc04853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Generation of S-nitrosothiol (RSNO) and nitric oxide (NO) mediated by zinc(ii) coordination motifs is of prime importance for understanding the role of zinc(ii)-based cofactors in redox-signalling pathways. This study uniquely employs a set of mononuclear [L2ZnII]2+ cores (where L = Me4PzPz/Me2PzPy/Me2PzQu) for introducing subtle alterations of the primary coordination sphere and investigates the role of ligand tuning in the transformation of NO2 - in the presence of thiols. Single crystal X-ray diffraction (SCXRD) analyses on [L2ZnII-X](X) (where X = perchlorate/triflate) illustrate consistent changes in the bond distances, thereby showing variations of the metal-ligand interactions depending on the nature of the heterocyclic donor arms (pyrazole/pyridine/quinoline). Moreover, such tuning of the ligands affects the Lewis-acidity of the [L2ZnII]2+ cores as evaluated by 31P NMR and SCXRD studies on the 1 : 1 acid-base adducts [L2ZnII(OPEt3)]2+. Crystallographic and 15N NMR spectroscopic analyses on the nitrite complexes [L2ZnII(κ2-nitrite)](ClO4) reveal that the chemical environments of the nitrite anions in these complexes are nearly identical, despite the dissimilarity in the Lewis-acidity of the [L2ZnII]2+ cores. Interestingly, RSNO and NO generation from the reactions of [L2ZnII(κ2-nitrite)](ClO4) with 4-tert-butylbenzylthiol ( t BuBnSH) exhibits that the [(Me2PzQu)2ZnII]2+ core is the most efficient in promoting nitrite-thiol interactions due to the ease of available hemilabile coordination sites at the Lewis acidic [ZnII]. Detailed UV-vis studies in tandem with computational investigation, for the first time, provide an unambiguous demonstration of the nitrous acid (HNO2) intermediate generated through an intramolecular proton-transfer from thiol to nitrite at zinc(ii).
Collapse
Affiliation(s)
- Balakrishnan S Anju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram - 695551 India
| | - Neeraja R Nair
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram - 695551 India
| | - Janavi Rajput
- School of Chemical Sciences, Indian Institute of Technology Mandi Kamand Himachal Pradesh 175075 India
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University Box 571227-1227 Washington, D. C. 20057 USA
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi Kamand Himachal Pradesh 175075 India
| | - Subrata Kundu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM) Thiruvananthapuram - 695551 India
| |
Collapse
|
21
|
Mori H, Goji A, Hara M. Upregulation of Intracellular Zinc Ion Level after Differentiation of the Neural Stem/Progenitor Cells In Vitro with the Changes in Gene Expression of Zinc Transporters. Biol Trace Elem Res 2024; 202:4699-4714. [PMID: 38180597 DOI: 10.1007/s12011-023-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
We measured the intracellular zinc ion concentration of murine fetal neural stem/progenitor cells (NSPCs) and that in the differentiated cells. The NSPCs cultured with 1.5 μM Zn2+ proliferated slightly faster than that in the zinc-deficient medium and the intracellular zinc concentration of the NSPCs and that of their differentiated cells (DCs) cultured with 1.5 μM Zn2+ was 1.34-fold and 2.00-fold higher than those in the zinc-deficient medium, respectively. The zinc transporter genes upregulated over the 3.5-fold change were Zip1, Zip4, Zip12, Zip13, ZnT1, ZnT8, and ZnT10 whereas the only downregulated one was Zip8 during the differentiation of NSPCs to DCs. The cell morphologies of both NSPCs and DCs in the low oxygen culture condition consisting of 2%O2 and 5%CO2, the high carbon dioxide condition consisting of 21%O2 and 10%CO2, and the normal condition consisting of 21%O2 and 5%CO2 were essentially the same each other. The expression of Zip4, Zip8, Zip12, and Zip14 was not drastically changed depending on the O2 and CO2 concentrations.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Akari Goji
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Hara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuencho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
22
|
Stocchetti S, Vančo J, Belza J, Dvořák Z, Trávníček Z. Strong in vitro anticancer activity of copper(ii) and zinc(ii) complexes containing naturally occurring lapachol: cellular effects in ovarian A2780 cells. RSC Med Chem 2024:d4md00543k. [PMID: 39371430 PMCID: PMC11451940 DOI: 10.1039/d4md00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Copper(ii) and zinc(ii) complexes with lapachol (HLap) of the composition [M(Lap)2(N-N)] and [Cu(Lap)(H2O)(terpy)]NO3 (4), where M = Cu (1-3) or Zn (for 5-7), and N-N stands for bathophenanthroline (1 and 5), 5-methyl-1,10-phenanthroline (2 and 6), 2,2'-bipyridine (3), 2,2';6',2''-terpyridine (terpy, 4) and 1,10-phenanthroline (7), were synthesised and characterised. Complexes 1-5 revealed strong in vitro antiproliferative effects against A2780, A2780R, MCF-7, PC-3, A549 and HOS human cancer lines and MRC-5 normal cells, with IC50 values above 0.5 μM, and reasonable selectivity index (SI), with SI > 3.8 for IC50(MRC-5)/IC50(A2780). Considerable time-dependent cytotoxicity in A2780 cells was observed for complexes 6 and 7, with IC50 > 50 μM (24 h) to ca. 4 μM (48 h). Cellular effects of complexes 1, 5 and 7 in A2780 cells were investigated by flow cytometry revealing that the most cytotoxic complexes (1 and 5) significantly perturbed the mitochondrial membrane potential and the interaction with mitochondrial metabolism followed by the triggering of the intracellular pathway of apoptosis.
Collapse
Affiliation(s)
- Sara Stocchetti
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via G. Moruzzi 13 I-56124 Pisa Italy
| | - Ján Vančo
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
| | - Jan Belza
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic
| | - Zdeněk Trávníček
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
| |
Collapse
|
23
|
Liu LL, Song CC, Abu-Elala N, Tan XY, Zhao T, Zheng H, Yang H, Luo Z. Transcriptional regulation of Znt family members znt4, znt5 and znt10 and their function in zinc transport in yellow catfish (Pelteobagrus fulvidraco). BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195041. [PMID: 38740364 DOI: 10.1016/j.bbagrm.2024.195041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The study characterized the transcriptionally regulatory mechanism and functions of three zinc (Zn) transporters (znt4, znt5 and znt10) in Zn2+ metabolism in yellow catfish (Pelteobagrus fulvidraco), commonly freshwater fish in China and other countries. We cloned the sequences of znt4 promoter, spanning from -1217 bp to +80 bp relative to TSS (1297 bp); znt5, spanning from -1783 bp to +49 bp relative to TSS (1832 bp) and znt10, spanning from -1923 bp to +190 bp relative to TSS (2113 bp). In addition, after conducting the experiments of sequential deletion of promoter region and mutation of potential binding site, we found that the Nrf2 binding site (-607/-621 bp) and Klf4 binding site (-5/-14 bp) were required on znt4 promoter, the Mtf-1 binding site (-1674/-1687 bp) and Atf4 binding site (-444/-456 bp) were required on znt5 promoter and the Atf4 binding site (-905/-918 bp) was required on znt10 promoter. Then, according to EMSA and ChIP, we found that Zn2+ incubation increased DNA affinity of Atf4 to znt5 or znt10 promoter, but decreased DNA affinity of Nrf2 to znt4 promoter, Klf4 to znt4 promoter and Mtf-1 to znt5 promoter. Using fluorescent microscopy, it was revealed that Znt4 and Znt10 were located in the lysosome and Golgi, and Znt5 was located in the Golgi. Finally, we found that znt4 knockdown reduced the zinc content of lysosome and Golgi in the control and zinc-treated group; znt5 knockdown reduced the zinc content of Golgi in the control and zinc-treated group and znt10 knockdown reduced the zinc content of Golgi in the zinc-treated group. High dietary zinc supplement up-regulated Znt4 and Znt5 protein expression. Above all, for the first time, we revealed that Klf4 and Nrf2 transcriptionally regulated the activities of znt4 promoter; Mtf-1 and Atf4 transcriptionally regulated the activities of znt5 promoter and Atf4 transcriptionally regulated the activities of znt10 promoter, which provided innovative regulatory mechanism of zinc transporting in yellow catfish. Our study also elucidated their subcellular location, and regulatory role of zinc homeostasis in yellow catfish.
Collapse
Affiliation(s)
- Lu-Lu Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Nermeen Abu-Elala
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Egypt; Faculty of Veterinary Medicine, King Salman International University, South Saini, Egypt
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Yang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
24
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 PMCID: PMC11921270 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Marín de Jesús S, Vigueras-Villaseñor RM, Cortés-Barberena E, Hernández-Rodriguez J, Montes S, Arrieta-Cruz I, Pérez-Aguirre SG, Bonilla-Jaime H, Limón-Morales O, Arteaga-Silva M. Zinc and Its Impact on the Function of the Testicle and Epididymis. Int J Mol Sci 2024; 25:8991. [PMID: 39201677 PMCID: PMC11354358 DOI: 10.3390/ijms25168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Zinc (Zn) is an essential trace element; it exhibits a plethora of physiological properties and biochemical functions. It plays a pivotal role in regulating the cell cycle, apoptosis, and DNA organization, as well as in protein, lipid, and carbohydrate metabolism. Among other important processes, Zn plays an essential role in reproductive health. The ZIP and ZnT proteins are responsible for the mobilization of Zn within the cell. Zn is an inert antioxidant through its interaction with a variety of proteins and enzymes to regulate the redox system, including metallothioneins (MTs), metalloenzymes, and gene regulatory proteins. The role of Zn in the reproductive system is of great importance; processes, such as spermatogenesis and sperm maturation that occur in the testicle and epididymis, respectively, depend on this element for their development and function. Zn modulates the synthesis of androgens, such as testosterone, for these reproductive processes, so Zn deficiency is related to alterations in sperm parameters that lead to male infertility.
Collapse
Affiliation(s)
- Sergio Marín de Jesús
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | | | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico;
| | - Joel Hernández-Rodriguez
- Cuerpo Académico de Investigación en Quiropráctica, Universidad Estatal del Valle de Ecatepec, Av. Central s/n Valle de Anáhuac, Ecatepec de Morelos 55210, Mexico;
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Aztlán, Reynosa 88740, Mexico;
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Secretaria de Salud, Ciudad de Mexico 10200, Mexico;
| | - Sonia Guadalupe Pérez-Aguirre
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
- Laboratorio de Neuroendocrinología Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| |
Collapse
|
26
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
27
|
Tetteh PA, Kalvani Z, Stevens D, Sappal R, Kamunde C. Interactions of binary mixtures of metals on rainbow trout (Oncorhynchus mykiss) heart mitochondrial H 2O 2 homeodynamics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106986. [PMID: 38851027 DOI: 10.1016/j.aquatox.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
For continuous pumping of blood, the heart needs a constant supply of energy (ATP) that is primarily met via oxidative phosphorylation in the mitochondria of cardiomyocytes. However, sustained high rates of electron transport for energy conversion redox reactions predisposes the heart to the production of reactive oxygen species (ROS) and oxidative stress. Mitochondrial ROS are fundamental drivers of responses to environmental stressors including metals but knowledge of how combinations of metals alter mitochondrial ROS homeodynamics remains sparse. We explored the effects and interactions of binary mixtures of copper (Cu), cadmium (Cd), and zinc (Zn), metals that are common contaminants of aquatic systems, on ROS (hydrogen peroxide, H2O2) homeodynamics in rainbow trout (Oncorhynchus mykiss) heart mitochondria. Isolated mitochondria were energized with glutamate-malate or succinate and exposed to a range of concentrations of the metals singly and in equimolar binary concentrations. Speciation analysis revealed that Cu was highly complexed by glutamate or Tris resulting in Cu2+ concentrations in the picomolar to nanomolar range. The concentration of Cd2+ was 7.2-7.5 % of the total while Zn2+ was 15 % and 21 % of the total during glutamate-malate and succinate oxidation, respectively. The concentration-effect relationships for Cu and Cd on mitochondrial H2O2 emission depended on the substrate while those for Zn were similar during glutamate-malate and succinate oxidation. Cu + Zn and Cu + Cd mixtures exhibited antagonistic interactions wherein Cu reduced the effects of both Cd and Zn, suggesting that Cu can mitigate oxidative distress caused by Cd or Zn. Binary combinations of the metals acted additively to reduce the rate constant and increase the half-life of H2O2 consumption while concomitantly suppressing thioredoxin reductase and stimulating glutathione peroxidase activities. Collectively, our study indicates that binary mixtures of Cu, Zn, and Cd act additively or antagonistically to modulate H2O2 homeodynamics in heart mitochondria.
Collapse
Affiliation(s)
- Pius Abraham Tetteh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Zahra Kalvani
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Ravinder Sappal
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, USA
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada.
| |
Collapse
|
28
|
Jiang H, Zeng Y, Jiang X, Xu X, Zhao L, Yuan X, Xu J, Zhao M, Wu F, Li G. Ketogenesis attenuated KLF5 disrupts iron homeostasis via LIF to confer oxaliplatin vulnerability in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167210. [PMID: 38704001 DOI: 10.1016/j.bbadis.2024.167210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Oxaliplatin has been included as a basal drug in various chemotherapy regimens for colorectal cancer (CRC), a global health concern. However, acquired resistance to oxaliplatin affects the prognosis. This study aimed to determine whether the consumption of a KD increases the sensitivity of CRC cells to oxaliplatin via the inhibition of a classical stem cell marker, Krupple-like factor 5 (KLF5). KLF5 functions as a transcription factor for the leukemia inhibitory factor (LIF) and directly binds to its promoter region. LIF upregulation induces dephosphorylation of metal regulatory transcription factor 1 (MTF1), which is recruited to the promoter area of Ferroportin (FPN1), the only cellular iron exporter. FPN1 upregulation reduces the labile iron pool (LIP) and ferroptosis in CRC cells. KLF5 knockdown inhibits the LIF/MTF1/FPN1 axis and induces iron overload, thereby conferring sensitivity to oxaliplatin to CRC cells. KD mimicked KLF5 silencing and sensitized CRC cells to oxaliplatin via a similar mechanism. Thus, potential correlations were observed among ketogenesis, stemness, and iron homeostasis. This finding can be used to formulate a new strategy for overcoming oxaliplatin resistance in patients with CRC.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuni Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoye Yuan
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengjing Zhao
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fang Wu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Gang Li
- Department of Radiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Sun X, Xu S, Liu T, Wu J, Yang J, Gao XJ. Zinc supplementation alleviates oxidative stress to inhibit chronic gastritis via the ROS/NF-κB pathway in a mouse model. Food Funct 2024; 15:7136-7147. [PMID: 38887927 DOI: 10.1039/d4fo01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Zinc (Zn) is an important trace element; it is involved in the regulation and maintenance of many physiological functions in organisms and has anti-inflammatory and antioxidant properties. Chronic gastritis is closely associated with damage to the gastric mucosa, which is detrimental to the health of humans and animals. There are few studies on the effects of zinc on, for example, gastric mucosal damage, oxidative stress, inflammation and cell death in mice. Therefore, we established in vivo and in vitro models of inflammatory injury and investigated the effects of zinc supplementation in C57BL/6 mice and Ges-1 cells and examined the expression of factors associated with oxidative stress, inflammation and cell death. In this study, the results of in vivo and in vitro experiments showed that reactive oxygen species (ROS) levels increased after sodium salicylate exposure. Malondialdehyde levels increased, the activity of the antioxidant enzymes catalase and superoxide dismutase decreased, and the activity of glutathione decreased. The NF-κB signaling pathway was activated, the levels of proinflammatory factors (TNF-α, IL-1β, and IL-6) increased, and the expression of cell death-related factors (Bax, Bcl-2, Caspase3, Caspase7, Caspase9, RIP1, RIP3, and MLKL) increased. Zinc supplementation attenuated the level of oxidative stress and reduced the level of inflammation and cell death. Our study indicated that sodium salicylate induced the production of large amounts of reactive oxygen species and activated the NF-κB pathway, leading to inflammatory damage and cell death in the mouse stomach. Zinc supplementation modulated the ROS/NF-κB pathway, reduced the level of oxidative stress, and attenuated inflammation and cell death in the mouse stomach and Ges-1 cells.
Collapse
Affiliation(s)
- Xiaoran Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Shuang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Tianjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Jiawei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
30
|
Yao J, Luo Z, Lin J, Meng N, Guo J, Xu H, Shi R, Zhao L, Zhou J, Yan F, Wang B, Mao H. Antimicrobial and Antiviral Nanofibers Halt Co-Infection Spread via Nuclease-Mimicry and Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309590. [PMID: 38647392 PMCID: PMC11200001 DOI: 10.1002/advs.202309590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/17/2024] [Indexed: 04/25/2024]
Abstract
The escalating spread of drug-resistant bacteria and viruses is a grave concern for global health. Nucleic acids dominate the drug-resistance and transmission of pathogenic microbes. Here, imidazolium-type poly(ionic liquid)/porphyrin (PIL-P) based electrospun nanofibrous membrane and its cerium (IV) ion complex (PIL-P-Ce) are developed. The obtained PIL-P-Ce membrane exhibits high and stable efficiency in eradicating various microorganisms (bacteria, fungi, and viruses) and decomposing microbial antibiotic resistance genes and viral nucleic acids under light. The nuclease-mimetic and photocatalytic mechanisms of the PIL-P-Ce are elucidated. Co-infection wound models in mice with methicillin-resistant S. aureus and hepatitis B virus demonstrate that PIL-P-Ce integrate the triple effects of cationic polymer, photocatalysis, and nuclease-mimetic activities. As revealed by proteomic analysis, PIL-P-Ce shows minimal phototoxicity to normal tissues. Hence, PIL-P-Ce has potential as a "green" wound dressing to curb the spread of drug-resistant bacteria and viruses in clinical settings.
Collapse
Affiliation(s)
- Jieran Yao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Zhenhong Luo
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Jiaying Lin
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Na Meng
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiangna Guo
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Hui Xu
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Rongwei Shi
- School of Material and Chemical EngineeringTongren UniversityTongren554300China
| | - Linhui Zhao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiateng Zhou
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Feng Yan
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Bin Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Hailei Mao
- Department of Critical Care MedicineZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
31
|
Cirovic A, Cirovic A, Yimthiang S, Vesey DA, Satarug S. Modulation of Adverse Health Effects of Environmental Cadmium Exposure by Zinc and Its Transporters. Biomolecules 2024; 14:650. [PMID: 38927054 PMCID: PMC11202194 DOI: 10.3390/biom14060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca). In cells, Zn is involved in the regulation of intermediary metabolism, gene expression, cell growth, differentiation, apoptosis, and antioxidant defense mechanisms. The cellular influx, efflux, subcellular compartmentalization, and trafficking of Zn are coordinated by transporter proteins, solute-linked carriers 30A and 39A (SLC30A and SLC39A), known as the ZnT and Zrt/Irt-like protein (ZIP). Because of its chemical similarity with Zn and Ca, Cd disrupts the physiological functions of both. The concurrent induction of a Zn efflux transporter ZnT1 (SLC30A1) and metallothionein by Cd disrupts the homeostasis and reduces the bioavailability of Zn. The present review highlights the increased mortality and the severity of various diseases among Cd-exposed persons and the roles of Zn and other transport proteins in the manifestation of Cd cytotoxicity. Special emphasis is given to Zn intake levels that may lower the risk of vision loss and bone fracture associated with Cd exposure. The difficult challenge of determining a permissible intake level of Cd is discussed in relation to the recommended dietary Zn intake levels.
Collapse
Affiliation(s)
- Ana Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.C.)
| | - Supabhorn Yimthiang
- Environmental Safety Technology and Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, QLD 4102, Australia;
| |
Collapse
|
32
|
Qiao Y, Jia X, Wang Y, Liu L, Zhang M, Jiang X. Polydopamine-encapsulated zinc peroxide nanoparticles to target the metabolism-redox circuit against tumor adaptability for mild photothermal therapy. NANOSCALE HORIZONS 2024; 9:1002-1012. [PMID: 38586973 DOI: 10.1039/d4nh00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Regulating the metabolism-redox circuit of cancer cells has emerged as an attractive strategy to improve the therapeutic outcome, while often confronting the glaring issue of resistance due to the multiple adaptive responses of tumor cells. This study presents a simple yet efficient approach to regulate this circuit simultaneously against tumor adaptability by utilizing polydopamine-encapsulated zinc peroxide nanoparticles (ZnO2@PDA NPs). The nanoparticles could deliver large amounts of Zn2+ and H2O2 into tumor cells to unfold an intracellular self-amplifying loop for breaking the balance in zinc and redox homeostasis by H2O2-mediated endogenous Zn2+ release from metallothioneins due to its oxidation by H2O2 and Zn2+-induced in situ H2O2 production by disturbing mitochondrial respiration, ultimately disrupting tumor adaptability to exogenous stimuli. The elevated levels of Zn2+ and H2O2 also inhibited adenosine triphosphate (ATP) generation from glycolysis and mitochondrial respiration to disrupt energy adaptability. Furthermore, insufficient ATP supply could reduce glutathione and heat shock protein expression, thereby sensitizing oxidative stress and enabling PDA-mediated mild photothermal therapy (PTT). Consequently, this trinity nanoplatform, which integrated dual-starvation therapy, amplified oxidative stress, and mild PTT, demonstrated outstanding therapeutic effects and a facile strategy.
Collapse
Affiliation(s)
- Yue Qiao
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin, China.
| | - Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin, China.
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin, China.
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| |
Collapse
|
33
|
Solti Á, Tóth B, Hauser MT. Editorial: Intracellular transition metal homeostasis in plants and algae. FRONTIERS IN PLANT SCIENCE 2024; 15:1430708. [PMID: 38841279 PMCID: PMC11150771 DOI: 10.3389/fpls.2024.1430708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Affiliation(s)
- Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Tóth
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
34
|
Xu W, Xie B, Wei D, Song X. Dissecting hair breakage in alopecia areata: the central role of dysregulated cysteine homeostasis. Amino Acids 2024; 56:36. [PMID: 38772922 PMCID: PMC11108903 DOI: 10.1007/s00726-024-03395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024]
Abstract
In the initial stages of Alopecia Areata (AA), the predominance of hair breakage or exclamation mark hairs serves as vital indicators of disease activity. These signs are non-invasive and are commonly employed in dermatoscopic examinations. Despite their clinical salience, the underlying etiology precipitating this hair breakage remains largely uncharted territory. Our exhaustive review of the existing literature points to a pivotal role for cysteine-a key amino acid central to hair growth-in these mechanisms. This review will probe and deliberate upon the implications of aberrant cysteine metabolism in the pathogenesis of AA. It will examine the potential intersections of cysteine metabolism with autophagy, ferroptosis, immunity, and psychiatric manifestations associated with AA. Such exploration could illuminate new facets of the disease's pathophysiology, potentially paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Dongfan Wei
- School of Medicine, Zhejiang University, Yuhangtang Rd 866, Hangzhou, 310009, People's Republic of China
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital, Affiliated to Zhejiang Chinese Medical University, West Lake Ave 38, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
35
|
Yan X, Wang X, Zhang J, Ming Z, Zhang C, Ma P, Liu Q, Xu Y, Cheng L, Pang X, Li Y. National trends in nine key minerals intake (quantity and source) among U.S. adults, 1999 to march 2020. Nutr J 2024; 23:52. [PMID: 38760828 PMCID: PMC11100034 DOI: 10.1186/s12937-024-00950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Changes in economy and dietary guidelines brought a great shock to diet quality and meal behaviors, but if these transformations have extended to minerals intake and their sources was still poorly understood. It is essential to evaluate time trends in minerals intake and their sources to inform policy makers. OBJECTIVE To investigate trends in minerals intake and their sources among U.S. adults. METHODS This analysis used dietary data collected by 24-h recalls from U.S. adults (≥ 20 years) in NHANES (1999-March 2020). Minerals intake, age-adjusted percentage of participants meeting recommendations, and minerals sources were calculated among all participants and by population subgroups in each NHANES survey cycle. Weighted linear or logistic regression models were used to examine the statistical significance of time trends. RESULTS A total of 48223 U.S. adults were included in this analysis. From 1999 to March 2020, intake of calcium (from 0.94 to 1.02 g/day), magnesium (from 308.07 to 321.85 mg/day), phosphorus (from 1.24 to 1.30 g/day), and sodium (from 3.24 to 3.26 mg/day) from food and beverages (FB) and dietary supplements (DSs) significantly increased, and intake of iron (from 19.17 to 16.38 mg/day), zinc (from 16.45 to 14.19 mg/day), copper (from 1.79 to 1.38 mg/day), and potassium (from 2.65 to 2.50 g/day) from FB + DSs decreased (all FDR < 0.05). Additionally, age-adjusted percentage of participants meeting recommendations for calcium, phosphorus, sodium, and selenium significantly increased, that for iron, potassium, zinc, and copper decreased (all FDR < 0.05). Minerals intake and time trends in minerals intake were highly variable depending on age, gender, race/ethnicity, education, and income. For example, white, higher socioeconomic status participants had a higher minerals intake (e.g. iron, zinc, and copper), but had a greater decrease in minerals intake. Furthermore, the percentage of minerals from milks and DSs decreased, and that from beverages increased. CONCLUSION From 1999 to March 2020, both minerals intake and their sources experienced a significant alteration among U.S. adults. Many differences in minerals intake and their food sources across sociodemographic characteristics appeared to narrow over time. Although some improvements were observed, important challenges, such as overconsumption of sodium and underconsumption of potassium, calcium, and magnesium, still remained among U.S. adults.
Collapse
Affiliation(s)
- Xuemin Yan
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Xuanyang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Zhu Ming
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Can Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Pingnan Ma
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Qianmin Liu
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Yuanyuan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Licheng Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Xibo Pang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China.
| |
Collapse
|
36
|
Wei P, Wang N, Zhang Q, Wang W, Sun H, Liu Z, Yan T, Wang Q, Qiu L. Nano-ZnO-modified hydroxyapatite whiskers with enhanced osteoinductivity for bone defect repair. Regen Biomater 2024; 11:rbae051. [PMID: 38854679 PMCID: PMC11162197 DOI: 10.1093/rb/rbae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
Hydroxyapatite (HA) whisker (HAw) represents a distinct form of HA characterized by its high aspect ratio, offering significant potential for enhancing the mechanical properties of bone tissue engineering scaffolds. However, the limited osteoinductivity of HAw hampers its widespread application. In this investigation, we observed HAw-punctured osteoblast membranes and infiltrated the cell body, resulting in mechanical damage to cells that adversely impacted osteoblast proliferation and differentiation. To address this challenge, we developed nano-zinc oxide particle-modified HAw (nano-ZnO/HAw). Acting as a reinforcing and toughening agent, nano-ZnO/HAw augmented the compressive strength and ductility of the matrix materials. At the same time, the surface modification with nano-ZnO particles improved osteoblast differentiation by reducing the mechanical damage from HAw to cells and releasing zinc ion, the two aspects collectively promoted the osteoinductivity of HAw. Encouragingly, the osteoinductive potential of 5% nano-ZnO/HAw and 10% nano-ZnO/HAw was validated in relevant rat models, demonstrating the efficacy of this approach in promoting new bone formation in vivo. Our findings underscore the role of nano-ZnO particle surface modification in enhancing the osteoinductivity of HAw from a physical standpoint, offering valuable insights into the development of bone substitutes with favorable osteoinductive properties while simultaneously bolstering matrix material strength and toughness.
Collapse
Affiliation(s)
- Penggong Wei
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Wanfeng Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Hui Sun
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Zengqian Liu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tingting Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Lihong Qiu
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| |
Collapse
|
37
|
Zhang Q, Zhang Y, Chen H, Sun LN, Zhang B, Yue DS, Wang CL, Zhang ZF. Injectable hydrogel with doxorubicin-loaded ZIF-8 nanoparticles for tumor postoperative treatments and wound repair. Sci Rep 2024; 14:9983. [PMID: 38693143 PMCID: PMC11063161 DOI: 10.1038/s41598-024-57664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/20/2024] [Indexed: 05/03/2024] Open
Abstract
The need for tumor postoperative treatments aimed at recurrence prevention and tissue regeneration have raised wide considerations in the context of the design and functionalization of implants. Herein, an injectable hydrogel system encapsulated with anti-tumor, anti-oxidant dual functional nanoparticles has been developed in order to prevent tumor relapse after surgery and promote wound repair. The utilization of biocompatible gelatin methacryloyl (GelMA) was geared towards localized therapeutic intervention. Zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, ZC) nanoparticles (NPs) were purposefully devised for their proficiency as reactive oxygen species (ROS) scavengers. Furthermore, injectable GelMA hydrogels loaded with ZC NPs carrying doxorubicin (ZC-DOX@GEL) were tailored as multifunctional postoperative implants, ensuring the efficacious eradication of residual tumor cells and alleviation of oxidative stress. In vitro and in vivo experiments were conducted to substantiate the efficacy in cancer cell elimination and the prevention of tumor recurrence through the synergistic chemotherapy approach employed with ZC-DOX@GEL. The acceleration of tissue regeneration and in vitro ROS scavenging attributes of ZC@GEL were corroborated using rat models of wound healing. The results underscore the potential of the multifaceted hydrogels presented herein for their promising application in tumor postoperative treatments.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hui Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei-Na Sun
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong-Sheng Yue
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chang-Li Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Lung Cancer Center, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhen-Fa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin Lung Cancer Center, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
38
|
Xiao C, Comer L, Pan X, Everaert N, Schroyen M, Song Z. Zinc glycinate alleviates LPS-induced inflammation and intestinal barrier disruption in chicken embryos by regulating zinc homeostasis and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116111. [PMID: 38350216 DOI: 10.1016/j.ecoenv.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/15/2024]
Abstract
The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1β (IL-1β) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1β and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
39
|
Park JM, Park S, Seo YS, Kim JH, Lee MY. Cytosolic zinc mediates the cytotoxicity of thiol-reactive electrophiles in rat vascular smooth muscle cells. Food Chem Toxicol 2024; 185:114446. [PMID: 38244666 DOI: 10.1016/j.fct.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
The aberrant increase or dysregulation of cytosolic Zn2+ concentration ([Zn2+]cyt) has been associated with cellular dysfunction and cytotoxicity. In this study, we postulated that Zn2+ mediates the cytotoxicity of thiol-reactive electrophiles. This notion was grounded on earlier research, which revealed that thiol-reactive electrophiles may disrupt Zn2+-binding motifs, consequently causing Zn2+ to be released from Zn2+-binding proteins, and leading to a surge in [Zn2+]cyt. The thiol-reactive electrophiles N-ethylmaleimide (NEM) and diamide were observed to induce an increase in [Zn2+]cyt, possibly through the impairment of Zn2+-binding motifs, and subsequent stimulation of reactive oxygen species (ROS) formation, resulting in cytotoxicity in primary cultured rat vascular smooth muscle cells. These processes were negated by the thiol donor N-acetyl-L-cysteine and the Zn2+ chelator TPEN. Similar outcomes were detected with co-treatment involving Zn2+ and Zn2+ ionophores such as pyrithione or disulfiram. Moreover, TPEN was found to inhibit cytotoxicity triggered by short-term exposure to various thiol-reactive electrophiles including hydrogen peroxide, acrylamide, acrylonitrile, diethyl maleate, iodoacetic acid, and iodoacetamide. In conclusion, our findings suggest that cytosolic Zn2+ acts as a universal mediator in the cytotoxic effects produced by thiol-reactive electrophiles.
Collapse
Affiliation(s)
- Jung-Min Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Suin Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Yoon-Seok Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jae-Hyeong Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
40
|
Wu C, Han J, Wu S, Liu C, Zhang Q, Tang J, Liu Z, Yang J, Chen Y, Zhuo Y, Li Y. Reduced Zn 2+ promotes retinal ganglion cells survival and optic nerve regeneration after injury through inhibiting autophagy mediated by ROS/Nrf2. Free Radic Biol Med 2024; 212:415-432. [PMID: 38134974 DOI: 10.1016/j.freeradbiomed.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
The molecular mechanism of how reduced mobile zinc (Zn2+) affected retinal ganglion cell (RGC) survival and optic nerve regeneration after optic nerve crush (ONC) injury remains unclear. Here, we used conditionally knocked out ZnT-3 in the amacrine cells (ACs) of mice (CKO) in order to explore the role of reactive oxygen species (ROS), nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) and autophagy in the protection of RGCs and axon regeneration after ONC injury. We found that reduced Zn2+ can promote RGC survival and axonal regeneration by decreasing ROS, activating Nrf2, and inhibiting autophagy. Additionally, autophagy after ONC is regulated by ROS and Nrf2. Visual function in mice after ONC injury was partially recovered through the reduction of Zn2+, achieved by using a Zn2+ specific chelator N,N,N',N'-tetrakis-(2-Pyridylmethyl) ethylenediamine (TPEN) or through CKO mice. Overall, our data reveal the crosstalk between Zn2+, ROS, Nrf2 and autophagy following ONC injury. This study verified that TPEN or knocking out ZnT-3 in ACs is a promising therapeutic option for the treatment of optic nerve damage and elucidated the postsynaptic molecular mechanism of Zn2+-triggered damage to RGCs after ONC injury.
Collapse
Affiliation(s)
- Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jinpeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuze Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
41
|
Shukla AK, Mahale A, Choudhary S, Sharma P, Kulkarni OP, Bhattacharya A. Development and Validation of a Fluorogenic Probe for Lysosomal Zinc Release. Chembiochem 2024; 25:e202300783. [PMID: 38038368 DOI: 10.1002/cbic.202300783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Zinc homeostasis, which allows optimal zinc utilization in diverse life processes, is responsible for the general well-being of human beings. This paper describes developing and validating an easily accessible indole-containing zinc-specific probe in the cellular milieu. The probe was synthesized from readily available starting materials and was subjected to steady-state fluorescence studies. It showed selective sensing behavior towards Zn2+ with reversible binding. The suppression of PET (Photoinduced Electron Transfer) and ESIPT (Excited State Intramolecular Proton Transfer) elicited selectivity, and the detection limit was 0.63 μM (LOQ 6.8 μM). The zinc sensing capability of the probe was also screened in the presence of low molecular weight ligands [LMWLs] and showed interference only with GSH and ATP. It is non-toxic and can detect zinc in different cell lines under various stress conditions such as inflammation, hyperglycemia, and apoptosis. The probe could stain the early and late stages of apoptosis in PAN-2 cells by monitoring the zinc release. Most experiments were conducted without external zinc supplementation, showing its innate ability to detect zinc.
Collapse
Affiliation(s)
- Adarash Kumar Shukla
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Savita Choudhary
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| | - Anupam Bhattacharya
- Department of Chemistry, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad, 500078, India
| |
Collapse
|
42
|
Rodrigues S, Avellan A, Bland GD, Miranda MCR, Larue C, Wagner M, Moreno-Bayona DA, Castillo-Michel H, Lowry GV, Rodrigues SM. Effect of a Zinc Phosphate Shell on the Uptake and Translocation of Foliarly Applied ZnO Nanoparticles in Pepper Plants ( Capsicum annuum). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38340051 PMCID: PMC10882962 DOI: 10.1021/acs.est.3c08723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Here, isotopically labeled 68ZnO NPs (ZnO NPs) and 68ZnO NPs with a thin 68Zn3(PO4)2 shell (ZnO_Ph NPs) were foliarly applied (40 μg Zn) to pepper plants (Capsicum annuum) to determine the effect of surface chemistry of ZnO NPs on the Zn uptake and systemic translocation to plant organs over 6 weeks. Despite similar dissolution of both Zn-based NPs after 3 weeks, the Zn3(PO4)2 shell on ZnO_Ph NPs (48 ± 12 nm; -18.1 ± 0.6 mV) enabled a leaf uptake of 2.31 ± 0.34 μg of Zn, which is 2.7 times higher than the 0.86 ± 0.18 μg of Zn observed for ZnO NPs (26 ± 8 nm; 14.6 ± 0.4 mV). Further, ZnO_Ph NPs led to higher Zn mobility and phloem loading, while Zn from ZnO NPs was stored in the epidermal tissues, possibly through cell wall immobilization as a storage strategy. These differences led to higher translocation of Zn from the ZnO_Ph NPs within all plant compartments. ZnO_Ph NPs were also more persistent as NPs in the exposed leaf and in the plant stem over time. As a result, the treatment of ZnO_Ph NPs induced significantly higher Zn transport to the fruit than ZnO NPs. As determined by spICP-TOFMS, Zn in the fruit was not in the NP form. These results suggest that the Zn3(PO4)2 shell on ZnO NPs can help promote the transport of Zn to pepper fruits when foliarly applied. This work provides insight into the role of Zn3(PO4)2 on the surface of ZnO NPs in foliar uptake and in planta biodistribution for improving Zn delivery to edible plant parts and ultimately improving the Zn content in food for human consumption.
Collapse
Affiliation(s)
- Sandra Rodrigues
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Astrid Avellan
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Universidade de Aveiro, 3810-193 Aveiro, Portugal
- Géosciences-Environnement-Toulouse (GET), CNRS, UMR 5563 CNRS, UT3, IRD, CNES, OMP, 31400 Toulouse, France
| | - Garret D Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Matheus C R Miranda
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Camille Larue
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), 31400 Toulouse, France
| | - Mickaël Wagner
- Géosciences-Environnement-Toulouse (GET), CNRS, UMR 5563 CNRS, UT3, IRD, CNES, OMP, 31400 Toulouse, France
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), 31400 Toulouse, France
| | - Diana A Moreno-Bayona
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), 31400 Toulouse, France
| | - Hiram Castillo-Michel
- The European Synchrotron, ESRF, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sónia M Rodrigues
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
43
|
Wang S, Aljirafi FO, Payne GF, Bentley WE. Excite the unexcitable: engineering cells and redox signaling for targeted bioelectronic control. Curr Opin Biotechnol 2024; 85:103052. [PMID: 38150921 DOI: 10.1016/j.copbio.2023.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The ever-growing influence of technology in our lives has led to an increasing interest in the development of smart electronic devices to interrogate and control biological systems. Recently, redox-mediated electrogenetics introduced a novel avenue that enables direct bioelectronic control at the genetic level. In this review, we discuss recent advances in methodologies for bioelectronic control, ranging from electrical stimulation to engineering efforts that allow traditionally unexcitable cells to be electrically 'programmable.' Alongside ion-transport signaling, we suggest redox as a route for rational engineering because it is a native form of electronic communication in biology. Using redox as a common language allows the interfacing of electronics and biology. This newfound connection opens a gateway of possibilities for next-generation bioelectronic tools.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Futoon O Aljirafi
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| |
Collapse
|
44
|
Franco C, Canzoniero LMT. Zinc homeostasis and redox alterations in obesity. Front Endocrinol (Lausanne) 2024; 14:1273177. [PMID: 38260166 PMCID: PMC10800374 DOI: 10.3389/fendo.2023.1273177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Impairment of both cellular zinc and redox homeostasis is a feature of several chronic diseases, including obesity. A significant two-way interaction exists between redox metabolism and the relatively redox-inert zinc ion. Redox metabolism critically influences zinc homeostasis and controls its cellular availability for various cellular functions by regulating zinc exchange from/to zinc-binding proteins. Zinc can regulate redox metabolism and exhibits multiple pro-antioxidant properties. On the other hand, even minor disturbances in zinc status and zinc homeostasis affect systemic and cellular redox homeostasis. At the cellular level, zinc homeostasis is regulated by a multi-layered machinery consisting of zinc-binding molecules, zinc sensors, and two selective families of zinc transporters, the Zinc Transporter (ZnT) and Zrt, Irt-like protein (ZIP). In the present review, we summarize the current state of knowledge on the role of the mutual interaction between zinc and redox homeostasis in physiology and pathophysiology, pointing to the role of zinc in the alterations responsible for redox stress in obesity. Since zinc transporters primarily control zinc homeostasis, we describe how changes in the expression and activity of these zinc-regulating proteins are associated with obesity.
Collapse
|
45
|
Lin H, Suzuki K, Smith N, Li X, Nalbach L, Fuentes S, Spigelman AF, Dai XQ, Bautista A, Ferdaoussi M, Aggarwal S, Pepper AR, Roma LP, Ampofo E, Li WH, MacDonald PE. A role and mechanism for redox sensing by SENP1 in β-cell responses to high fat feeding. Nat Commun 2024; 15:334. [PMID: 38184650 PMCID: PMC10771529 DOI: 10.1038/s41467-023-44589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Pancreatic β-cells respond to metabolic stress by upregulating insulin secretion, however the underlying mechanisms remain unclear. Here we show, in β-cells from overweight humans without diabetes and mice fed a high-fat diet for 2 days, insulin exocytosis and secretion are enhanced without increased Ca2+ influx. RNA-seq of sorted β-cells suggests altered metabolic pathways early following high fat diet, where we find increased basal oxygen consumption and proton leak, but a more reduced cytosolic redox state. Increased β-cell exocytosis after 2-day high fat diet is dependent on this reduced intracellular redox state and requires the sentrin-specific SUMO-protease-1. Mice with either pancreas- or β-cell-specific deletion of this fail to up-regulate exocytosis and become rapidly glucose intolerant after 2-day high fat diet. Mechanistically, redox-sensing by the SUMO-protease requires a thiol group at C535 which together with Zn+-binding suppresses basal protease activity and unrestrained β-cell exocytosis, and increases enzyme sensitivity to regulation by redox signals.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xi Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Sonia Fuentes
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mourad Ferdaoussi
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Saloni Aggarwal
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
46
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
47
|
Kosmachevskaya OV, Novikova NN, Yakunin SN, Topunov AF. Formation of Supplementary Metal-Binding Centers in Proteins under Stress Conditions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S180-S204. [PMID: 38621750 DOI: 10.1134/s0006297924140104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/29/2023] [Indexed: 04/17/2024]
Abstract
In many proteins, supplementary metal-binding centers appear under stress conditions. They are known as aberrant or atypical sites. Physico-chemical properties of proteins are significantly changed after such metal binding, and very stable protein aggregates are formed, in which metals act as "cross-linking" agents. Supplementary metal-binding centers in proteins often arise as a result of posttranslational modifications caused by reactive oxygen and nitrogen species and reactive carbonyl compounds. New chemical groups formed as a result of these modifications can act as ligands for binding metal ions. Special attention is paid to the role of cysteine SH-groups in the formation of supplementary metal-binding centers, since these groups are the main target for the action of reactive species. Supplementary metal binding centers may also appear due to unmasking of amino acid residues when protein conformation changing. Appearance of such centers is usually considered as a pathological process. Such unilateral approach does not allow to obtain an integral view of the phenomenon, ignoring cases when formation of metal complexes with altered proteins is a way to adjust protein properties, activity, and stability under the changed redox conditions. The role of metals in protein aggregation is being studied actively, since it leads to formation of non-membranous organelles, liquid condensates, and solid conglomerates. Some proteins found in such aggregates are typical for various diseases, such as Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and some types of cancer.
Collapse
Affiliation(s)
- Olga V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | - Sergey N Yakunin
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Alexey F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
48
|
Ozoani H, Ezejiofor AN, Okolo KO, Orish CN, Cirovic A, Cirovic A, Orisakwe OE. Selenium and zinc alleviate hepatotoxicity induced by heavy metal mixture (cadmium, mercury, lead and arsenic) via attenuation of inflammo-oxidant pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:156-171. [PMID: 37676925 DOI: 10.1002/tox.23966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Heavy metals (HM) are believed to be injurious to humans. Man is exposed to them on daily basis unknowingly, with no acceptable protocol to manage its deleterious effects. These metals occur as mixture of chemicals with varying concentrations in our atmosphere. There are growing calls for the use of essential metals in mitigating the injurious effects induced by heavy metals exposure to man; therefore, the aim of this study was to evaluate the protective effects of essential metals (Zinc and Selenium) in a mixture of heavy metal toxicity. In this study, except for negative controls, all other groups were treated with lead (PbCl2 , 20 mg kg-1 ); cadmium (CdCl2 , 1.61 mg kg-1 ); mercury (HgCl2 , 0.40 mg kg-1 ), and arsenic (NaAsO3, 10 mg kg-1 ) that were formed in distilled water. Pb, Cd, As, and Hg were administered as mixtures to 35, 6 weeks old rats weighing between 80 to 100 g for 60 days. Group I served as normal control without treatment, group II positive control received HM mixture, while groups III to V received HMM with Zn, Se, and Zn + Se respectively. Animal and liver weights, HM accumulation in the liver, food intake (FI), water intake (WI), liver function test, malondialdehyde (MDA), and inflammatory/transcription factor/apoptosis markers were checked. Also, antioxidant enzymes, and histological studies were carried out. Metal mixture accumulated in the liver and caused toxicities which were ameliorated by Zn and Se administration. HM caused significant decrease in FI, WI and distorted the level of liver enzymes, lipid peroxidation, inflammatory markers, antioxidants and architecture of the liver. Co administration with Zn or Se or both reversed the distortions. This study lays credence to the evolving research on the public health implications of low dose metal mixtures and the possible ameliorative properties of Zn and Se.
Collapse
Affiliation(s)
- Harrison Ozoani
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Enugu, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, Port Harcourt, Nigeria
- Toxicology Division, Provictoire Research Institute, Port Harcourt, Nigeria
| |
Collapse
|
49
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
50
|
Krin E, Carvalho A, Lang M, Babosan A, Mazel D, Baharoglu Z. RavA-ViaA antibiotic response is linked to Cpx and Zra2 envelope stress systems in Vibrio cholerae. Microbiol Spectr 2023; 11:e0173023. [PMID: 37861314 PMCID: PMC10848872 DOI: 10.1128/spectrum.01730-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE The RavA-ViaA complex was previously found to sensitize Escherichia coli to aminoglycosides (AGs) in anaerobic conditions, but the mechanism is unknown. AGs are antibiotics known for their high efficiency against Gram-negative bacteria. In order to elucidate how the expression of the ravA-viaA genes increases bacterial susceptibility to aminoglycosides, we aimed at identifying partner functions necessary for increased tolerance in the absence of RavA-ViaA, in Vibrio cholerae. We show that membrane stress response systems Cpx and Zra2 are required in the absence of RavA-ViaA, for the tolerance to AGs and for outer membrane integrity. In the absence of these systems, the ∆ravvia strain's membrane becomes permeable to external agents such as the antibiotic vancomycin.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - André Carvalho
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Anamaria Babosan
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|